

1 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

[MS-CMPO]:
MSDTC Connection Manager:
OleTx Transports Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community

Promise. If you would prefer a written license, or if the technologies described in the Open

Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Revision Summary

Date

Revision

History

Revision

Class Comments

04/03/2007 0.01 MCPP Milestone Longhorn Initial Availability

07/03/2007 1.0 Major MLonghorn+90

07/20/2007 1.1 Minor Updated the technical content.

08/10/2007 1.1.1 Editorial Revised and edited the technical content.

09/28/2007 2.0 Major Made a change to the IDL.

10/23/2007 3.0 Major Updated and revised the technical content.

11/30/2007 3.0.1 Editorial Revised and edited the technical content.

01/25/2008 3.0.2 Editorial Revised and edited the technical content.

03/14/2008 4.0 Major Updated and revised the technical content.

05/16/2008 4.0.1 Editorial Revised and edited the technical content.

06/20/2008 5.0 Major Updated and revised the technical content.

07/25/2008 5.1 Minor Updated the technical content.

08/29/2008 6.0 Major Updated and revised the technical content.

10/24/2008 7.0 Major Updated and revised the technical content.

12/05/2008 8.0 Major Updated and revised the technical content.

01/16/2009 9.0 Major Updated and revised the technical content.

02/27/2009 10.0 Major Updated and revised the technical content.

04/10/2009 11.0 Major Updated and revised the technical content.

05/22/2009 12.0 Major Updated and revised the technical content.

07/02/2009 13.0 Major Updated and revised the technical content.

08/14/2009 13.1 Minor Updated the technical content.

09/25/2009 14.0 Major Updated and revised the technical content.

11/06/2009 15.0 Major Updated and revised the technical content.

12/18/2009 16.0 Major Updated and revised the technical content.

01/29/2010 17.0 Major Updated and revised the technical content.

03/12/2010 18.0 Major Updated and revised the technical content.

3 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Date

Revision

History

Revision

Class Comments

04/23/2010 19.0 Major Updated and revised the technical content.

06/04/2010 20.0 Major Updated and revised the technical content.

07/16/2010 20.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/27/2010 20.0 No change No changes to the meaning, language, or formatting of

the technical content.

10/08/2010 20.0 No change No changes to the meaning, language, or formatting of

the technical content.

11/19/2010 20.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 21.0 Major Significantly changed the technical content.

02/11/2011 22.0 Major Significantly changed the technical content.

03/25/2011 22.0 No change No changes to the meaning, language, or formatting of

the technical content.

05/06/2011 22.0 No change No changes to the meaning, language, or formatting of

the technical content.

06/17/2011 22.1 Minor Clarified the meaning of the technical content.

09/23/2011 22.1 No change No changes to the meaning, language, or formatting of

the technical content.

12/16/2011 23.0 Major Significantly changed the technical content.

03/30/2012 23.0 No change No changes to the meaning, language, or formatting of

the technical content.

07/12/2012 23.0 No change No changes to the meaning, language, or formatting of

the technical content.

10/25/2012 23.1 Minor Clarified the meaning of the technical content.

01/31/2013 23.1 No change No changes to the meaning, language, or formatting of

the technical content.

08/08/2013 23.2 Minor Clarified the meaning of the technical content.

11/14/2013 23.2 No change No changes to the meaning, language, or formatting of

the technical content.

02/13/2014 23.2 No change No changes to the meaning, language, or formatting of

the technical content.

05/15/2014 23.2 No change No changes to the meaning, language, or formatting of

the technical content.

4 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

5 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Contents

1 Introduction ... 8
1.1 Glossary ... 8
1.2 References .. 9

1.2.1 Normative References ... 9
1.2.2 Informative References ... 10

1.3 Overview .. 10
1.3.1 Identifiers and Partner Roles .. 10
1.3.2 Finding the RPC Endpoint and Constructing a Binding Handle 11
1.3.3 Session Lifecycle .. 11

1.3.3.1 Establishing a Session ... 12
1.3.3.2 Negotiating Resources ... 13
1.3.3.3 Sending and Receiving Messages .. 13
1.3.3.4 Terminating a Session ... 14

1.4 Relationship to Other Protocols .. 14
1.5 Prerequisites/Preconditions ... 14
1.6 Applicability Statement ... 15
1.7 Versioning and Capability Negotiation ... 15
1.8 Vendor-Extensible Fields ... 16
1.9 Standards Assignments .. 16

2 Messages.. 17
2.1 Transport .. 17

2.1.1 Protocol Sequences .. 17
2.1.2 Endpoints .. 17
2.1.3 Security .. 17

2.2 Common Data Types .. 18
2.2.1 BIND_INFO_BLOB .. 18
2.2.2 BIND_VERSION_SET .. 18
2.2.3 BOUND_VERSION_SET ... 19
2.2.4 COM_PROTOCOL .. 20
2.2.5 HRESULT ... 21
2.2.6 GUID/UUID ... 21
2.2.7 RESOURCE_TYPE .. 21
2.2.8 SESSION_RANK ... 21
2.2.9 TEARDOWN_TYPE... 22
2.2.10 Constants Used in Method Definitions .. 22

3 Protocol Details .. 23
3.1 Protocol Versioning .. 23
3.2 Common Details .. 23

3.2.1 Abstract Data Model ... 23
3.2.1.1 Partner State ... 24
3.2.1.2 Session State ... 25
3.2.1.3 Cleaning Up a Session Object ... 27
3.2.1.4 Name Object .. 28

3.2.1.4.1 Name Object Comparison ... 28
3.2.2 Timers .. 28

3.2.2.1 Session Setup Timer ... 28
3.2.2.2 Session Teardown Timer .. 28

3.2.3 Initialization .. 29

6 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.2.3.1 Initialization By a Higher-Level Protocol ... 29
3.2.3.2 Initialization By the Protocol ... 29

3.2.4 Message Processing Events and Sequencing Rules .. 29
3.2.5 Timer Events ... 30

3.2.5.1 Session Setup Timer ... 30
3.2.5.2 Session Teardown Timer .. 30

3.2.6 Other Local Events ... 30
3.3 IXnRemote Server Details ... 30

3.3.1 Abstract Data Model ... 30
3.3.2 Timers .. 31
3.3.3 Initialization .. 31
3.3.4 Message Processing Events and Sequencing Rules .. 32

3.3.4.1 Poke (Opnum 0) ... 32
3.3.4.2 BuildContext (Opnum 1) .. 35

3.3.4.2.1 Primary .. 38
3.3.4.2.2 Secondary .. 40

3.3.4.3 NegotiateResources (Opnum 2) .. 41
3.3.4.4 SendReceive (Opnum 3) .. 42
3.3.4.5 TearDownContext (Opnum 4) ... 43

3.3.4.5.1 Problem ... 45
3.3.4.5.2 Primary .. 45
3.3.4.5.3 Secondary .. 45

3.3.4.6 BeginTearDown (Opnum 5) .. 45
3.3.4.7 PokeW (Opnum 6) .. 46
3.3.4.8 BuildContextW (Opnum 7) ... 48

3.3.5 Timer Events ... 50
3.3.6 Other Local Events ... 50

3.3.6.1 Context Handle Rundown ... 50
3.4 IXnRemote Client Details .. 50

3.4.1 Abstract Data Model ... 50
3.4.2 Timers .. 51

3.4.2.1 RPC Call Timer ... 51
3.4.3 Initialization .. 51
3.4.4 Message Processing Events and Sequencing Rules .. 52
3.4.5 Timer Events ... 52

3.4.5.1 RPC Call Timer ... 52
3.4.6 Other Local Events ... 52

3.4.6.1 New Session Requested ... 52
3.4.6.1.1 Primary .. 52
3.4.6.1.2 Secondary .. 53

3.4.6.2 Forced Session Teardown Requested ... 54
3.4.6.3 Problem Session Teardown Requested ... 54
3.4.6.4 Resource Allocation Requested ... 54
3.4.6.5 Message Send Requested .. 55

4 Protocol Examples .. 56
4.1 Initiating a Session as Primary Partner ... 56
4.2 Initiating a Session as Secondary Partner ... 59
4.3 Negotiating Connection Resources ... 63
4.4 Terminating a Session .. 63

4.4.1 Terminating a Session by a Primary Partner... 64
4.4.2 Terminating a Session by a Secondary Partner ... 65

7 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

5 Security .. 66
5.1 Security Considerations for Implementers ... 66
5.2 Index of Security Parameters .. 66

6 Appendix A: Full IDL ... 67

7 Appendix B: Product Behavior .. 71

8 Change Tracking... 77

9 Index ... 78

8 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1 Introduction

This document specifies the MSDTC Connection Manager: OleTx Transports Protocol. The MSDTC
Connection Manager: OleTx Transports Protocol is a remote procedure call (RPC) interface for
establishing duplex sessions between two partners and for exchanging messages between them.
The MSDTC Connection Manager: OleTx Transports Protocol is a framing and message transport
protocol and, as such, is designed to have other protocols layered over the basic session,
messaging, and security services that it provides.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,

MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

authentication level
client
connection
contact identifier
dynamic endpoint
endpoint

endpoint mapper
Interface Definition Language (IDL)
Microsoft Interface Definition Language (MIDL)
NetBIOS name
Network Data Representation (NDR)
opnum
remote procedure call (RPC)

RPC protocol sequence
RPC server
RPC transfer syntax
RPC transport
security provider
session

The following terms are specific to this document:

authenticated RPC call: An RPC call that establishes authentication information through the
use of the rpc_binding_set_auth_info procedure defined in [C706], the security provider
extension defined in [MS-RPCE] section 2.2.1.1.7, and the authentication levels extension
defined in [MS-RPCE] section 2.2.1.1.8.

level-two protocol: The MSDTC Connection Manager: OleTx Transports Protocol is designed to

be a transport protocol over which two other protocols are layered. When used in this

document, level-two protocol refers to the protocol that is layered immediately on top of
MSDTC Connection Manager: OleTx Transports Protocol, as described in 2.2.2. [MS-CMP] is an
implementation of a level-two protocol; however, any other custom implementation could
be used.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-CMP%5d.pdf

9 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

level-three protocol: The MSDTC Connection Manager: OleTx Transports Protocol is designed to
be a transport protocol over which two other protocols are layered. When used in this

document, level-three protocol refers to the protocol that is layered immediately on top of the
level-two protocol, as described in 2.2.2. [MS-DTCO] is an implementation of a level-three

protocol; however, any other custom implementation could be used.

partner: A participant in the MSDTC Connection Manager: OleTx Transports Protocol. Each
partner has its own contact identifier (CID), and uses the IXnRemote interface to invoke
and receive remote procedure calls (RPCs). The IXnRemote interface is described within
the full Interface Definition Language (IDL) for the MSDTC Connection Manager: OleTx
Transports Protocol in section 6.

primary partner: One of the two participants in an MSDTC Connection Manager: OleTx

Transports Protocol session. The primary partner is the partner with the larger CID, as
specified in [C706] Appendix A, where larger means that the CID of the primary partner
follows the CID of the other partner.

secondary partner: One of the two participants in an MSDTC Connection Manager: OleTx

Transports Protocol session. The secondary partner is the partner with the smaller CID,
as specified in [C706] Appendix A, where smaller means that the CID of the secondary

partner precedes the CID of the other partner.

security level: An implementation-specific enumeration value that specifies the security
behavior of a protocol partner. The generic values of this enumeration are described in section
3.2.1.1.

session rank: The role of a partner in an MSDTC Connection Manager: OleTx Transports
Protocol session, either primary or secondary. The rank is determined by comparing the
CIDs of the two partners (as specified in [C706] Appendix A). The partner with the larger

CID is the primary partner; the CID of the primary partner follows the CID of the other
partner. The partner with the smaller CID is the secondary partner; the CID of the
secondary partner precedes the CID of the other partner.

unauthenticated RPC call: An RPC call that does not establish authentication information

through the use of the rpc_binding_set_auth_info procedure defined in [C706], the security
provider extension defined in [MS-RPCE] section 2.2.1.1.7, and the authentication levels
extension defined in [MS-RPCE] section 2.2.1.1.8.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
specified in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because

links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

%5bMS-DTCO%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89825
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89825
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89825
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89824

10 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[NETBEUI] IBM Corporation, "LAN Technical Reference: 802.2 and NetBIOS APIs", 1986,

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/BK8P7001/CCONTENTS

[RFC1001] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Concepts and Methods", STD 19, RFC 1001, March 1987,
http://www.ietf.org/rfc/rfc1001.txt

[RFC1002] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Detailed Specifications", STD 19, RFC 1002, March 1987,
http://www.ietf.org/rfc/rfc1002.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-CMOM] Microsoft Corporation, "MSDTC Connection Manager: OleTx Management Protocol".

[MS-CMP] Microsoft Corporation, "MSDTC Connection Manager: OleTx Multiplexing Protocol".

[MS-DTCO] Microsoft Corporation, "MSDTC Connection Manager: OleTx Transaction Protocol".

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-SPNG] Microsoft Corporation, "Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)
Extension".

1.3 Overview

The MSDTC Connection Manager: OleTx Transports Protocol is a peer-to-peer messaging protocol

layered over a bidirectional pair of RPC connections. Although there is asymmetry in the setup and
teardown of a session, the peers (or partners) are considered equal for the purposes of sending
messages to each other.

Together, the pair of RPC connections between the partners is called a session.

1.3.1 Identifiers and Partner Roles

Each of the partners involved in an MSDTC Connection Manager: OleTx Transports Protocol session

has a distinct UUID called its contact identifier (CID). Each partner is identified by the
combination of its contact identifier (CID) and the NetBIOS name of the computer in which it
resides. For more information on NetBIOS, see [NETBEUI], [RFC1001], and [RFC1002].

There are two slightly different roles in the MSDTC Connection Manager: OleTx Transports Protocol:

primary partner and secondary partner. Any partner has the option to take either role, but
within a session, one is chosen to be the primary partner, and the other is chosen to be the
secondary partner. (A partner's role in the session is also referred to as its session rank.) Each

partner in the pair self-determines its role by comparing its contact identifier (CID) with the contact
identifier (CID) of the other partner. For comparing UUIDs, see [C706]. The partner that has the
larger contact identifier (CID) is the primary partner, and the other partner is the secondary partner
(larger means that the CID of the primary partner follows the CID of the other secondary partner).

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90224
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-CMOM%5d.pdf
%5bMS-CMP%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-SPNG%5d.pdf
%5bMS-SPNG%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90224
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
http://go.microsoft.com/fwlink/?LinkId=89824

11 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1.3.2 Finding the RPC Endpoint and Constructing a Binding Handle

When a partner is initialized, it creates a dynamic endpoint on each of its supported RPC protocols
and registers the interface (IXnRemote) with the RPC endpoint mapper. When a partner performs

this registration, it specifies its contact identifier (CID) as the object identifier. See specification
[C706].

A partner initiating communication with another partner begins with a name object that contains
contact information for a remote partner. The name object is used to create an RPC binding handle
(see specification [C706]) to the remote partner's RPC endpoint.

To create an RPC binding handle from a name object, a string binding has to be generated by calling
the RPC API routine rpc_string_binding_compose (see specification [C706] section 3.1.20) and

passing the data from the name object as follows:

1. The protseq input value is taken from one of the entries in the Protocols list in the name object.
The protocol has to be one of the protocols supported by both partners as specified in section
2.1.1. The protocol is selected from the Protocols list according to the following heuristic:

1. If both partners are on the same machine, use the value "ncalrpc"; otherwise, proceed to the
next step.

2. If "ncacn_ip_tcp" is on the Protocols list, set this protocol as the value; otherwise, proceed to
the next step.

3. If "ncacn_spx" is on the Protocols list, set this protocol as the value;<1> otherwise, proceed
to the next step.

4. If "ncacn_nb_nb" is on the Protocols list, set this protocol as the value; otherwise, proceed to
the next step.

5. The partner MUST fail to generate a string binding.

2. The network_addr input value is specified as the Hostname in the name object.

3. The obj_uuid input value is specified as the contact identifier (CID) in the name object.

4. Set NULL or empty string("") for the endpoint and options input values.

After generating the string binding, the partner can instantiate a RPC binding handle passing the
string binding to the rpc_binding_from_string_binding RPC API routine (see specification [C706]
section 3.1.20). Because the string binding doesn't define an endpoint field, the returned binding is
a partially bound binding handle.

If, for any reason, a partner fails to generate a string binding or to instantiate a RPC binding handle,
an implementation-specific error code MUST be returned.

This partial binding is resolved into a full binding by using the RPC endpoint mapper service at the
host network address and the full binding handle is used for every call to the remote partner.

1.3.3 Session Lifecycle

The following sections specify supported MSDTC Connection Manager: OleTx Transports Protocol
sequences for implementers.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

12 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1.3.3.1 Establishing a Session

A session is established by making a nested series of synchronous remote procedure call (RPC)
between the IXnRemote interfaces of the two partners. These calls are made in order; furthermore,

no call begins before the last call completes, unless an error occurs.

Once one of the partners decides to establish a session, the sequence is as follows. If the primary
partner decides to establish the session, it proceeds immediately. If the secondary partner decides
to establish the session, it establishes an RPC connection to the primary partner and calls either the
Poke method or the PokeW method, which has the effect of informing the primary that the
secondary wants to establish a session. The primary partner begins the handshake series by
establishing an RPC connection to the secondary partner, and by making a BuildContext call or

BuildContextW call to the secondary partner. The secondary partner responds to the incoming call
by making a corresponding BuildContext callback or BuildContextW callback to the primary (after
establishing an RPC connection, if necessary).

The primary partner then verifies the callback, and the chain of procedure calls progresses. The
primary partner returns from the BuildContext call or the BuildContextW call that was made by

the secondary partner, and then the secondary partner returns from the BuildContext call or the

BuildContextW call that was made by the primary. Once these calls have returned, the session has
been established. The following sequence diagrams illustrate this process.

Figure 1: Session initiation by primary partner

13 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 2: Session initiation by secondary partner

1.3.3.2 Negotiating Resources

Once a session has been established, a partner has the option to call the NegotiateResources
method to request that the other partner allocate resources to be associated with the session. The
level-two protocol specifies the allocated resource type. This type is defined by the
RESOURCE_TYPE (section 2.2.7) enumeration.

1.3.3.3 Sending and Receiving Messages

Once a session has been established, a partner calls the SendReceive method to send messages to
the other partner. As with resources, the MSDTC Connection Manager: OleTx Transports Protocol
does not define any messages or message formats; the definition of such things is left to the
particular protocol being layered over it.

14 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1.3.3.4 Terminating a Session

Termination requires a nested series of RPCs between the IXnRemote interfaces of the two partners.
Either partner has the option to terminate the session. If the primary partner decides to terminate

the session, the session termination proceeds immediately. If the secondary partner decides to
terminate the session, it sends a BeginTearDown request to the primary partner, which has the
effect of informing the primary to terminate the session.

The primary partner begins the handshake series by making a TearDownContext call to the
secondary partner. The secondary partner responds by freeing some of its local state and making a
corresponding TearDownContext callback to the primary partner.

On receiving this callback, the primary partner frees its local state associated with the session.

Note that the exact conditions under which a partner decides to terminate a session are outside the
scope of the MSDTC Connection Manager: OleTx Transports Protocol; it is the responsibility of the
protocol being layered above the MSDTC Connection Manager: OleTx Transports Protocol to provide
mechanisms for determining the lifetime of a session.

1.4 Relationship to Other Protocols

The Microsoft Distributed Transaction Coordinator (MSDTC) Connection Manager: OleTx Transports
Protocol is dependent on RPC, which is its transport. The RPC protocol provides extensibility
elements that are used by the MSDTC Connection Manager: OleTx Transports Protocol to provide
sessions and peer-to-peer message exchange services. The MSDTC Connection Manager: OleTx
Multiplexing Protocol can be layered on top of the MSDTC Connection Manager: OleTx Transports
Protocol to provide message batching and connection multiplexing services to protocols layered
above the MSDTC Connection Manager: OleTx Multiplexing Protocol. For example, other message-

based protocols, such as [MS-DTCO], are layered on top of the MSDTC Connection Manager: OleTx
Multiplexing Protocol to provide application-specific functionality. The following diagram illustrates
the protocol layering.

