[MS-PSDP]:

Proximity Service Discovery Protocol Specification

Intellectual Property Rights Notice for Open Specifications Documentation

- **Technical Documentation.** Microsoft publishes Open Specifications documentation for protocols, file formats, languages, standards as well as overviews of the interaction among each of these technologies.
- Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you may make copies of it in order to develop implementations of the technologies described in the Open Specifications and may distribute portions of it in your implementations using these technologies or your documentation as necessary to properly document the implementation. You may also distribute in your implementation, with or without modification, any schema, IDL's, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications.
- No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
- Patents. Microsoft has patents that may cover your implementations of the technologies described in the Open Specifications. Neither this notice nor Microsoft's delivery of the documentation grants any licenses under those or any other Microsoft patents. However, a given Open Specification may be covered by Microsoft's Open Specification Promise (available here: http://www.microsoft.com/interop/osp) or the Community Promise (available here: http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if the technologies described in the Open Specifications are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting iplg@microsoft.com.
- **Trademarks.** The names of companies and products contained in this documentation may be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights.
- **Fictitious Names.** The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments you are free to take advantage of them. Certain Open Specifications are intended for use in conjunction with publicly available standard specifications and network programming art, and assumes that the reader either is familiar with the aforementioned material or has immediate access to it.

Revision Summary

Date	Revision History	Revision Class	Comments
01/25/2008	1.0	Major	WSPP Initial Availability
03/14/2008	1.0.1	Editorial	Revised and edited the technical content.
06/20/2008	1.1	Minor	Updated the technical content.
07/25/2008	1.2	Minor	Updated the technical content.
08/29/2008	1.2.1	Editorial	Revised and edited the technical content.
10/24/2008	1.3	Minor	Updated the technical content.
12/05/2008	1.3.1	Editorial	Revised and edited the technical content.
01/16/2009	1.3.2	Editorial	Revised and edited the technical content.
02/27/2009	1.3.3	Editorial	Revised and edited the technical content.
04/10/2009	1.3.4	Editorial	Revised and edited the technical content.
05/22/2009	1.4	Minor	Updated the technical content.
07/02/2009	1.4.1	Editorial	Revised and edited the technical content.
08/14/2009	1.4.2	Editorial	Revised and edited the technical content.
09/25/2009	1.5	Minor	Updated the technical content.
11/06/2009	1.6	Minor	Updated the technical content.
12/18/2009	1.6.1	Editorial	Revised and edited the technical content.
01/29/2010	1.7	Minor	Updated the technical content.
03/12/2010	1.8	Minor	Updated the technical content.
04/23/2010	1.8.1	Editorial	Revised and edited the technical content.
06/04/2010	2.0	Major	Updated and revised the technical content.
07/16/2010	2.0	No change	No changes to the meaning, language, or formatting of the technical content.
08/27/2010	2.0	No change	No changes to the meaning, language, or formatting of the technical content.
10/08/2010	2.0	No change	No changes to the meaning, language, or formatting of the technical content.
11/19/2010	2.0	No change	No changes to the meaning, language, or formatting of the technical content.

Release: Friday, February 4, 2011

Date	Revision History	Revision Class	Comments
01/07/2011	2.0	No change	No changes to the meaning, language, or formatting of the technical content.
02/11/2011	2.0	No change	No changes to the meaning, language, or formatting of the technical content.

