

1 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

[MS-SECO]:
Windows Security Overview

There are many concepts ingrained in the Windows Security Overview that result from years of
pervasive use. For someone new to Windows, this can be a source of frustration, because references

can exist in many places and may not be presented in a simple manner. This document is intended
to explain fundamental concepts and to point readers to more information.

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the

documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open

Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email

addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to

Microsoft programming tools and environments you are free to take advantage of them. Certain

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

Revision Summary

Date

Revision

History

Revision

Class Comments

02/14/2008 2.0.3 Editorial Revised and edited the technical content.

03/14/2008 2.0.4 Editorial Revised and edited the technical content.

05/16/2008 2.0.5 Editorial Revised and edited the technical content.

06/20/2008 2.0.6 Editorial Revised and edited the technical content.

07/25/2008 3.0 Major Updated and revised the technical content.

08/29/2008 3.0.1 Editorial Revised and edited the technical content.

10/24/2008 3.1 Minor Updated the technical content.

12/05/2008 3.2 Minor Updated the technical content.

01/16/2009 3.2.1 Editorial Revised and edited the technical content.

02/27/2009 3.2.2 Editorial Revised and edited the technical content.

04/10/2009 3.2.3 Editorial Revised and edited the technical content.

05/22/2009 3.2.4 Editorial Revised and edited the technical content.

07/02/2009 3.2.5 Editorial Revised and edited the technical content.

08/14/2009 4.0 Major Updated and revised the technical content.

09/25/2009 4.0.1 Editorial Revised and edited the technical content.

11/06/2009 4.1 Minor Updated the technical content.

12/18/2009 4.1.1 Editorial Revised and edited the technical content.

01/29/2010 4.1.2 Editorial Revised and edited the technical content.

03/12/2010 5.0 Major Updated and revised the technical content.

04/23/2010 5.0.1 Editorial Revised and edited the technical content.

06/04/2010 5.1 Minor Updated the technical content.

07/16/2010 5.1 No change No changes to the meaning, language, or formatting of

the technical content.

08/27/2010 5.1 No change No changes to the meaning, language, or formatting of

the technical content.

3 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Date

Revision

History

Revision

Class Comments

10/08/2010 5.1 No change No changes to the meaning, language, or formatting of

the technical content.

11/19/2010 5.1 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 5.1 No change No changes to the meaning, language, or formatting of

the technical content.

02/11/2011 5.1 No change No changes to the meaning, language, or formatting of

the technical content.

03/25/2011 5.1 No change No changes to the meaning, language, or formatting of

the technical content.

05/06/2011 5.1 No change No changes to the meaning, language, or formatting of

the technical content.

06/17/2011 5.1 No change No changes to the meaning, language, or formatting of

the technical content.

09/23/2011 5.1 No change No changes to the meaning, language, or formatting of

the technical content.

12/16/2011 5.1 No change No changes to the meaning, language, or formatting of

the technical content.

03/30/2012 5.1 No change No changes to the meaning, language, or formatting of

the technical content.

07/12/2012 5.1 No change No changes to the meaning, language, or formatting of

the technical content.

10/25/2012 5.1 No change No changes to the meaning, language, or formatting of

the technical content.

01/31/2013 5.1 No change No changes to the meaning, language, or formatting of

the technical content.

08/08/2013 6.0 Major Significantly changed the technical content.

11/14/2013 6.0 No change No changes to the meaning, language, or formatting of

the technical content.

02/13/2014 6.0 No change No changes to the meaning, language, or formatting of

the technical content.

05/15/2014 6.0 No change No changes to the meaning, language, or formatting of

the technical content.

4 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Contents

1 Introduction ... 6

2 Identity .. 7
2.1 Security Principal ... 7
2.2 Accounts... 7

2.2.1 User accounts .. 8
2.2.2 Computer accounts ... 8

2.3 Security Identifiers (SIDs) .. 9
2.4 Groups ... 11

2.4.1 Group Types .. 12
2.4.2 Group Scope .. 12
2.4.3 Nested Groups ... 13

2.5 Account Domains ... 14
2.5.1 Local Domains ... 14
2.5.2 Remote Domains and Domain Controllers .. 14
2.5.3 Domain Membership ... 15
2.5.4 Effect on Accounts .. 15
2.5.5 Globally Unique Identifiers (GUIDs) .. 15

2.5.5.1 Uniqueness .. 16
2.5.5.2 Internal Structure ... 16
2.5.5.3 Quality of Random Bits .. 17

3 Authentication .. 18
3.1 Background... 18

3.1.1 Authentication Concepts .. 18
3.1.2 Practice ... 18
3.1.3 History .. 19

3.2 Authentication Protocols ... 19
3.2.1 NT LAN Manager (NTLM) ... 19

3.2.1.1 Description and Flow ... 19
3.2.1.2 Notes .. 21

3.2.2 Kerberos ... 22
3.2.2.1 Description and Flow ... 22
3.2.2.2 Notes .. 23

3.2.3 Secure Sockets Layer (SSL) and Transport Layer Security (TLS) 24
3.2.4 Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) 24

3.2.4.1 Description and Flow ... 24
3.2.4.2 Notes .. 25

3.3 Use of Authentication ... 25
3.3.1 General Model .. 25
3.3.2 Known Idiosyncrasies ... 25

3.3.2.1 Server Message Block (SMB) and Common Internet File System (CIFS)........... 26

4 Authorization ... 27
4.1 Resource Managers .. 27
4.2 Security Descriptors ... 27
4.3 Discretionary Access Control Lists (DACLs) and Access Control Entries (ACEs) 28
4.4 Access Rights .. 30
4.5 Authorization .. 30
4.6 Inheritance ... 31

5 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

4.7 System Access Control Lists .. 31
4.8 Windows Integrity Mechanism ... 32

5 Impersonation ... 33
5.1 Cloaking ... 34
5.2 Impersonation Tokens .. 35
5.3 Impersonation Levels ... 35
5.4 Setting the Impersonation Level .. 36
5.5 Windows API Impersonation Functions ... 37

6 References ... 38

7 Appendix A: Product Behavior .. 39

8 Change Tracking... 41

9 Index ... 42

6 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1 Introduction

The Windows operating system contains a wide range of security concepts, which can be
overwhelming when first encountered. Windows is a relatively mature product with regard to
security concepts; some technologies extend back 15 years or more. Microsoft is also seeking to
adopt new security technologies and concepts and to incorporate them into a model that is already
familiar to many system administrators.

7 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2 Identity

The first security concept that is important to understand is identity. Identity in Windows comes in
several types, and it exists and is managed in several scopes, which are detailed in the following
sections. For example, identity can refer to the set of users on a single computer or the identities
that are available in a domain.

2.1 Security Principal

A security principal is a common concept in security; it is an actor in a security system and is often

something capable of initiating action. Typically, a security principal is associated with a human user
of the computer system, but it can also be an autonomous program within the system, such as a
logging daemon, system backup program, or something similar.

The security principal is an entity that can be authenticated. In Windows, a security principal is
typically a user but can also be a computer or a service. A security principal is often referred to as
an account.

Security principals receive permissions to access resources such as files and folders. User rights,

such as interactive logons, are granted or denied to accounts directly or via membership in a group.
The accumulation of these permissions and rights defines what security principals can and cannot do
when working on the network.

2.2 Accounts

One of the most important aspects of any security principal is that it serves as a point of
management between the system and the administrator. As such, it needs to have attributes that

make it meaningful to the administrator or the user. The security principal (or account) has at least
a name and an identifier.

The name is a simple textual name for the account, such as John Smith, SYSTEM, or RedmondDc1$.
The name is merely an attribute of the account, however, and can change over time. A common
scenario is that the person that the account refers to changes his or her name.

Also, the name is treated as case-insensitive. That is, John Smith, JOHN SMITH, john smith, and

joHn SmiTH are treated as equivalent in Windows. Microsoft views case-sensitivity as creating an
unnecessary burden on the administrator and as something that can lead to mistakes.

The identifier, though also an attribute of the account, has to satisfy other attributes as well. Of
particular importance are the uniqueness and persistence of the identifier and the issuer of the
identifier. The persistence of the identifier is what provides the administrator with the capability to
assign a resource to that account and not be surprised in the future by changes to the account.

Consider the case of John Smith. The administrator may assign John Smith access to a certain

document at one point in time. If that John Smith leaves the company and a new John Smith is
hired, the new John Smith should not have access to the resources of the original John Smith.
Conversely, if John Smith changes his name to John Q. Smith, he should not lose access to the
resources previously granted.

The other important attribute is the issuer of the identifier. Identities have different weight,
conceptually, depending on the issuer. In the physical world, a store is generally willing to accept a
driver's license as proof of identity, but the store is unwilling to accept a gymnasium membership

card. In the Windows model, the issuer of an account is encoded with the identity so that any
recipient can make a similar decision.

The identifier that Windows uses for accounts is called a security identifier (SID).

8 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Windows contains a number of built-in accounts:

User account: Identifies users who belong to the domain by storing their names, their

passwords, the groups that they belong to, the permissions that they have for accessing system

resources, and other personal information.

Group account: Identifies a specific group of users and is used to assign them permissions to

objects and resources.

Computer account: Identifies computers that belong to the domain. A computer account is

commonly referred to as a "machine account."

Each built-in user, computer, or group account is a security principal.<1>

User and computer accounts can be added, disabled, reset, and deleted by using Active Directory
Users and Computers. A computer account can also be created when a computer is joined to a
domain. For more information about user and computer accounts, see Active Directory naming and
Object names.

2.2.1 User accounts

In the Active Directory directory service, each user account has a user logon name, a pre-

Windows 2000 operating system user logon name (security accounts manager (SAM) account
name), and a user principal name (UPN) suffix. The administrator enters the user logon name and
selects the UPN suffix when creating the user account. Active Directory suggests a pre-
Windows 2000 user logon name that uses the first 20 bytes of the user logon name. Administrators
can change the pre-Windows 2000 logon name at any time.

In Active Directory, each user account has a UPN based on [RFC822]. The UPN is composed of the
user logon name and the UPN suffix joined by the at sign (@).

Note When creating a user account, it is not necessary to add the at sign (@) to the user logon
name or to the UPN suffix. Active Directory automatically adds the at sign (@) when it creates the
UPN. A UPN that contains more than one at sign (@) is invalid. User logon names do not end with a

period or multiple periods.<2>

The second part of the UPN, the UPN suffix, identifies the domain in which the user account is
located. This UPN suffix can be the Domain Name System (DNS) domain name, the DNS name of

any domain in the forest, or an alternative name that is created by an administrator and used just
for logon purposes. This alternative UPN suffix does not need to be a valid DNS name.