Figure 3: Protocol relationships

Ultimately, the MSDTC Connection Manager suite of protocols is used as the communication

mechanism for the Microsoft Distributed Transaction Coordinator, which is used to coordinate atomic
transactions.

1.5 Prerequisites/Preconditions

The MSDTC Connection Manager: OleTx Transports Protocol is an RPC interface, and therefore has
the prerequisites identified in [MS-RPCE] as being common to RPC interfaces.

%5bMS-CMP%5d.pdf
%5bMS-CMP%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-RPCE%5d.pdf

15 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The security model employed by this protocol is based on the Security Provider model specified in
[MS-RPCE], section 1.7. As a result, the function of the protocol requires the availability of a

Security Provider infrastructure that can be used for RPC security.

It is assumed that an MSDTC Connection Manager: OleTx Transports Protocol partner has obtained a

name object containing the contact information for another partner that supports the MSDTC
Connection Manager: OleTx Transports Protocol before establishing a session. How a partner obtains
this name object is not addressed in this specification.

1.6 Applicability Statement

The MSDTC Connection Manager: OleTx Transports Protocol is primarily designed to provide a peer-
to-peer system for exchanging messages over reliable connections. Its use of bidirectional RPC

connections to RPC dynamic endpoints means that it is applicable only when the participants can
directly contact each other. The MSDTC Connection Manager: OleTx Transports Protocol requires
that the partners refer to each other by NetBIOS name; that is, the participants should use a name
service. Also, the use of Mutual Authentication in conjunction with the protocol's reliance on

NetBIOS means that the participants are required to be either in the same domain or in domains
that have a trust relationship.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

Supported RPC Transports: The MSDTC Connection Manager: OleTx Transports Protocol uses

multiple RPC protocol sequences, as specified in section 2.1.1.

Protocol Versions: The MSDTC Connection Manager: OleTx Transports Protocol RPC interface has

a single version number of 1.0; however, there are two instances of this interface:

A base interface.

An extended interface obtained by appending methods at the end of the base interface

described in section 3.1.

Corresponding to the two interface instances, this protocol defines two versions, which for the
purposes of this specification are referred as "MS-CMPO 1.0" (implements the base interface) and

"MS-CMPO 1.1" (implements the extended interface).<2>

It is possible to further extend the MSDTC Connection Manager: OleTx Transports Protocol
without altering the interface version number by adding RPC methods to the interface with
opnums numerically beyond those defined in this specification.

A client determines support for a certain interface instance (or protocol version) from a server
by attempting to invoke an instance-specific method. If the method is not supported, the RPC
server returns an RPC_S_PROCNUM_OUT_OF_RANGE error. For RPC versioning and capacity

negotiation in this situation, see [C706], section 4.2.4.2, and [MS-RPCE], section 1.7.

Security and Authentication Methods: When using authentication, the MSDTC Connection

Manager: OleTx Transports Protocol uses the security provider security model as specified in
[MS-RPCE], section 2.2.1.1.7. The specific methods of authentication for this protocol are highly
implementation-dependent. In order to communicate securely, two protocol partners have to
agree on a common security provider package to use. Security provider negotiation packages are

specified in [MS-SPNG]. Windows implementations of MSDTC Connection Manager: OleTx
Transports Protocol use by default the SPNEGO Security Provider described in [MS-SPNG], which
allows for in-band negotiation of a Security Provider package.

%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-SPNG%5d.pdf

16 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1.8 Vendor-Extensible Fields

This protocol uses HRESULT values as defined in [MS-ERREF]. Vendors can choose their own
HRESULT values, provided they set the C bit (0x20000000) for each vendor-defined value,

indicating the value is a customer code.

1.9 Standards Assignments

Parameter Value Reference

RPC interface UUID 906B0CE0-C70B-1067-B317-00DD010662DA Section 2.1

%5bMS-ERREF%5d.pdf
%5bMS-GLOS%5d.pdf

17 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2 Messages

This protocol references commonly used data types as defined in [MS-DTYP].

2.1 Transport

2.1.1 Protocol Sequences

The MSDTC Connection Manager: OleTx Transports Protocol uses several different RPC protocol
sequences; it SHOULD use the "ncacn_ip_tcp" RPC protocol sequence.

Also, the MSDTC Connection Manager: OleTx Transports Protocol MAY use either or both of the
"ncacn_nb_nb" and "ncacn_spx" RPC protocol sequences. Very few implementations use these
protocols, and so they SHOULD NOT be the only protocols supported by a partner.<3>

2.1.2 Endpoints

The MSDTC Connection Manager: OleTx Transports Protocol MUST use the endpoint mapper to
allocate the endpoint that will be used during the exchange of messages. This endpoint MUST be

allocated dynamically on a port that MUST be defined by the endpoint mapper, as specified in
[C706]) part 2, or by the local data element Server TCP Port if the RPC protocol is TCP/IP.<4>

2.1.3 Security

The MSDTC Connection Manager: OleTx Transports Protocol partners SHOULD use a security
provider, as specified in [MS-RPCE] section 2.2.1.1.7, and an authentication level as specified in
[MS-RPCE] section 2.2.1.1.8.<5>

The MSDTC Connection Manager: OleTx Transports Protocol SHOULD support three security levels:
mutual authentication, incoming authentication, and no authentication.

If the security level is mutual authentication, the MSDTC Connection Manager: OleTx Transports

Protocol partner MUST attempt to establish an RPC connection using authenticated RPC calls.
If this fails, the RPC connection attempt fails. When using this security level, the MSDTC
Connection Manager: OleTx Transports Protocol partner SHOULD accept authenticated RPC calls

only if the authentication level is set to RPC_C_AUTHN_LEVEL_PKT_PRIVACY.<6>

If the security level is incoming authentication, the MSDTC Connection Manager: OleTx

Transports Protocol partner MUST first attempt to establish an RPC connection using
authenticated RPC calls for sessions that were initiated (through the BuildContextW method or
the PokeW method) by another protocol partner. If it fails to accept authenticated RPC calls, the
MSDTC Connection Manager: OleTx Transports Protocol partner MUST attempt to establish an

RPC connection using unauthenticated RPC calls. When using this security level, the MSDTC
Connection Manager: OleTx Transports Protocol partner SHOULD accept authenticated RPC calls
only if the authentication level is set to RPC_C_AUTHN_LEVEL_PKT_PRIVACY.<7>

If the security level is no authentication, the MSDTC Connection Manager: OleTx Transports

Protocol partner SHOULD first attempt to establish an RPC connection using authenticated RPC
calls to another protocol partner. If this fails, the MSDTC Connection Manager: OleTx Transports

Protocol partner MUST attempt to establish an RPC connection using unauthenticated RPC calls.

%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89828
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

18 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2 Common Data Types

The MSDTC Connection Manager: OleTx Transports Protocol MUST indicate (to the RPC runtime) that
it is only to support the Network Data Representation (NDR) transfer syntax as the RPC

transfer syntax, as specified in [C706] part 4. In addition to RPC base types and definitions
specified in [C706] and [MS-DTYP], more data types are defined in the following sections.

2.2.1 BIND_INFO_BLOB

The BIND_INFO_BLOB packet is a structure containing details on how to bind to a partner.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwcbThisStruct

grbitComProtocols

dwcbThisStruct (4 bytes): An unsigned 4-byte integer. The size of this structure in bytes. This
value MUST be set to 8.

grbitComProtocols (4 bytes): A COM_PROTOCOL bit field specifying the RPC protocol
sequences that the partner supports.

2.2.2 BIND_VERSION_SET

The BIND_VERSION_SET structure holds three sets of version range values that specify the
version ranges supported by a partner for three protocols: this protocol, MSDTC Connection
Manager: OleTx Transports Protocol, and two other protocols that are layered on top of this

protocol. This is because MSDTC Connection Manager: OleTx Transports Protocol is designed to be a
transport protocol over which two other protocols are layered. For the rest of this specification, the

protocol that is layered immediately on top of the MSDTC Connection Manager: OleTx Transports
Protocol is referred to as the level-two protocol, and the protocol layered on top of the level-two
protocol is the level-three protocol. The ranges of level-two version number values and level-
three version number values are specific to the level-two protocol and level-three protocol,

respectively.

typedef struct _BindVersionSet {

 DWORD dwMinLevelOne;

 DWORD dwMaxLevelOne;

 DWORD dwMinLevelTwo;

 DWORD dwMaxLevelTwo;

 DWORD dwMinLevelThree;

 DWORD dwMaxLevelThree;

} BIND_VERSION_SET;

dwMinLevelOne: A 4-byte unsigned integer value containing the minimum supported MSDTC

Connection Manager: OleTx Transports Protocol version. dwMinLevelOne MUST be less than
or equal to dwMaxLevelOne.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89829
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf

19 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

This field indicates whether the unsigned_char_t [C706] version of the Session creation API
calls (Poke/BuildContext) or the wchar_t [C706] version of the Session creation API calls

(PokeW/BuildContextW) are used. This field MUST be one of the following values:

Value Meaning

0x00000001 The unsigned_char_t version of the Session creation API (Poke and BuildContext)

should be used.

0x00000002 The wchar_t version of the Session creation API (PokeW and BuildContextW)

should be used.

dwMaxLevelOne: A 4-byte unsigned integer value containing the maximum version supported
for a level-one session. dwMaxLevelOne MUST be greater than or equal to
dwMinLevelOne.

This field indicates whether the unsigned_char_t version of the Session creation API calls

(Poke/BuildContext) or the wchar_t version of the Session creation API calls
(PokeW/BuildContextW) are used. This field MUST be one of the following values:

Value Meaning

0x00000001 The unsigned_char_t version of the Session creation API (Poke and BuildContext)

should be used.

0x00000002 The wchar_t version of the Session creation API (PokeW and BuildContextW)

should be used.

dwMinLevelTwo: A 4-byte unsigned integer value containing the minimum version supported
for the level-two protocol session. The value for dwMinLevelTwo MUST be less than or equal

to dwMaxLevelTwo.

dwMaxLevelTwo: A 4-byte unsigned integer value containing the maximum version supported

for the level-two protocol session. The value for dwMaxLevelTwo MUST be greater than or
equal to dwMinLevelTwo.

dwMinLevelThree: A 4-byte unsigned integer value containing the minimum version supported
for the level-three protocol session. The value for dwMinLevelThree MUST be less than or

equal to dwMaxLevelThree.

dwMaxLevelThree: A 4-byte unsigned integer value containing the maximum version
supported for the level-three protocol session. dwMaxLevelThree MUST be greater than or
equal to dwMinLevelThree.

2.2.3 BOUND_VERSION_SET

The BOUND_VERSION_SET is a structure containing the MSDTC Connection Manager: OleTx

Transports Protocol version numbers that were successfully negotiated during a BuildContext call

or a BuildContextW call.

typedef struct _BoundVersionSet {

 DWORD dwLevelOneAccepted;

 DWORD dwLevelTwoAccepted;

 DWORD dwLevelThreeAccepted;

} BOUND_VERSION_SET;

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

20 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

dwLevelOneAccepted: A session level-one bind was successfully created.

A 4-byte unsigned integer value containing the MSDTC Connection Manager: OleTx Transports
Protocol version that was negotiated with the partner and MUST be used in MSDTC
Connection Manager: OleTx Transports Protocol exchanges with the partner.

Value Meaning

0x00000001 The unsigned_char_t version of the Session creation API (Poke and BuildContext)

should be used.

0x00000002 The wchar_t version of the Session creation API (PokeW and BuildContextW)

should be used.

dwLevelTwoAccepted: A 4-byte unsigned integer value containing the level-two protocol
version that was negotiated with the partner and MUST be used in level-two protocol
exchanges with the partner.

dwLevelThreeAccepted: A 4-byte unsigned integer value containing the level-three protocol
version that was negotiated with the partner and MUST be used in level-three protocol
exchanges with the partner.

2.2.4 COM_PROTOCOL

The COM_PROTOCOL is a bit field defining the set of RPC protocol sequences supported by an
MSDTC Connection Manager: OleTx Transports Protocol partner.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

bitFieldEncoding

bitFieldEncoding (4 bytes): The bits of this data type MUST be encoded as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

T S B U 0 L 0

Value Description

T

PROT_IP_TCP

(0x00000001)

A flag indicating whether the "ncacn_ip_tcp" RPC protocol sequence is

supported by the endpoint. If the value is 1, the protocol sequence is

supported; otherwise, it is not.

S

PROT_SPX

A flag indicating whether the "ncacn_spx" RPC protocol sequence is

supported by the endpoint. If the value is 1, the protocol sequence is

supported; otherwise, it is not.

21 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Description

(0x00000002)

B

PROT_NET_BEUI

(0x00000004)

A flag indicating whether the "ncacn_nb_nb" RPC protocol sequence is

supported by the endpoint. If the value is 1, the protocol sequence is

supported; otherwise, it is not.

U

PROT_IP_UDP

(0x00000008)

A flag indicating whether the "ncacn_ip_udp" RPC protocol sequence is

supported by the endpoint. If the value is 1, the protocol sequence is

supported; otherwise, it is not.

L

PROT_LRPC

(0x00000020)

A flag indicating whether the "ncalrpc" RPC protocol sequence is supported

by the endpoint. If the value is 1, the protocol sequence is supported;

otherwise, the sequence is not supported.

If none of the bits are set, then bitFieldEncoding is assumed to be set to PROT_IP_TCP by

default.

2.2.5 HRESULT

This specification uses the HRESULT type. See [MS-ERREF].

2.2.6 GUID/UUID

This specification uses the GUID type. See [MS-DTYP]. GUID (globally unique identifier) is also
known as a UUID (universally unique identifier) and is a 16-byte structure, intended to serve as a
unique identifier for an object. When formatted as a string, it MUST follow the specification
described in [C706] Appendix A.

2.2.7 RESOURCE_TYPE

The RESOURCE_TYPE enumeration provides 4-byte signed integer values that describe the

resource to be negotiated.

typedef enum _ResourceType

{

 RT_CONNECTIONS = 0x00000000

} RESOURCE_TYPE;

RT_CONNECTIONS: Indicates that the resource is a connection.

2.2.8 SESSION_RANK

The SESSION_RANK enumeration provides 4-byte signed integer values that describe whether the
machine is a primary partner or a secondary partner.

typedef enum _SessionRank

{

 SRANK_PRIMARY = 0x00000001,

 SRANK_SECONDARY = 0x00000002

} SESSION_RANK;

%5bMS-ERREF%5d.pdf
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824

22 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

SRANK_PRIMARY: Primary partner.

SRANK_SECONDARY: Secondary partner.

2.2.9 TEARDOWN_TYPE

The TEARDOWN_TYPE enumeration provides a set of 4-byte signed integer values indicating the
reason for starting the teardown phase of session management.

typedef enum _TearDownType

{

 TT_FORCE = 0x00000000,

 TT_PROBLEM = 0x00000002

} TEARDOWN_TYPE;

TT_FORCE: Force a teardown.

TT_PROBLEM: Severe session error detected; start a teardown.

2.2.10 Constants Used in Method Definitions

The following constants are used in various methods.

Constant/value Description

GUID_LENGTH

37

The minimum or maximum number of characters in the string form of a

contact identifier (CID) that contains a GUID value.

MAX_COMPUTERNAME_LENGTH

15

An operand used to specify the maximum number of characters in the

string form of a host name.

%5bMS-GLOS%5d.pdf

23 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3 Protocol Details

The RPC interface specified by this protocol is called IXnRemote (see section 6 for the Interface
Definition Language (IDL) specification). Every IXnRemote client is also an IXnRemote server,
and every IXnRemote server is also an IXnRemote client. Therefore, the information in section 3.2
applies equally to both IXnRemote server and IXnRemote client.

3.1 Protocol Versioning

This protocol currently has two versions: MS-CMPO 1.0 and MS-CMPO 1.1. The only differences

between the two versions are related to the methods supported by the RPC interface, as shown in
the following table.

IXnRemote methods MS-CMPO 1.0 MS-CMPO 1.1

Poke (Opnum 0) Supported Supported

BuildContext (Opnum 1) Supported Supported

NegotiateResources (Opnum 2) Supported Supported

SendReceive (Opnum 3) Supported Supported

TearDownContext (Opnum 4) Supported Supported

BeginTearDown (Opnum 5) Supported Supported

PokeW (Opnum 6) Not supported Supported

BuildContextW (Opnum 7) Not supported Supported

3.2 Common Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with what is described in this
document.

Note The abstract interface notation (Public) indicates that the Abstract Data Model element can be
directly accessed from outside this protocol.

An MSDTC Connection Manager: OleTx Transports Protocol implementation MUST have two
partners, as described in section 1.3.1. Within a session, based upon the comparison of their contact
identifiers (CIDs): one partner is the primary partner, and the other is the secondary partner. For
the sake of clarity, the term "local partner" is used to indicate the role that is being described, and

the term "remote partner" is used to indicate the partner with which the local partner is
communicating.

The abstract data model described in this section applies to an implementation of the MSDTC
Connection Manager: OleTx Transports Protocol as a whole. Therefore, the IXnRemote server and
IXnRemote client roles, which are both implemented by the local partner, share one instance of the
model described here.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

24 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The MSDTC Connection Manager: OleTx Transports Protocol uses the registry to retrieve the values
for the Server TCP Port and Service Network Protocols data elements described in this section, and

the persistent store is shared with the MSDTC Connection Manager: OleTx Transaction Protocol [MS-
DTCO] and the MSDTC Connection Manager: OleTx Management Protocol [MS-CMOM].

3.2.1.1 Partner State

An MSDTC Connection Manager: OleTx Transports Protocol partner MUST allocate and maintain the
following local data elements:

Local Name Object (Public): A name object that contains the contact information for the local
partner.

Minimum Level 1 Version Number: A 4-byte unsigned integer, whose value represents the

minimum version supported by a MSDTC Connection Manager: OleTx Transports Protocol
implementation.

Maximum Level 1 Version Number: A 4-byte unsigned integer, whose value represents the

maximum version supported by a MSDTC Connection Manager: OleTx Transports Protocol
implementation.

Minimum Level 2 Version Number (Public): A 4-byte unsigned integer, whose value

represents the minimum version supported by the level-two protocol layered on top of the
MSDTC Connection Manager: OleTx Transports Protocol implementation.

Maximum Level 2 Version Number (Public): A 4-byte unsigned integer, whose value
represents the maximum version supported by the level-two protocol layered on top of the
MSDTC Connection Manager: OleTx Transports Protocol implementation.

Minimum Level 3 Version Number (Public): A 4-byte unsigned integer, whose value
represents the minimum version supported by the level-three protocol layered on top of the

level-two protocol.

Maximum Level 3 Version Number (Public): A 4-byte unsigned integer, whose value

represents the maximum version supported by the level-three protocol layered on top of the
level-two protocol.

Security Level (Public): An implementation-specific enumeration value that specifies the
security behavior of a protocol partner. The generic values of this enumeration are given in
the following table.

Security Level

value Meaning

Mutual

authentication

This value specifies that the protocol partner MUST use an authenticated RPC

call to establish a communication between the client and server. The server RPC

security MUST be configured as specified by the Server Security Settings, and

the client security MUST be configured as specified by the Client Security

Settings.

Incoming

authentication

This value specifies that the protocol partner MUST use an authenticated RPC

call when it is initiated (through BuildContextW or PokeW) by another

protocol partner. For sessions initiated by itself, a partner MUST first attempt to

use an authenticated RPC call; if that is not supported, the partner MUST use an

unauthenticated RPC call.