Contents

1	Introduction	
	1.1 Glossary	5
	1.2 References	6
	1.2.1 Normative References	6
	1.2.2 Informative References	6
	1.3 Overview	
	1.4 Relationship to Other Protocols	
	1.5 Prerequisites/Preconditions	
	1.6 Applicability Statement	
	1.7 Versioning and Capability Negotiation	
	1.8 Vendor-Extensible Fields	
	1.9 Standards Assignments	
	1.5 Standards 703ignments	0
2	Messages	9
	2.1 Transport	
	2.2 Message Syntax	
	2.2.1 Structure of the Discovery Information Element	
	2.2.2 Calculation of the Format Identifier Hash	
3	Protocol Details	11
_	3.1 Server Details	
	3.1.1 Abstract Data Model	
	3.1.2 Timers	
	3.1.3 Initialization	
	3.1.4 Higher Layer-Triggered Events	
	3.1.5 Message Processing Events and Sequencing Rules	
	3.1.5.1 Configuration of a PSD Information Element	
	3.1.5.2 Cancellation of a PSD Information Element	
	3.1.6 Timer Events	
	3.1.7 Other Local Events	
	3.2 Client Details	
	3.2.1 Abstract Data Model	
	3.2.2 Timers	
	3.2.3 Initialization	
	3.2.4 Higher-Layer Triggered Events	
	3.2.5 Message Processing Events and Sequencing Rule	
	3.2.6 Timer Events	
	3.2.7 Other Local Events	18
_		
4	Protocol Examples	19
5	Cognitiv	21
3		
	5.1 Security Considerations for Implementers	
	5.2 Index of Security Parameters	21
_	Annondix At Droduct Dobavior	22
O	Appendix A: Product Behavior	22
7	Change Tracking	22
•	Change Hacking	23
8	Index	24
_		

1 Introduction

This specification defines a protocol that is referred to as the Proximity Service Discovery Protocol. The Proximity Service Discovery Protocol allows a client to discover services in its physical proximity, which is defined by the radio range.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

access point
hash function
keyed-hash Message Authentication Code
Message Authentication Code sublayer management entity (MLME)
local area network (LAN)
station (STA)
station management entity (SME)
Unicode
URI

The following terms are specific to this document:

- **ad hoc network:** A self-configuring wireless network of mobile routers (and associated hosts) that are connected by wireless links, the union of which form an arbitrary topology. See [IEEE802.11-2007].
- **basic service set (BSS):** A set of **stations** controlled by a single coordination function, as defined in [IEEE802.11-2007] section 3.7.
- **hash:** A term that refers to either a **hash function**, the value computed by such a function, or the act of computing such a value.
- **independent basic service set (IBSS):** A **basic service set (BSS)** that is an autonomous network, as defined in [IEEE802.11-2007]. An **IBSS** does not provide access to a distribution system.
- **information element (IE):** Within 802.11 management frames, information elements are fields used to encode variable-length mandatory and all optional body components, as defined in [IEEE802.11-2007] section 7.3.
- **Medium Access Control (MAC):** A data communication protocol sublayer that is part of the seven-layer OSI model data-link layer (layer 2). It provides addressing and channel access control mechanisms that make it possible for several terminals or network nodes to communicate within a multipoint network, typically a **local area network (LAN)**.
- **Medium Access Control (MAC) protocol data unit (MPDU):** The unit of data exchanged between two peer **MAC** entities using the services of the physical layer.
- **namespace:** An abstract container that provides context for the items (names, technical terms, or words) that it holds and allows disambiguation of items that have the same name (residing in different **namespaces**).
- octet: A group of 8 bits often referred to as a byte.

- **Organizationally Unique Identifier (OUI):** A unique 24-bit string that is assigned to computer hardware manufacturers, as specified in [IEEE OUI].
- **Secure Hash Algorithm (SHA):** A **hash function** that refers to any of the five Federal Information Processing Standards Publications (FIPS PUBS)-approved algorithms for computing a condensed digital representation (known as a message digest) that is, to a high degree of probability, unique for a specified input data sequence (the message). For more information, see [SHA256].
- **service access point (SAP):** An identifying label for network endpoints that are used in Open Systems Interconnection (OSI) networking. The **SAP** is a conceptual location at which one OSI layer can request the services of another OSI layer.
- MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will assist you in finding the relevant information. Please check the archive site, http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an additional source.

[IEEE802.11-2007] Institute of Electrical and Electronics Engineers, "Standard for Information Technology - Telecommunications and Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications", ANSI/IEEE Std 802.11-2007, http://standards.ieee.org/getieee802/download/802.11-2007.pdf

Note There is a charge to download this document.

[IEEE OUI] IEEE Standards Association, "IEEE OUI Registration Authority", February 2007, http://standards.ieee.org/regauth/oui/oui.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

[RFC3986] Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986, January 2005, http://www.ietf.org/rfc/rfc3986.txt

[RFC4634] Eastlake III, D., and Hansen, T., "US Secure Hash Algorithms (SHA and HMAC-SHA)", RFC 4634, July 2006, http://www.ietf.org/rfc4634.txt

[SHA256] National Institute of Standards and Technology, "FIPS 180-2, Secure Hash Standard (SHS)", August 2002, http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary", March 2007.