In Active Directory, the default UPN suffix is the DNS name of the domain in which the user account
is created. In most cases, this is the domain name that is registered as the enterprise domain on
the Internet. Using alternative domain names as the UPN suffix can provide additional logon security
and simplify the names that are used to log on to another domain in the forest.

For example, if an organization uses a deep domain tree that is organized by department and

region, domain names can become quite long. The default UPN for a user in that domain might be
sales.westcoast.contoso.com. The logon name for a user in that domain would be
user@sales.westcoast.contoso.com. Creating a UPN suffix of "contoso" would allow that same user

to log on by using the much simpler logon name of user@contoso.

2.2.2 Computer accounts

Each computer account that is created in Active Directory has a relative distinguished name (RDN),

a pre-Windows 2000 operating system computer name (SAM account name), a primary DNS suffix,

http://go.microsoft.com/fwlink/?LinkId=90497

9 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

a DNS host name, and a service principal name (SPN) in addition to the computer name. The
administrator enters the computer name when creating the computer account. The computer name

must include the dollar sign ($) character at the end of the name (for example RedmondDc1$).

When the domain functional level has been set to Windows Server 2003 operating system, Windows

Server 2003 R2 operating system, Windows Server 2008 operating system, Windows
Server 2008 R2 operating system, Windows Server 2012 operating system, or Windows Server 2012
R2 operating system, a new lastLogonTimestamp attribute is used to track the last logon time of
a user or computer account. This attribute is replicated in the domain and can provide important
information regarding the history of a user or a computer.

Every Windows computer that joins a domain has a computer account.<3> Similar to user accounts,
computer accounts provide a means for authenticating and auditing computer access to the network

and to domain resources. Each computer account must be unique.

When the Netlogon service running on a client computer connects to the Netlogon service on a
domain controller (DC) in order to authenticate a user, the Netlogon services challenge each other
to determine whether they both have a valid computer account. This allows a secure communication

channel to be established for logon purposes.

In order for a Windows computer to join a domain, the computer must have a computer account in

Active Directory.<4>

The computer name (for example RedmondDc1$) is used as the Lightweight Directory Access
Protocol (LDAP) relative distinguished name (RDN). Active Directory suggests the pre-Windows 2000
name that uses the first 15 bytes of the RDN. The administrator can change the pre-Windows 2000
name at any time.

The DNS name for a host is called a full computer name and is a DNS fully qualified domain name
(FQDN). The full computer name is a concatenation of the computer name (the first 15 bytes of the

SAM account name of the computer account without the "$" character) and the primary DNS suffix
(the DNS domain name of the domain in which the computer account exists). It is listed on the
Computer Name tab in the System Properties dialog box in Control Panel.

By default, the primary DNS suffix portion of the FQDN for a computer must be the same as the
name of the Active Directory domain where the computer is located. To allow different primary DNS
suffixes, a domain administrator may create a restricted list of allowed suffixes by creating the
msDS-AllowedDNSSuffixes attribute in the domain object container. This attribute is created and

managed by the domain administrator by using Active Directory Service Interfaces (ADSI) or LDAP.

The SPN is a multivalue attribute. It is usually built from the DNS name of the host. The SPN is used
in the process of mutual authentication between the client and the server hosting a particular
service. The client finds a computer account based on the SPN of the service to which it is trying to
connect. The SPN can be modified by members of the Domain Admins group.

2.3 Security Identifiers (SIDs)

The security identifier (SID) is an account identifier. The SID is variable in length and encapsulates
the hierarchical notion of issuer and identifier. It consists of a 6-byte identifier authority field that is

followed by one to fourteen 32-bit subauthority values and ends in a single 32-bit relative identifier
(RID). For example, a two-subauthority SID appears as shown in the following figure.

10 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 1: Windows security session identifier via subauthorities

When displayed textually, the accepted form is the following:

S-1-<identifier authority>-<sub1>-<sub2>-…-<subn>-<rid>

where S and 1 are literal strings, identifier authority is the 6-byte value, sub1 through subn are the
subauthority values, and rid is the RID.

The original concept of the SID called out each level of the hierarchy. Each layer included a new
subauthority, and an enterprise could lay out arbitrarily complicated hierarchies of issuing
authorities. Each layer could, in turn, create additional authorities beneath it. In reality, this system
created a lot of overhead for setup and deployment and made the management model group even

more complicated. The notion of arbitrary depth identities did not survive the early stages of

Windows development, although the structure was already too deeply ingrained to be removed.

In practice, two SID patterns developed. For built-in, predefined identities, the hierarchy was
compressed to a depth of two or three subauthorities. For real identities of other principals, the
identifier authority was set to five, and the set of subauthorities was set to four.

Whenever a new issuing authority under Windows is created (for example, a new machine deployed
or a domain created), it is assigned a SID with 5 (an arbitrary value) as the identifier authority; a

fixed value of 21 is used as a unique value to root this set of subauthorities, and a 96-bit random
number is created and parceled out to the three subauthorities with each subauthority that receives
a 32-bit chunk.

Windows allocates RIDs starting at 1,000; RIDs having a value less than 1,000 are considered
reserved and are used for special accounts. For example, all Windows accounts with a RID of 500
are considered built-in Administrator accounts in their respective issuing authorities.

Thus, a SID that is associated with an account appears as depicted in the following figure.

11 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 2: SID with account association

For most uses, the SID can be treated as a single long identifier for an account. By the time a
specific SID is associated with a resource or logged in a file, it is effectively just a single entity. For
some cases, however, it should conceptually be treated as two values: a value that indicates the
issuing authority and an identifier relative to that authority. Sending a series of SIDs, all from the
same issuer, is one example: the list can easily be compressed to be the issuer portion and the list

of IDs relative to that issuer.

It is the responsibility of the issuing authority to preserve the uniqueness of the SIDs, which implies
that the issuer must not issue the same RID more than one time. A trivial approach to this entails
allocating RIDs sequentially. More complicated schemes are certainly possible; Active Directory uses
a multimaster approach that allocates RIDs in blocks. It is possible for an issuing authority to run
out of RIDs; therefore, the issuing authority must take care to handle this situation correctly.
Typically, that authority must be retired.

Windows supports the concept of groups with much the same mechanisms as individual accounts.

Each group has a name, just as the accounts have names. Each group also has an associated SID.

User accounts and groups share the same SID and namespaces. Users and groups cannot have the
same name on a Windows-based system nor can the SID for a group and a user be the same.

For access control, Windows makes no distinction whether a SID is assigned to a group or an

account. Changing the name of a user, computer, or domain does not change the underlying SID for
that account, and an administrator cannot modify the SID for that account. Administrators cannot
modify the SID for an account in Windows NT operating system, and there is generally no need to

know the SID that is assigned to a particular account. SIDs are primarily intended to be used
internally by the operating system to ensure that accounts are uniquely identified in the system.

2.4 Groups

A group is a collection of user accounts, computer accounts, and other groups that can be managed
as a single unit from a security perspective. Groups can be based either in Active Directory or local

to a particular computer.

Windows Server operating system has several built-in accounts and security groups that are
preconfigured with the appropriate rights and permissions to perform specific tasks.<5> Active
Directory provides two types of administrative responsibilities: service administrators are
responsible for maintaining and delivering the directory service, including DC management and

directory service configuration; and data administrators are responsible for maintaining the data
that is stored in the directory service and on servers and workstations that are domain members.

It is important to understand which default accounts and groups are service administrators. Service
administration accounts and groups have the most widespread power in the network environment
and require the most protection.

12 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.4.1 Group Types

Starting with Windows 2000 operating system, Windows provides two types of groups:

Security groups: These groups can contain members and can be granted permissions in order to

control access to network resources. Security groups can contain users, other groups, and even
computers.

Distribution groups: These groups are used for nonsecurity functions, such as grouping users

together to send email messages. Unlike security groups, these groups cannot be used to control
access to network resources.

Windows NT Server operating system has only one type of group, which is equivalent to security

groups in subsequent versions of Windows Server operating system.

Starting with Windows 2000 Server operating system, groups can be created by using the Active
Directory Users and Computers console, and groups are stored as group objects in the Active
Directory directory service. In Windows NT operating system, groups can be created by using User

Manager for Domains, and groups are stored in the SAM database. Users can belong to multiple
groups at the same time. A group does not actually contain its member user accounts; it is just a

list of user accounts.

2.4.2 Group Scope

The scope of a group can be local or global depending on the portion of the network for which the
group can be granted rights and permissions. Beginning with Windows 2000 operating system,
Windows provides three levels of scope for security groups:

Universal groups: These groups can contain members for any domain and be granted

permissions to resources in any domain in a specific Active Directory forest. An Active Directory
forest is a collection of one or more Active Directory domains that share a common logical
structure, directory schema, and network configuration, as well as automatic two-way transitive
trust relationships. Each forest is a single instance of the directory and defines a security

boundary. Universal groups can contain user accounts, global groups, and universal groups from
any domain in the current forest. An administrator can create a universal group only when the

domain is in native mode and not in mixed mode as defined in section 2.4.3.

Global groups: These groups can contain members only from their own domain but can be

granted permissions to resources in any trusting domain. When the domain is in native mode,
global groups can contain user accounts and global groups from the same domain. When the
domain is in mixed mode, these groups can contain only user accounts.

Domain local groups: These groups can contain members from any trusted domain but can be

granted permissions only to resources in their own domain. Unlike Windows NT operating system
local groups, a domain local group can be granted permissions to resources on all servers (both
the DCs and member servers) in its domain. When the domain is in mixed mode, domain local
groups can contain user accounts and global groups from any trusted domain or forest. When the
domain is in native mode, domain local groups can also contain domain local groups from their
own domain and universal groups from within any domain in the forest.

Beginning with Windows 2000 Server operating system, for member servers and client computers,

and also for Windows XP operating system clients, a fourth scope of group called a local group can
exist only within the local security database of the computer where it is created. These local groups
are similar to local groups in Windows NT, as described below. They can contain user accounts that
are local to the computer and user accounts and global groups from their own domain. A local group
can be granted permissions to resources only on the computer where it was created. The Local

13 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Users and Groups Microsoft Management Console (MMC) is used to create local groups on a
computer.

Windows NT groups have only two levels of scope:

Global groups: A global group can be granted permissions to resources in its own domain and to

resources in trusting domains. A global group can contain user accounts only from its own
domain. Global groups are created on Windows NT domain controllers and exist in the domain
directory database.

