

1 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

[MS-MSRP]:
Messenger Service Remote Protocol Specification

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft's Open Specification Promise (available here:
http://www.microsoft.com/interop/osp) or the Community Promise (available here:
http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if
the technologies described in the Open Specifications are not covered by the Open Specifications

Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the

aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

2 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Revision Summary

Date

Revision

History

Revision

Class Comments

03/14/2007 1.0 Major Updated and revised the technical content.

04/10/2007 1.1 Minor Updated the technical content.

05/18/2007 2.0 Major New format

06/08/2007 2.0.1 Editorial Revised and edited the technical content.

07/10/2007 2.0.2 Editorial Revised and edited the technical content.

08/17/2007 3.0 Major Updated and revised the technical content.

09/21/2007 4.0 Major Made change to IDL.

10/26/2007 5.0 Major Updated and revised the technical content.

01/25/2008 5.0.1 Editorial Revised and edited the technical content.

03/14/2008 6.0 Major Updated and revised the technical content.

06/20/2008 6.0.1 Editorial Revised and edited the technical content.

07/25/2008 6.0.2 Editorial Revised and edited the technical content.

08/29/2008 6.0.3 Editorial Revised and edited the technical content.

10/24/2008 6.0.4 Editorial Revised and edited the technical content.

12/05/2008 6.1 Minor Updated the technical content.

01/16/2009 6.1.1 Editorial Revised and edited the technical content.

02/27/2009 6.1.2 Editorial Revised and edited the technical content.

04/10/2009 6.1.3 Editorial Revised and edited the technical content.

05/22/2009 6.2 Minor Updated the technical content.

07/02/2009 7.0 Major Updated and revised the technical content.

08/14/2009 7.0.1 Editorial Revised and edited the technical content.

09/25/2009 8.0 Major Updated and revised the technical content.

11/06/2009 8.0.1 Editorial Revised and edited the technical content.

12/18/2009 8.0.2 Editorial Revised and edited the technical content.

01/29/2010 9.0 Major Updated and revised the technical content.

03/12/2010 9.1 Minor Updated the technical content.

3 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Date

Revision

History

Revision

Class Comments

04/23/2010 10.0 Major Updated and revised the technical content.

06/04/2010 10.0.1 Editorial Revised and edited the technical content.

07/16/2010 10.0.1 No change No changes to the meaning, language, or formatting of

the technical content.

08/27/2010 10.0.1 No change No changes to the meaning, language, or formatting of

the technical content.

10/08/2010 10.0.1 No change No changes to the meaning, language, or formatting of

the technical content.

11/19/2010 10.0.1 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 10.0.1 No change No changes to the meaning, language, or formatting of

the technical content.

02/11/2011 10.0.1 No change No changes to the meaning, language, or formatting of

the technical content.

4 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Contents

1 Introduction ... 6
1.1 Glossary ... 6
1.2 References .. 6

1.2.1 Normative References ... 6
1.2.2 Informative References ... 7

1.3 Overview .. 7
1.4 Relationship to Other Protocols .. 8
1.5 Prerequisites/Preconditions ... 8
1.6 Applicability Statement ... 8
1.7 Versioning and Capability Negotiation ... 8
1.8 Vendor-Extensible Fields ... 8
1.9 Standards Assignments .. 9

2 Messages.. 10
2.1 Transport .. 10

2.1.1 RPC Transport .. 10
2.1.2 Mailslots .. 10
2.1.3 SMB ... 10

2.2 Message Syntax .. 11
2.2.1 Data Types .. 11

2.2.1.1 MSGSVC_HANDLE ... 11
2.2.2 Structures ... 11

2.2.2.1 MSG_INFO_0 ... 11
2.2.2.2 MSG_INFO_1 ... 12
2.2.2.3 MSG_INFO_0_CONTAINER ... 13
2.2.2.4 MSG_INFO_1_CONTAINER ... 13
2.2.2.5 MSG_ENUM_STRUCT ... 13
2.2.2.6 MSG_INFO ... 14

2.2.3 SMB Message Delivery Protocol .. 14
2.2.3.1 SMB_COM_SEND_MESSAGE Request and Response Messages 14

2.2.3.1.1 SMB_COM_SEND_MESSAGE Request Message .. 14
2.2.3.1.2 SMB_COM_SEND_MESSAGE Response Message 16

2.2.3.2 SMB_COM_SEND_START_MB_MESSAGE Request and Response Messages....... 16
2.2.3.2.1 SMB_COM_SEND_START_MB_MESSAGE Request Message 16
2.2.3.2.2 SMB_COM_SEND_START_MB_MESSAGE Response Message 17