[UPNPARCH1] UPnP Forum, "UPnP Device Architecture 1.0", July 2006, http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0-20080424.pdf

[WS-Discovery] Beatty, J., Kakivaya, G., Kemp D., et al., "Web Services Dynamic Discovery (WS-Discovery)", April 2005, http://specs.xmlsoap.org/ws/2005/04/discovery/ws-discovery.pdf

If you have any trouble finding [WS-Discovery], please check here.

1.3 Overview

The purpose of the Proximity Service Discovery Protocol is to convey service discovery information, such as service advertisements, as part of Beacon frames, as specified in [IEEE802.11-2007]. Beacon frames are periodically broadcast by **access points** and **stations (STAs)**, as specified in [IEEE802.11-2007], that operate in **ad hoc network** mode. According to the IEEE802.11 protocol, stations in radio range, that is, in proximity, receive and process Beacon frames during a normal channel scan operation.

The Beacon frame can contain single or multiple proprietary **information elements (IEs)** that carry discovery information pertaining to the services that the device offers. Proprietary information elements are identified by their Element IDs and are further distinguished by an IEEE-administered **Organizationally Unique Identifier (OUI)** and a predefined OUI Type value.

A format identifier describes the format of the information carried in the information element. To ensure uniqueness while circumventing the need for central administration of format identifiers, a string in the form of a **URI**, as specified in [RFC3986], could be used to distinguish the format. However, because the transmission must be efficient and space in the information element is limited, the string is not actually transmitted; instead, its **hash** is transmitted. On the client, which is the receiving side of the beacon, the hash is matched against a known set of format identifiers.

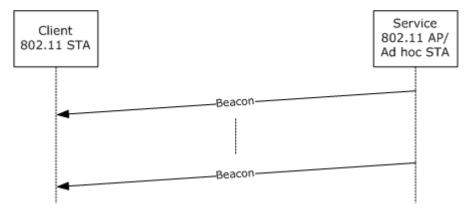


Figure 1: PSDP client/server communication

The preceding diagram illustrates the relationship between a service-bearing device, which is an AP or ad hoc network station, as specified in [IEEE802.11-2007], and the client that acts as a station, as specified in [IEEE802.11-2007], in ad hoc network or infrastructure mode.

A client that is in discovery mode (that is, searching for a service in its physical proximity) picks up the beacon during its regular scan intervals. It processes the beacon for known discovery information elements based on the OUI and OUI Type, <1> and it notifies the application if the format identifier that is represented by the hash matches any known format identifiers. Data carried in the information element is opaque to the protocol. <2> It is the responsibility of the application to resolve possible hash collisions. The application can do so by examining the data carried in the information element or by re-issuing a discovery request at a higher layer by using the full format identifier string after a connection has been established.

The inclusion of service discovery information in broadcast messages enables the discovery of services before connecting to the service-hosting device.

1.4 Relationship to Other Protocols

The Proximity Service Discovery Protocol extends the IEEE802.11 standard, whose conventions are applied as specified in [IEEE802.11-2007]. The Proximity Service Discovery Protocol introduces a specific use for one of that protocol's reserved information element types, and it defines additional MAC layer abstract service primitives for managing the configuration, transmission, and receipt of these new information elements.

1.5 Prerequisites/Preconditions

In the Proximity Service Discovery Protocol, the service-hosting device acts as an AP or ad hoc network station and includes an additional information element (discovery information element) in its periodically transmitted beacon. The client acts as a station in infrastructure or ad hoc network mode and is able to extract the discovery information element, as specified in section 2.2, from the received beacon.

1.6 Applicability Statement

The Proximity Service Discovery Protocol works with higher-layer discovery protocols, such as the Simple Service Discovery Protocol, as specified in [UPNPARCH1] and Web Services Dynamic Discovery (WS-Discovery), as specified in [WS-Discovery]. The Proximity Service Discovery Protocol facilitates discovery before connecting on a wireless medium.