No This value specifies that the protocol partner SHOULD use authenticated RPC

%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-CMOM%5d.pdf

25 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Security Level

value Meaning

Authentication calls to establish a communication between the client and server. The server

RPC security MUST be configured as specified by the Server Security Settings,

and the client security MUST be configured as specified by the Client Security

Settings. If this fails, both the client and server sides of the protocol partner

MUST use an unauthenticated RPC call. The settings specified by the Server

Security Settings and Client Security Settings objects MUST be ignored.

These data elements are set during the initialization of the partner and are not changed thereafter.

See section 3.3.3.

Note It is possible to implement the abstract data model by using a variety of techniques. The
protocol does not prescribe or advocate any specific implementation technique.

3.2.1.2 Session State

An MSDTC Connection Manager: OleTx Transports Protocol partner MUST maintain a session table (a

table of session objects) keyed by the contact identifier (CID) field of the Name field referenced by
each session object. Each partner maintains a table of the sessions in progress. This table grows and
shrinks as sessions are established and terminated. A session object MUST maintain the following
data elements:

Name: A name object that contains contact information for the remote partner.

Version: A BOUND_VERSION_SET structure representing the session values negotiated between
the two participants in the session.

Binding Handle: An RPC binding handle to the remote partner.

Context Handle: The RPC context handle associated with this session for the remote partner.

Timers: Each session has two timers: a Session Setup timer and a Session Teardown timer.

State: The current state of the session. The state of the session MUST be one of the following
values:

Connecting

Confirming Connection

Active

Requesting Teardown

Teardown

The valid state transitions are described by one of the two following state diagrams, depending on

whether the local partner is the primary partner in the session or not. Only a secondary partner has

the option to enter the Requesting Teardown state.

26 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 4: Primary session state

27 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 5: Secondary session state

Note It is possible to implement the conceptual data defined in this section using a variety of

techniques. An implementation is at liberty to implement such data in any way it pleases.

3.2.1.3 Cleaning Up a Session Object

When a session object is removed from the session table, it MUST be cleaned up as follows:

28 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Any outstanding RPC associated with the session object MUST be canceled; this includes calls to

BuildContext, BuildContextW, Poke, PokeW, BeginTearDown, and TearDownContext that

are being used to establish or tear down the session represented by the session object.

All active timers associated with the session object MUST be canceled.

The RPC binding handle stored in the session object MUST be released if it has been allocated.

For RPC binding handles, see [C706].

The RPC context handle stored in the session object MUST be released if it has been allocated.

For RPC context handles, see [C706].

3.2.1.4 Name Object

A name object contains the contact information of a partner. This information is composed of the
following data elements that MUST be present on a Name object implementation:

Hostname: The NetBIOS name of the machine on which the partner is listening. For NetBIOS,

see [NETBEUI], [RFC1001], and [RFC1002].

CID: The contact identifier (CID) of the partner.

Protocols: A COM_PROTOCOL structure representing a set of the RPC network protocols
supported by the partner.

Note It is possible to implement the conceptual data defined in this section using a variety of
techniques. An implementation is at liberty to implement such data in any way it pleases.

3.2.1.4.1 Name Object Comparison

Two name objects are considered equal if (and only if) their contact identifier (CID) are identical

GUIDs, and the Hostname fields are identical NetBIOS host names. For NetBIOS, see [NETBEUI] and
[RFC1001].

3.2.2 Timers

An implementation of the MSDTC Connection Manager: OleTx Transports Protocol MUST provide
Session Setup timers and Session Teardown timers. Each session object is associated with a pair of
these timers.

3.2.2.1 Session Setup Timer

There is an instance of this timer corresponding to each session object. This timer MUST be set
when the associated session enters the Connecting state or the Confirming Connection state, and is
canceled when the session enters the Active state.

The default value of the timer is specific to the implementation.<8>

3.2.2.2 Session Teardown Timer

There is an instance of this timer corresponding to each session object. This timer MUST be set
when the associated session enters the Teardown state, and is canceled when the session leaves
that state.

The default value of the timer is specific to the implementation. The local partner SHOULD set the
default value of this timer to 10 seconds.

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90224
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
http://go.microsoft.com/fwlink/?LinkId=90224
http://go.microsoft.com/fwlink/?LinkId=90260

29 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.2.3 Initialization

Each MSDTC Connection Manager: OleTx Transports Protocol partner is explicitly initialized with the
data elements identified in section 3.2.1.1, and described in sections Initialization By a Higher-Level

Protocol (section 3.2.3.1) and Initialization By the Protocol (section 3.2.3.2).

3.2.3.1 Initialization By a Higher-Level Protocol

A MSDTC Connection Manager: OleTx Transports Protocol partner is explicitly initialized with the
following data elements identified in section 3.2.1.1.

A Local Name object supplied by a higher-level protocol.

The Minimum and Maximum Level 2 Version Numbers are public elements set by a higher-level

protocol that is initializing this partner.

The Minimum and Maximum Level 3 Version Numbers are public elements set by a higher-level

protocol that is initializing this partner.

A Security Level is a public element set by a higher-level protocol that is initializing this partner.

As those elements are supplied to the MSDTC Connection Manager: OleTx Transport Protocol

partner, their initialization MUST be done by the higher-level protocol.

3.2.3.2 Initialization By the Protocol

The MSDTC Connection Manager OleTx Transports Protocol partner MUST perform the following
actions.

Set the Minimum and Maximum Level 1 Version Numbers as follows.

If the local partner implements the MSDTC Connection Manager OleTx Transports Protocol 1.1

protocol version, the Minimum Level 1 Version Number MUST be set to 0x00000001 and the
Maximum Level 1 Version Number MUST be set to 0x00000002.

Otherwise, if the local partner implements only the MSDTC Connection Manager OleTx

Transports Protocol 1.0 protocol version, both the Minimum and Maximum Level 1 Version
Number MUST be set to 0x00000001.

Create an empty session table and assign it to the Session Table field.

In addition to the initialization steps that are performed by a higher-level protocol and the steps that
are common to both the Server and Client roles discussed here, some role-specific initialization also
needs to be performed. See section 3.3.3 for initialization steps specific to the IXnRemote Server
role and section 3.4.3 for initialization steps specific to the IXnRemote Client role.

If any of the initialization of the above elements fails, an implementation-specific failure result MUST

be returned to the higher-layer protocol.

3.2.4 Message Processing Events and Sequencing Rules

None.

30 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.2.5 Timer Events

Note that the events that follow are described as asynchronous with respect to the normal operation
of the MSDTC Connection Manager: OleTx Transports Protocol. If events are implemented this way,

it is the responsibility of the implementation to ensure that its state remains consistent.

3.2.5.1 Session Setup Timer

When the Session Setup timer expires, the local partner SHOULD:

Cancel any outstanding call to BuildContext or BuildContextW.

When the Session Setup timer expires, the local partner MUST:

1. Remove the associated session object from the session table, and close any context handle or
binding handle stored in the session object. (See [C706].)

2. Return an error result from the current incoming call to BuildContext or BuildContextW from

the remote partner identified by the name object stored in the timer's corresponding session
object, if any.

3. Return an error result to the level-two protocol that is requesting a new session to the remote
partner identified by the name object stored in the timer's corresponding session object, if any.

3.2.5.2 Session Teardown Timer

When the Session Teardown timer expires, the local partner SHOULD:

Cancel any outstanding call to TearDownContext.

When the Session Teardown timer expires, the local partner MUST:

1. Remove the associated session object from the session table, and close any context handle or

binding handle stored in the session object. (See [C706].)

2. Return an error result from the current incoming call to TearDownContext from the remote
partner identified by the name object associated with the timer's session object, if any. The local
partner SHOULD return 0x80004005 (E_FAIL).

3. Report success to any level-two protocol that is requesting a new session to the partner identified
by the name object stored in the timer's session corresponding object, if any.

3.2.6 Other Local Events

None.

3.3 IXnRemote Server Details

3.3.1 Abstract Data Model

In addition to the abstract data model described in section 3.2.1, when implementing an IXnRemote

server role an MSDTC Connection Manager: OleTx Transports Protocol partner MUST allocate and
maintain the following local data element:

Server TCP Port: A 4-byte unsigned integer whose value determines the TCP port number of the
RPC server endpoint.<9>

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

31 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Service Network Protocols: An implementation-specific object that identifies which RPC protocol
sequences to use, such as ncacn_ip_tcp, ncacn_nb_nb, ncacn_ip_udp, and ncacn_spx.<10> The

ncacn_ protocols are described in [MS-RPCE] section 2.

Server Security Settings: A collection of settings the value of which represents security provider–

specific settings used to configure the RPC security of the server. As those settings are internal to
this protocol and no network traffic is involved in the setting of their values, the following conditions
SHOULD be observed:<11>

They are stored on an implementation-specific source that SHOULD be secured for write access

by system administrators only.

They SHOULD be established during installation, and the MSDTC Connection Manager: OleTx

Transports Protocol does not modify the settings. It only reads them during protocol instance
initialization. There are no protocols defined to initialize them.

Since the storage location is implementation specific, a separate tool could be used to update the

storage locations independent of the protocol.

The following settings are the Server Security Settings that MUST be specified:

RPC Security Provider: A 4-byte unsigned integer element that identifies the security provider

being used. The possible values for this element are defined in [MS-RPCE] section 2.2.1.1.7.

3.3.2 Timers

The timers for an IXnRemote server are described in section 3.2.2.

3.3.3 Initialization

The MSDTC Connection Manager: OleTx Transports Protocol partner when initiating the IXnRemote
Server role, MUST perform the following actions.

Initialize the Server TCP Port data element by retrieving it directly from the registry, as defined in

[MS-CMOM] section 3.3.1.2.1.<12>

Initialize the Service Network Protocols data element by retrieving it directly from the registry, as

defined in [MS-CMOM] section 3.3.1.2.3.

For each supported RPC protocol on the Service Network Protocols data element:

If the supported RPC protocol is TCP/IP and the Server TCP Port data element is supported,

then register for an RPC dynamic endpoint using the port number defined on the Server TCP
Port.<13>

If the supported RPC protocol is TCP/IP and the Server TCP Port local data element is not

supported, then register for an RPC dynamic endpoint using the port number automatically
assigned by the endpoint mapper.

If the supported RPC protocol is not TCP/IP, then register for an RPC dynamic endpoint.

If registration of the dynamic endpoint succeeds, then register the interface with the RPC

endpoint mapper. During this registration, the local contact identifier (CID) of the interface is
specified as the object identifier. See [C706].

If registration of the dynamic endpoint does not succeed, then the MSDTC Connection

Manager: OleTx Transports Protocol partner MUST NOT be initialized.

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-CMOM%5d.pdf
%5bMS-CMOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824

32 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If an "ncalrpc" RPC protocol endpoint was not registered, then register a dynamic endpoint using

this protocol. This endpoint SHOULD be registered even when the "ncalrpc" RPC protocol

sequence is not included as an entry in the Service Network Protocols data element.

Initialize the Server Security Settings data element by retrieving the RPC Security Provider data

element value from an implementation-specific source.<14>

Start the RPC server, using the Server Security Settings, to listen for RPC calls.

3.3.4 Message Processing Events and Sequencing Rules

The MSDTC Connection Manager: OleTx Transports Protocol SHOULD indicate to the RPC runtime

that it is to perform a strict NDR data consistency check at target level 5.0, as specified in [MS-
RPCE] section 3.<15>

MSDTC Connection Manager: OleTx Transports Protocol MUST indicate to the RPC runtime via the
strict_context_handle attribute that it is to reject use of context handles created by a method of a
different RPC interface than this one, as specified in [MS-RPCE] section 3.

Methods in RPC Opnum Order

Method Description

Poke Opnum: 0

BuildContext Opnum: 1

NegotiateResources Opnum: 2

SendReceive Opnum: 3

TearDownContext Opnum: 4

BeginTearDown Opnum: 5

PokeW Opnum: 6

BuildContextW Opnum: 7

All methods MUST NOT throw exceptions beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

3.3.4.1 Poke (Opnum 0)

The Poke method is used by a secondary partner to request the primary partner session initiation.
The parameter values specified in the call identify both participants.

HRESULT Poke(

 [in] handle_t hBinding,

 [in] SESSION_RANK sRank,

 [in, string, range(GUID_LENGTH, GUID_LENGTH)]

 unsigned char pszCalleeUuid[],

 [in, string, range(1, MAX_COMPUTERNAME_LENGTH+1)]

 unsigned char pszHostName[],

 [in, string, range(GUID_LENGTH, GUID_LENGTH)]

 unsigned char pszUuidString[],

 [in, range(sizeof(BIND_INFO_BLOB),sizeof(BIND_INFO_BLOB))]

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

33 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 DWORD dwcbSizeOfBlob,

 [in, size_is(dwcbSizeOfBlob)] unsigned char rguchBlob[]

);

hBinding: The RPC primitive binding handle of the partner receiving the call, as specified in
[C706] part Binding Handle.

sRank: The session rank of the partner making the call. This parameter MUST be set to 0x02
(SRANK_SECONDARY).

Value Meaning

SRANK_SECONDARY

0x02

The caller is the secondary participant.

pszCalleeUuid: A string containing the primary partner's contact identifier (CID) in the form of a

GUID. The contact identifier (CID) MUST match the CID in the primary partner's local name
object and MUST be formatted into a string.

pszHostName: The string form of the caller's host name. This host name identifies the machine
on which the caller's instance of the MSDTC Connection Manager: OleTx Transports Protocol is
running. This value is used by the primary participant to establish the RPC binding handle for
its subsequent call to BuildContext. This MUST be a NetBIOS name. For NetBIOS, see
[NETBEUI], [RFC1001], and [RFC1002].

pszUuidString: The string form of the caller's contact identifier (CID) in the form of a GUID.

This contact identifier (CID) identifies the caller's instance of the MSDTC Connection Manager:
OleTx Transports Protocol. It MUST match the CID in the caller's local name object, and MUST
be formatted into a string. This value is used by the primary participant to establish the RPC
binding handle for its subsequent call to BuildContext.

dwcbSizeOfBlob: The count, in bytes, of the size of the binding info structure. This parameter

MUST be set to 0x00000008.

rguchBlob: A byte array containing a BIND_INFO_BLOB structure specifying the transport

protocols supported. This information is used to build the RPC binding for the reverse
connection.

Return Values: This method MUST return zero (0x00000000) on success. On failure, it MUST
return either one of the values described in the following table or an implementation-specific
HRESULT. A client MUST NOT depend on implementation-specific failure HRESULT values. For
more information about how the client SHOULD behave based on the possible return values,
see section 3.4.6.1.2. Standard errors are defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000000

ERROR_STATUS

The return value indicates success.

0x80000123

E_CM_SERVER_NOT_READY

The session object is not in the Connecting state.<16>

0x80070057

E_INVALIDARG

The return value indicates that one of the specified

arguments is invalid.<17>

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90950
http://go.microsoft.com/fwlink/?LinkId=90224
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
%5bMS-ERREF%5d.pdf

34 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return value/code Description

0x000006BB

RPC_S_SERVER_TOO_BUSY

The return value indicates that the partner is too busy to

complete this operation. For more information, see [MS-

RPCE] section 3.1.1.5.5

0x80000173

E_CM_S_PROTOCOL_NOT_SUPPORTED

The return value indicates that none of the protocols

described in the rguchBlob parameter is supported by the

partner.

The opnum field value for this method is zero.

Poke SHOULD NOT be invoked on a secondary partner. If it is, the secondary partner SHOULD
respond by making a Poke callback on the primary partner.<18> In this case, the parameters to

the Poke call MUST be calculated from the incoming parameters and the secondary partner's local
name object; specifically, the pszCalleeUuid parameter MUST be set to the value of the
pszUuidString parameter; the pszHostName parameter MUST be the Hostname field of the

secondary partner's local name object; and the pszUuidString parameter MUST be the string form of
the CID field of the secondary partner's local name object. The secondary partner MAY return from
the Poke method before this call has completed.

When Poke is invoked on a primary partner, the primary partner MUST construct a name object
using the host name specified in the pszHostName parameter, the contact identifier (CID) specified
in the pszUuidString parameter, and the RPC protocols specified in the grbitComProtocols field of
the BIND_INFO_BLOB structure.

The primary partner MUST use this name object to check whether or not an existing session with a
matching name object already exists in the session table.

If an existing session is found, the primary partner MUST check the State field of the session object.

If the value is set to Connecting, the existing session will be used during the rest of the call.

Otherwise, the primary partner MUST return an implementation-specific error code.<19>

If an existing session is not found, a new session object MUST be created and added to the session
table. The new session object MUST be initialized with the created name object. An RPC binding
handle to the secondary partner MUST be created and stored in the session object. For binding
handles, see [C706]. The State field MUST be set to Connecting.

At this point, the primary partner does not have to wait until the entire process is completed. It
SHOULD return success from the method, while it continues to perform the following actions.<20>

After identifying a valid existing session or initializing a new session object and adding it to the
session table, the primary partner MUST attempt to call either the BuildContextW method or the
BuildContext method on the secondary partner with the RPC binding handle stored in the session
object. For details on making BuildContext calls to a partner, see section 3.3.4.2 and section

3.4.6.1.1.

To determine whether the secondary partner supports BuildContextW, the primary partner calls

BuildContextW on the secondary partner and waits for a return value.

If the secondary partner does not support the BuildContextW method, the primary partner MUST
call the BuildContext method.

If the secondary partner does support the BuildContextW method, the primary partner MUST NOT
call the BuildContext method. During this call, the secondary partner will make a nested

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824

35 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

synchronous callback to the primary partner to complete the session establishment. See section
3.4.6.1.1.

If the call completes successfully, the primary partner MUST examine the State field of the session
object; if the value is "Confirming Connection", it MUST set the state of the session object to Active

and cancel the Session Setup timer associated with that session object.

If the call completes unsuccessfully, the primary partner SHOULD behave according to the error
code that was returned:

If the error code is 0x80000712 (E_CM_VERSION_SET_NOTSUPPORTED), or 0x800000173

(E_CM_S_PROTOCOL_NOT_SUPPORTED), or it retried the nested call for more than the number
of times specified in the Session Setup Retry Count ADM element, or if the State field of the

session object is not "Confirming Connection", the primary partner MUST remove the session
object from the session table and clean it up. For instructions on cleaning up a session object,
see section 3.2.1.3.

If the error code is ox800000123 (E_CM_SERVER_NOT_READY) or 0x000006BB

(RPC_S_SERVER_TOO_BUSY), or any other implementation-specific error code, the primary
partner SHOULD retry the call for the number of times specified in the Session Setup Retry

Count ADM element.

3.3.4.2 BuildContext (Opnum 1)

The BuildContext method is invoked by either a primary partner or a secondary partner. When
invoked by a primary partner, the BuildContext method requests that the secondary partner begin
the next step of establishing a session. When invoked by a secondary partner, the BuildContext
method requests that the primary partner complete the establishment of the session.

HRESULT BuildContext(

 [in] handle_t hBinding,

 [in] SESSION_RANK sRank,

 [in] BIND_VERSION_SET BindVersionSet,

 [in, string, range(GUID_LENGTH,GUID_LENGTH)]

 unsigned char pszCalleeUuid[],

 [in, string, range(1,MAX_COMPUTERNAME_LENGTH+1)]

 unsigned char pszHostName[],

 [in, string, range(GUID_LENGTH,GUID_LENGTH)]

 unsigned char pszUuidString[],

 [in, string, range(GUID_LENGTH,GUID_LENGTH)]

 unsigned char pszGuidIn[],

 [in, out, string, range(GUID_LENGTH,GUID_LENGTH)]

 unsigned char pszGuidOut[],

 [in, out] BOUND_VERSION_SET* pBoundVersionSet,

 [in, range(sizeof(BIND_INFO_BLOB), sizeof(BIND_INFO_BLOB))]

 DWORD dwcbSizeOfBlob,

 [in, size_is(dwcbSizeOfBlob)] unsigned char rguchBlob[],

 [out] PPCONTEXT_HANDLE ppHandle

);

hBinding: RPC primitive binding handle for the connection, as specified in [C706] part 3.

sRank: The session rank of the partner making the call. It MUST be one of the following values.