2.2.3.3 SMB_COM_SEND_TEXT_MB_MESSAGE Request and Response Messages 17
2.2.3.3.1 SMB_COM_SEND_TEXT_MB_MESSAGE Request Message 18
2.2.3.3.2 SMB_COM_SEND_TEXT_MB_MESSAGE Response Message 18

2.2.3.4 SMB_COM_SEND_END_MB_MESSAGE Request and Response Messages 19
2.2.3.4.1 SMB_COM_SEND_END_MB_MESSAGE Request Message 19
2.2.3.4.2 SMB_COM_SEND_END_MB_MESSAGE Response Message 19

3 Protocol Details .. 21
3.1 Name Management Protocol .. 21

3.1.1 Abstract Data Model ... 21
3.1.2 Timers .. 21
3.1.3 Initialization .. 21
3.1.4 Message Processing and Sequencing Rules .. 21

3.1.4.1 NetrMessageNameAdd (Opnum 0) .. 22
3.1.4.2 NetrMessageNameEnum (Opnum 1).. 22

5 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.4.3 NetrMessageNameGetInfo (Opnum 2) ... 24
3.1.4.4 NetrMessageNameDel (Opnum 3) ... 25
3.1.4.5 Sending NetrMessageNameAdd .. 25
3.1.4.6 Receiving NetrMessageNameAdd .. 26
3.1.4.7 Sending NetrMessageNameEnum .. 26
3.1.4.8 Receiving NetrMessageNameEnum .. 27
3.1.4.9 Sending NetrMessageNameGetInfo ... 27
3.1.4.10 Receiving NetrMessageNameGetInfo ... 28
3.1.4.11 Sending NetrMessageNameDel ... 28
3.1.4.12 Receiving NetrMessageNameDel ... 28

3.1.5 Timer Events ... 29
3.1.6 Other Local Events ... 29

3.2 Messaging Protocol .. 29
3.2.1 Abstract Data Model ... 29
3.2.2 Timers .. 30
3.2.3 Initialization .. 30
3.2.4 Message Processing and Sequencing Rules .. 30

3.2.4.1 NetrSendMessage (Opnum 0) ... 30
3.2.4.2 Sending NetrSendMessage ... 31
3.2.4.3 Receiving NetrSendMessage ... 31
3.2.4.4 Sending Mailslot Messages or SMB Messages ... 32
3.2.4.5 Receiving Mailslot Messages or SMB Messages ... 33

3.2.5 Timer Events ... 34
3.2.6 Other Local Events ... 34

4 Protocol Examples .. 35

5 Security .. 37
5.1 Security Considerations for Implementers ... 37
5.2 Index of Security Parameters .. 37

6 Appendix A: Full IDL ... 38
6.1 Appendix A.1: msgsvcsend.idl ... 38
6.2 Appendix A.2: msgsvc.idl .. 38

7 Appendix B: Product Behavior .. 41

8 Change Tracking... 44

9 Index ... 45

6 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1 Introduction

This document specifies the Messenger Service Remote Protocol. The Messenger Service Remote
Protocol is a set of remote procedure call (RPC) interfaces that instruct a server (referred to in
this document as a "message server") to perform one or more of the following tasks:

Deliver messages to a local or remote message server for display to a console user.

Manage the names for which the message server receives messages.

The message server does not maintain client state information.

It is recommended that this protocol not be implemented due to the lack of security features in the
protocol, as described in section 5.1.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

access control list (ACL)

client
endpoint
fully qualified domain name (FQDN)
local area network adapter (LANA)
mailslot
message server

NetBIOS name
NetBIOS suffix
opnum
original equipment manufacturer (OEM) character set
remote procedure call (RPC)
RPC dynamic endpoint

RPC protocol sequence

RPC server
RPC transport
server
Unicode
universally unique identifier (UUID)

The following terms are specific to this document:

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as

specified in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If

you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com

7 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
http://www.opengroup.org/public/pubs/catalog/c706.htm

[MS-DTYP] Microsoft Corporation, "Windows Data Types", January 2007.

[MS-ERREF] Microsoft Corporation, "Windows Error Codes", January 2007.

[MS-MAIL] Microsoft Corporation, "Remote Mailslot Protocol Specification", July 2006.

[MS-NBTE] Microsoft Corporation, "NetBIOS over TCP (NetBT) Extensions", May 2009.

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions", July 2006.

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol Specification", July 2006.

[MS-UCODEREF] Microsoft Corporation, "Windows Protocols Unicode Reference", July 2007.

[RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980,
http://www.ietf.org/rfc/rfc768.txt

[RFC1001] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Concepts and Methods", STD 19, RFC 1001, March 1987,
http://www.ietf.org/rfc/rfc1001.txt

[RFC1002] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP

Transport: Detailed Specifications", STD 19, RFC 1002, March 1987,
http://www.ietf.org/rfc/rfc1002.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary", March 2007.