The discovery advertisements of these related protocols can be mapped into discovery information elements that are conveyed in IEEE802.11 beacons. A unique format identifier can be defined for each higher-layer protocol based on the URI **namespace** of the respective higher-layer discovery protocol.

1.7 Versioning and Capability Negotiation

None.

1.8 Vendor-Extensible Fields

Vendors can use any combination of data for the content of the discovery information element. However, vendors SHOULD define a valid URI to identify a proprietary format. Vendors SHOULD NOT use URIs that represent well-known namespaces when they devise proprietary formats.

1.9 Standards Assignments

Parameter	Value	Reference
Vendor-specific Element ID	221	As specified in [IEEE802.11-2007]
OUI	00-50-f2	As specified in [IEEE OUI]

2 Messages

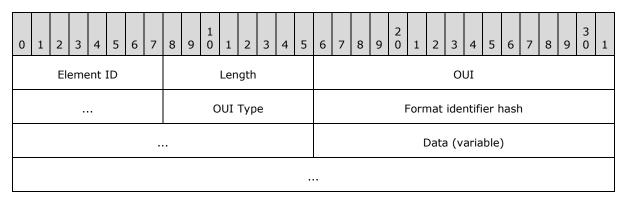
The following sections specify how Proximity Service Discovery Protocol messages are transported and also specify Proximity Service Discovery Protocol message syntax.

2.1 Transport

Single or multiple discovery information elements are transmitted as part of IEEE802.11 Beacon frames or Probe Response frames.<a><4> There are no requirements for the order of the information elements. However, the size of individual information elements MUST NOT exceed 255 **octets**, including the Element ID, the length field, the Organizationally Unique Identifier (OUI), the OUI Type, the format identifier hash, and the discovery data.

The format of information elements is specified in [IEEE802.11-2007] section 7.3.2. The format and processing of Beacon and Probe Response frames are also specified in [IEEE802.11-2007].

To improve transmission behavior and to reduce processing and hardware requirements, it is best if the total size of the discovery information element is kept small.


If multiple information elements are included in the Beacon or Probe Response frame, the maximum size of the Beacon frame, as specified in [IEEE802.11-2007], MUST NOT be exceeded.

2.2 Message Syntax

The following sections specify Proximity Service Discovery Protocol message syntax.

2.2.1 Structure of the Discovery Information Element

The structure of the discovery information element is shown in the following packet.

Element ID (1 byte): Contains the ID of the element as specified in [IEEE802.11-2007] section 7.3.2. It MUST contain a value of 221, identifying a vendor-specific element (as specified in [IEEE802.11-2007] table 26) in which the vendor is identified by an IEEE-issued OUI in a subsequent field.

Length (1 byte): Contains the length of the Data field in octets plus 8.

OUI (3 bytes): The IEEE-assigned OUI for Microsoft. The **OUI** field MUST contain a value of (00:50:f2) as specified in [IEEE OUI].

OUI Type (1 byte): A packet subtype within the universe specific to a particular OUI value. For the Proximity Service Discovery Protocol, the OUI Type MUST contain a value of 6.

Format identifier hash (4 bytes): A value that identifies the format of the data, as specified in section 2.2.2.

Data (variable): Contains user-defined data for discovery.

The transmission order follows the conventions for transmission of **MAC protocol data units** (**MPDUs**), as specified in [IEEE802.11-2007] section 7.

The message format of the Beacon frame is as specified in [IEEE802.11-2007] section 7.2.3.1. The message format of the Probe Response frame is as specified in [IEEE802.11-2007] section 7.2.3.9.

2.2.2 Calculation of the Format Identifier Hash

The **format identifier hash** is represented by the bits 0...31 of **keyed-hash message authentication code (HMAC)** (as specified in [RFC4634]) based on the SHA-256 algorithm, as specified in [SHA256], over the format identifier string, as specified in [RFC4634].

Note Sample code for the calculation of the HMAC is as specified in [RFC4634].

The key used is the "NULL" key (NULL pointer to the authentication key, and zero length authentication key per the source code in [RFC4634]).

The characters and spaces of the format identifier string are encoded as **Unicode** UTF-16 using little-endian representation.

The hash of the format identifier is transmitted beginning with the first octet of the octet array.