Local groups: A local group created with Windows NT Workstation operating system can be

granted permissions only to resources on the computer where it was created. A local group
created with Windows NT Server operating system domain controller can be granted permissions

only to resources on the domain controllers of its own domain. A local group can contain user
accounts and global groups both from its own domain and from trusted domains. Network
administrators of enterprise-level Windows NT networks can use a resource-access strategy
called AGLP (Accounts organized by placing them in Global groups, which are then placed in Local
groups that have appropriate Permissions and rights assigned to them) to plan and implement

local groups in their network.

Beginning with Windows 2000 Server, the scope of a group can be changed. For example, global
groups that are not members of other global groups can be converted to universal groups. Domain
local groups that do not contain other domain local groups can be converted to universal groups.

2.4.3 Nested Groups

Windows supports the concept of nesting groups, or adding groups to other groups. Nesting groups
can help reduce the number of permissions that need to be individually assigned to users or groups.

The process of creating groups across domains involves the following steps:

1. The administrator in each domain creates global groups and adds user accounts that have the
same resource requirements to the global groups.

2. A domain administrator creates a domain local group for each resource that exists within a
domain, such as file shares or printers, and then adds the appropriate global groups from each
domain to this domain local group.

3. A domain administrator assigns the appropriate permissions for the resources to the domain local

group. Users in each global group receive the required permissions because their global group is
a member of the domain local group.

Effectively nesting groups in a multidomain environment reduces network traffic between domains
and simplifies administration in a domain tree. A domain tree is a collection of domains that are
grouped together in hierarchical structures so that they can be administered as single logical unit.

When a domain is added to the domain tree, it becomes a child of the tree root domain. The domain

to which a child domain is attached is called the parent domain. A child domain can contain its own
child domain. The name of a child domain is combined with the name of its parent to form its own
unique DNS name such as Corp.mycompany.msft. In this manner, a tree has a contiguous

namespace.

The extent to which nesting can be used in a specific organization depends on which mode the DC
was configured in the system. Domain controllers can be configured in two modes: mixed mode or
native mode.

14 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Mixed mode: A DC that is configured to support a mixed environment where Windows NT 4.0

operating system, Windows 2000 operating system, and Windows Server 2003 operating system

domain controllers are in the same domain.

Native mode: A DC that is configured such that Windows NT 4.0-style domains are not

supported.

In mixed mode, only one type of nesting is available; global groups can be members of domain local
groups. Universal groups do not exist in mixed mode. In native mode, multiple levels of nesting are
available. The nesting rules for group memberships for Windows 2000 are summarized in the
following table.

Group scope Can contain Can be a member of

Domain local

group

User accounts and universal and global groups

from any trusted domain.

Domain local groups from the same domain.

Domain local groups in the same

domain.

Global group User accounts and global groups from the same

domain.

Universal and domain local groups

in any domain.

Global groups in the same domain.

Universal

group

User accounts and universal and global groups

from any domain.

Universal or domain local groups in

any domain.

2.5 Account Domains

Accounts are always created relative to some issuing authority, which is responsible for allocating
and assigning the SID. For Windows issuing authorities, this is referred to as a domain. Domains

come in two varieties, local and remote.

2.5.1 Local Domains

Every computer running Windows has a local domain; that is, it has an account database for
accounts that are specific to that computer. Conceptually, this is an account database like any other
with accounts, groups, SIDs, and so on. These are referred to as local accounts, local groups, and so
on. Because computers typically do not trust each other for account information, these identities

stay local to the computer on which they were created.

2.5.2 Remote Domains and Domain Controllers

With a remote domain, certain Windows-based servers can be configured to be DCs. A DC is a
server that has made its account database available to other machines in a controlled manner.
Starting with Windows 2000 operating system,<6> DC began supporting a database of more than
just accounts, becoming a general-purpose directory. This is known as Active Directory.

Because the account database is typically distributed across multiple DCs, there can naturally be a
mix of different versions of the individual servers. Active Directory has the notion of a functional

level, which serves as a version level for the entire directory. The functional level is managed by the
administrator and the system itself.

A domain has built-in groups; these groups are defined by Microsoft and created within the domain
during installation. For example, built-in groups include the Domain Users, Domain Computers, and

Domain Admins groups. By default, the Domain Users group includes all users who are defined in
the domain.

15 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

A DC accepts authentication requests on behalf of the machines that have chosen to trust it.

A DC can have peers within the domain. These peers are other servers that also have been
configured to host this account database. Any server participating in the domain as a domain
controller may or may not allow changes; the configuration is a choice of the administrator.<7>

When a change is allowed, the servers replicate the change so that all DCs have the same
information.

2.5.3 Domain Membership

Domain membership is the state of trusting a third party (the DC) for identity and authentication
information. Any system can conceivably be part of a domain. Windows-based systems can easily be
configured to be part of a domain and trust their DC for many tasks. Also, certain configuration

changes are made, such as accepting the domain as the authoritative source of time.

Windows-based systems can have local groups that include members from a domain. This allows the
member system to manage its resources in the manner most relevant to it and not be completely

dependent on the decisions of the domain administrator. A domain administrator can create a
domain local group for each resource that exists within a domain, such as file shares or printers, and
then add the appropriate global groups from each domain to this domain local group. The domain

administrator then assigns the appropriate permissions for the resources to the domain local group.

Joining a domain ultimately distills down to establishing an account on the domain that represents
the system joining the domain, and to setting the password (or key) for the account on both the
domain and the actual system. In Windows, this process is encapsulated in a domain join function
(NetJoinDomain). Several tools, such as WinBind, exist for non-Windows operating systems to join a
Windows domain.

All Windows-based systems have a component that manages their relationship with their DC. This

component, called Netlogon, maintains the keys that are necessary for ongoing authentication of the
member system to the DC. It also creates a general-purpose channel to the Netlogon instance on
the DC.<8>

This channel is used by various authentication protocol implementations to redirect an
authentication request to (or augment their activities with) their instance on the DC.

2.5.4 Effect on Accounts

Windows domains have an effect on the way that accounts and groups work. Some of this is by
convention, and some is by design.

By convention, when a Windows-based system is added to a domain, the domain administrators
group is made a member of the local administrators group.

By design, groups have different scopes when domains are involved. Groups can be defined to be
globally known and therefore usable by other domains or known only within the domain in which

they are defined.

2.5.5 Globally Unique Identifiers (GUIDs)

In Windows programming and in Windows operating systems, a globally unique identifier (GUID), as
specified in [RFC4122], is a 128-bit value that is a binary unique identifier (ID) for a specific entity.
The term universally unique identifier (UUID) is sometimes used in Windows protocol specifications
as a synonym for GUID.

http://go.microsoft.com/fwlink/?LinkId=90460

16 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.5.5.1 Uniqueness

All GUIDs are assumed to be unique; however, it cannot be said that they MUST be unique because
there is no mechanism to enforce that uniqueness. Some GUIDs are also unpredictable. [RFC4122]

defines five versions of GUID, one of which, version 4, is unpredictable by design. Because a GUID
includes a version number field, no GUID of one version could equal a GUID of a different version.

Sometimes GUIDs are generated at design time and remain constant throughout the life of a
protocol, such as a GUID that identifies a remote procedure call (RPC) interface or one that
identifies a particular Active Directory schema. Such GUID values when used in a protocol are
typically listed in the protocol document. Other GUIDs are generated at runtime by the protocol
implementation itself and are used to identify transitory things such as individual sessions,

connections, transactions, and activities.

Some protocols use unpredictable GUIDs as self-authenticating identifiers or nonces. That is, the
GUID value (for example, a GUID that represents a client ID) is kept secret by both parties to the
protocol and is used as an identifier. However, because it is assumed to have significant entropy, it
also serves as a high-entropy password. Alternatively, a random GUID can be used as a nonce,

which is a number that is used only one time and is unpredictable by the attacker. A nonce is

typically used for the purpose of preventing replay attacks.

2.5.5.2 Internal Structure

A GUID has substructure, which a GUID generator needs to be aware of. A protocol stack
implementation that uses a GUID, unless the individual protocol specification explicitly states the
contrary, SHOULD treat that GUID as an opaque single quantity to which only equality or inequality
tests are applied. Such a protocol implementation SHOULD NOT make decisions based upon the

substructure of the GUID.

[RFC4122] defines five versions of GUID and specifies how they are constructed. The known
substructure is represented by the version and variant fields. The remaining fields (what that RFC
calls time stamp and node) are what make the GUID unique.

In a version 1 GUID, these fields carry a value that is derived from the time and the computer’s
network node address, respectively. A side effect of a version 1 GUID is that it identifies the
machine on which it was generated (barring replacement or transfer of its network interface card).

In a version 4 GUID, these fields have been replaced by random bits. In generating a version 4
GUID, an implementation SHOULD use a Federal Information Processing Standard (FIPS)-approved
pseudo-random number generator (PRNG) (as specified in [FIPS140-2] or later), but any superior
source of random bits (such as a true hardware PRNG) MAY be used instead. For more information
about entropy sources, see [RFC4086]. If a PRNG is used as the source of random bits, it takes a
parameter called a seed. Although many experts in the field have studied, tested, and approved

each FIPS-approved PRNG algorithm, no approved or nonapproved PRNG output is or can be more
unique or less guessable than its seed.<9><10>

Any implementation of version 4 GUIDs MAY implement two types of GUID: one GUID for
uniqueness only and another GUID for use as a nonce. These types are characterized as follows:

Uniqueness-only: This GUID is not kept secret and it is not required that it be unguessable.

Therefore, the PRNG that is used to generate a version 4 GUID needs to be seeded only with
values that have a high probability of being unique for that machine and that session. Typically,

such a seed is formed by the cryptographic hash of uniqueness values, such as the CPU ID, MAC
address, time of day, processor tick count, system process table, and system state.

http://go.microsoft.com/fwlink/?LinkId=90460
http://go.microsoft.com/fwlink/?LinkId=90460
http://go.microsoft.com/fwlink/?LinkId=89866
http://go.microsoft.com/fwlink/?LinkId=90456

17 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Nonce or authenticator: This GUID must be kept secret to preserve its security value. The

PRNG that is used to generate a version 4 GUID for this purpose needs to be seeded with values

that have a high probability not only of being unique but also of being unguessable by an

attacker. Typically, such a seed is formed by the cryptographic hash of unguessable values of
high entropy, such as the output of a hardware True Random Bit Generator, the system state
readable in kernel mode, the history of system state over a long runtime, the accumulated
entropy from earlier operation of the system (retained in a place that the attacker cannot
access), the time of arrival of hardware interrupts, or the history of mouse positions as it moves.