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90950

36 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

SRANK_PRIMARY

1

The caller is the primary partner in this session.

SRANK_SECONDARY

2

The caller is the secondary partner in this session.

BindVersionSet: A BIND_VERSION_SET structure that contains the minimum and maximum

versions supported by the partner, as specified by the Minimum Level 1 Version Number,
Maximum Level 1 Version Number, Minimum Level 2 Version Number, Maximum
Level 2 Version Number, Minimum Level 3 Version Number, and Maximum Level 3
Version Number ADM elements (see section 3.2.1.1).

pszCalleeUuid: A string containing the callee's contact identifier (CID) in the form of a GUID.
The contact identifier (CID) MUST match the contact identifier (CID) in the callee's local name

object and MUST be formatted into a string.

pszHostName: The string form of the caller's host name. This host name identifies the machine
in which the caller's instance of the MSDTC Connection Manager: OleTx Transports Protocol is
running. This MUST be a NetBIOS name. For NetBIOS, see [NETBEUI], [RFC1001], and
[RFC1002].

If this is the primary partner call, this value is used by the called secondary partner to
establish the RPC binding handle for its corresponding call to BuildContext.

pszUuidString: The string form of the caller's contact identifier (CID) in the form of a GUID.
This CID identifies the caller's instance of the MSDTC Connection Manager: OleTx Transports
Protocol. It MUST match the contact identifier (CID) in the caller's local name object and
MUST be formatted into a string.

If this is the primary participant's call, this value is used by the called secondary participant to
establish the RPC binding handle for its corresponding call to BuildContext.

pszGuidIn: A string form of a GUID that represents a unique identifier for this bind attempt. The

GUID MUST be formatted as a string.

For the primary participant's call to BuildContext, this is a new GUID generated by the
primary partner to uniquely identify the session. For the secondary partner's call back to the
primary partner, this MUST be the parameter value from the primary partner's call to the
secondary partner.

pszGuidOut: A string form of a GUID that represents a global identifier for this bind attempt. On

input, the pszGuidOut parameter MUST be set to 00000000-0000-0000-0000-000000000000.
On return, if the bind attempt is ultimately successful, the pszGuidOut parameter MUST be
equal to the value of the pszGuidIn parameter. Otherwise, if the bind attempt is ultimately
unsuccessful, the pszGuidOut parameter MUST be set to 00000000-0000-0000-0000-
000000000000 on return.

pBoundVersionSet: A pointer to a BOUND_VERSION_SET structure. This structure is filled in
by the callee. If any error is returned, this structure MUST be filled with zeros before

returning. On successful completion, the caller receives a BOUND_VERSION_SET on return.

dwcbSizeOfBlob: The count in bytes of the size of the binding info structure. This parameter
MUST be set to the size of the BIND_INFO_BLOB, 8.

http://go.microsoft.com/fwlink/?LinkId=90224
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261

37 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

rguchBlob: A byte array containing the BIND_INFO_BLOB structure specifying the supported
transport protocols. This information is used to build the RPC binding for the reverse

connection.

ppHandle: On successful return, an RPC context handle that correlates with the session object

created by (or referenced by) this method. For RPC context handles, see [C706].

Return Values: This method MUST return zero (0x00000000) on success. On failure, it MUST
return either one of the values described in the following table of return values or an
implementation-specific HRESULT. A client MUST NOT depend on implementation-specific
failure HRESULT values. For more information about how the client SHOULD behave based on
the possible return values, see section 3.4.6.1.1. Standard errors are defined in [MS-ERREF]
section 2.2.

Standard errors are defined in [MS-ERREF] section 4.

Return value/code Description

0x00000000

ERROR_STATUS

The return value indicates success.

0x80000172

E_CM_VERSION_SET_NOTSUPPORTED

The return value indicates that the callee partner does

not support the caller’s BindVersionSet parameter and

will not execute the requested operation.

0x80000124

E_CM_S_TIMEDOUT

The return value indicates that the callee timed out while

waiting for the caller to complete the bind. This is

returned by a secondary partner to a primary partner if

the primary partner does not return from the secondary

partner's call to BuildContext within half of the Session

Setup Timer (section 3.2.2.1) interval.

0x000006BB

RPC_S_SERVER_TOO_BUSY

The return value indicates that the partner is too busy to

complete this operation. For more information, see [MS-

RPCE] section 3.1.1.5.5.

0x80000173

E_CM_S_PROTOCOL_NOT_SUPPORTED

The return value indicates that none of the protocols

described in the rguchBlob parameter are supported by

the partner.

0x80070057

E_INVALIDARG

The return value indicates that one of the specified

arguments is invalid.

The following table of return values describes the possible errors that SHOULD be returned by
this method.

Return value/code Description

0x80000120

E_CM_SESSION_DOWN

In a scenario where the value of the sRank parameter is

SRANK_SECONDARY, if BuildContext is called and an existing

session object is not found, the call SHOULD return this value.<21>

0x80000123

E_CM_SERVER_NOT_READY

The session object is not in the Connecting state.<22>

The opnum field value for this method is 1. For more information, see [C706].

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824

38 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

This method has different effects depending on the value of the sRank parameter.

For the structure and sequence of data on the wire, see [C706] Transfer Syntax Network Data
Representation (NDR) topics.

3.3.4.2.1 Primary

If the sRank parameter is SRANK_PRIMARY, the caller MUST be a primary partner, and the callee
MUST be a secondary partner. The session object has already been created on the primary partner,
and its state has been set to Connecting.

The secondary partner MUST construct a name object using the host name specified in the
pszHostName parameter, the contact identifier (CID) specified in the pszUuidString parameter, and
the RPC protocols specified in the grbitComProtocols field of the BIND_INFO_BLOB structure

contained in the rguchBlob parameter.

The secondary partner MUST use this name object to check whether an existing session with a
matching name object already exists in the session table.

If an existing session object is found (which would occur if the secondary partner initiated the
connection through a call to the Poke method or the PokeW method), the secondary partner MUST
check the State field of the session object.

If the value is set to Connecting, the existing session will be used during the rest of the call.

Otherwise, the secondary partner SHOULD return an implementation-specific error code or

indicate that the bind was unsuccessful.<23>

If an existing session object is not found, a new session object MUST be created, MUST be initialized
with the name object, and added to the session table. Regardless of whether the session object was
found or created, the State field of the session object MUST be set to Confirming Connection.

Next, the secondary partner MUST calculate the pBoundVersionSet parameter as follows:

The dwLevelOneAccepted member MUST be set to the largest value such that:

It is greater than or equal to the larger of the two values:

The dwMinLevelOne member of the BindVersionSet parameter

The local Minimum Level 1 Version Number ADM element

It is less than or equal to the lesser of the two values:

The dwMaxLevelOne member of the BindVersionSet parameter

The local Maximum Level 1 Version Number ADM element

If no such value exists, then the function MUST return with the 0x80000172
(E_CM_VERSION_SET_NOTSUPPORTED) error, and the cleanup steps described in the following

list MUST be followed.

The dwLevelTwoAccepted member MUST be set to the largest value such that:

It is greater than or equal to the larger of the two values:

The dwMinLevelTwo member of the BindVersionSet parameter

http://go.microsoft.com/fwlink/?LinkId=89824

39 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The local Minimum Level 2 Version Number ADM element

It is less than or equal to the lesser of the two values:

The dwMaxLevelTwo member of the BindVersionSet parameter

The local Maximum Level 2 Version Number ADM element

If no such value exists, then the function MUST return with the 0x80000172
(E_CM_VERSION_SET_NOTSUPPORTED) error, and the following cleanup steps MUST be
followed:

The dwLevelThreeAccepted member MUST be set to the largest value such that:

It is greater than or equal to the larger of the two values:

The dwMinLevelThree member of the BindVersionSet parameter

The local Minimum Level 3 Version Number ADM element

It is less than or equal to the lesser of the two values:

The dwMaxLevelThree member of the BindVersionSet parameter

The local Maximum Level 3 Version Number ADM element

If no such value exists, then the function MUST return with the 0x80000172
(E_CM_VERSION_SET_NOTSUPPORTED) error, and the following cleanup steps MUST be
followed:

The pBoundVersionSet parameter calculated previously contains the maximum protocol versions

supported by both partners for the MSDTC Connection Manager: OleTx Transports Protocol
implementation, and the level-two and level-three protocol implementations layered on top of that
implementation (see also 3.2.1.1). These represent the negotiated protocol versions that MUST be
used in the respective protocol communications.

If any of the previously described operations fails, the secondary partner MUST remove the session
object from the session table and clean it up. See section 3.2.1.3. After cleaning up the session
object, the secondary partner MUST return from this method with an error code

(E_CM_VERSION_SET_NOTSUPPORTED or an implementation-specific error).

If the previously described calculations succeed, a copy of the BOUND_VERSION_SET structure
MUST also be stored in the Version ADM element of the session object. Once this is done, the
secondary partner MUST start the Session Setup timer associated with that session object if it has
not already been started. The Session Setup timer will not have been started if the session
establishment began with the primary partner. In this case, this method call is the first time that the
secondary partner has considered this session.

An RPC binding handle to the primary partner MUST be created and stored in the session object. For
binding handles, see [C706]. The secondary partner MUST attempt to call either the
BuildContextW method or the BuildContext method on the primary partner using the binding

handle stored in the session object. For making calls to a partner, see section 3.4.

To determine whether the primary partner supports BuildContextW, the secondary partner calls
BuildContextW on the primary partner and waits for a return value. If the call completes with error

code RPC_S_PROCNUM_OUT_OF_RANGE, then the primary partner does not support
BuildContextW.

http://go.microsoft.com/fwlink/?LinkId=89824

40 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the primary partner supports the BuildContextW method:

If the secondary partner supports the BuildContextW method, then the secondary partner

MUST call the BuildContextW method.

Otherwise, secondary partner SHOULD call the BuildContext method.<24>

The secondary partner MUST NOT return from the current call to BuildContext or BuildContextW
until the nested call to BuildContext or BuildContextW has completed.

If the incoming RPC is authenticated, the secondary partner SHOULD use the authenticated identity
of the caller as the server principal name for performing mutual authentication, and then use the
secondary partner's identity on the nested call.<25>

If the nested call completes successfully, the secondary partner MUST set the state of the session

object to Active, store the received context handle in the associated session object, and cancel the
Session Setup timer associated with that session object. It MUST set the contextHandle parameter
to a context handle (see [C706]) that identifies the session object, and then return from the method

with the S_OK code.

If the nested call completes unsuccessfully, the secondary partner SHOULD behave according to the
error code that was returned:

If the error code is 0x80000172 (E_CM_VERSION_SET_NOTSUPPORTED), or 0x80000173

(E_CM_S_PROTOCOL_NOT_SUPPORTED), or 0x80000124 (indicating that the Session Setup
timer expired), or it retried the nested call for more than the number of times specified in the
Session Setup Retry Count ADM element, the secondary partner MUST remove the session
object from the session table and clean it up. See section 3.2.1.3. After cleaning up the session
object, the secondary partner MUST return the error code to the caller.

If the error code is 0x80000123 (E_CM_SERVER_NOT_READY) or 0x000006BB

(RPC_S_SERVER_TOO_BUSY), or any other implementation-specific error code, the secondary
partner SHOULD retry the nested call for the number of times specified in the Session Setup
Retry Count ADM element.

3.3.4.2.2 Secondary

If the sRank parameter is SRANK_SECONDARY, the caller MUST be a secondary partner, and the

callee MUST be a primary partner. The primary partner MUST construct a name object using the
host name specified in the pszHostName parameter, the contact identifier (CID) specified in the
pszUuidString parameter, and the RPC protocols specified in the grbitComProtocols field of the
BIND_INFO_BLOB structure contained in the rguchBlob parameter.

The primary partner MUST use this name object to check whether or not an existing session with a
matching name object already exists in the session table. If an existing session cannot be found, the

primary partner SHOULD return an implementation-specific error code or indicate that the bind was
unsuccessful.<26> Note that for this case, the state of the session object does not influence the
behavior of BuildContext.

Next, the primary partner MUST compute the pBoundVersionSet parameter, as specified in section

3.3.4.2.1. If the computation fails, the session object MUST be cleaned up, as specified in section
3.3.4.2.1. This value MUST also be stored in the Version ADM element of the session object.
Finally, the primary partner MUST set the State ADM element of the session object to Confirming

Connection and then return from the method with the S_OK code.

http://go.microsoft.com/fwlink/?LinkId=89824

41 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.3.4.3 NegotiateResources (Opnum 2)

The NegotiateResources method is invoked by one partner to request that the other partner
allocate resources for future use.

HRESULT NegotiateResources(

 [in] PCONTEXT_HANDLE phContext,

 [in] RESOURCE_TYPE resourceType,

 [in] DWORD dwcRequested,

 [in, out] DWORD* pdwcAccepted

);

phContext: An RPC context, returned by a call to BuildContext or BuildContextW, correlated

with a session object that is in the Active state. For context handles, see [C706].

resourceType: A RESOURCE_TYPE enumerated value indicating the resource type to be
negotiated.

Value Meaning

RT_CONNECTIONS

0x00

The resource to be negotiated is a connection.

dwcRequested: An unsigned 32-bit integer that specifies the number of resources to allocate.
This value MUST be greater than 0x00 and less than 1,000.

pdwcAccepted: A pointer to an unsigned 32-bit integer that receives the number of resources
that were allocated on behalf of the caller. This value SHOULD be smaller than the value of
dwcRequested if the partner was incapable of allocating all of the requested resources. On
input, this value MUST be set to 0x00000000.

Return Values: This method MUST return zero (0x00000000) on success. On failure, it MUST

return either one of the values described in the following table of return values or an
implementation-specific HRESULT. A client MUST NOT depend on implementation-specific

failure HRESULT values. For more information about how the client SHOULD behave based on
the possible return values, see section 3.4.6.4. Standard errors are defined in [MS-ERREF]
section 2.2.

Return value/code Description

0x00000000

ERROR_STATUS

The return value indicates success.

0x80000127

E_CM_OUTOFRESOURCES

The server was unable to allocate the resources requested and will

continue to operate with the current set of resources.

The following table of return values describes the possible errors that SHOULD be returned by
this method.

Return value/code Description

0x80070057

E_INVALIDARG

This value is returned in the following scenarios:

 If the resource type that was passed in the resourceType

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

42 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return value/code Description

parameter is not a valid resource.

 If the value of the dwcRequested parameter is not between 1

and 1000.

0x80000123

E_CM_SERVER_NOT_READY

The session object is not in the Active state.

The opnum field value for this method is 2. See [C706].

For the structure and sequence of data on the wire, see [C706] Transfer Syntax Network Data
Representation (NDR) topics.

On receiving this method call, the receiving partner MUST verify that the contextHandle parameter

is associated with a session object that is in the Active state. For context handles, see [C706]. If the

session object is not in the Active state, the partner MUST return from this method with an error
code. Otherwise, if the session object is not in the Active state, the server SHOULD return a
0x80000123 (E_CM_SERVER_NOT_READY) error code.

The operation of this method is determined by the level-two protocol that is layered on top of the
MSDTC Connection Manager: OleTx Transports Protocol; it is this protocol that defines the range of
valid values for the resourceType parameter. If the resourceType parameter does not identify a valid

resource, the partner MUST return from this method one of the errors specified on the table above.
The server SHOULD return E_INVALIDARG. See [MS-ERREF] section 2.1 for the error code. If the
level-two protocol cannot reserve any resources at all, the partner MUST return 0x80000127
(E_CM_OUTOFRESOURCES). Otherwise, if at least one resource is allocated, the partner MUST set
the pdwcAccepted parameter to the number of resources allocated by this request, and then return
S_OK.

3.3.4.4 SendReceive (Opnum 3)

The SendReceive method is invoked by one partner to transmit messages to the other partner.
Both the primary and the secondary participants have the option to call this method multiple times
after a session has been established between them.

HRESULT SendReceive(

 [in] PCONTEXT_HANDLE phContext,

 [in, range(1, 4095)] DWORD dwcMessages,

 [in, range(40, 0x14000)] DWORD dwcbSizeOfBoxCar,

 [in, size_is(dwcbSizeOfBoxCar)]

 unsigned char rguchBoxCar[]

);

phContext: An RPC context handle, returned by a call to BuildContext or BuildContextW,

correlated with a session object in the Active state. For context handles, see [C706].

dwcMessages: An unsigned 32-bit integer specifying the number of messages being sent.

dwcbSizeOfBoxCar: Size in bytes of the box car specified by rguchBoxCar.

rguchBoxCar: An array of bytes that contains the messages being sent.

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824

43 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return Values: This method MUST return zero (0x00000000) on success. On failure, it MUST
return either one of the values described in the following table of return values or an

implementation-specific HRESULT. A client MUST NOT depend on implementation-specific
failure HRESULT values. For more information about how the client SHOULD behave based on

the possible return values, see section 3.4.6.4. Standard errors are defined in [MS-ERREF]
section 2.2.

Return value/code Description

0x00000000

ERROR_STATUS

The return value indicates success.

The table below describes the possible errors that SHOULD be returned by this method.

Return value/code Description

0x80000119

E_CM_TEARING_DOWN

The session object is in the Requesting Teardown or Teardown

state.

0x80000123

E_CM_SERVER_NOT_READY

The session object is not in the Active state.

The opnum field value for this method is 3, as specified in [C706].

For the structure and sequence of data on the wire, see [C706] section 14.

On receiving this method call, the receiving partner MUST verify that the contextHandle parameter
is associated with a session object that is in the Active state. For context handles, see [C706]. If the
session object is in the Requesting Teardown or Teardown state or it is not in the Active state, the

partner MUST return from this method with an implementation-specific error code.

Otherwise, the operation of this method is determined by the level-two protocol that is layered on
top of the MSDTC Connection Manager: OleTx Transports Protocol; the session object, the count of

messages, and the byte array MUST be presented to the level-two protocol. It is this protocol that
defines the format of the rguchBoxCar buffer and the messages contained therein. Similarly, any
correlation between the dwcMessages parameter and the contents of the rguchBoxCar buffer lies

strictly in the domain of the level-two protocol.

3.3.4.5 TearDownContext (Opnum 4)

The TearDownContext method is invoked by either a primary partner or a secondary partner.
When invoked by a primary partner, the TearDownContext method requests that the secondary
partner begin the next step of tearing down a session. When invoked by a secondary partner, the
TearDownContext method requests that the primary partner complete the teardown of the

session. The Microsoft Interface Definition Language (MIDL) syntax of the method is as
follows.

HRESULT TearDownContext(

 [in, out] PPCONTEXT_HANDLE contextHandle,

 [in] SESSION_RANK sRank,

 [in] TEARDOWN_TYPE tearDownType

);

%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-GLOS%5d.pdf

44 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

contextHandle: An RPC context handle, returned by a call to BuildContext or BuildContextW,

is correlated with a session object that is in the Active state. After TearDownContext is

executed, on either success or failure requests, contextHandle will be set to null. For context
handles, see [C706].

sRank: A SESSION_RANK enumerated value indicating whether the teardown request is being
made by a primary partner or secondary partner. The teardown request MUST be sent from a
primary partner only.

Value Meaning

SRANK_PRIMARY

0x01

The caller is the primary partner in this session. The callee MUST be a

secondary partner in this session, and the caller MUST be a primary

partner in this session.

SRANK_SECONDARY

0x02

The caller is the secondary partner in this session. The callee MUST be a

primary partner in this session, and the caller MUST be a secondary

partner in this session.

tearDownType: The reason for tearing down the session. It MUST be one of the following
values.