[MSKB-330904] Microsoft Corporation, "Messenger Service Window That Contains an Internet
Advertisement Appears", February 2007, http://support.microsoft.com/kb/330904

[PIPE] Microsoft Corporation, "Named Pipes", http://msdn.microsoft.com/en-
us/library/aa365590.aspx

1.3 Overview

The Messenger Service Remote Protocol suite is designed to perform the following functions:

Receive and display short text messages to the console user. (This function is referred to in this

document as the "messaging protocol".)

Manage the names for which a message server receives messages. (This function is referred to in

this document as the "name management protocol".)

The name management protocol portion of the Messenger Service Remote Protocol is used to
manage the set of names for which the message server accepts messages. The operations in this

protocol are very simple, consisting of add, remove, and enumeration methods. The messaging
protocol portion of the Messenger Service Remote Protocol actually has several forms and runs over

http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-MAIL%5d.pdf
%5bMS-NBTE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-UCODEREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90490
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89940
http://go.microsoft.com/fwlink/?LinkId=90247
http://go.microsoft.com/fwlink/?LinkId=90247

8 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

mailslots over Server Message Block Protocol, as specified in [MS-SMB] and RPC dynamic
endpoints over User Datagram Protocol (UDP) (as specified in [RFC768]). For how the message

client selects the transport that is used for the messaging protocol, see section 3.2.

Typically, the Messenger Service Remote Protocol is used to send a short text message from a

server, such as a file server or print server, to a client machine; for example, to indicate that a print
job has completed or that a file server is shutting down and all of its clients should save their work
and disconnect. As such, the roles of client and server are reversed from typical protocols, with the
message server (recipient) of the messages often being the workstation machine and the message
client (sender) being a server-class machine.

1.4 Relationship to Other Protocols

The Messenger Service Remote Protocol suite is dependent on RPC (as specified in [C706]), the
Server Message Block (SMB) Protocol (as specified in [MS-SMB]), and the mailslot datagram
delivery service (as specified in [MS-MAIL]), which are its transports.

The Messenger Service Remote Protocol uses NetBIOS names (as specified in [RFC1001] section

14 and [RFC1002] section 4.1) to identify message recipients.

1.5 Prerequisites/Preconditions

The messenger service name management protocol is an RPC interface and, as a result, has the
prerequisites specified in [MS-RPCE] as being common to RPC interfaces. Both the message client
and the message server must have working RPC implementations.

The messenger service messaging protocol also uses the mailslot (as specified in [MS-MAIL])
datagram delivery mechanism and the CIFS Protocol (as specified in [MS-CIFS]) for delivering
messages to remote machines, and, therefore, it depends on this mailslot delivery mechanism being

operational before the messenger service begins operation. For mailslot operational requirements,
see [MS-MAIL] section1.5. For the mailslot delivery mechanism, see [MS-CIFS] section2.2.5.12.

1.6 Applicability Statement

The messenger service name management protocol is suitable only for managing simple NetBIOS
names. The messenger service messaging protocol is suitable only for short, human-readable
messages that require no security and have no delivery guarantees.<1>

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

Supported transports: The Messenger Service Remote Protocol uses RPC over UDP (as specified

in [MS-RPCE]), RPC over Named Pipes (for more information, see [PIPE]), SMB (as specified in
[MS-SMB]), and mailslots (as specified in [MS-MAIL]) for its transports.

Protocol version: This protocol's RPC interfaces have a version number of 1.0.

Security and authentication methods: See section 2.1.

Capability negotiation: None.

1.8 Vendor-Extensible Fields

The Messenger Service Remote Protocol does not include any vendor-extensible fields.

%5bMS-GLOS%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90490
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-SMB%5d.pdf
%5bMS-MAIL%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
%5bMS-RPCE%5d.pdf
%5bMS-MAIL%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-MAIL%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90247
%5bMS-SMB%5d.pdf
%5bMS-MAIL%5d.pdf

9 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1.9 Standards Assignments

There are no standards assignments directly associated with this protocol.

This protocol does depend on RPC and uses the following RPC UUIDs:

17FDD703-1827-4E34-79D4-24A55C53BB37 (for name management methods)

5A7B91F8-FF00-11D0-A9B2-00C04FB6E6FC (for the NetrSendMessage method)

This protocol does use NetBIOS for message delivery in some cases. If NetBIOS is used on a TCP/IP
network, UDP port 138 may be used, and NetBIOS may need to perform other functions such as
name resolution on other ports (as specified in [RFC1001] and [RFC1002]) to support this protocol.

When this protocol uses named pipes, the pipe name used is \PIPE\MSGSVC.

When this protocol uses mailslots for message delivery, the mailslot name used is \\recipient
name\MAILSLOT\MESSNGR where recipient name is the NetBIOS name of the intended recipient of
the message.