For sample format identifier strings and their corresponding hashes, see section $\underline{4}$.

3 Protocol Details

The following sections specify details of the Proximity Service Discovery Protocol, including semantics of the conceptual service primitives for the client and server.

On both the client and the server, protocol primitives are exchanged as layer management primitives by the **station management entity (SME)** and the **Message Authentication Code sublayer management entity (MLME)** through the MLME **SAP**. These exchanges enable the server and client to configure and receive discovery information elements.

This layer management model is intended to facilitate the specification of the protocol. This document does not mandate that implementations adhere to this model as long as their external behavior is consistent with that described in this document. The layer management model is identical to the model that is specified in [IEEE802.11-2007] section 10.1. Definitions of primitives and terms are as specified in [IEEE802.11-2007] section 10. The following figure illustrates the layer model and represents a subset of Figure 10-1, as specified in [IEEE802.11-2007].

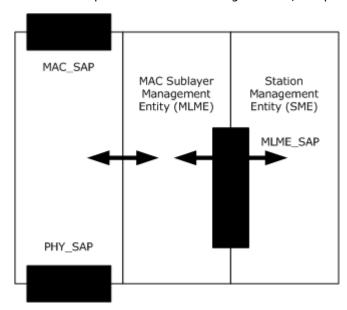


Figure 2: Proximity Service Discovery Protocol (PSDP) dependencies

The <u>Server Details (section 3.1)</u> and <u>Client Details (section 3.2)</u> sections of this document describe the conceptual MLME primitives that are exchanged with the station management entity (SME) in order for the server and client to configure and receive discovery information elements.

3.1 Server Details

The server function MUST be hosted by either an IEEE802.11 AP or an ad hoc network station. <5>

To compensate for an unreliable transmission over the wireless medium, the information elements SHOULD be contained in multiple successive Beacon frames.

The following figure is a top-level state diagram for the server. In the **Enabled** state, the server is configured with discovery data for one or more format identifiers.

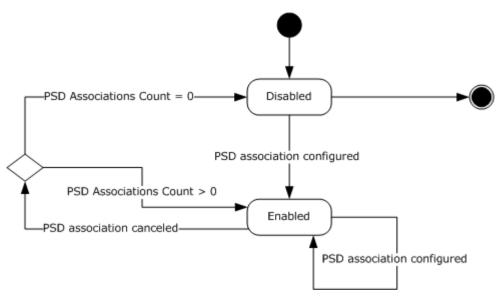


Figure 3: High-level diagram of the server states

Two conceptual primitives configure the discovery data at the server: MLME-PSD-Transmit.request and MLME-PSD-Transmit.confirm. The following figure shows a state diagram for the configuration of discovery data for a particular format identifier.

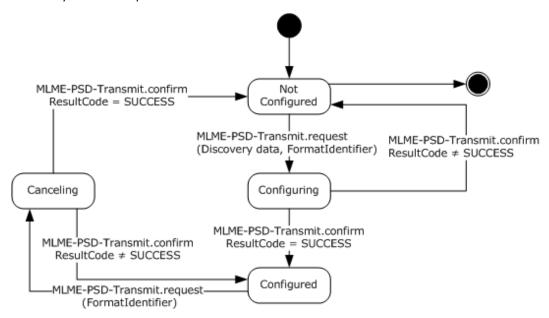


Figure 4: State diagram for the configuration of a PSD information element at the server

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation maintains to participate in this protocol. The described organization is provided to facilitate the explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this document.

High-level server states:

Disabled: In this state, no PSD information elements are configured.

Enabled: In this state, the server is configured with one or more PSD information elements in order to advertise in Beacons and Probe Responses.

PSD IEs Table: A table of configured PSD information elements. Each information element includes discovery data and the hash of a format identifier.

PSD IEs Count: The number of PSD information elements in the PSD IEs Table.

Process states for the configuration of a PSD IE (for a given format identifier):

Not Configured: In this state, the server is not configured with a PSD IE for the format identifier.

Configuring: In this state, the server attempts to configure a given PSD IE. If successful, it adds an entry into the **PSD IEs Table** for the given PSD IE, increments **PSD IEs Count** and transitions to **Configured**. If not successful, the state goes back to **Not Configured**.