Value Meaning

TT_FORCE

0x00

The session is being forcefully torn down.

TT_PROBLEM

0x02

The session is being torn down because an error has occurred.

Return Values: This method MUST return zero (0x00000000) on success. On failure, it MUST
return an implementation-specific HRESULT. A client MUST NOT depend on implementation-
specific failure HRESULT values. From an over-the-wire communication point of view, the

client MUST implement only a behavior for the case when the call succeeds and another

behavior for the case when the call does not succeed, (see section 3.4.6.2). Standard errors
are defined in [MS-ERREF] section 2.2. A client MUST NOT exhibit behavior observable on the
wire that is dependent on implementation-specific failure HRESULT values.

Return

value/code Description

0x00000000

ERROR_STATUS

The return value indicates success.

0x80070057

E_INVALIDARG

This value MAY be returned when an invalid sRank value is passed as a

parameter.<27>

0x80004005

E_FAIL

This return value indicates that the session failed to tear down within the

interval specified by the Session Teardown Timer (section 3.2.2.2).

Thereafter, the method has a different effect depending on the value of the sRank parameter and
the value of the teardownType parameter.

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

45 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.3.4.5.1 Problem

If the teardownType parameter is TT_PROBLEM, the receiving partner MUST invalidate the context
handle, remove the associated session object from the session table, and close the binding handle

associated with the session object. (See [C706].) Once this has been done, the level-two protocol
MUST be notified that a problem teardown has occurred, and provide the level-two protocol with the
session object.

3.3.4.5.2 Primary

If the teardownType parameter is not TT_PROBLEM, and the sRank parameter is SRANK_PRIMARY,
the caller MUST be a primary partner, and the callee MUST be a secondary partner.

The secondary partner MUST:

Set the state of the session object associated with the context handle to Teardown.

Free the context handle associated with the session by setting the contextHandle parameter to

NULL.

Return S_OK from the method.

In addition, it MUST start the Session Teardown timer associated with that session object if it has
not already been started, and attempt to call the TearDown method on the primary partner. When
the call completes, regardless of whether it was successful or not, or when the Session Teardown
timer expires, the secondary partner MUST close the binding handle of the session object, cancel the
Session Teardown timer, and remove the session object from the session table. (See [C706].) Once
this has been done, the level-two protocol MUST be notified that a forced teardown has occurred,
and provide the level-two protocol with the session object.

The secondary partner SHOULD choose to perform these actions asynchronously.

3.3.4.5.3 Secondary

If the teardownType parameter is not TT_PROBLEM, and the sRank parameter is
SRANK_SECONDARY, the caller MUST be a secondary partner, and the callee MUST be a primary
partner.

The primary partner MUST close the binding handle of the session object, cancel any active timers
associated with the session object, and remove the session object from the session table. The
primary partner MUST then free the context handle associated with that session and return S_OK
from the method. (See [C706].) Once this has been done, the level-two protocol MUST be notified
that a forced teardown has occurred, and provide the level-two protocol with the session object.

3.3.4.6 BeginTearDown (Opnum 5)

The BeginTearDown method is invoked by a secondary partner to request that a primary partner
begin session teardown.

HRESULT BeginTearDown(

 [in] PCONTEXT_HANDLE contextHandle,

 [in] TEARDOWN_TYPE tearDownType

);

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

46 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

contextHandle: An RPC context handle that is correlated with a session object that is in the

Active state. For context handles, see [C706].

tearDownType: The reason for tearing down the session. It MUST be set to 0x00 (TT_FORCE).

Value Meaning

0x00 TT_FORCE

Return Values: This method MUST return zero (0x00000000) on success. On failure, it MUST

return an implementation-specific HRESULT. A client MUST NOT depend on implementation-
specific failure HRESULT values. From an over-the-wire communication point of view, the
client MUST implement only a behavior for the case when the call succeeds and another
behavior for the case when the call does not succeed, (see section 3.4.6.2). Standard errors
are defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000000

ERROR_STATUS

The return value indicates success.

BeginTearDown MUST NOT be invoked on a secondary partner.

If the session object is in the Teardown state, the primary partner MUST immediately return from
the method with S_OK. Otherwise, the primary partner MUST set the state of the session object
associated with the context handle to Teardown and return S_OK from the method. Also, it MUST
start the Session Teardown timer associated with that session object and attempt to call the
TearDownContext method on the secondary partner. The secondary partner SHOULD choose to

perform these actions asynchronously.

3.3.4.7 PokeW (Opnum 6)

The PokeW method is equivalent in all ways to the Poke method except that its string parameters
are encoded in UTF-16.

HRESULT PokeW(

 [in] handle_t hBinding,

 [in] SESSION_RANK sRank,

 [in, string, range(GUID_LENGTH, GUID_LENGTH)]

 wchar_t pwszCalleeUuid[],

 [in, string, range(1, MAX_COMPUTERNAME_LENGTH+1)]

 wchar_t pwszHostName[],

 [in, string, range(GUID_LENGTH, GUID_LENGTH)]

 wchar_t pwszUuidString[],

 [in, range(sizeof(BIND_INFO_BLOB),sizeof(BIND_INFO_BLOB))]

 DWORD dwcbSizeOfBlob,

 [in, size_is(dwcbSizeOfBlob)] unsigned char rguchBlob[]

);

hBinding: The RPC primitive binding handle, as specified in [C706] part 3.

sRank: The SESSION_RANK of the partner making the call. This parameter MUST be set to
0x02 (SRANK_SECONDARY).

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90950

47 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Value Meaning

SRANK_SECONDARY

0x02

The caller is the secondary participant.

pwszCalleeUuid: The string form of the primary partner contact identifier (CID). The contact
identifier (CID) MUST match the contact identifier (CID) in the primary partner local name

object, and MUST be formatted into a string.

pwszHostName: The string form of the caller's host name. This host name identifies the
machine in which the caller's instance of the MSDTC Connection Manager: OleTx Transports
Protocol is running. This MUST be a NetBIOS name. For NetBIOS, see [NETBEUI], [RFC1001],
and [RFC1002].

pwszUuidString: The string form of the caller's contact identifier (CID). This contact identifier

(CID) identifies the caller's instance of the MSDTC Connection Manager: OleTx Transports
Protocol; it MUST match the contact identifier (CID) in the caller's local name object and MUST

be formatted into a string.

dwcbSizeOfBlob: The count, in bytes, of the size of the binding info structure. This parameter
MUST be set to the size of the BIND_INFO_BLOB, 8.

rguchBlob: A byte array that contains a BIND_INFO_BLOB structure.

Return Values: This method MUST return zero (0x00000000) on success. On failure, it MUST

return an implementation-specific HRESULT. A client MUST NOT depend on implementation-
specific failure HRESULT values. From an over-the-wire communication point of view, the
client MUST implement only a behavior for the case when the call succeeds and another
behavior for the case when the call does not succeed, (see section 3.4.6.1.2). Standard errors
are defined in [MS-ERREF] section 2.2.

Return value/code Description

0x00000000

ERROR_STATUS

The return value indicates success.

0x000006D1

RPC_S_PROCNUM_OUT_OF_RANGE

The return value indicates that the caller does not

support this call.

0x80000123

E_CM_SERVER_NOT_READY

The session object is not in the Connecting state.<28>

0x80070057

E_INVALIDARG

The return value indicates that one of the specified

arguments is invalid.<29>

0x000006BB

RPC_S_SERVER_TOO_BUSY

The return value indicates that the partner is too busy to

complete this operation. For more information, see [MS-

RPCE] section 3.1.1.5.5.

0x80000173

E_CM_S_PROTOCOL_NOT_SUPPORTED

The return value indicates that none of the protocols

described in the rguchBlob parameter is supported by the

partner.

When a partner calls PokeW on another partner, an error code of
RPC_S_PROCNUM_OUT_OF_RANGE means that the callee does not support PokeW.

http://go.microsoft.com/fwlink/?LinkId=90224
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

48 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.3.4.8 BuildContextW (Opnum 7)

The BuildContextW method is equivalent in all ways to the BuildContext method, except that its
string parameters are encoded in UTF-16. The MIDL syntax of the method is as follows.

HRESULT BuildContextW(

 [in] handle_t hBinding,

 [in] SESSION_RANK sRank,

 [in] BIND_VERSION_SET BindVersionSet,

 [in, string, range(GUID_LENGTH, GUID_LENGTH)]

 wchar_t pwszCalleeUuid[],

 [in, string, range(1, MAX_COMPUTERNAME_LENGTH+1)]

 wchar_t pwszHostName[],

 [in, string, range(GUID_LENGTH, GUID_LENGTH)]

 wchar_t pwszUuidString[],

 [in, string, range(GUID_LENGTH, GUID_LENGTH)]

 wchar_t pwszGuidIn[],

 [in, out, string, range(GUID_LENGTH, GUID_LENGTH)]

 wchar_t pwszGuidOut[],

 [in, out] BOUND_VERSION_SET* pBoundVersionSet,

 [in, range(sizeof(BIND_INFO_BLOB), sizeof(BIND_INFO_BLOB))]

 DWORD dwcbSizeOfBlob,

 [in, size_is(dwcbSizeOfBlob)] unsigned char rguchBlob[],

 [out] PPCONTEXT_HANDLE ppHandle

);

hBinding: RPC primitive binding handle, as specified in [C706] part 3.

sRank: The rank of the caller.

Value Meaning

SRANK_PRIMARY

0x01

The caller is the primary partner in this session.

SRANK_SECONDARY

0x02

The caller is the secondary partner in this session.

BindVersionSet: A BIND_VERSION_SET structure that contains the minimum and maximum
versions supported by the partner.

pwszCalleeUuid: The string form of the callee's contact identifier (CID). The contact identifier

(CID) MUST match the contact identifier (CID) in the callee's local name object and MUST be
formatted into a string.

pwszHostName: The string form of the caller's host name. This host name identifies the
machine in which the caller's instance of the MSDTC Connection Manager: OleTx Transports
Protocol is running. This MUST be a NetBIOS name. For NetBIOS, see [NETBEUI], [RFC1001],
and [RFC1002].

pwszUuidString: The string form of the caller's contact identifier (CID). This contact identifier

(CID) identifies the caller's instance of the MSDTC Connection Manager: OleTx Transports
Protocol. This MUST match the contact identifier (CID) in the caller's local name object and
MUST be formatted into a string.

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90950
http://go.microsoft.com/fwlink/?LinkId=90224
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261

49 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

pwszGuidIn: A string form of a UUID that represents a unique identifier for this bind attempt.
The UUID MUST be formatted into a string.

pwszGuidOut: A string form of a UUID that represents a unique identifier for this bind attempt.
On input, the pwszGuidOut parameter MUST be set to 00000000-0000-0000-0000-

000000000000. On return, if the bind attempt is ultimately successful, the pwszGuidOut
parameter MUST be equal to the value of the pszGuidIn parameter. Otherwise, if the bind
attempt is ultimately unsuccessful, the pwszGuidOut parameter MUST be set to 00000000-
0000-0000-0000-000000000000 on return.

pBoundVersionSet: A pointer to a BOUND_VERSION_SET structure. When the method is
called, every field of the BOUND_VERSION_SET structure MUST be initialized to zero. This
parameter receives a BOUND_VERSION_SET on successful completion and also on return.

dwcbSizeOfBlob: The count in bytes of the size of the binding info structure. This parameter
MUST be set to the size of BIND_INFO_BLOB, 8.

rguchBlob: A byte array that contains a BIND_INFO_BLOB structure.

ppHandle: On successful return, an RPC context handle (see [C706]) that correlates with the
session object created by, or referenced by, this method.

Return Values: This method MUST return zero (0x00000000) on success. On failure, it MUST

return either 0x80000172 (E_CM_VERSION_SET_NOTSUPPORTED) or an implementation-
specific HRESULT. A client SHOULD distinguish between 0x80000172 and other error codes,
as specified in sections 3.3.4.2.1 and 3.3.4.2.2, but MUST NOT depend on implementation-
specific failure HRESULT values. From an over-the-wire communication point of view, the
client MUST implement only behaviors for the errors described in the following table.

Standard errors are defined in [MS-ERREF] section 4.

Return value/code Description

0x00000000

ERROR_STATUS

The return value indicates success.

0x80000172

E_CM_VERSION_SET_NOTSUPPORTED

The return value indicates that the callee partner does

not support the caller's BindVersionSet parameter and

will not execute the requested operation.

0x000006D1

RPC_S_PROCNUM_OUT_OF_RANGE

The return value indicates that the caller does not

support this call.

0x80000124

E_CM_S_TIMEDOUT

The return value indicates that the callee timed out while

waiting for the caller to complete the bind. This value is

returned by a secondary partner to a primary partner if

the primary partner does not return from the secondary

partner's call to BuildContext within half the amount of

time specified in the Session Setup Timer (section

3.2.2.1).

0x000006BB

RPC_S_SERVER_TOO_BUSY

The return value indicates that the partner is too busy to

complete this operation. For more information, see [MS-

RPCE] section 3.1.1.5.5.

0x80000173

E_CM_S_PROTOCOL_NOT_SUPPORTED

The return value indicates that none of the protocols

described in the rguchBlob parameter is supported by the

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

50 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Return value/code Description

partner.

0x80070057

E_INVALIDARG

The return value indicates that one of the specified

arguments is invalid.

The following table describes the possible implementation-specific errors that SHOULD be
returned by this method.

Return value/code Description

0x80000120

E_CM_SESSION_DOWN

In a scenario where the value of the sRank parameter is

SRANK_SECONDARY, if BuildContextW is called and an existing

session object is not found, the call SHOULD return this value.<30>

0x80000123

E_CM_SERVER_NOT_READY

The session object is not in the Connecting state.<31>

When a partner calls BuildContextW on another partner, an error code of
RPC_S_PROCNUM_OUT_OF_RANGE means that the callee does not support BuildContextW.

3.3.5 Timer Events

The handling of timer events for the IXnRemote server role is described in section 3.2.5.

3.3.6 Other Local Events

3.3.6.1 Context Handle Rundown

When the RPC runtime indicates that a context handle associated with a session is being run down,
the participant MUST remove the associated session object from the session table, and close any

context handle or binding handle stored in the session object. (See [C706].) Once this has been
done, the MSDTC Connection Manager: OleTx Transports Protocol MUST notify the level-two protocol
that a teardown has occurred by signaling a Session Down event as described in [MS-CMP] section
3.1.7.2.

Note Context handle rundown SHOULD be asynchronous with respect to the normal operation of

the protocol. It is the responsibility of the implementation to ensure that session's state remains
consistent.

3.4 IXnRemote Client Details

3.4.1 Abstract Data Model

In addition to the abstract data model described in section 3.2.1, when implementing an IXnRemote

client role, an MSDTC Connection Manager: OleTx Transports Protocol partner MUST implement the
following local data elements:

Session Setup Retry Count: a 4-byte unsigned element that identifies the number of times

that the client SHOULD try to establish a session to another partner before giving up.<32>

Client Security Settings: A collection of settings that are used to configure the RPC security of

the client. As those settings are internal to this protocol and no network traffic is involved in the
setting of their values, the following conditions SHOULD be observed:<33>

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-CMP%5d.pdf

51 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

They are stored on an implementation-specific source that SHOULD be secured for write

access by system administrators only.

They SHOULD be established during installation, and the MSDTC Connection Manager: OleTx

Transports Protocol does not modify the settings. It only reads them during protocol instance
initialization. There are no protocols defined to initialize them.

Since the storage location is implementation-specific, a separate tool could be used to update

the storage locations independent of the protocol.

The following Client Security Settings MUST be specified:

RPC Security Provider: A 4-byte unsigned integer element that identifies the security

provider being used. The possible values for this element are defined in [MS-RPCE] section
2.2.1.1.7. The client and server RPC Security Provider SHOULD always have the same value.
This value SHOULD be used only in the case of authenticated RPC calls. In the case of
unauthenticated RPC calls, the partner SHOULD ignore the value of this element and use the
value RPC_C_AUTHN_NONE.

RPC Authentication Level: A 4-byte unsigned integer element that specifies the

authentication level being used. Through the authentication level, it is possible to specify if
encryption will be used during the exchange of RPC messages between the client and the
server. The possible values for these settings are defined in [MS-RPCE] section
2.2.1.1.8.<34> This value SHOULD be used only in the case of authenticated RPC calls. In the
case of unauthenticated RPC calls, the partner SHOULD ignore the value of this element and
use the value RPC_C_AUTHN_LEVEL_NONE.

3.4.2 Timers

In addition to the timers described in section 3.2.2, an IXnremote client also implements the RPC
Call Timer (section 3.4.2.1).

3.4.2.1 RPC Call Timer

Each RPC method call, including BuildContext, BuildContextW, Poke, PokeW, BeginTearDown,

and TearDownContext, that is made by a client is associated with an RPC Call Timer. This timer
MUST be set before the RPC call is made and is canceled when the RPC call returns.

This timer is used in a request/reply scenario to cancel RPC calls that fail to return within the
interval specified by this timer. The default value of the timer is specific to the
implementation.<35>

3.4.3 Initialization

The MSDTC Connection Manager: OleTx Transports Protocol partner, when initiating the IXnRemote
Client role, MUST perform the following actions.

Initialize the Client Security Settings data element by:

Retrieving the RPC Security Provider from an implementation-specific source.<36>

Retrieving the RPC Authentication Level from an implementation-specific source.<37>

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

52 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.4.4 Message Processing Events and Sequencing Rules

This protocol SHOULD indicate to the RPC runtime that it is to perform a strict NDR data consistency
check at target level 5.0, as specified in [MS-RPCE] section 3.<38>

3.4.5 Timer Events

In addition to handling timer events described in section 3.2.5, the IXnRemote client role also
handles events associated with the RPC Call Timer (section 3.4.5.1).

3.4.5.1 RPC Call Timer

When the RPC Call Timer expires, the local partner SHOULD cancel the RPC call associated with the

timer. For more information about canceling RPC calls, see [C706] section 6.1.8.

3.4.6 Other Local Events

3.4.6.1 New Session Requested

When the level-two protocol requests a new session, it provides the name object of the remote
partner being requested to the local partner.

The local partner uses this name object to create an RPC binding handle (see [C706]) to the remote
partner's RPC endpoint. The RPC binding handle is instantiated as specified in section 1.3.2.

After creating the RPC binding handle, the local partner then determines the session rank for the
new session.

3.4.6.1.1 Primary

When the local partner is the primary partner, it MUST use the provided name object to check

whether or not an existing session with a matching name object already exists in the session table.

If an existing session is found, the session object is returned to the level-two protocol and the

request completes successfully.

Otherwise, a new session object MUST be created and added to the session table.

After creating a new session object, the primary partner MUST set the state of the session object to

Connecting, and start the Session Setup timer associated with that session object. An RPC binding
handle to the secondary partner MUST be created and stored in the session object (for binding
handles, see [C706]). The primary partner MUST attempt to call either the BuildContextW or
BuildContext method on the secondary partner using the binding handle stored in the session
object. (For making calls to a partner, see section 3.4.) The binding handle used to make the call
MUST be stored in the session object. (For binding handles, see [C706].)

To determine whether the secondary partner supports BuildContextW, the primary partner calls

BuildContextW on the secondary partner and waits for a return value. If the call completes with
error code RPC_S_PROCNUM_OUT_OF_RANGE, then the secondary partner does not support

BuildContextW.

If the secondary partner does not support the BuildContextW method, the primary partner MUST
call the BuildContext method. If the secondary partner does support the BuildContextW method,
the primary partner MUST NOT call the BuildContext method. During this call, the secondary
partner will make a nested, synchronous callback to the primary partner to complete the session

establishment.