A secret GUID that is good enough for a nonce is also good for uniqueness. Any system that
generates cryptographic keys needs a source of true random or pseudo-random bits that are

unguessable enough for building those keys. Therefore, it is common practice for an implementer to
provide only one type of version 4 GUID, which is a type that is good enough for a nonce; and to
use cryptographic-quality random bits for generating that GUID—even when building a GUID that is
used only for uniqueness.<11>

2.5.5.3 Quality of Random Bits

Each use of a version 4 GUID has a measure of quality:

Uniqueness: The probability that some other system will happen to generate the same GUID

(without any conscious attempt by an attacker to create that collision).

Nonce: The probability that some conscious attacker will be able to guess the generated GUID.

An ideal GUID that uses N bits of randomness collides with some chosen value by accident (violating
uniqueness) with a probability proportional to 2-N and is guessable by an attacker with work
proportional to 2N. This quality of randomness is measured by entropy. The ideal case that is

described earlier is said to represent N bits of entropy.

If N allegedly random bits actually contain M<N bits of entropy, the probability of accidental collision
is proportional to 2-M and the work for an attacker is proportional to 2M. This leads, in the case of
GUIDs for uniqueness, to a higher-than-ideal probability of accidental collision. If such a collision

occurs, the two different identified objects will have the same ID, possibly leading to confusion. In
the case of GUIDs for use as nonces, the lower work by the attacker might result in a successful

replay attack.

Neither of these flaws, if one occurs, changes any protocol that uses such a GUID. It might change
the security claims that such a protocol might make, but not the state machine, packet sequence, or
packet contents of the protocol. The same applies to GUIDs that are used for uniqueness. If two
GUIDs that were supposed to be different are accidentally the same, then the protocol
implementation is not changed, only the probability that a mistaken identity might occur.

Therefore, the implementer of a protocol is not required by the protocol specification to guarantee

any quality of random bits. Nothing in the specification of any Microsoft Communications Protocol
Program (MCPP) protocol directs a conformant implementation to look for, much less detect, any
use of low-quality random bits in GUID generation. This means that even a very low-entropy
random bit stream can be used to generate GUIDs that will allow a protocol to interoperate and be
indistinguishable from any other protocol implementation, no matter what the quality of random bits

in that other implementation.

Of course, implementers who prefer to minimize the confusion that would result from nonunique

GUIDs or the replay attacks that would result from guessable nonces are well advised to use the
best-quality random bit sources that they can find.

18 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3 Authentication

With a basic understanding of identity, the next natural question is, how is identity proven across
the network?

3.1 Background

The following underlying concepts and historical background are the foundation for the
authentication model of Windows.

3.1.1 Authentication Concepts

The purpose of authentication is for two communicating entities to establish the identity of one or
both parties. It is presumed that the communication medium between the two entities is completely
hostile, and that an attacker can inspect any message or tamper with any message. Tamper here
means change, suppress, or replay. Protocols must be developed that allow the two entities to
authenticate in such a harsh environment. Commonly, the two entities consist of a client and a

server.

Authentication can take on several aspects. For example, authentication of the server may be
sufficient. The use of Secure Sockets Layer (SSL) on the Internet is primarily centered on assuring
the client of the identity of the server. For protected networks, client authentication may be
sufficient, because the valuable resource lives on a single server, and the server really only needs to
address the identity of the client.

On modern networks, however, proving the identity of both the client and the server has become of
the highest importance. Clients need to be assured of the identity of a server to avoid divulging

something important to a rogue server; servers must be assured of the identity of clients to avoid
granting clients inappropriate access. This security concept is typically called mutual authentication.

Ultimately, authentication must be performed by using cryptographic operations of some form, such
as encryption or signatures. There are two main types of encryption: symmetric and asymmetric.
Symmetric encryption uses the same key to encrypt and decrypt a message. Asymmetric encryption

uses one key to encrypt and uses a different key to decrypt; these keys are linked by mathematical

requirements. Signatures can be implemented in a number of ways through keyed hashes and
encrypted hashes.

3.1.2 Practice

In the early 1990s, John Linn, then of Digital Equipment Corporation, proposed that applications not
be tied to specific security protocols. This proposal was the genesis of the Generic Security Service
Application Programming Interface (GSS-API). This concept has driven the model of most

authentication protocols that are intended for use within an application protocol. This concept is
generally referred to as GSS style or the GSS model. Note that there have been a number of
channel-based protocols, such as Secure Sockets Layer (SSL), Transport Layer Security (TLS), and
Secure Shell (SSH), that are intended to be below the application protocol layer.

This approach, however, has led to a simplified form of interaction between the application protocol

and the authentication protocol. In this model, the application protocol is responsible for ferrying
discrete, opaque packets that are produced by the authentication protocol. The application has no

visibility into the contents of the message; its responsibility is merely to carry them. These
messages, which GSS specifications refer to as tokens, implement the authentication process.

The application in this model first calls the authentication protocol on the client. The client portion of
the authentication protocol creates a token and returns it to the calling application. The application

19 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

then transmits that token to the server side of its connection, embedded within the application
protocol. On the server side, the server application extracts the token and supplies it to the

authentication protocol on the server side. The server-side authentication protocol can process the
token and possibly generate a response or determine that authentication is complete. If another

token is generated, the application must carry it back to the client, where the process continues.

This exchange of security tokens continues until one or both sides determine that authentication is
complete. If authentication fails, the application should drop the connection and indicate the error. If
it succeeds, the application can then be assured of the identity of the participants, as far as the
underlying protocol can accomplish.

When authentication is complete, session-specific security services can be available. The application
can then invoke the authentication protocol to sign or encrypt the messages that are sent as part of

the application protocol. These operations are done in much the same way, where the application
can indicate what portion of the message is to be encrypted, and then must include a per-message
security token. By signing or encrypting the messages, or both, the application can obtain privacy,
resistance to tampering of messages, and detection of messages dropped, suppressed, or replayed.

3.1.3 History

Windows networking has its roots in the LAN Manager (LM) network product. LM was designed for a
time when client authentication was sufficient for most needs, and when computational capacity was
exceeded by the algorithms common at the time. For example, exhaustively searching Data
Encryption Standard (DES) keys was unthinkable by any but the most dedicated government
resources. LM authentication used a straightforward challenge-response style of authentication and
was sufficient for many customers for many years.

When Microsoft decided to adopt the Kerberos protocol for Windows and move away from NT LAN

Manager (NTLM), it required a substantial change for a number of protocols. This process is still
going on today. Rather than repeat the process when circumstances required a new or additional
security protocol, Microsoft chose to insert a protocol, in this case, Simple and Protected GSS-API
Negotiation (SPNEGO), to allow security protocol selection and extension.

3.2 Authentication Protocols

Several protocols are available for authentication in Windows, each with different strengths and

weaknesses, different capabilities, and different uses within the product.

3.2.1 NT LAN Manager (NTLM)

NT LAN Manager (NTLM) is an ongoing extension to the original LAN Manager (LM) authentication
protocol. NTLM is conceptually straightforward and only performs client authentication. NTLM has
undergone some revision (known as NTLMv2), which incorporates additional information into the
computation of the response; however, it still follows the same general message flow.

3.2.1.1 Description and Flow

NT LAN Manager (NTLM) messages are carried by an application protocol. The basic flow of the

security tokens or messages is as follows.

20 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 3: NTLM client/server session life cycle (basic)

1. The client sends an initial message to the server, advertising certain options or capabilities, such

as cryptographic algorithm support.

2. The server creates a challenge, c, and returns the challenge and the options or capabilities that it
can support to the client.

3. The client computes a function on the challenge, resp = f(c, password), and sends the results to
the server along with the user's textual name and domain.

4. The server looks up the user (by the name passed) and computes the same function, f(c, user's
password). If the result matches resp (that is, what the client sent in step 3), the passwords are

presumed to match, and the user is authenticated.

The details of the protocol can be found in the official documentation for NTLM; this explanation is
for illustrative purposes only. For example, password (in step 3) is actually a hashed, derivative
binary form of the actual textual password.

NTLM becomes more interesting when the domain scenario is factored in. Recall that for domains,
the DC hosts the account database, and members of the domain do not have direct access to the
account database anymore. In the domain scenario, the flow from client to server is the same, but

there is a new interaction with the DC.

21 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 4: NTLM client/server session life cycle (with domain controller)

Here there are two additional messages. In the flow depicted in the preceding figure, the server
adds the following:

1. Forward challenge, c, the response, resp, the user name, and the user domain from the client to
the DC.

2. The DC looks up the account record for the user specified, computes f(c, password), and

compares this with the resp from the client. If the record matches, the DC can gather the user
account and group memberships and send this information back to the server as the reply.

3. The server can respond to the client that authentication is complete.

The introduction of the server forwarding the authentication request to the DC is a powerful point of
indirection. It allows different account authorities to be woven into a trust network that is
completely invisible to the client. This can go on virtually ad infinitum; the server's DC can forward

the request to other domains, and so on.

3.2.1.2 Notes

NTLM can never provide mutual authentication in all situations; the client can never be assured of

the identity of the server in a general manner. The only time that NTLM can provide mutual
authentication is when the client knows through out-of-band means that the user name used for
authentication exists only on the target server.

This can constrain the authentication to at least within the extended set of trusted domains.

22 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.2.2 Kerberos

In 1993, Microsoft began working toward adopting the Kerberos protocol. Kerberos support for
mutual authentication, transitive trust among authorities, extensibility, public inspection and review,

and performance and caching, all pointed to this protocol as the authentication protocol for
enterprise deployment for the foreseeable future. Windows 2000 operating system shipped in 1999
with the Kerberos protocol natively supported.

Because the Kerberos protocol is an Internet Engineering Task Force (IETF) protocol, a multitude of
documents are available that describe how it works; see [RFC4120] as the canonical
reference.<12>

MIT also has a document that describes the ideas behind the Kerberos protocol in an approachable

manner (see Designing an Authentication System: A Dialogue in Four Scenes [DIALOGUE]).

3.2.2.1 Description and Flow

The Kerberos protocol is based on a client and a server and a trusted third party called the Key

Distribution Center (KDC). The KDC is associated with an account database and has a key that is
shared with each client or server that it knows about. The management of the account database is

explicitly outside the Kerberos protocol. It is presumed, however, that each client or server knows
its own key through some method.

The Kerberos protocol is based on passing tickets from clients to servers; these tickets are originally
crafted by the KDC that serves the domain in which the account lives. The ticket is useful because
the receiving server knows that only the KDC can create that ticket; therefore, it is trustworthy. The
whole process is bootstrapped by obtaining a ticket to the KDC, which is used to request further
tickets. This ticket-granting ticket (TGT) is obtained from a KDC through a slightly different request.