Configured: In this state, the server includes all the PSD IEs within the **PSD IEs Table** in 802.11 Beacon frames and 802.11 Probe Responses.

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Higher Layer-Triggered Events

The MLME-PSD-Transmit.request primitive is generated by the SME as a result of a higher layer event in order to start transmitting the discovery information element as part of any Beacon and Probe Responses that are subsequently transmitted. A request that does not contain any discovery data cancels the transmission of a previously registered discovery information element for the same format identifier.

The contents of a discovery information element and its format identifier are passed to the MLME SAP by using the MLME-PSD-Transmit.request primitive.

MLME-PSD-Transmit.request
(Discovery data,
FormatIdentifier)

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 Configuration of a PSD Information Element

Upon receipt of the MLME-PSD-Transmit.request primitive including discovery data, the configuration process enters the **Configuring** state. If the primitive is successful, a proximity service discovery (PSD) information element is created, as specified in section 2.2, and added to the **PSD IEs Table**. The hash of the format identifier, in addition to the discovery data, is included in the information element. The MLME issues an MLME-PSD-Transmit.confirm that reflects the result of the MLME-PSD.Transmit.request. If the result is not equal to success, the configuration process returns to the **Not Configured** state. If the result is equal to success, the configuration process enters the **Configured** state. Upon entering this state of the configuration process, the server enters the **Enabled** state (if it is not already in the **Enabled** state) and the information element MUST be transmitted in all IEEE802.11 Beacon frames following the request. It SHOULD also be included in IEEE802.11 Probe Responses. The rules for sending a Probe response are unchanged from the rules specified in [IEEE802.11-2007] section 11.1.3.2.1.

A request that does not contain any discovery data cancels the transmission of a previously registered discovery information element for the same format identifier.

Note that in the Proximity Service Discovery Protocol, it is the responsibility of the application to protect itself against hash collisions.

The MLME-PSD-Transmit.confirm primitive is generated by the MLME to indicate the commencement of the Beacon and Probe Response transmission containing the information element. It is not generated until the information element configuration is attempted.

The primitive parameters are as follows:

```
MLME-PSD-Transmit.confirm
(ResultCode)
```

The ResultCode indicates the success of the MLME-PSD-Transmit.request and is an enumeration of the following:

- SUCCESS
- Invalid Parameters
- No resources

If the ResultCode is equal to success, the effect of primitive is to notify the SME that the discovery information element will be included in subsequent Beacon and Probe Response transmissions. Otherwise, the effect of the primitive is to notify the SME that the PSD IE was not configured correctly and will not be included in subsequent Beacon and Probe Response transmissions.

3.1.5.2 Cancellation of a PSD Information Element

Upon receipt of the MLME-PSD-Transmit.request primitive specifying a format identifier present in the **PSD IEs Table**, but with no discovery data, the configuration process enters the **Canceling** state where the PSD information element is removed from the table. As a result, the server no longer includes the information element in the 802.11 Beacons and Probe Responses. An MLME-PSD-Transmit.confirm is generated to indicate the result of the MLME-PSD.Transmit.request. Regardless of the result, the configuration process enters the **Not Configured** state. If no PSD information elements remain in the **PSD IEs Table**, the server enters the **Disabled** state.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

3.2 Client Details

The client SHOULD<6> regularly scan its radio spectrum for beacons. When a beacon is received, the client SHOULD examine it for the presence of discovery information elements, and if any are present, compare their format identifier hashes with the known hashes of format identifiers that were previously registered (via MLME-PSD-Config.request). If the client finds a match, it SHOULD notify the client discovery application. The following figure shows a top-level state diagram for the client. Format identifiers are registered via MLME-PSD-Config.request.

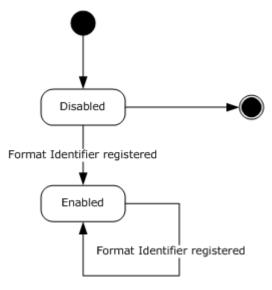


Figure 5: High-level diagram of client states

The following figure shows a state diagram for the registration of a format identifier at the client.