%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

53 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the call to BuildContext or BuildContextW completes unsuccessfully, the primary partner
SHOULD behave according to the error code that was returned:

If the error code is 0x80000172 (E_CM_VERSION_SET_NOTSUPPORTED) or 0x80000173

(E_CM_S_PROTOCOL_NOT_SUPPORTED), or 0x80000124 (E_CM_S_TIMEDOUT, indicating that
the Session Setup Timer expired), or the call was retried for more than the number of times
specified in the Session Setup Retry Count ADM element, the primary partner MUST report an
error to the level-two protocol.

If the error code is 0x80000123 (E_CM_SERVER_NOT_READY) or 0x000006BB

(RPC_S_SERVER_TOO_BUSY), or any other implementation-specific error code, the primary
partner SHOULD retry the nested call for the number of times specified in the Session Setup

Retry Count ADM element.

If an error is reported to the level-two protocol, the session object MUST be removed from the
session table and cleaned up. For how to clean up a session object, see section 3.2.1.3.

3.4.6.1.2 Secondary

When the local partner is the secondary partner, it MUST use the provided name object to check

whether or not an existing session with a matching name object already exists in the session table.

If an existing session is found, the session object is returned to the level-two protocol and the

request completes successfully.

Otherwise, a new session object MUST be created and added to the session table.

After creating a new session object, the secondary partner MUST make a call to either the Poke
method or the PokeW method on the primary partner. (For making calls to a partner, see section

3.4.)

To determine whether the primary partner supports PokeW, the secondary partner calls PokeW on
the primary partner and waits for a return value. If the call completes with error code
RPC_S_PROCNUM_OUT_OF_RANGE, then the primary partner does not support PokeW.

If the primary partner does not support the PokeW method, the secondary partner MUST call the
Poke method.

If the primary partner does support the PokeW method, the secondary partner MUST NOT call the

Poke method.

If the call completes successfully, the secondary partner MUST wait until a session object associated
with the provided name object is in the session table and the state of that session object is Active.

If the call completes unsuccessfully, the secondary partner SHOULD behave according to the error
code that was returned:

If the error code is 0x80000172 (E_CM_VERSION_SET_NOTSUPPORTED) or 0x80000173

(E_CM_S_PROTOCOL_NOT_SUPPORTED), or it retried the nested call for more than the number
of times specified in the Session Setup Retry Count ADM element, or if the State field of the

session object is not "Confirming Connection", the secondary partner MUST remove the session
object from the session table and clean it up. For instructions on cleaning up a session object,
see section 3.2.1.3.

If the error code is 0x80000123 (E_CM_SERVER_NOT_READY) or 0x000006BB

(RPC_S_SERVER_TOO_BUSY), or any other implementation-specific error code, the secondary

54 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

partner SHOULD retry the call for the number of times specified in the Session Setup Retry
Count ADM element.

If an error is reported to the level-two protocol, the session object MUST be removed from the
session table and cleaned up. For instructions regarding how to clean up a session object, see

section 3.2.1.3.

3.4.6.2 Forced Session Teardown Requested

When the level-two protocol requests a forced session teardown, it indicates what session object it
issues the teardown on. The session object MUST be in the Active state.

If the local partner is the primary partner, it MUST set the State field of the session object to
Teardown, and then issue a TearDownContext call on the secondary partner, specifying the

contextHandle parameter to be the context handle from the session object, the teardownType
parameter as 0x00 (TT_FORCE), and the sRank parameter as SRANK_PRIMARY.

If the local partner is the secondary partner, it MUST set the State field of the session object to

Requesting Teardown, and then issue a BeginTearDown call on the primary partner. It MUST
specify the contextHandle parameter to be the context handle from the session object, and the
teardownType parameter as 0x00 (TT_FORCE).

Any error that occurs while processing this request MUST be ignored.

3.4.6.3 Problem Session Teardown Requested

When the level-two protocol requests a problem session teardown, it indicates what session object it
wants to issue the teardown on.

The local partner MUST start the Session Setup timer associated with the session, set the State field
of the session object to Teardown, and issue a TearDownContext call on the remote partner,

specifying the contextHandle parameter to be the context handle from the session object, the
teardownType parameter as 0x02 (TT_PROBLEM), and the sRank parameter as either 0x01

(SRANK_PRIMARY) if the local partner is the primary partner, or 0x02 (SRANK_SECONDARY) if the
local partner is the secondary partner.

When the call completes, regardless of whether it was successful or not, or when the Session
Teardown timer expires, the local partner MUST remove the session object from the session table
and clean up the session object. For how to clean up a session object, see section 3.2.1.3.

Any error that occurs while processing this request MUST be ignored.

3.4.6.4 Resource Allocation Requested

When the level-two protocol requests resource allocation, it indicates what session object it wants to
allocate resources from. It also provides the type of resource to be allocated, and the number of
resources that it wants to allocate. The local partner MUST issue a NegotiateResources call on the
remote partner, specifying the contextHandle parameter as the context handle from the session

object, the resourceType parameter as the provided resource type, and the dwcRequested

parameter as the number of resources being requested. If the request succeeds, the value of the
pdwcAccepted parameter MUST be provided back to the level-two protocol.

Any error that occurs while processing this request MUST be reported to the level-two protocol.

55 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.4.6.5 Message Send Requested

When the level-two protocol requests a message send, it indicates what session object it wants to
send the messages on. It also provides an integer count of messages (between 1 and 4,095

inclusive) and the message data contained in a byte array (containing from 32 to 81,920 bytes).
The local partner MUST issue a SendReceive call on the remote partner, specifying the
contextHandle parameter as the context handle from the session object, the dwcMessages
parameter as the count of messages, the dwcbSizeOfBoxCar parameter as the size of the message
data byte array, and the rguchBoxCar parameter as the message data byte array.

Any error that occurs while processing this request MUST be reported to the level-two protocol.

56 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

4 Protocol Examples

To participate in an MSDTC Connection Manager: OleTx Transports Protocol session, a partner
exposes an endpoint to its implementation of the IXnRemote interface. Each partner's endpoint is
identified by its name object, which includes its NetBIOS machine name, supported RPC network
protocols, and contact identifier (CID), as specified in section 3.2.1.4. To begin a session, the first
partner needs to have knowledge of the second partner's name object.

From the second partner's contact identifier (CID), the first partner determines if it is the primary
partner or secondary partner by performing a case-insensitive string comparison of the first

partner's and second partner's contact identifier (CID), as specified in [C706]. If the first partner's
contact identifier (CID) string is greater than (follows) the second partner's contact identifier (CID)
string, the first partner is the primary partner. If the first partner's contact identifier (CID) string is
less than (precedes) the second partner's contact identifier (CID) string, the first partner is the
secondary partner.

A session is initiated by the primary partner sending a BuildContext (or BuildContextW) call to

the secondary partner with sRank set to SRANK_PRIMARY. In response, the secondary partner

sends a BuildContext call to the secondary partner with sRank set to SRANK_SECONDARY. When
the primary partner accepts the BuildContext call from the secondary partner, the secondary
partner returns success to the primary partner's BuildContext call. Because the first BuildContext
call in the protocol handshake originates from the primary partner, the secondary partner is required
to begin a session with the primary partner by calling Poke (or PokeW), which instructs the
primary partner to send a BuildContext call to the secondary partner.

4.1 Initiating a Session as Primary Partner

In this example, the first partner is on Machine_1 with contact identifier (CID) b51996ef-c434-4f79-
a288-56efd302fc8e, and the second partner is on Machine_2 with contact identifier (CID) a3afb37b-
f64a-4e6c-9017-f6a96ba6f166. Therefore, the first partner assumes the role of the primary partner,
and the second partner assumes the role of the secondary partner.

In this example, both partners support the PokeW and BuildContextW method calls. This example

assumes that the primary partner does not have an existing session with the secondary partner,
because only one session is allowed between any two partners.

Because this is a new session, the primary partner will create a new object with a newly generated
session GUID. The session object is keyed to the session secondary partner name object and is
maintained in a list to ensure that there is only one session established with the secondary partner.

To begin a session, the primary partner obtains an RPC binding handle (0x004377b0) from the
secondary partner name object, as described in section 1.3.2. The primary partner uses the binding

handle to send a BuildContextW call to the secondary partner using SRANK_PRIMARY. In the
BuildContextW call, the primary partner passes its NetBIOS machine name (pwszHostName) and
contact identifier (CID) (pwszUuidString), and the secondary partner's contact identifier (CID)
(pwszCalleeUuid). The primary partner also sends the session GUID (pwszGuidIn), which will be
returned in pwszGuidOut when the session is accepted. In the BindVersionSet, the primary partner
indicates that it supports both the Poke / BuildContext and PokeW / BuildContextW method

calls, that it supports version 1 of the level-two protocol and version 5 of the level-three protocol.
(In this example, this is version 1 of the MSDTC Connection Manager: OleTx Multiplexing Protocol,
and version 5 of the MSDTC Connection Manager: OleTx Transaction Protocol, which is the current
version at the level of Windows XP operating system Service Pack 2 (SP2), Windows Server 2003
operating system with Service Pack 1 (SP1), or Windows Vista operating system.) In the BindInfo
(rguchBlob), the primary partner indicates that it supports PROT_IP_TCP (bit 0) and PROT_LRPC (bit

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTCO%5d.pdf

57 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

5). See section 2.2.4. The primary partner also passes a pointer to a PCONTEXT_HANDLE, into
which it will receive the secondary partner PCONTEXT_HANDLE when the session is accepted.

Field Value description

hRPC RPC_BINDING_HANDLE=0x004377b0

sRank SRANK_PRIMARY

BindVersionSet dwMinLevelOne : 1

 dwMaxLevelOne : 2

 dwMinLevelTwo : 1

 dwMaxLevelTwo : 1

 dwMinLevelThree : 1

 dwMaxLevelThree : 5

pwszCalleeUuid L"a3afb37b-f64a-4e6c-9017-f6a96ba6f166"

pwszHostName L"Machine_1"

pwszUuidString L"b51996ef-c434-4f79-a288-56efd302fc8e"

pwszGuidIn L"a5acacb4-b766-4074-b45d-ade720d1d8e8"

pwszGuidOut [in_out] L"00000000-0000-0000-0000-000000000000"

pBoundVersionSet [in_out] dwLevelOneAccepted : 0

 dwLevelTwoAccepted : 0

 dwLevelThreeAccepted : 0

dwcbSizeOfBlob dwcbSizeOfBlob: 8

rguchBlob dwcbThisStruct : 8

 PROT_IP_TCP | PROT_LRPC

ppHandle [out] *PPCONTEXT_HANDLE=0x00000000

When the secondary partner receives the BuildContextW call from the primary partner, the

secondary partner attempts to locate an existing session object associated with the primary partner.
If an existing session object is found, the secondary partner returns E_CM_SERVER_NOT_READY
(0x80000123), which will occur if a previous session has not been completely torn down before a
new session is begun.

If no existing session is found, the secondary partner will create a new session object with session

GUID passed to it from the primary partner. The session object is keyed to the primary partner
name object and is maintained in a list maintained by the secondary partner to ensure that one

session is established with the primary partner.

To complete the session, the secondary partner obtains an RPC binding handle (0x001e7bd0) from
the primary partner's name object, as described in section 1.3.2. The secondary partner uses the
binding handle to send a BuildContextW message call to the primary partner using

58 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

SRANK_SECONDARY. In the BuildContextW call to the primary partner, the secondary partner
passes its NetBIOS machine name (pwszHostName) and contact identifier (CID) (pwszUuidString)

and the primary partner's contact identifier (CID) (pwszCalleeUuid). The secondary partner also
passes in the primary partner's session GUID (pwszGuidIn) from the initial call and a pointer to a

PCONTEXT_HANDLE, which will be filled when the primary partner accepts the session.

Field Value description

hRPC RPC_BINDING_HANDLE=0x001e7bd0

sRank SRANK_SECONDARY

BindVersionSet dwMinLevelOne : 1

 dwMaxLevelOne : 2

 dwMinLevelTwo : 1

 dwMaxLevelTwo : 1

 dwMinLevelThree : 1

 dwMaxLevelThree : 5

pwszCalleeUuid L"b51996ef-c434-4f79-a288-56efd302fc8e"

pwszHostName L"Machine_2"

pwszUuidString L"a3afb37b-f64a-4e6c-9017-f6a96ba6f166"

pwszGuidIn L"a5acacb4-b766-4074-b45d-ade720d1d8e8"

pwszGuidOut [in_out] L"00000000-0000-0000-0000-000000000000"

pBoundVersionSet [in_out] dwLevelOneAccepted : 0

 dwLevelTwoAccepted : 0

 dwLevelThreeAccepted : 0

dwcbSizeOfBlob [in_out] dwcbSizeOfBlob: 8

rguchBlob dwcbThisStruct : 8

 PROT_IP_TCP | PROT_LRPC

ppHandle [out] *PPCONTEXT_HANDLE=0x00000000

When the BuildContextW call is received by the primary partner, the primary partner fills in the
pwszGuidOut with the session GUID from pwszGuidIn, and will fill in the BoundVersionSet with its
accepted values. The primary partner will also pass a reference pointer (0x00436e68) to the RPC
context handle associated with its session object via the PPCONTEXT_HANDLE, and will reply S_OK.

Once the session is established, all future communication from the secondary partner will reference

this PCONTEXT_HANDLE.

Field Value description

pwszGuidOut [in_out] L"a5acacb4-b766-4074-b45d-ade720d1d8e8"

59 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Field Value description

pBoundVersionSet [in_out] dwLevelOneAccepted : 2

 dwLevelTwoAccepted : 1

 dwLevelThreeAccepted : 5

ppHandle [out] *PPCONTEXT_HANDLE=0x00436e68

When S_OK is returned to the secondary partner on its BuildContextW call, the secondary partner

fills in the pszGuidOut with the session GUID from pszGuidIn and sets the accepted values for the
BoundVersionSet. The secondary partner will also pass a reference pointer (0x0053b710) to the RPC
context handle associated with its session object via the PPCONTEXT_HANDLE and will reply S_OK.
Once the session is established, all future communication from the primary partner will need to
reference this PCONTEXT_HANDLE.

Field Value description

pwszGuidOut [in_out] L"a5acacb4-b766-4074-b45d-ade720d1d8e8"

pBoundVersionSet [in_out] dwLevelOneAccepted : 2

 dwLevelTwoAccepted : 1

 dwLevelThreeAccepted : 5

ppHandle [out] *PPCONTEXT_HANDLE=0x0053b710

At this point, a session has been established between the primary partner and the secondary
partner. Either partner is now free to call NegotiateResources and initiate connections.

4.2 Initiating a Session as Secondary Partner

In this example, the first partner is on Machine_1 with contact identifier (CID) (474cf518-d7ae-
451f-a31f-caad29fa5e9f), and the second partner is on Machine_2 with contact identifier (CID)
(a3afb37b-f64a-4e6c-9017-f6a96ba6f166). Therefore, the first partner assumes the role of the

secondary partner, and the second partner assumes the role of the primary partner. This example
assumes that the secondary partner does not have an existing session with the primary partner, as
there is only one established session between any two partners.

Because this is a new session, the secondary partner will create a new session object. However, the
secondary partner will not generate a session GUID, but will obtain the session GUID from the
primary partner BuildContextW call. The session object is keyed to the primary partner's name
object and is maintained in a list for the secondary partner to ensure that there is only one session

established with the primary partner.

To begin a session, the secondary partner obtains an RPC binding handle (0x00227b88) from the
primary partner's name object, as described in section 1.3.2. Because it is against protocol for the

secondary partner to send the first BuildContextW call, the secondary partner uses the binding
handle to send a PokeW call to the primary partner. In the Poke call, the secondary partner passes
its NetBIOS machine name (pszHostName) and contact identifier (CID) (pszUuidString) and the

primary partner contact identifier (CID) (pszCalleeUuid). In the BindInfo (rguchBlob), the secondary
partner indicates that it supports PROT_IP_TCP (bit 0) and PROT_LRPC (bit 5). See section 2.2.4.

60 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Field Value description

hRPC RPC_BINDING_HANDLE=0x00227b88

sRank SRANK_SECONDARY

pwszCalleeUuid L"a3afb37b-f64a-4e6c-9017-f6a96ba6f166"

pwszHostName L"Machine_1"

pwszUuidString L"474cf518-d7ae-451f-a31f-caad29fa5e9f"

dwcbSizeOfBlob dwcbSizeOfBlob: 8

rguchBlob dwcbThisStruct : 8

 PROT_IP_TCP | PROT_LRPC

When the primary partner receives the Poke call from the secondary partner, the primary partner
will attempt to locate an existing session object associated with the secondary partner. If an existing
session object is found, the primary partner returns E_CM_SERVER_NOT_READY (0x80000123),

which will occur if a previous session has not been completely torn down before a new session is
begun.

If no existing session is found, the primary partner will create a new session object and identify it
with a newly generated session GUID. The session object is keyed to the secondary partner's name
object and is maintained in a list for the primary partner to ensure that there is only one session
established with the secondary partner. At this point, the primary partner replies S_OK to the Poke

call from the secondary partner, and assumes the role of the primary partner.

As in the first example (see section 4.1), the primary partner obtains an RPC binding handle
(0x004dae28) from the secondary partner's name object (see section 1.3.2) to begin a session. The
primary partner uses the binding handle to send a BuildContextW call to the secondary partner
using SRANK_PRIMARY. In the BuildContextW call, the primary partner passes its NetBIOS

machine name (pwszHostName) and contact identifier (CID) (pwszUuidString) and the secondary
partner's contact identifier (CID) (pwszCalleeUuid). The primary partner also sends the session

GUID (pwszGuidIn), which will be returned in pwszGuidOut when the session is accepted. In the
BindVersionSet, the primary partner indicates that it supports both the Poke / BuildContext and
PokeW / and BuildContextW method calls, that it supports version 1 of the level-two protocol and
version 5 of the level-three protocol. In the BindInfo (rguchBlob), the primary partner indicates that
it supports PROT_IP_TCP (bit 0) and PROT_LRPC (bit 5). See section 2.2.4. The primary partner also
passes a pointer to a PCONTEXT_HANDLE into which it will receive the secondary partner's
PCONTEXT_HANDLE when the session is accepted.

Field Value description

hRPC RPC_BINDING_HANDLE=0x004dae28

sRank SRANK_PRIMARY

BindVersionSet dwMinLevelOne : 1

 dwMaxLevelOne : 2

 dwMinLevelTwo : 1

 dwMaxLevelTwo : 1

61 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Field Value description

 dwMinLevelThree : 1

 dwMaxLevelThree : 5

pwszCalleeUuid L"474cf518-d7ae-451f-a31f-caad29fa5e9f"

pwszHostName L"Machine_2"

pwszUuidString L"a3afb37b-f64a-4e6c-9017-f6a96ba6f166"

pwszGuidIn L"79135638-e1c2-4fb5-9a47-6951d28e4d9c"

pwszGuidOut [in_out] L"00000000-0000-0000-0000-000000000000"

pBoundVersionSet [in_out] dwLevelOneAccepted : 0

 dwLevelTwoAccepted : 0

 dwLevelThreeAccepted : 0

dwcbSizeOfBlob dwcbSizeOfBlob: 8

rguchBlob dwcbThisStruct : 8

 PROT_IP_TCP | PROT_LRPC

ppHandle [out] *PPCONTEXT_HANDLE=0x00000000

When the secondary partner receives the BuildContextW call from the primary partner, the
secondary partner will locate the existing session object associated with the primary partner, and
will copy in the session GUID passed to it from the primary partner.

Because the primary partner has specified that it supports both the Poke / BuildContext and

PokeW / and BuildContextW method calls (dwMaxLevelOne = 2), the secondary partner sends a
BuildContextW message call to the primary partner using SRANK_SECONDARY. In the
BuildContextW call to the primary partner, the secondary partner passes its NetBIOS machine
name (pwszHostName) and contact identifier (CID) (pwszUuidString), and the primary partner
contact identifier (CID) (pwszCalleeUuid). The secondary partner also passes in the primary

partner's session GUID (pwszGuidIn) from the initial call. The secondary partner also passes a
pointer to a PCONTEXT_HANDLE, which will be filled when the primary partner accepts the session.