Figure 5: Windows security initialization sequence

The basic Kerberos exchange (assuming that the client already has the initial TGT) proceeds as
follows:

http://go.microsoft.com/fwlink/?LinkId=90458
http://go.microsoft.com/fwlink/?LinkId=89846
http://go.microsoft.com/fwlink/?LinkId=89846

23 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1. The client issues a ticket request message to the KDC on the DC that requests a ticket to a
named server. The ticket request message contains the TGT and cryptographic proof that the

client can use that TGT.

2. The KDC on the DC looks up the server and issues a ticket to that server that is encrypted with

the secret key of the server. The new ticket contains all the restrictions of the original TGT and
any data that the TGT was carrying. The KDC creates a ticket reply message that contains the
ticket and a copy of most of the ticket's contents encrypted for the client. The most important
item in the ticket is a unique key that the client and the server are to use.

3. The client submits the ticket to the server in an authentication message. The message has the
ticket from the KDC and has parts encrypted by using the unique key from step 2.

4. The server decodes the authentication message and finds the ticket. In the ticket, it finds the

unique key from step 2. It can then decrypt and verify the rest of the authentication message.
When decryption is successful, the server creates the authentication reply message, which it
encrypts with the unique key. On receipt, the client verifies that the unique key is used.

3.2.2.2 Notes

Kerberos is strictly an authentication protocol; it is designed to convey only the identity of the

principals on each side of the connection. The Kerberos protocol does contain extensibility points to
allow extra vendor-defined information to be conveyed (along with the ticket) during authentication.
This is expressed as the auth_data field in the Kerberos ticket.

Windows uses this auth_data field in the ticket to pass along the SID of the account and to group
SIDs during authentication. The structure that is used for this behavior is termed the privilege
attribute certificate (PAC). The PAC contains all the account's group memberships and is used to
provide sufficient context on the server to make authorization decisions (for example, "can this user

open this file?"). The encoding of the group information is publicly available from Microsoft. See
Utilizing the Windows 2000 Authorization Data in Kerberos Tickets for Access Control to Resources
[KERBPAC].

Although group membership information is a common use of the auth_data field, Microsoft also
included additional profile and account management information, such as the location of the
account's root directory. This design greatly aids certain enterprise deployment scenarios. This
additional information is used for supporting interactive logon. These additions are available through

the Microsoft Protocol Technology Licensing Programs [MSFT-LEGAL].

A strength of the Kerberos protocol is that it is not involved after the ticket is issued until the ticket
expires and the client needs a new one. This behavior means that the client and server do not need
to involve the KDC for every connection.

Much like other protocols, the Kerberos protocol can leverage more than one domain. If the server
that is requested by a client is in a different domain, the KDC can return a TGT to that other

domain. The client can then retry the request on a KDC in the other domain. This can span multiple
domains as long as a trusting relationship exists among the domains.

One issue with a secret key system such as the Kerberos protocol is that any person who knows the

key for a principal can create a ticket to that principal. Thus, even though the KDC is the normal
creator of tickets, a person who knows the password for a principal could create and send a ticket to
that principle.

For authentication only, this action is not a threat. The ticket created by the person is, in effect,

fooling the principal with this action.

http://go.microsoft.com/fwlink/?LinkId=89927
http://go.microsoft.com/fwlink/?LinkId=89927
http://go.microsoft.com/fwlink/?LinkId=90193
http://go.microsoft.com/fwlink/?LinkId=90193

24 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

When the ticket includes authorization data that is respected and interpreted by something other
than code running as that user, the potential for problems arises. In the Windows implementation,

the authorization data results in a Windows access token, which is a system-provided object that
encapsulates an account's identity, group memberships, and system privileges. An access token on

Windows is used to make authorization decisions by the system (for example, validating access to a
file).

A malicious user might construct a ticket to itself that contains a PAC indicating that the user is a
member of a group (for example, the Administrators group) that it should not be. If processed
naively, the system accepts this PAC and allows the user inappropriate access to the system.
Windows compensates for this by involving the DC when a nonprivileged server receives a ticket.
The Windows Kerberos implementation calls back to the DC through the Netlogon channel to verify

the contents of the PAC.

3.2.3 Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

SSL is a protocol first introduced by Netscape to allow browsers to authenticate servers. SSL went

through a number of revisions, culminating in an adoption by the IETF and becoming the TLS
protocol. For more information, see [RFC2246].

Although SSL and TLS are primarily used for authenticating servers and creating a secure pipe
between the client and the server, they do allow for authenticating the client. At almost any point
after the channel is established, the server can demand client authentication. The client signs a
challenge from the server with its private, asymmetric key, and then sends both the signed data and
the certificate for that key to the server.

In Windows, the certificate can be associated with an account in several ways, based on local policy
and on what fields from the certificate are interesting to the administrator of the server or domain.

Ultimately, however, the SSL/TLS implementation on the server calls up to the DC through the
Netlogon channel and asks the SSL instance on the DC to determine what account is associated with
this certificate.

The account is determined through a number of possible mappings, based on the fields present in

the certificate. For example, subjectAltName, commonName, and other similar fields can be used to
find the account in Active Directory. After the account is found, the account information (such as
account SID and group membership SIDs) is returned to the client. Much like the NTLM case

involving the domain, this can extend through arbitrary trust relationships. The format for this
information is the same as the format of the PAC data from the Kerberos protocol.

3.2.4 Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)

SPNEGO is an authentication protocol that actually does no authentication. Rather, it is an
authentication protocol that allows secure negotiation among other security protocols when the

client and the server might support more than one protocol. Windows uses SPNEGO instead of a
specific protocol to allow for simpler substitutions of additional security protocols.

3.2.4.1 Description and Flow

SPNEGO fits into the system as a security protocol and shuttles the actual messages of the
underlying security protocols back and forth between the client and the server. SPNEGO does not
implement any specific security features but performs the important operation of enforcing policy

among security protocols.

SPNEGO is defined as a GSS mechanism, which follows the general model of passing security tokens
from one machine to another. SPNEGO is a simple protocol that passes a list of acceptable security

http://go.microsoft.com/fwlink/?LinkId=90324

25 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

protocols (also called mechanisms) along with an optimistic mechanism token from one of these
protocols. An optimistic mechanism token is the first context establishment token of the initiator's

preferred mechanism embedded in the initial negotiation message, as specified in [RFC4178] section
4.2. The response from the server is what protocol has been selected and, optionally (if it matched

the optimistic mechanism token), a response from that security protocol.

The SPNEGO module asks each available system protocol, in turn, if that protocol can potentially
authenticate the server that is named by the component invoking SPNEGO. In the Windows
implementation, the first protocol to respond positively is selected as the optimistic choice. After the
protocol is selected, SPNEGO gets out of the way and lets the application protocol work directly with
the selected authentication protocol.

3.2.4.2 Notes

In Windows, SPNEGO has the important task of deciding which protocol is valid for a particular
connection. It does this by interpreting a number of input states and then adjusting the list of
security protocols it offers the server. The SPNEGO implementation knows that NTLM cannot

implement the same guarantees (due to legacy) that more modern protocols can. Therefore, NTLM
is treated in a special manner on a Windows-based system. To decide the most appropriate protocol,

the SPNEGO implementation takes the following information:

User domain functional level, if known.

Systemwide mutual authentication policy.

Name of the server.

If the user is a member of a Windows 2000 operating system or later domain, SPNEGO knows that
NTLM is a second choice and that at least the Kerberos protocol should be available. Therefore, if

the Kerberos protocol indicates that it should be used (by returning an optimistic token), SPNEGO
does not allow further downgrade to NTLM if the Kerberos authentication fails. Also, if the KDC
cannot be contacted, and the user is a member of a Windows 2000 or later domain, the SPNEGO
implementation fails, indicating that it cannot authenticate the connection. This failure is to prevent

a class of security attacks.

3.3 Use of Authentication

The following section describes how authentication works in Windows.

3.3.1 General Model

Windows generally follows the GSS model of security. In the GSS model, application protocols try to
be as agnostic as possible for the specific forms of authentication used in the session. In return, the
security protocol (or mechanism) limits its specific behavior to some well-defined interfaces and

communicates in opaque messages, which are referred to as tokens in the GSS documents.

Therefore, the application is responsible for calling the security runtime to secure its protocol.
Conversely, the application does not need to be aware of any specifics of the security protocol that it
has selected. This behavior leads to the somewhat surprising condition that an application protocol

may not know which security protocol it is using in some conditions.

3.3.2 Known Idiosyncrasies

The following protocols have specific idiosyncratic behavior with regard to use of authentication
protocols. In most cases, this is due to externally mandated behavior or certain legacy constraints.

http://go.microsoft.com/fwlink/?LinkId=90461

26 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.3.2.1 Server Message Block (SMB) and Common Internet File System (CIFS)

Server Message Block (SMB) is the oldest general application protocol in Windows, and it predates
the movement toward the GSS authentication model and has the NTLM built into its session

establishment messages. SMB uses NTLM when the server is not compatible with Windows 2000
operating system or later, or when SPNEGO has determined that the server is not expected to use a
protocol other than NTLM. In this case, the SMB client extracts the response values from the NTLM
response token and directly supplies these in the message that is used to authenticate to the SMB
server.

SMB uses a Windows extension to SPNEGO in which the server can create a hint to the client. The
hint is not critical to the success of the protocol. The hint can help the client determine the best

security protocol to use with the server. The hint allows the client to determine the following:

The set of mechanisms available on the server.

The claimed domain of the server.

27 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

4 Authorization

After an identity is suitably authenticated, the natural next step is to use that identity to authorize
access to a resource. Windows has a very expressive authorization model available for applications
and system components to use for making authorization decisions.

Windows was originally designed to meet the requirements of the C2 level of the Trusted Computer
System Evaluation Criteria (TCSEC). The TCSEC program has since been supplanted by profiles
written under the Common Criteria for Information Technology Security Evaluation, such as the
Controlled Access Protection Profile. These profiles and related information can be found in section

6.

The C2 requirements (and later the CAPP requirements) for authorization are centered on
discretionary access control. For discretionary access control, the owner of a particular resource (or
a delegate of the owner) determines what access others should have. This is in contrast to
mandatory access control schemes in which another party maintains control over the resource
regardless of the expectations of the owner.

4.1 Resource Managers

Windows meets these requirements for discretionary access control by providing a single access
evaluation routine that any number of resource managers can invoke. Many resource managers—
including the file system, registry, Active Directory, and operating system constructs such as
processes—exist in a Windows-based system. Even though these resource managers control very
different objects, they share a common method for controlling access.