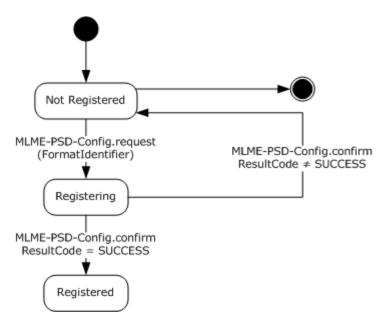


Figure 6: State diagram for the registration of a format identifier at the client

3.2.1 Abstract Data Model

Format Identifiers Table: A table of format identifiers.

High-Level Client states:

Enabled: In this state, the client has one or more registered format identifiers.

Disabled: In this state, the client has no registered format identifiers.

Process states for the registration a format identifier:

Not Registered: In this state, the format identifier is not registered at the client.

Registering: In this state, the client attempts to add the format identifier to the Format Identifier Table.

Registered: In this state, the client SHOULD examine received 802.11 Beacons or Probe Responses for the presence of the discovery information elements with a format identifier hash that matches the registered identifier. Matches found should then be delivered to the client discovery application.

3.2.2 Timers

None.

3.2.3 Initialization

The Format Identifiers Table is initially empty.

3.2.4 Higher-Layer Triggered Events

The MLME-PSD-Config.request primitive is generated by the SME to register the format identifier of a discovery information element that should be indicated to the SME. Multiple MLME-PSD-Config.requests may be sent to register multiple format identifiers.

The format identifier is passed to the MLME SAP by using the following primitive:

MLME-PSD-Config.request
(FormatIdentifier)

3.2.5 Message Processing Events and Sequencing Rule

Upon receipt of the MLME-PSD-Config.request primitive, the registration process enters the **Registering** state. In this state, if the result of the MLME-PSD-Config.request is successful, the format identifier specified in MLME-PSD-Config.request primitive is added to Format Identifiers Table. In addition, MLME-PSD-Config.confirm is generated and sent to the SME to indicate the result of the in MLME-PSD-Config.request. If the result is equal to success, the registration process enters the **Registered** state. If at least one format identifier is registered, the client enters the **Enabled** state. Subsequently received Beacon and Probe Response frames are examined for discovery information elements and matched against the registered format identifiers that have been registered. Discovery information elements are passed to the SME by means of the MLME-PSD-Receive.indication. Duplicate information elements MAY be discarded by the receiver.

If a service is advertised by a station that operates under the rules of the **IBSS**, other stations that are members of the same IBSS MUST NOT replicate the discovery information elements when they transmit their beacons. This differs from the rules set forth in [IEEE802.11-2007] section 11.1.4, whereby the receiving STA would adopt PSD information elements received from other STAs in the same IBSS. There is no such requirement in a **BSS** (infrastructure mode).

The MLME-PSD-Config.confirm primitive is generated by the MLME upon completion of an MLME-PSD-Config.request operation to indicate to the SME the success or failure of format identifier registration. It is not generated until the operation completes.

The primitive parameters are as follows:

MLME-PSD-Config.confirm
(ResultCode)

The ResultCode indicates the success of the MLME-PSD-Config.request and is an enumeration of the following:

- SUCCESS
- Invalid Parameters
- NOT Supported
- No resources

The MLME-PSD-Receive.indication primitive is generated by the MLME upon receipt of a Beacon or Probe Response. The primitive indicates to the SME that a discovery information element was contained in the Beacon or Probe Response that matches a format identifier that was previously registered by using the MLME-PSD.Config.request primitive. If the Beacon or Probe Response

17 / 25

[MS-PSDP] — v20110204 Proximity Service Discovery Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

contains more than one such information element, multiple MLME-PSD-Receive.indication primitives will be generated.

The contents of the received discovery information element and its format identifier are passed to the SME through the MLME SAP by using the following primitive:

MLME-PSD-Receive.indication (Discovery data, Format Identifier)

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

4 Protocol Examples

This section describes example operations that are used in common scenarios to illustrate the function of the Proximity Service Discovery Protocol.