Field Value description

hRPC RPC_BINDING_HANDLE=0x00227b88

sRank SRANK_SECONDARY

BindVersionSet dwMinLevelOne : 1

 dwMaxLevelOne : 2

 dwMinLevelTwo : 1

 dwMaxLevelTwo : 1

 dwMinLevelThree : 1

62 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Field Value description

 dwMaxLevelThree : 5

pwszCalleeUuid L"a3afb37b-f64a-4e6c-9017-f6a96ba6f166"

pwszHostName L"Machine_1"

pwszUuidString L"474cf518-d7ae-451f-a31f-caad29fa5e9f"

pwszGuidIn L"79135638-e1c2-4fb5-9a47-6951d28e4d9c"

pwszGuidOut [in_out] L"00000000-0000-0000-0000-000000000000"

pBoundVersionSet [in_out] dwLevelOneAccepted : 0

 dwLevelTwoAccepted : 0

 dwLevelThreeAccepted : 0

dwcbSizeOfBlob dwcbSizeOfBlob: 8

rguchBlob dwcbThisStruct : 8

 PROT_IP_TCP | PROT_LRPC

ppHandle [out] *PPCONTEXT_HANDLE=0x00000000

When the BuildContextW call is received by the primary partner, the primary partner fills in the

pwszGuidOut with the session GUID from pwszGuidIn, and will fill in the BoundVersionSet with its
accepted values. The primary partner will also pass a reference pointer (0x0012af48) to the RPC
context handle associated with its session object via the PPCONTEXT_HANDLE, and replies S_OK.
Once the session is established, all future communication from the secondary partner will reference
this PCONTEXT_HANDLE.

Field Value description

pwszGuidOut [in_out] L"79135638-e1c2-4fb5-9a47-6951d28e4d9c"

pBoundVersionSet [in_out] dwLevelOneAccepted : 2

 dwLevelTwoAccepted : 1

 dwLevelThreeAccepted : 5

ppHandle [out] *PPCONTEXT_HANDLE=0x0012af48

When S_OK is returned to the secondary partner on its BuildContextW call, the secondary partner
fills in the pszGuidOut with the session GUID from pszGuidIn and sets the accepted values for the
BoundVersionSet. The secondary partner will also pass a reference pointer (0x00bf90e0) to the RPC
context handle associated with its session object via the PPCONTEXT_HANDLE and reply S_OK. Once

the session is established, all future communication from the primary partner will need to reference
this PCONTEXT_HANDLE.

Field Value description

pwszGuidOut [in_out] L"79135638-e1c2-4fb5-9a47-6951d28e4d9c"

63 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Field Value description

pBoundVersionSet [in_out] dwLevelOneAccepted : 2

 dwLevelTwoAccepted : 1

 dwLevelThreeAccepted : 5

ppHandle [out] *PPCONTEXT_HANDLE=0x005f90e0

At this point, a session has been established between the primary partner and the secondary

partner. Either partner is now free to call NegotiateResources and initiate connections.

4.3 Negotiating Connection Resources

After a session is established, each partner needs to respond to requests from MSDTC Connection
Manager: OleTx Multiplexing Protocol to negotiate resources with its partner.

In this example, the first partner requests 100 connection resources from the second partner. The

first partner will pass in the PCONTEXT_HANDLE that it received from its BuildContext (or
BuildContextW) call to the second partner and the ResourceType for the connection resources
(RT_CONNECTIONS in this example).

Field Value description

phContext PCONTEXT_HANDLE=0x0053b710

ResourceType RT_CONNECTIONS

dwcRequested 100

pdwcAccepted [in_out] 0

When the second partner receives the NegotiateResources call, it will attempt to allocate

sufficient resources to support the 100 concurrent connections requested. If successful, the second
partner will return S_OK and indicate that all 100 concurrent connection resources have been
allocated.

Field Value description

pdwcAccepted [in_out] 100

When the first partner receives the S_OK from the second partner, the first partner is now ready to
begin establishing connections with the second partner.

4.4 Terminating a Session

Terminating a session follows a similar protocol handshake as that of establishing a session (see

section 4.1).

A session is terminated by the primary partner sending a TearDownContext call to the secondary

partner. In response, the secondary partner sends a TearDownContext call to the primary partner.
When the primary partner returns success to the TearDownContext call from the secondary
partner, the secondary partner returns success to the primary partner's TearDownContext call.
Because the first TearDownContext call in the sequence originates from the primary partner, the

64 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

secondary partner is only allowed to initiate teardown of a session with the primary partner by
calling BeginTearDown, which instructs the primary partner to send a TearDownContext call to

the secondary partner.

4.4.1 Terminating a Session by a Primary Partner

A primary partner terminates a session by sending a TearDownContext call to the secondary
partner, passing a pointer to the PCONTEXT_HANDLE given to it from the secondary partner, its
SESSION_RANK (that is, SRANK_PRIMARY), and a reason for tearing down the session; in this
example, the TEAR_DOWN_TYPE is TT_FORCE.

Field Value description

pphContext [in_out] *PPCONTEXT_HANDLE=0x0053b710

sRank SRANK_PRIMARY

TearDownType TT_FORCE

When the secondary partner receives the TearDownContext call, it will send a TearDownContext
call to the primary partner, passing a pointer to the PCONTEXT_HANDLE passed to it from the
primary partner, its SESSION_RANK (that is, SRANK_SECONDARY), and copy the

TEAR_DOWN_TYPE from the incoming call (that is, TT_FORCE).

Field Value description

pphContext [in_out] *PPCONTEXT_HANDLE=0x00436e68

sRank SRANK_SECONDARY

TearDownType TT_FORCE

When the primary partner receives the TearDownContext request, it will delete its

PCONTEXT_HANDLE and null out pphContext. Any negotiated resources will be released, and it will
reply S_OK.

Field Value description

pphContext [in_out] *PPCONTEXT_HANDLE=0x00000000

When the secondary partner receives S_OK on the TearDownContext call, it will delete its
PCONTEXT_HANDLE and null out pphContext. Any negotiated resources will be released, and it will
reply S_OK.

Field Value description

pphContext [in_out] *PPCONTEXT_HANDLE=0x00000000

The session has now been terminated, and no further messages will be sent.

65 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

4.4.2 Terminating a Session by a Secondary Partner

In this example, the secondary partner initiates the session termination process by sending a
BeginTearDown call to the primary partner, passing the primary partner's PCONTEXT_HANDLE and

the reason for the tear-down request; in this example, the TEAR_DOWN_TYPE is TT_FORCE.

Field Value description

phContext PCONTEXT_HANDLE=0x005f90e0

TearDownType TT_FORCE

When the primary partner receives the BeginTearDown call, it will send a TearDownContext call
to the secondary partner, passing a pointer to the secondary partner PCONTEXT_HANDLE, its
SESSION_RANK (that is, SRANK_PRIMARY), and a reason for tearing down the session sent to it in
the BeginTearDown call (that is, TT_FORCE).

Field Value description

pphContext [in_out] *PPCONTEXT_HANDLE=0x0012af48

sRank SRANK_PRIMARY

TearDownType TT_FORCE

When the secondary partner receives the TearDownContext call, it will send a TearDownContext
call to the primary partner, passing a pointer to the PCONTEXT_HANDLE passed to it from the

primary partner, its SESSION_RANK (that is, SRANK_SECONDARY), and copy the
TEAR_DOWN_TYPE from the incoming call (that is, TT_FORCE).

Field Value description

pphContext [in_out] *PPCONTEXT_HANDLE=0x005f90e0

sRank SRANK_SECONDARY

TearDownType TT_FORCE

When the primary partner receives the TearDownContext request, it will delete its
PCONTEXT_HANDLE and null out pphContext. Any negotiated resources will be released, and it will
reply S_OK.

Field Value description

pphContext [in_out] *PPCONTEXT_HANDLE=0x00000000

When the secondary partner receives S_OK on the TearDownContext call, it will delete its
PCONTEXT_HANDLE and null out pphContext. Any negotiated resources will be released, and it will

reply S_OK.

Field Value description

pphContext [in_out] *PPCONTEXT_HANDLE=0x00000000

The session has now been terminated, and no further messages will be sent.

66 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

5 Security

5.1 Security Considerations for Implementers

For security considerations for both authenticated RPC and unauthenticated RPC calls used in this
protocol, see section 2.1.3 and [MS-RPCE].

The client can fail over to unauthenticated RPC calls when authenticated RPC calls fail for backward
compatibility. The unauthenticated RPC call is not as secure as an authenticated RPC call; the client
should either audit or support this automatic failover only when it is explicitly specified.<39> For

every RPC call, the client should execute the following sequence of steps:

Execute an authenticated RPC call.

If the call does not succeed and fallback is allowed:

Execute an unauthenticated RPC call.

If the call does not succeed, return a failure to the caller.

Otherwise, return a failure to the caller.

The server is the only role that can impersonate RPC calls. However, the impersonation level ([MS-
RPCE] section 2.2.1.1.9) allowed by the client affects the server's ability to perform impersonation.
If the incoming RPC is an authenticated RPC call, the server can use the authenticated identity of
the client as the server principal name for performing mutual authentication, and then use the
server's identity on the nested call.<40> The client should use the RPC_C_IMPL_LEVEL_IDENTIFY

impersonation level ([MS-RPCE] section 2.2.1.1.9) when making the RPC call. Use of the
RPC_C_IMPL_LEVEL_IMPERSONATE or RPC_C_IMPL_LEVEL_DELEGATE levels can represent a
security risk and should be avoided unless necessary.

5.2 Index of Security Parameters

Security parameter Section

Usage of secured and unsecured RPC connections 2.1.3

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

67 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided below.

import "ms-dtyp.idl";

[

 uuid (906B0CE0-C70B-1067-B317-00DD010662DA),

 version(1.0),

 pointer_default(unique)

]

interface IXnRemote

{

#ifdef __midl

#if __midl >= 700

#define use_string_range

#endif

#endif

#ifndef MAX_COMPUTERNAME_LENGTH

#define MAX_COMPUTERNAME_LENGTH 15

#endif

 typedef enum _TearDownType

 {

 TT_FORCE = 0,

 TT_PROBLEM = 2,

 } TEARDOWN_TYPE;

 typedef enum _SessionRank

 {

 SRANK_PRIMARY = 1,

 SRANK_SECONDARY = 2

 } SESSION_RANK;

 typedef enum _ResourceType

 {

 RT_CONNECTIONS = 0

 } RESOURCE_TYPE;

 typedef struct _BindVersionSet

 {

 DWORD dwMinLevelOne;

 DWORD dwMaxLevelOne;

 DWORD dwMinLevelTwo;

 DWORD dwMaxLevelTwo;

 DWORD dwMinLevelThree;

 DWORD dwMaxLevelThree;

 } BIND_VERSION_SET;

 typedef struct _BoundVersionSet

 {

 DWORD dwLevelOneAccepted;

 DWORD dwLevelTwoAccepted;

 DWORD dwLevelThreeAccepted;

 } BOUND_VERSION_SET;

68 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 typedef unsigned long COM_PROTOCOL;

 typedef struct _BindInfoBlob

 {

 DWORD dwcbThisStruct;

 COM_PROTOCOL grbitComProtocols;

 } BIND_INFO_BLOB;

 typedef [context_handle] void * PCONTEXT_HANDLE;

 typedef [ref] PCONTEXT_HANDLE * PPCONTEXT_HANDLE;

#define GUID_LENGTH 37

#ifdef use_string_range

 HRESULT Poke (

 [in] handle_t hBinding,

 [in] SESSION_RANK sRank,

 [in, string, range(GUID_LENGTH, GUID_LENGTH)]

 unsigned char pszCalleeUuid[],

 [in, string, range(1, MAX_COMPUTERNAME_LENGTH+1)]

 unsigned char pszHostName[],

 [in, string, range(GUID_LENGTH, GUID_LENGTH)]

 unsigned char pszUuidString[],

 [in, range(sizeof(BIND_INFO_BLOB),sizeof(BIND_INFO_BLOB))]

 DWORD dwcbSizeOfBlob,

 [in, size_is (dwcbSizeOfBlob)] unsigned char rguchBlob[]);

#else

 HRESULT Poke (

[in] handle_t hBinding,

 [in] SESSION_RANK sRank,

 [in, string] unsigned char pszCalleeUuid[],

 [in, string] unsigned char pszHostName[],

 [in, string] unsigned char pszUuidString[],

 [in, range(sizeof(BIND_INFO_BLOB),sizeof(BIND_INFO_BLOB))]

 DWORD dwcbSizeOfBlob,

 [in, size_is (dwcbSizeOfBlob)] unsigned char rguchBlob[]);

#endif

#ifdef use_string_range

 HRESULT BuildContext (

 [in] handle_t hBinding,

 [in] SESSION_RANK sRank,

 [in] BIND_VERSION_SET BindVersionSet,

 [in, string, range(GUID_LENGTH, GUID_LENGTH)]

 unsigned char pszCalleeUuid[],

 [in, string, range(1, MAX_COMPUTERNAME_LENGTH+1)]

 unsigned char pszHostName[],

 [in, string, range(GUID_LENGTH, GUID_LENGTH)]

 unsigned char pszUuidString[],

 [in, string, range(GUID_LENGTH, GUID_LENGTH)]

 unsigned char pszGuidIn[],

 [in, out, string, range(GUID_LENGTH, GUID_LENGTH)]

 unsigned char pszGuidOut[],

 [in, out] BOUND_VERSION_SET * pBoundVersionSet,

 [in, range(sizeof(BIND_INFO_BLOB), sizeof(BIND_INFO_BLOB))]

 DWORD dwcbSizeOfBlob,

69 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 [in, size_is (dwcbSizeOfBlob)] unsigned char rguchBlob[],

 [out] PPCONTEXT_HANDLE ppHandle);

#else

 HRESULT BuildContext (

 [in] handle_t hBinding,

 [in] SESSION_RANK sRank,

 [in] BIND_VERSION_SET BindVersionSet,

 [in, string] unsigned char pszCalleeUuid[],

 [in, string] unsigned char pszHostName[],

 [in, string] unsigned char pszUuidString[],

 [in, string] unsigned char pszGuidIn[],

 [in, out, string] unsigned char pszGuidOut[],

 [in, out] BOUND_VERSION_SET * pBoundVersionSet,

 [in, range(sizeof(BIND_INFO_BLOB), sizeof(BIND_INFO_BLOB))]

 DWORD dwcbSizeOfBlob,

 [in, size_is (dwcbSizeOfBlob)] unsigned char rguchBlob[],

 [out] PPCONTEXT_HANDLE ppHandle);

#endif

 HRESULT NegotiateResources (

 [in] PCONTEXT_HANDLE phContext,

 [in] RESOURCE_TYPE resourceType,

 [in] DWORD dwcRequested,

 [in,out] DWORD * pdwcAccepted);

 HRESULT SendReceive (

 [in] PCONTEXT_HANDLE phContext,

 [in, range(1, 4095)] DWORD dwcMessages,

 [in, range(40, 0x14000)] DWORD dwcbSizeOfBoxCar,

 [in, size_is (dwcbSizeOfBoxCar)]

 unsigned char rguchBoxCar[]);

 HRESULT TearDownContext (

 [in, out] PPCONTEXT_HANDLE contextHandle,

 [in] SESSION_RANK sRank,

 [in] TEARDOWN_TYPE tearDownType);

 HRESULT BeginTearDown (

 [in] PCONTEXT_HANDLE contextHandle,

 [in] TEARDOWN_TYPE tearDownType);

#ifdef use_string_range

 HRESULT PokeW (

 [in] handle_t hBinding,

 [in] SESSION_RANK sRank,

 [in, string, range(GUID_LENGTH, GUID_LENGTH)]

 wchar_t pwszCalleeUuid[],

 [in, string, range(1, MAX_COMPUTERNAME_LENGTH+1)]

 wchar_t pwszHostName[],

 [in, string, range(GUID_LENGTH, GUID_LENGTH)]

 wchar_t pwszUuidString[],

 [in, range(sizeof(BIND_INFO_BLOB), sizeof(BIND_INFO_BLOB))]

 DWORD dwcbSizeOfBlob,

 [in, size_is (dwcbSizeOfBlob)] unsigned char rguchBlob[]);

#else

 HRESULT PokeW (

 [in] handle_t hBinding,

 [in] SESSION_RANK sRank,

 [in, string] wchar_t pwszCalleeUuid[],

70 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 [in, string] wchar_t pwszHostName[],

 [in, string] wchar_t pwszUuidString[],

 [in, range(sizeof(BIND_INFO_BLOB), sizeof(BIND_INFO_BLOB))]

 DWORD dwcbSizeOfBlob,

 [in, size_is (dwcbSizeOfBlob)] unsigned char rguchBlob[]);

#endif

#ifdef use_string_range

 HRESULT BuildContextW (

 [in] handle_t hBinding,

 [in] SESSION_RANK sRank,

 [in] BIND_VERSION_SET BindVersionSet,

 [in, string, range(GUID_LENGTH, GUID_LENGTH)]

 wchar_t pwszCalleeUuid[],

 [in, string, range(1, MAX_COMPUTERNAME_LENGTH+1)]

 wchar_t pwszHostName[],

 [in, string, range(GUID_LENGTH, GUID_LENGTH)]

 wchar_t pwszUuidString[],

 [in, string, range(GUID_LENGTH, GUID_LENGTH)]

 wchar_t pwszGuidIn[],

 [in,out, string, range(GUID_LENGTH, GUID_LENGTH)]

 wchar_t pwszGuidOut[],

 [in, out] BOUND_VERSION_SET *pBoundVersionSet,

 [in, range(sizeof(BIND_INFO_BLOB), sizeof(BIND_INFO_BLOB))]

 DWORD dwcbSizeOfBlob,

 [in, size_is (dwcbSizeOfBlob)] unsigned char rguchBlob[],

 [out] PPCONTEXT_HANDLE ppHandle);

#else

 HRESULT BuildContextW (

 [in] handle_t hBinding,

 [in] SESSION_RANK sRank,

 [in] BIND_VERSION_SET BindVersionSet,

 [in, string] wchar_t pwszCalleeUuid[],

 [in, string] wchar_t pwszHostName[],

 [in, string] wchar_t pwszUuidString[],

 [in, string] wchar_t pwszGuidIn[],

 [in,out, string] wchar_t pwszGuidOut[],

 [in, out] BOUND_VERSION_SET *pBoundVersionSet,

 [in, range(sizeof(BIND_INFO_BLOB), sizeof(BIND_INFO_BLOB))]

 DWORD dwcbSizeOfBlob,

 [in, size_is (dwcbSizeOfBlob)] unsigned char rguchBlob[],

 [out] PPCONTEXT_HANDLE ppHandle);

#endif

#undef GUID_LENGTH

}

71 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows NT 4.0 operating system Option Pack for Windows NT Server

Windows 2000 operating system

Windows XP operating system

Windows Server 2003 operating system

Windows Vista operating system

Windows Server 2008 operating system

Windows 7 operating system

Windows Server 2008 R2 operating system

Windows 8 operating system

Windows Server 2012 operating system

Windows 8.1 operating system

Windows Server 2012 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product

edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 1.3.2: Protocol "ncacn_spx" is not supported by Windows Vista, Windows Server 2008,

Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and
Windows Server 2012 R2. In those operating systems, the "ncacn_spx" protocol entry will be
ignored and the protocol selection will proceed to the next step.

<2> Section 1.7: Windows NT 4.0 Option Pack implements version 1.0 of the protocol.
Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008,
Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and
Windows Server 2012 R2 implement version 1.1 of the protocol.