In the Windows authorization model, a resource manager is the code or component that implements
one or more object types. The NTFS file system is a resource manager that implements files and
directories; the Windows registry is a resource manager that implements keys. To participate in the
authorization scheme, the resource manager is required to maintain a security descriptor with each
object that is protected. The resource manager merely needs to maintain the storage for the
security descriptor and is not required to understand the contents.

The Windows Security Overview also distinguishes between ordinary objects in the resource

manager and containers exposed by the resource manager. In the file system example, files are
objects, and directories are containers. This distinction is important during the creation of new
objects.

4.2 Security Descriptors

The security descriptor is a collection of four main elements. The owner field is a SID that specifies
the owner of the resource. The group field specifies the group associated with the resource. The

group field is not evaluated by Windows components, and it exists for POSIX compatibility. The
DACL field specifies the discretionary access control list, and the SACL field specifies the system
access control list (SACL).

When associated with a resource, the security descriptor is intended to be opaque. The resource
manager should never be required to examine the contents of the security descriptor. The security

descriptor fields can be used by the resource manager for other purposes, however. For example,
the file system can implement a storage quota system by using the owner field associate resources

consumed with an owner for billing.

28 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

4.3 Discretionary Access Control Lists (DACLs) and Access Control Entries (ACEs)

Discretionary access control lists (DACLs, but often shortened to ACLs) form the primary means by
which authorization is determined. An ACL is conceptually a list of <account, access-rights> pairs,

although they are significantly richer than that.

Each pair in the ACL is termed an access control entry (ACE). Each ACE has additional modifiers that
are primarily for use during inheritance. There are also several different kinds of ACEs for
representing both access to a single object (such as a file) and access to an object with multiple
properties (such as an object in Active Directory).

The ACE contains the SID of the account to which the ACE pertains. The SID can be for a user or a
group.

Windows supports both positive ACEs, which grant or allow access rights to a particular account, and
negative ACEs, which deny access rights to a particular account. This allows a resource owner to
specify, for example, grant read-access to group Y, except for user Z.

DACLs can be configured at the discretion of any account that possesses the appropriate
permissions to modify the configuration, including Take Ownership, Change Permissions, or Full
Control permissions. DACLs consist of the following elements.

Header: Metadata pertaining to the ACEs associated with the DACL.

SID (user): The SID of the owner of the object.

SID (group): The SID of the built-in Administrators or Domain Admins group if the account that
owns the object is a member of either of these groups.

Access control entry (ACE): A DACL can contain several ACEs. The following list identifies and
describes these terms:

Explicit allow ACE: An ACE applied directly to the resource that grants access. An explicit

allow will always override an inherited deny but will always be overridden by explicit

deny ACEs.

Explicit deny ACE: An ACE applied directly to the resource that denies access. An explicit
deny will always override all other permissions.

Generic deny ACE: An ACE that denies access to an account or security group based on
the user or group SID. A generic deny ACE can be inherited from the object's parent or
assigned directly to the object. The generic deny ACE is specific to the object and child

objects of the same class, based on the security settings defined in the object class in
the schema.

Generic allow ACE: An ACE that allows access to an account or security group based on
the user or group SID. A generic allow ACEs can be inherited from the object's parent or
assigned directly to the object. The generic allow ACE is specific to the object and child
objects of the same class, based on the security settings defined in the object class in

the schema.

Inherited deny ACE: An ACE inherited from the resource's parent object. An inherited
deny ACE overrides an inherited allow permission, but is overridden by an explicit allow.

Inherited allow ACE: An ACE inherited from the resource's parent object.

29 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Object-specific deny ACE: An ACE used within Active Directory that does one of the
following:

denies access to a property on the Active Directory object

denies access to a property set on the Active Directory object

limits the ACE inheritance to a specified type of child object based on the SID(s) of

the child or children.

The object-specific deny ACE can be inherited from the object's parent or assigned
directly to the object. Also, the object-specific deny ACE applies to specific classes of
child objects.

Object-specific allow ACEs: An ACE used within Active Directory that does one of the
following:

Allows access to a property on the Active Directory object

Allows access to a property set on the Active Directory object

limit the ACE inheritance to a specified type of child object based on SID(s) of the

child or children.

The object-specific allow ACE can be inherited from the object's parent, or assigned
directly to the object/ Also, the object-specific allow ACE applies to specific classes of
child objects.

When access is requested to an Active Directory object, the Local Security Authority (LSA) compares
the access token of the account that is requesting access to the object to the DACL. The security
subsystem checks the object's DACL, looking for ACEs that apply to the user and group SIDs

referenced in the user's access token. The security subsystem then steps through the DACL until it
finds any ACEs that allow or deny access to the user or to one of the user's groups. The subsystem
does this by first examining ACEs that have been explicitly assigned to the object and then

examining ones that have been inherited by the object. The following illustration shows the
important parts of an access token and a DACL when a request is evaluated.

Figure 6: Evaluation process for access tokens against a DACL

If an explicit deny is found, access is denied. Explicit deny ACEs are always applied, even if
conflicting allow ACEs exist. Explicit allow ACEs are examined, as are inherited deny and allow ACEs.
The ACEs that apply to the user are accumulated. Inherited deny ACEs overrule inherited allow ACEs

30 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

but are overruled themselves by explicit allow permissions. If none of the user SIDS or group SIDs
in the access token match the DACL, the user is denied access implicitly.

In Windows, a security principal's level of access to files and folders is determined by NTFS file
system and share permissions. These permissions are discretionary; anyone with ownership of a file

or folder, Change permissions, or Full Control permissions can assign access control at their
discretion. When newly installed, Windows assigns default permission structures to operating system
files and folders, but a user might need to alter these permissions to meet specific security
requirements.

When a user attempts to access a file or folder on an NTFS partition, the user's access token is
compared with the DACL of the file or folder. If no ACEs correspond to a SID in the user's access
token, the user is implicitly denied access to the resource. If ACEs correspond to the user's access

token, the ACEs are applied in the following order.

1. Explicit deny

2. Explicit allow

3. Inherited deny

4. Inherited allow

ACEs that apply to the user are cumulative, meaning that the user will receive the sum of the ACEs

that apply to his or her user account and groups of which the user is a member. For example, if an
ACL contains two allow ACEs that apply to the user, one for Read access and the other for Write
access, the user will receive Read and Write access.

4.4 Access Rights

Different resource managers and resource types have different access rights. Files may have read
and write access, but processes have entirely different rights such as terminate. However, all

resource managers use the same formats for encoding access rights in the ACEs. This is done by
allowing the resource managers to define their own specific access rights.

Windows accomplishes this by partitioning the access rights space. All access rights are encoded into
a single, 32-bit value in the ACE. The most significant 16 bits are considered standard access rights
and are common across all resource managers. These rights include Delete access, Generic-Read
access, and other similar rights. These rights are either expected of all resource managers (such as
Delete) or are used in a way that allows programs to work with multiple resource managers in a

similar manner.

The least significant 16 bits are termed object-specific and are meaningful only to the resource
manager that defines them. Thus the file system may define that bit 1 indicates the capability to
read the file and that bit 2 indicates the capability to write the file, whereas the registry may define
bit 1 to be enumerate subkeys and bit 2 to be read a key's value.

4.5 Authorization

Windows has a single method in the system for determining access. In that way, the results are
always predictable and consistent. The process is as follows.

To determine access, the calling resource manager supplies the security descriptor (which contains
the ACL) with the identity of the user and all the groups of which the user is a member, and the
access requested by the user. For this example, the following values are used.

31 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Security Descriptor: Owner: U1, DACL: <<U2, Read>, <G1, Read>,

 <G2, Write>>

Identity: <U1, G2>

Access Request: Write

In this example, the security descriptor has an ACL that grants U2 Read access, G1 Read access,

and G2 Write access. The identity of the user making the request is U1, and that user is a member
of the group G2 as well. The request is for Write access.

When processing this request, Windows iterates through the entries in the ACL, testing against the
identity. If the identity in the ACE matches one of the identities of the user, the ACE is examined
further. In this example, the first two ACEs do not match any identity, and so they are skipped. The
third ACE applies (G2 matches), and then the granted access rights are compared against the
access request. They match, and the user is therefore granted access.

As noted earlier, multiple access rights are encoded together, so the access request could be for
both Read access and Write access. In the preceding example, access would be denied because G2

was granted only Write access.

All the requested rights do not have to be granted by a single ACE. Consider the following example.

Security Descriptor: Owner:U1, DACL:<<U2,Read>,<G1,Read>,<G2,Write>>

Identity:<U1,G1,G2>

Access Request: Read,Write

The processing would be as follows.

The first ACE does not match, and so it is skipped. The second ACE now does match and is therefore
examined further. The granted access is removed from the access request, in this case, Read. There

are still values left in the access request, so processing continues. The third ACE matches (on G2)
and grants Write access. The granted access, Write, is removed from the access request, but now
there are no remaining access requests. The access is granted, and processing stops.

4.6 Inheritance

The Windows authorization model supports a concept of inheritance by which new objects can
inherit one or more ACEs from their parent container. In practice, this allows an administrator to

establish default security on, for example, a directory, and all new files that are created in that
directory receive a preset ACL. Although the owner of the file can still override that ACL and
establish its own, if nothing is done (through the premise of discretionary access control), the
default is as the administrator wants.

One attribute that can be applied to ACEs is the Object-Inherit flag. This flag indicates that when a
new object is created, this ACE should be carried forward to the security descriptor of the new
object. An additional flag, Container-Inherit, indicates that new containers created under this

container should receive this ACE. For the file system, this allows different default ACLs for
directories as opposed to files.

4.7 System Access Control Lists

A system access control list (SACL) enables administrators to log attempts to access a secured
object. Like a DACL, an SACL is a list of ACEs. Each ACE specifies the types of access attempts by a

specified account that cause the system to generate a record in the security event log. An ACE in an
SACL can generate audit records when an access attempt fails, when it succeeds, or both.

32 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

4.8 Windows Integrity Mechanism

The Windows integrity mechanism extends the security architecture by defining a new access
control entry (ACE) type to represent an integrity level in an object’s security descriptor. The new

ACE represents the object integrity level. An integrity level is also assigned to the security access
token when the access token is initialized. The integrity level in the access token represents a
subject integrity level. The integrity level in the access token is compared against the integrity level
in the security descriptor when the security reference monitor performs an access check.
Windows Vista operating system, Windows 7 operating system, Windows 8 operating system, and
Windows 8.1 operating system use the AccessCheck function to determine what access rights are
allowed to a securable object. Windows restricts the allowed access rights depending on whether the

subject's integrity level is higher or lower than the object, and depending on the integrity policy
flags in the new access control ACE. The security subsystem implements the integrity level as a
mandatory label to distinguish it from the discretionary access under user control that ACLs provide.