Examples showing computation of format identifiers from namespace URIs:

```
String: "http://schemas.xmlsoaps.org/ws/2004/10/discovery"
```

First (leftmost) 4 octets of HMAC-SHA256 (format id) of the previous string: 0xF8 0xCB 0x35 0x15.

```
String: "http://schemas.microsoft.com/networking/discoveryformat/v2"
```

First (leftmost) 4 octets of HMAC-SHA256 (format id) of the previous string: 0xCF 0xF1 0x64 0x17.

Note The transmission order is: The first (leftmost) octet is transmitted first.

If the "shatest" program as specified in <a>[RFC4634] is used to produce the format identifier from a string, the procedure is as follows:

- 1. Create a testfile containing the string in UTF-16 little endian format.
- 2. Call shatest: shatest -h 2 -f testfile -k ""

The following is an example of the vendor extension IE conveyed in a Beacon or Probe Response frame for the format identifier string "test" (without quotes) and 8 octets data in the payload.

Offset (hex)	Value (hex)	Field
0000	DD	Element ID
0001	10	Length
0002	00	OUI (Microsoft)
0003	50	
0004	F2	
0005	06	OUI Type
0006	9C	Format Identifier hash of "test"
0007	19	
0008	EB	
0009	4A	
000A	01 02	Data (8 octets in example)
	03 04	
	05 06	
0010	07 08	

Figure 7: Example of the vendor extension IE

5 Security

The following sections specify security considerations for implementers of the Proximity Service Discovery Protocol.

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental software. References to product versions include released service packs:

- Windows Vista® operating system
- Windows Server® 2008 operating system
- Windows® 7 operating system
- Windows Server® 2008 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears with the product version, behavior changed in that service pack or QFE. The new behavior also applies to subsequent service packs of the product unless otherwise specified. If a product edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not follow the prescription.

- <1> Section 1.3: The OUI Type that Microsoft has defined for this protocol is 6.
- <2> Section 1.3: Microsoft does not define any data for Windows nor uses any of the capabilities of this protocol for its own purposes.
- <3> Section 1.3: Windows does not use this protocol for service discovery.
- <4> Section 2.1: Windows limits the number of discovery information elements to 5.
- <5> Section 3.1: Windows Vista and Windows Server 2008 only support operation in ad hoc network mode.
- <6> Section 3.2: Windows Vista and Windows Server 2008 only support operation in ad hoc network mode.

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last release.

8 Index

A	Local events
Abstract data model	client 18 server 15
client 16	
server 12 Applicability 8	М
Applicability 8	Message processing
C	client 17
Capability negotiation 8	server PSD information element
Change tracking 23	cancellation 14
Client	configuration 14
abstract data model 16 higher-layer triggered events 17	Messages discovery information element - structure 9
initialization 16	format identifier hash - calculation 10
local events 18	overview 9
message processing 17 overview 15	syntax 9 transport 9
sequencing rules 17	
timer events 18	N
timers 16	Normative references 6
D	
Data model - abstract	0
client 16	Overview (synopsis) 7
server 12	P
<u>Discovery Information Element packet</u> 9	P
E	Parameters - security 21
Examples - overview 19	Preconditions 8 Prerequisites 8
<u>LXamples - overview</u> 19	Product behavior 22
F	В
Fields - vendor-extensible 8	R
Format identifier hash - calculation 10	References
6	informative 6 normative 6
G	Relationship to other protocols 8
Glossary 5	
н	S
	Security
Higher-layer triggered events client 17	implementer considerations 21 parameter index 21
server 13	Sequencing rules
	client 17
I	server PSD information element
<u>Implementers - security considerations</u> 21	cancellation 14
Index of security parameters 21	configuration 14
<u>Informative references</u> 6 <u>Initialization</u>	Server abstract data model 12
client 16	higher-layer triggered events 13
server 13 Introduction 5	initialization 13 local events 15
Introduction 3	message processing
L	PSD information element

```
cancellation 14
       configuration 14
  overview 11
  sequencing rules
    PSD information element
       cancellation 14
       configuration 14
  timer events 15
  timers 13
Standards assignments 8
Syntax - message 9
Т
Timer events
  client 18
  server 15
Timers
  client 16
  server 13
<u>Tracking changes</u> 23
<u>Transport - message</u> 9
Triggered events
  client 17
  server 13
Vendor-extensible fields 8
Versioning 8
```