<3> Section 2.1.1: Windows NT 4.0 Option Pack, Windows 2000, Windows XP, Windows

Server 2003, Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows
8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2 support "ncacn_ip_tcp" by
default, but can be configured to support either or both of the "ncacn_spx" and "ncacn_nb_nb"
protocols. However, "ncacn_spx" is not supported by Windows Vista, Windows Server 2008,
Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and
Windows Server 2012 R2. The ncacn_ protocols are described in [MS-RPCE] section 2.

%5bMS-RPCE%5d.pdf

72 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

<4> Section 2.1.2: The usage of a specific port, instead of the one automatically selected by the
endpoint mapper, is supported only by Windows 7, Windows Server 2008 R2, Windows 8, Windows

Server 2012, Windows 8.1, and Windows Server 2012 R2.

<5> Section 2.1.3: A security level of no authentication is supported by Windows NT 4.0 Option

Pack, Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008,
Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and
Windows Server 2012 R2. Security levels of incoming authentication and mutual authentication are
supported by Windows XP SP2, Windows XP SP3, Windows Server 2003 with SP1, Windows
Server 2003 SP2, Windows Server 2003 with SP3, Windows Vista, Windows Server 2008,
Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and
Windows Server 2012 R2. The security level is configurable to any of the three values on

Windows XP SP2, Windows XP SP3, Windows Server 2003 with SP1, Windows Server 2003 SP2,
Windows Server 2003 with SP3, Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2.

<6> Section 2.1.3: In Windows NT 4.0 Option Pack, Windows 2000, Windows XP, Windows
Server 2003, and Windows Vista implementations, the callee does not check for the authentication

level configuration that was set by the caller. However, for Windows Server 2008, Windows Vista

SP1, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and
Windows Server 2012 R2, it is required that the caller use an authentication level of
RPC_C_AUTHN_LEVEL_PKT_PRIVACY, or the call will be rejected.

<7> Section 2.1.3: In Windows NT 4.0 Option Pack, Windows 2000, Windows XP, Windows
Server 2003, and Windows Vista implementations, the callee does not check for the authentication
level configuration that was set by the caller. However, for Windows Server 2008, Windows Vista
SP1, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and

Windows Server 2012 R2, it is required that the caller use an authentication level of
RPC_C_AUTHN_LEVEL_PKT_PRIVACY, or the call will be rejected.

<8> Section 3.2.2.1: Windows implementations calculate this value using the formula
CmCancelRpcAfter/2, where the value of CmCancelRpcAfter is retrieved from the registry. The
following table specifies the registry path and key name for the location of this value, and the

default value in milliseconds that Windows uses if the key is not present in the registry.

Registry Path Key value Default value

HKEY_LOCAL_MACHINE\Software\Microsoft\MSDTC\ CmCancelRpcAfter 12000

<9> Section 3.3.1: This object is supported only on Windows 7, Windows Server 2008 R2, Windows
8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2.

<10> Section 3.3.1: "Ncacn_spx" is not supported by Windows Vista, Windows Server 2008,
Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and

Windows Server 2012 R2.

<11> Section 3.3.1: The usage of Server Security Settings is not supported in Windows NT 4.0
Option Pack.

<12> Section 3.3.3: The Server TCP Port local data element is supported only on Windows 7,
Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server
2012 R2.

<13> Section 3.3.3: The Server TCP Port local data element is supported only on Windows 7,

Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server
2012 R2.

73 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

<14> Section 3.3.3: Windows retrieves this value from the Windows registry. The following table
specifies the registry path, the key name, and the default value that Windows uses if the key is not

present in the registry.

Registry path Key value Default value

HKEY_LOCAL_MACHINE\Software\Microsoft\MSDTC\ RpcAuthnSvc RPC_C_AUTHN_GSS_NEGOTIATE

<15> Section 3.3.4: Windows NT 4.0 Option Pack and Windows 2000 do not indicate to the RPC
runtime that it is to perform such a check.

<16> Section 3.3.4.1: Windows Vista SP1, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2

return the expected error code 0x80000123 (E_CM_SERVER_NOT_READY). Windows NT 4.0 Option
Pack, Windows 2000, Windows XP, and Windows Server 2003 return 0x00000000 and set the
pszGuidOut parameter to 00000000-0000-0000-0000-000000000000 to indicate that the bind was
successful.

<17> Section 3.3.4.1: On Windows NT 4.0 Option Pack, Windows 2000, Windows XP, and Windows
Server 2003, when a Poke is invoked on a secondary partner, the secondary partner responds by
making a BuildContext callback on the primary partner. On Windows Vista, Windows Vista SP1,

Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, and Windows Server 2012 R2, a Poke can be invoked only on a primary partner. If a
Poke is invoked on a secondary partner, Windows returns the 0x80070057 (E_INVALIDARG) error
code.

<18> Section 3.3.4.1: On Windows NT 4.0 Option Pack, Windows 2000, Windows XP, and Windows
Server 2003, when a Poke is invoked on a secondary partner, the secondary partner responds by
making a BuildContext callback on the primary partner. On Windows Vista, Windows Vista SP1,

Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, and Windows Server 2012 R2, a Poke can be invoked only on a primary partner. If a
Poke is invoked on a secondary partner, Windows returns the 0x80070057 (E_INVALIDARG) error
code.

<19> Section 3.3.4.1: Windows Vista SP1, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2

return the expected error code 0x80000123 (E_CM_SERVER_NOT_READY). Windows NT 4.0 Option
Pack, Windows 2000, Windows XP, and Windows Server 2003 return 0x00000000 and set the
pszGuidOut parameter to 00000000-0000-0000-0000-000000000000 to indicate that the bind was
unsuccessful.

Name Value

E_CM_SERVER_NOT_READY 0x80000123

<20> Section 3.3.4.1: On Windows, when a Poke or PokeW call is received by a primary partner,
the work of establishing the session with the subsequent BuildContext or BuildContextW call is
done on a separate thread. Therefore, the call to Poke or PokeW will most likely return before the

call to BuildContext or BuildContextW is made on the secondary partner; however, due to
multithreading behavior, the reverse order can occur.

<21> Section 3.3.4.2: Windows Server 2008, Windows Vista SP1, Windows 7, Windows

Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2
return the expected error code 0x80000120 (E_CM_SESSION_DOWN). Windows NT 4.0 Option
Pack, Windows 2000, Windows XP, and Windows Server 2003 return 0x00000000 and set the

74 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

pszGuidOut parameter to 00000000-0000-0000-0000-000000000000 to indicate that the bind was
unsuccessful.

<22> Section 3.3.4.2: Windows Vista SP1, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2

return the expected error code 0x80000123 (E_CM_SERVER_NOT_READY). Windows NT 4.0 Option
Pack, Windows 2000, Windows XP, and Windows Server 2003 return 0x00000000 and set the
pszGuidOut parameter to 00000000-0000-0000-0000-000000000000 to indicate that the bind was
successful.

<23> Section 3.3.4.2.1: Windows Server 2008, Windows Vista SP1, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2
return the expected error code 0x80000123 (E_CM_SERVER_NOT_READY). Windows NT 4.0 Option

Pack, Windows 2000, Windows XP, and Windows Server 2003 return 0x00000000 and set the
pszGuidOut parameter to 00000000-0000-0000-0000-000000000000 to indicate that the bind was
unsuccessful.

Name Value

E_CM_SERVER_NOT_READY 0x80000123

<24> Section 3.3.4.2.1: The BuildContextW or PokeW method is always tried first in
Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008,
Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and
Windows Server 2012 R2. If the BuildContextW or PokeW method fails, as indicated by an
RPC_S_PROCNUM_OUT_OF_RANGE error, Windows falls back to the BuildContext or Poke
method. Windows does not inspect the BIND_VERSION_SET to determine which methods are
supported by the partner.

<25> Section 3.3.4.2.1: Windows NT 4.0 Option Pack, Windows 2000, and Windows XP do not
support mutual authentication.

<26> Section 3.3.4.2.2: Windows Server 2008, Windows Vista SP1, Windows 7, Windows

Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2
return the expected error code 0x80000120 (E_CM_SESSION_DOWN). Windows NT 4.0 Option
Pack, Windows 2000, Windows XP, and Windows Server 2003 return 0x00000000 and set the

pszGuidOut parameter to 00000000-0000-0000-0000-000000000000 to indicate that the bind was
unsuccessful.

Name Value

E_CM_SESSION_DOWN 0x80000120

<27> Section 3.3.4.5: Windows does not check if the sRank value passed as a parameter is valid
and returns 0x00000000 (ERROR_STATUS).

<28> Section 3.3.4.7: Windows Vista SP1, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2

return the expected error code 0x80000123 (E_CM_SERVER_NOT_READY). Windows NT 4.0 Option

Pack, Windows 2000, Windows XP, and Windows Server 2003 return 0x00000000 and set the
pszGuidOut parameter to 00000000-0000-0000-0000-000000000000 to indicate that the bind was
successful.

<29> Section 3.3.4.7: On Windows 2000, Windows XP, and Windows Server 2003, when a PokeW
is invoked on a secondary partner, the secondary partner responds by making a BuildContextW

75 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

callback on the primary partner. On Windows Vista SP1, Windows Server 2008, Windows 7,
Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server

2012 R2, a PokeW can be invoked only on a primary partner. If a PokeW is invoked on a
secondary partner, Windows returns the 0x80070057 (E_INVALIDARG) error code.

<30> Section 3.3.4.8: Windows Server 2008, Windows Vista SP1, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2
return the expected error code 0x80000120 (E_CM_SESSION_DOWN). Windows NT 4.0 Option
Pack, Windows 2000, Windows XP, and Windows Server 2003 return 0x00000000 and set the
pszGuidOut parameter to 00000000-0000-0000-0000-000000000000 to indicate that the bind was
unsuccessful.

<31> Section 3.3.4.8: Windows Vista SP1, Windows Server 2008, Windows 7, Windows

Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2
return the expected error code 0x80000123 (E_CM_SERVER_NOT_READY). Windows NT 4.0 Option
Pack, Windows 2000, Windows XP, and Windows Server 2003 return 0x00000000 and set the
pszGuidOut parameter to 00000000-0000-0000-0000-000000000000 to indicate that the bind was
successful.

<32> Section 3.4.1: Windows calculates this value using the formula ((CmMaxNumberBindRetries +

1) / 2) * 3, where CmMaxNumberBindRetries is retrieved from the registry. The following table
specifies the registry path, the key name, and the default value that Windows implementations use
if the key is not present in the registry.

Registry path Key name Default value

HKEY_LOCAL_MACHINE\Software\Microsoft\MSDTC CmMaxNumberBindRetries 8

<33> Section 3.4.1: The usage of Client Security Settings is not supported in Windows NT 4.0

Option Pack.

<34> Section 3.4.1: Windows NT 4.0 Option Pack does not support the RPC Authentication Level
setting.

<35> Section 3.4.2.1: Windows implementations retrieve this value from the registry. The following
table specifies the registry path, the key name, and the default value in milliseconds that Windows
uses if the key is not present in the registry path.

Registry path Key name Default value

HKEY_LOCAL_MACHINE\Software\Microsoft\MSDTC\ CmCancelRpcAfter 12000

<36> Section 3.4.3: Windows retrieves this value from the Windows registry. The following table
specifies the registry path, the key name, and the default value that Windows uses if the key is not
present in the registry.

Registry path Key value Default value

HKEY_LOCAL_MACHINE\Software\Microsoft\MSDTC RpcAuthnSvc RPC_C_AUTHN_GSS_NEGOTIATE

<37> Section 3.4.3: Windows 2000, Windows Server 2008, Windows 7, Windows Server 2008 R2,
Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2 always set the value
of the Authentication Level to RPC_C_AUTHN_LEVEL_PKT_PRIVACY, and do not allow the user to
change this value. Windows 2000 SP1, Windows 2000 SP2, Windows 2000 SP3, Windows 2000 SP4,

Windows XP, Windows Server 2003 and Windows Vista allow the user to configure this value

76 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

through the Windows registry. The following table specifies the registry path, the key name, and the
default value that Windows uses if the key is not present in the registry.

Registry path Key value Default value

HKEY_LOCAL_MACHINE\Software\Microsoft\MSDTC RpcAuthnLevel RPC_C_AUTHN_LEVEL_PKT_PRIVACY

<38> Section 3.4.4: The strict NDR data consistency check is indicated to the RPC runtime on
Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2.

<39> Section 5.1: The usage of unauthenticated RPC calls is supported by Windows NT 4.0 Option
Pack, Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008,

Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and
Windows Server 2012 R2. The usage of authenticated RPC calls is supported and is the default on
Windows XP SP2, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7,
Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server

2012 R2. In addition, these systems do not allow fallback to unauthenticated RPC calls by default,
but can be configured to do so.

<40> Section 5.1: Windows NT 4.0 Option Pack, Windows 2000, and Windows XP do not support

mutual authentication.

77 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

78 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

9 Index

A

Abstract data model
client 50
common 23
server 30

Applicability 15

B

BeginTearDown method 45
BIND_INFO_BLOB packet 18
BIND_VERSION_SET structure 18
Binding handles 11
BOUND_VERSION_SET structure 19
BuildContext method 35
BuildContextW method 48

C

Capability negotiation 15
Change tracking 77
Client

abstract data model 50
initialization 51
local events 52
message processing 52
sequencing rules 52
timer events 52
timers 51

COM_PROTOCOL packet 20
Common

abstract data model 23
initialization 29
local events 30
message processing 29
sequencing rules 29
timer events 30
timers 28

Connection resources example 63
Context handle rundown 50

D

Data model - abstract
client 50
common 23
server 30

Data types 18

E

Endpoints
message 17
RPC 11

Examples
negotiating connection resources example 63
overview 56
primary partner example 56

secondary partner example 59
terminating session by primary partner example

64
terminating session by secondary partner

example 65
terminating session examples 63

F

Fields - vendor-extensible 16
Forced session teardown request 54
Full IDL 67

G

Glossary 8
GUID 21
GUID_LENGTH 22

H

HRESULT 21

I

Identifiers 10
IDL 67
Implementer - security considerations 66
Index of security parameters 66

Informative references 10
Initialization

client 51
common 29
server 31

Introduction 8

L

Lifecycle - session 11
Local events

client 52
common 30
server 50

M

MAX_COMPUTERNAME_LENGTH 22
Message processing

client 52
common 29
server 32

Messages
data types 18
endpoints 17
protocol sequences 17
security 17
session 13
session send request 55
transport 17

79 / 79

[MS-CMPO] — v20140502
 MSDTC Connection Manager: OleTx Transports Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

N

Name object 28
Name object comparison 28
NegotiateResources method 41
Negotiating connection resources example 63
Normative references 9

O

Overview 10

P

Parameters - security index 66
Partner roles 10
partner state 24
Poke method 32
PokeW method 46
Preconditions 14
Prerequisites 14
Primary partner example 56
Primary session request 52
Problem session teardown request 54
Product behavior 71
Protocol sequences - messages 17

R

References
informative 10
normative 9

Relationship to other protocols 14
Resource allocation request 54
Resources - session 13
ResourceType enumeration 21
RPC endpoint 11

S

Secondary partner example 59
Secondary session request 53
Security

implementer considerations 66
messages 17
parameter index 66

SendReceive method 42
Sequencing rules

client 52
common 29
server 32

Server
abstract data model 30
initialization 31
local events 50
message processing 32
sequencing rules 32
timer events 50
timers 31

Session
forced teardown request 54
message send request 55

object 27
primary request 52
problem teardown request 54
request 52
resource allocation request 54
secondary request 53
setup timer (section 3.2.2.1 28, section 3.2.5.1

30)
state 25
teardown timer (section 3.2.2.2 28, section

3.2.5.2 30)
Session object 27
SessionRank enumeration 21
Sessions

establishing 12
lifecycle 11
messages 13
negotiating resources 13
terminating 14

Setup timer - session (section 3.2.2.1 28, section
3.2.5.1 30)

Standards assignments 16

T

Teardown timer - session (section 3.2.2.2 28,
section 3.2.5.2 30)

TearDownContext method 43
TearDownType enumeration 22
Terminating session by primary partner example 64
Terminating session by secondary partner example

65
Terminating session examples 63
Timer events

client 52
common 30
server 50

Timers
client 51
common 28
server 31

Tracking changes 77
Transport - message 17

U

UUID 21

V

Vendor-extensible fields 16
Versioning (section 1.7 15, section 3.1 23)

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Identifiers and Partner Roles
	1.3.2 Finding the RPC Endpoint and Constructing a Binding Handle
	1.3.3 Session Lifecycle
	1.3.3.1 Establishing a Session
	1.3.3.2 Negotiating Resources
	1.3.3.3 Sending and Receiving Messages
	1.3.3.4 Terminating a Session

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.1.1 Protocol Sequences
	2.1.2 Endpoints
	2.1.3 Security

	2.2 Common Data Types
	2.2.1 BIND_INFO_BLOB
	2.2.2 BIND_VERSION_SET
	2.2.3 BOUND_VERSION_SET
	2.2.4 COM_PROTOCOL
	2.2.5 HRESULT
	2.2.6 GUID/UUID
	2.2.7 RESOURCE_TYPE
	2.2.8 SESSION_RANK
	2.2.9 TEARDOWN_TYPE
	2.2.10 Constants Used in Method Definitions

	3 Protocol Details
	3.1 Protocol Versioning
	3.2 Common Details
	3.2.1 Abstract Data Model
	3.2.1.1 Partner State
	3.2.1.2 Session State
	3.2.1.3 Cleaning Up a Session Object
	3.2.1.4 Name Object
	3.2.1.4.1 Name Object Comparison

	3.2.2 Timers
	3.2.2.1 Session Setup Timer
	3.2.2.2 Session Teardown Timer

	3.2.3 Initialization
	3.2.3.1 Initialization By a Higher-Level Protocol
	3.2.3.2 Initialization By the Protocol

	3.2.4 Message Processing Events and Sequencing Rules
	3.2.5 Timer Events
	3.2.5.1 Session Setup Timer
	3.2.5.2 Session Teardown Timer

	3.2.6 Other Local Events

	3.3 IXnRemote Server Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Message Processing Events and Sequencing Rules
	3.3.4.1 Poke (Opnum 0)
	3.3.4.2 BuildContext (Opnum 1)
	3.3.4.2.1 Primary
	3.3.4.2.2 Secondary

	3.3.4.3 NegotiateResources (Opnum 2)
	3.3.4.4 SendReceive (Opnum 3)
	3.3.4.5 TearDownContext (Opnum 4)
	3.3.4.5.1 Problem
	3.3.4.5.2 Primary
	3.3.4.5.3 Secondary

	3.3.4.6 BeginTearDown (Opnum 5)
	3.3.4.7 PokeW (Opnum 6)
	3.3.4.8 BuildContextW (Opnum 7)

	3.3.5 Timer Events
	3.3.6 Other Local Events
	3.3.6.1 Context Handle Rundown

	3.4 IXnRemote Client Details
	3.4.1 Abstract Data Model
	3.4.2 Timers
	3.4.2.1 RPC Call Timer

	3.4.3 Initialization
	3.4.4 Message Processing Events and Sequencing Rules
	3.4.5 Timer Events
	3.4.5.1 RPC Call Timer

	3.4.6 Other Local Events
	3.4.6.1 New Session Requested
	3.4.6.1.1 Primary
	3.4.6.1.2 Secondary

	3.4.6.2 Forced Session Teardown Requested
	3.4.6.3 Problem Session Teardown Requested
	3.4.6.4 Resource Allocation Requested
	3.4.6.5 Message Send Requested

	4 Protocol Examples
	4.1 Initiating a Session as Primary Partner
	4.2 Initiating a Session as Secondary Partner
	4.3 Negotiating Connection Resources
	4.4 Terminating a Session
	4.4.1 Terminating a Session by a Primary Partner
	4.4.2 Terminating a Session by a Secondary Partner

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