Note: The mandatory integrity labels are not evaluated as part of the descretionary access control
by the AccessCheck algorithm ([MS-DTYP] section 2.5.3.2). These SIDs are not set in the token with

the SE_GROUP_ENABLED attributes, which means that even though these SIDs are added to the

SIDS_AND_ATTRIBUTES array in the token, they are not evaluated as part of sidintoken.

%5bMS-DTYP%5d.pdf

33 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

5 Impersonation

In distributed systems, it is typical for one server to call another server to accomplish a task for a
client. This functionality is called impersonation. To handle these requests for a client, the server
must be given the authority to do so. The ability to call other servers while impersonating the
original client is called delegation.

Through impersonation, a thread runs in a security context that is different from the context of the
process that owns the thread. When a server thread runs in the security context of the client, it uses
an access token that represents the client credentials in order to obtain access to the objects to

which the client has access. This provides the ability for a thread to run by using different security
information from the process that owns the thread. Typically, a thread in a server application
impersonates a client. This impersonation allows the server thread to act for that client in order to
access objects on the server or validate access to the client objects.

The following diagram shows the impersonation process. A client makes a request to server A. If
server A must query server B to complete the request, server A impersonates the client security

context and makes the request to server B for the client. Server B uses the security context of the

original client, instead of the security identity for server A, to determine whether to complete the
task.

Figure 7: Impersonation process

When delegation is used, a server that is impersonating a client can call another server and can
make network calls by using the credentials of the client. From the perspective of the second server,
requests that come from the first server are indistinguishable from requests that come from the
client. Not all security providers support delegation. Windows provides only one security provider
that supports delegation: the Kerberos protocol.

Delegation must be implemented with caution due to the privileges that the client gives the server
during an RPC. To address this, the Kerberos protocol allows calls that use the impersonation level

of delegation only if mutual authentication is requested. Domain administrators can limit the
computers to which calls with delegation impersonation level are made to prevent unsuspecting
clients from making calls to servers that can abuse their credentials.

Calls that use ncalrpc [MSDN-NCALRPC] are an exception to the delegation rule. When these calls
are made, the server gets delegation rights, even if an impersonation level of impersonate is
specified. That is, a server can call other servers on behalf of the client. This works for one remote

http://go.microsoft.com/fwlink/?LinkId=111067

34 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

call only. For example, if client A calls local server LB using ncalrpc, local server LB can
impersonate and call remote server RB. Remote server RB can act for client A, but only on the

remote computer on which remote server RB is running. Local server LB cannot make another
network call to remote computer C unless LB specifies an impersonation level of delegate when it

calls RB.

A primary use of impersonation is to perform access checks against the client identity. Using the
client identity for access checks can cause access to be either restricted or expanded, depending on
what the client has permission to do. For example, a file server might have files that contain
confidential information and each of these files is protected by an ACL. To help prevent a client from
obtaining unauthorized access to information in these files, the server can impersonate the client
before accessing the files.

5.1 Cloaking

There are two important security considerations regarding impersonation and delegation:

What should the server be allowed to do when acting for the client?

What identity is presented by the server when it calls other servers for a client?

In Windows, the Component Object Model (COM) provides the functionality that is explained here.
The client can set an impersonation level that determines the extent to which the server can act as
the client. If the client grants enough authority to the server, the server can impersonate (pretend
to be) the client. When the server impersonates the client, it is given access to only those objects or
resources that the client has permission to use. The server, acting as a client, can also enable
cloaking in order to mask its own identity and project the client identity in calls to other COM
components.

The following figure illustrates impersonation without and with cloaking. A and B represent two
processes running on machine 1, and C represents a process that is running on machine 2. Process
A calls B, and B calls C. Client A sets the impersonation level. B sets the cloaking capability. If A sets
an impersonation level that permits impersonation, B can impersonate A when calling C on A's

behalf. The identity that is presented to process C is either A's identity or B's identity, depending on
whether cloaking was enabled by B. If cloaking is enabled, the identity that is presented to process
C is A. If cloaking is not enabled, B's identity is presented to C.

http://go.microsoft.com/fwlink/?LinkId=106009
http://go.microsoft.com/fwlink/?LinkId=111079
http://go.microsoft.com/fwlink/?LinkId=111078

35 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 8: Impersonation without and with cloaking

5.2 Impersonation Tokens

Access tokens are objects that describe the security context of a process or a thread. They provide
information that includes the identity of a user account and a subset of the privileges that are
available to the user account. Every process has a primary access token that describes the security
context of the user account that is associated with the process.

By default, the system uses the primary token when a thread of the process interacts with a
securable object. However, when a thread impersonates a client, the impersonating thread has both
a primary access token and an impersonation token. The impersonation token represents the
security context of the client, and this access token is the one that is used for access checks during
impersonation. When impersonation is complete, the thread reverts to using only the primary access

token.

5.3 Impersonation Levels

Windows provides various degrees of impersonation through impersonation levels, which indicate
how much authority is given to the server when it is impersonating the client.

36 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Currently, there are four impersonation levels are available: anonymous, identify, impersonate, and
delegate. <13> The following list briefly identifies and describes each impersonation level:

Anonymous level (RPC_C_IMP_LEVEL_ANONYMOUS): The client is anonymous to the

server. The server process can impersonate the client, but the impersonation token does not
contain any information about the client. This level is supported only over the local interprocess
communication transport. All other transports silently promote this level to identify.

Identify level (RPC_C_IMP_LEVEL_IDENTIFY): The system default level. The server can

obtain the identity of the client, and the server can impersonate the client in order to do ACL
checks.

Impersonate level (RPC_C_IMP_LEVEL_IMPERSONATE): The server can impersonate the

security context of the client while acting for the client. The server can access local resources as
the client. If the server is local, it can access network resources as the client. If the server is
remote, it can access only resources that are on the same machine as the server.

Delegate level (RPC_C_IMP_LEVEL_DELEGATE): The most powerful impersonation level.

When this level is selected, the server (whether local or remote) can impersonate the security

context of the client while acting on behalf of the client. During impersonation, the client
credentials (both local and network) can be passed to any number of machines.<14> This level is
supported beginning with Windows 2000 operating system

For impersonation to work at the delegate level, the following requirements must be met:

The client must set the impersonation level to RPC_C_IMP_LEVEL_DELEGATE.

The client account must not be marked "Account is sensitive and cannot be delegated" in the

Active Directory directory service.

The server account must be marked with the "Trusted for delegation" attribute in Active

Directory.

The computers that host the client, the server, and any "downstream" servers must all be

running Windows 2000 in a Windows 2000 domain.

By choosing the impersonation level, the client tells the server how far it can go in impersonating

the client. The client sets the impersonation level on the proxy that it uses to communicate with the
server.

5.4 Setting the Impersonation Level

There are two ways to set the impersonation level:

The client can set the impersonation level processwide through a call to CoInitializeSecurity.

A client can set proxy-level security on an interface of a remote object through a call to

IClientSecurity::SetBlanket (or the helper function CoSetProxyBlanket).

The impersonation level is set by passing an appropriate RPC_C_IMP_LEVEL_xxx value to

CoInitializeSecurity or CoSetProxyBlanket through the dwImpLevel parameter.

Different authentication services support delegate-level impersonation to a different extent. For
example, NTLMSSP in Windows 2000 operating system supports cross-thread and cross-process

delegate-level impersonation but not cross-machine. However, the Kerberos protocol (implemented
by Windows 2000) supports delegate-level impersonation across machine boundaries, whereas
SChannel does not support any impersonation at the delegate level. If there is a proxy at the

http://go.microsoft.com/fwlink/?LinkId=111081
http://go.microsoft.com/fwlink/?LinkId=111088
http://go.microsoft.com/fwlink/?LinkId=111091
http://go.microsoft.com/fwlink/?LinkId=90023
http://go.microsoft.com/fwlink/?LinkId=111081
http://go.microsoft.com/fwlink/?LinkId=111091

37 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

impersonate level and the implementer wants to set the impersonation level to delegate,
IClientSecurity::SetBlanket SHOULD be called by using the default constants for every parameter

except the impersonation level. COM chooses NTLM locally and the Kerberos protocol remotely
(when the Kerberos protocol is supported).

5.5 Windows API Impersonation Functions

The Windows API provides the following functions to begin an impersonation:

A Dynamic Data Exchange (DDE) server application can call the DdeImpersonateClient function

to impersonate a client.

A named pipe server can call the ImpersonateNamedPipeClient function.

The ImpersonateLoggedOnUser function can be called to impersonate the security context of an

access token for a logged-on user.

The ImpersonateSelf function enables a thread to generate a copy of its own access token. This

is useful when an application needs to change the security context of a single thread. For
example, sometimes only one thread of a process needs to enable a privilege.

The SetThreadToken function can be called to cause the target thread to run in the security

context of a specified impersonation token.

An RPC server application can call the RpcImpersonateClient function to impersonate a client.

A security package or application server can call the ImpersonateSecurityContext function to

impersonate a client.

For most of these impersonations, the impersonating thread can revert to its own security context

by calling the RevertToSelf function. The exception is the RPC impersonation, in which the RPC
server application calls RpcRevertToSelf or RpcRevertToSelfEx to revert to its own security context.

For more information about the Windows API impersonation functions, visit the MSDN home page.

http://go.microsoft.com/fwlink/?LinkId=111088
http://go.microsoft.com/fwlink/?LinkId=112031
http://go.microsoft.com/fwlink/?LinkId=112038
http://go.microsoft.com/fwlink/?LinkId=112034
http://go.microsoft.com/fwlink/?LinkId=112050
http://go.microsoft.com/fwlink/?LinkId=112040
http://go.microsoft.com/fwlink/?LinkId=112043
http://go.microsoft.com/fwlink/?LinkId=112049
http://go.microsoft.com/fwlink/?LinkId=112042
http://go.microsoft.com/fwlink/?LinkId=112044
http://go.microsoft.com/fwlink/?LinkId=112048
http://go.microsoft.com/fwlink/?LinkId=112039
http://go.microsoft.com/fwlink/?LinkId=112045
http://go.microsoft.com/fwlink/?LinkId=112046
http://go.microsoft.com/fwlink/?LinkId=112047
http://go.microsoft.com/fwlink/?LinkId=89947

38 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

6 References

The following books include useful content that covers aspects of the Windows Security Model in
greater depth:

Brown, Keith, "Programming Windows Security", Addison-Wesley Professional, 2000, ISBN

0201604426.

Howard, Michael and LeBlanc, David, "Writing Secure Code", Microsoft Press, 2002, ISBN

0735617228.

Russinovich, Mark E. and Solomon, David A., "Microsoft Windows Internals, 4th ed.", Microsoft

Press, 2005, ISBN 0735619174.

To provide background on security requirements, the National Computer Security Center, part of the
United States Department of Defense (DoD), published the Trusted Computer System Evaluation
Criteria as DoD 5200.28-STD. This has been supplanted by profiles written to the Common Criteria.

The Common Criteria is an ISO standard (ISO/IEC 15408) formal method of specifying requirements

for security computer systems. Microsoft Windows uses profiles published by the DoD through the
National Information Assurance Partnership (NIAP) program. For more information about NIAP,
including the profiles themselves, see "Introducing NIAP" [NIAP] by The National Security Agency.

Microsoft websites (see Microsoft Corporation [MSFT]) contain a number of articles about security in
Windows. Developer documentation on the MSDN home page [MSDN] by Microsoft also contains
more in-depth information.

http://go.microsoft.com/fwlink/?LinkId=90232
http://go.microsoft.com/fwlink/?LinkId=90174
http://go.microsoft.com/fwlink/?LinkId=89947

39 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

7 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows NT operating system

Windows 2000 operating system

Windows XP operating system

Windows Server 2003 operating system

Windows Server 2003 R2 operating system

Windows Vista operating system

Windows Server 2008 operating system

Windows 7 operating system

Windows Server 2008 R2 operating system

Windows 8 operating system

Windows Server 2012 operating system

Windows 8.1 operating system

Windows Server 2012 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 2.2: Supported in Windows NT, Windows 2000, Windows XP, Windows Vista, Windows
Server 2003, Windows Server 2003 R2, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2.

<2> Section 2.2.1: Windows Server 2003, Windows Server 2003 R2, Windows Server 2008,

Windows Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2 domains do not
allow the use of a period or multiple periods at the end of a user logon name. The use of a period (.)
at the end of a user logon name, as long as the user logon name does not consist solely of period
characters, is allowed in the following domains: Windows NT 3.1, Windows NT 3.5,

Windows NT 3.51, and Windows NT 4.0.

<3> Section 2.2.2: Domain join is supported in Windows NT, Windows 2000, Windows XP,
Windows Vista, Windows Server 2003, Windows Server 2003 R2, Windows Server 2008, Windows 7,

Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server
2012 R2.

40 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

<4> Section 2.2.2: Active Directory is supported in Windows 2000, Windows Server 2003, Windows
Server 2008, Windows Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2.

<5> Section 2.4: Supported in Windows Server 2003, Windows Server 2003 R2, Windows
Server 2008, Windows Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2.

<6> Section 2.5.2: The list of applicable servers follows: Windows 2000, Windows Server 2003,
Windows Server 2003 R2, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
and Windows Server 2012 R2.

<7> Section 2.5.2: Active Directory domain controllers (DCs) that do not accept changes are a
feature supported on Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and
Windows Server 2012 R2. Windows 2000 servers and Windows Server 2003 servers cannot be
configured this way. Windows NT 4.0 domains have one DC that accepts changes, and all other DCs

are read-only.

<8> Section 2.5.3: That is, Netlogon also creates a general purpose channel for authentication. It is
not specific to any protocol and is available only to components involved in authentication.

<9> Section 2.5.5.2: Windows 98, Windows 2000, Windows 2000 Server, Windows Millennium
Edition, Windows XP, Windows XP SP1, Windows XP SP2, Windows XP SP3, Windows Vista (RTM
version inclusive), Windows Server 2003, Windows Server 2003 with SP1, Windows Server 2003

SP2, Windows Server 2003 with SP3, Windows Server 2003 R2, Windows Server 2008, Windows 7,
Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server
2012 R2 use algorithms that are compliant with the FIPS 140-2 standard. Windows Vista SP1,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, and Windows Server 2012 R2 use a new algorithm which is compliant with the NIST
SP 800-90 standard. The random number generation in all versions of Windows prior to
Windows Vista SP1 is consistent with FIPS 186-2 Change Notice 1.

<10> Section 2.5.5.2: Windows uses the cryptographic PRNG from the Cryptographic API (CAPI)
and the Cryptographic API Next Generation (CNG) for generation of Version 4 GUIDs.

<11> Section 2.5.5.2: For reasons of increased privacy protection for our customers, Microsoft

systems beginning with Windows 2000 prefer to generate version 4 GUIDs in which the 122 bits of
nonformat information are random. Although only a small minority of version 4 GUIDs require
cryptographic randomness, the random bits for all version 4 GUIDs built in Windows are obtained
via the Windows CryptGenRandom cryptographic API or the equivalent, the same source that is used

for generation of cryptographic keys. This source is FIPS 140-certified in various versions of
Windows, as documented at [MSFIP140CryptCerts]

<12> Section 3.2.2: [RFC1510] (the original Kerberos RFC) was made obsolete and was replaced
by [RFC4120].

<13> Section 5.3: In the following Windows products, the only supported impersonation levels
were identify and impersonate: Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, Windows NT

4.0, Windows 98.

Delegate-level impersonation is supported in the following Windows products: Windows 2000,
Windows Millennium Edition, Windows XP, Windows XP SP1, Windows XP SP2, Windows XP SP3,

Windows Server 2003, Windows Server 2003 with SP1, Windows Server 2003 SP2, Windows Server
2003 with SP3, Windows Server 2003 R2, Windows Vista, Windows Vista SP1, Windows Vista SP2,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, and Windows Server 2012 R2.

<14> Section 5.3: This level is supported beginning with Windows 2000.

http://go.microsoft.com/fwlink/?LinkId=108065
http://go.microsoft.com/fwlink/?LinkId=90458

41 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

42 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

9 Index

A

Access
control

entry 28
lists - discretionary 28

rights 30
Accounts

computer 8
domains

controllers 14
effect 15
globally unique identifiers (GUIDs)

internal structure 16
overview 15
random bits - quality 17
uniqueness 16

local 14
membership 15
overview 14
remote 14

groups 11
overview 7
user 8

ACE 28
Authentication

background 18
CIFS 26
concepts 18
history 19
Kerberos 22
known idiosyncrasies 25
model 25
NTLM 19
overview 18
practices 18
protocols 19
purpose 18
SMB 26

SPNEGO 24
SSL 24
TLS 24
using 25

Authorization
access rights 30
ACE 28
DACL 28
example 30
inheritance 31
overview 27
resource managers 27
security descriptors 27
system access control list (SACL) 31
Windows integrity mechanism 32

B

Bits - random - quality 17

C

C2 27
CAPP 27
Change tracking 41
CIFS 26
Cloaking 34
Computer accounts 8

D

DACL 28
DES 19
Domains

account 14
controllers 14
effect on accounts 15
globally unique identifiers (GUIDs)

internal structure 16
overview 15
random bits - quality 17
uniqueness 16

local 14
membership 15
remote 14

E

Effect - account 15
Examples - authorization 30

G

Globally unique identifiers (GUIDs)
internal structure 16
overview 15
random bits - quality 17
uniqueness 16

Groups
nested 13
overview 11
scope 12
types 12

I

Identity
account domains

controllers 14
effect 15
globally unique identifiers (GUIDs)

internal structure 16
overview 15
random bits - quality 17
uniqueness 16

local 14
membership 15
overview 14

43 / 43

[MS-SECO] — v20140502
 Windows Security Overview

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

remote 14
accounts 7
groups 11
overview 7
security

identifiers (SIDs) 9
principals 7

SIDs 9
Idiosyncrasies - authentication 25
Impersonation

cloaking 34
levels

overview 35
setting 36

overview 33
tokens 35
Windows API functions 37

Inheritance 31
Internal structure - globally unique identifiers

(GUIDs) 16
Introduction 6

K

Kerberos
description 22
flow 22
history 19
notes 23
overview 22

L

Levels - impersonation
overview 35
setting 36

Local domains 14

M

Membership - domain 15

N

Nested groups 13
NTLM

description 19
flow 19
notes 21
overview 19

P

Product behavior 39

R

Random bits - quality 17
References 38
Remote domains 14
Resource managers 27

S

SACL 31
Scope of groups 12
Security

descriptors 27
identifiers (SIDs) 9
practices 18
principals 7
tokens 18

Setting impersonation level 36
SIDs (section 2.3 9, section 4.2 27)
SMB 26
SPNEGO

description 24
flow 24
history 19
notes 25

overview 24
SSL 24
System access control lists 31

T

TCSEC 27
TLS 24
Tokens

impersonation 35
security 18

Tracking changes 41
Types of groups 12

U

Uniqueness of globally unique identifiers (GUIDs)
16

User accounts 8

W

Windows
API impersonation functions 37
integrity mechanism 32
Security Model 38

	Contents
	1 Introduction
	2 Identity
	2.1 Security Principal
	2.2 Accounts
	2.2.1 User accounts
	2.2.2 Computer accounts

	2.3 Security Identifiers (SIDs)
	2.4 Groups
	2.4.1 Group Types
	2.4.2 Group Scope
	2.4.3 Nested Groups

	2.5 Account Domains
	2.5.1 Local Domains
	2.5.2 Remote Domains and Domain Controllers
	2.5.3 Domain Membership
	2.5.4 Effect on Accounts
	2.5.5 Globally Unique Identifiers (GUIDs)
	2.5.5.1 Uniqueness
	2.5.5.2 Internal Structure
	2.5.5.3 Quality of Random Bits

	3 Authentication
	3.1 Background
	3.1.1 Authentication Concepts
	3.1.2 Practice
	3.1.3 History

	3.2 Authentication Protocols
	3.2.1 NT LAN Manager (NTLM)
	3.2.1.1 Description and Flow
	3.2.1.2 Notes

	3.2.2 Kerberos
	3.2.2.1 Description and Flow
	3.2.2.2 Notes

	3.2.3 Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
	3.2.4 Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)
	3.2.4.1 Description and Flow
	3.2.4.2 Notes

	3.3 Use of Authentication
	3.3.1 General Model
	3.3.2 Known Idiosyncrasies
	3.3.2.1 Server Message Block (SMB) and Common Internet File System (CIFS)

	4 Authorization
	4.1 Resource Managers
	4.2 Security Descriptors
	4.3 Discretionary Access Control Lists (DACLs) and Access Control Entries (ACEs)
	4.4 Access Rights
	4.5 Authorization
	4.6 Inheritance
	4.7 System Access Control Lists
	4.8 Windows Integrity Mechanism

	5 Impersonation
	5.1 Cloaking
	5.2 Impersonation Tokens
	5.3 Impersonation Levels
	5.4 Setting the Impersonation Level
	5.5 Windows API Impersonation Functions

	6 References
	7 Appendix A: Product Behavior
	8 Change Tracking
	9 Index