This protocol builds NetBIOS names using the convention defined in [MS-NBTE] section 1.8, with a
NetBIOS suffix value of 0x03.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
%5bMS-NBTE%5d.pdf
%5bMS-GLOS%5d.pdf

10 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2 Messages

2.1 Transport

This protocol suite has a variety of transports, the use of which is detailed in the following sections.
Implementations MAY use any one of the transports.

2.1.1 RPC Transport

The Messenger Service Remote Protocol MUST use either the RPC over UDP protocol sequence

(NCADG_IP_UDP) or the RPC over Named Pipes (NCACN_NP) protocol sequence, as specified in
[MS-RPCE], depending on the interface used. When RPC over Named Pipes is used as the RPC
protocol sequence, the pipe name that MUST be used is \PIPE\MSGSVC. For the NCADG_IP_UDP,
see section 3.2.4. For the NCACN_NP protocol, see section 3.1.4.

This protocol MUST use the following UUIDs:

17FDD703-1827-4E34-79D4-24A55C53BB37 (for recipient name management methods)

5A7B91F8-FF00-11D0-A9B2-00C04FB6E6FC (for the NetrSendMessage method)

This protocol MUST use RPC dynamic endpoints for RPC over TCP/IP, as specified in [C706] part 4.

For each recipient name registered with the message server, on each bound local area network
adapter (LANA), the message server MUST register the corresponding NetBIOS name using the
convention defined in [MS-NBTE] section 1.8, with a NetBIOS suffix value of 0x03.

This protocol allows any user to establish a connection to the RPC server. When using named pipes
as the RPC transport, the protocol uses the underlying RPC protocol to retrieve the identity of the

caller that made the method call, as specified in [MS-RPCE]. The message server SHOULD use this
identity to perform method-specific access checks, as specified in section 3.1.4.5. When using UDP
as the RPC transport, the protocol does not perform authentication.

2.1.2 Mailslots

This protocol MUST use the mailslot datagram delivery server, as specified in [MS-MAIL]. Mailslot

messages, specified in sections 3.2.4.4 and 3.2.4.5, MUST be sent to the following mailslot:
\\recipient name\MAILSLOT\MESSNGR.

The recipient name MUST be the NetBIOS name of the intended recipient of the message.

The message server MUST create this mailslot for each recipient name that is registered with the
message server before it can receive messages for that recipient.

When using mailslots to transport messages, the protocol does not perform authentication.

2.1.3 SMB

The Messenger Service Remote Protocol MUST use the SMB server, as specified in [MS-SMB]. SMB

messages are specified in sections 3.2.4.4 and 3.2.4.5.

SMB messages MUST always be sent to the NetBIOS name of the intended recipient of the message.

When using SMB to transport messages, the protocol does not perform authentication.

%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89831
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-NBTE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-MAIL%5d.pdf
%5bMS-SMB%5d.pdf

11 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2 Message Syntax

In addition to RPC base types, the following sections use the definition of DWORD, as specified in
[MS-DTYP].

2.2.1 Data Types

2.2.1.1 MSGSVC_HANDLE

MSGSVC_HANDLE is a null-terminated string that MUST denote the NetBIOS name (as specified in
[RFC1001] section 14 and [RFC1002] section 4.1) or the fully qualified domain name (FQDN) of
the remote computer on which the method is to execute. See ServerName parameter in

NetrMessageNameAdd (Opnum 0) (section 3.1.4.1), NetrMessageNameEnum (Opnum 1)
(section 3.1.4.2), NetrMessageNameGetInfo (Opnum 2) (section 3.1.4.3), and
NetrMessageNameDel (Opnum 3) (section 3.1.4.4).

This type is declared as follows:

typedef [handle] wchar_t* MSGSVC_HANDLE;

2.2.2 Structures

2.2.2.1 MSG_INFO_0

MSG_INFO_0 is a data structure that contains a string that specifies the recipient name to which a
message is to be sent.

typedef struct _MSG_INFO_0 {

 [string] wchar_t* msgi0_name;

} MSG_INFO_0,

 *PMSG_INFO_0,

 *LPMSG_INFO_0;

msgi0_name: Pointer to a buffer that receives the name string in UTF-16 format. There are two

sources for this parameter:

1. It is the UTF-16 formatted Name parameter passed in NetrMessageNameGetInfo

(section 3.1.4.3) that has been verified to have an equivalent entry in the message table in
section 3.1.1 according to the following algorithm.

Function ConvertName (passed in Unicode name)

 Truncate to 15 bytes

 Remove trailing spaces

 Convert to all capitals

 Convert to OEM character set

 Return ComparedName

End ConvertName

If ComparedName == table entry

 Names are equivalent

Else

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
%5bMS-GLOS%5d.pdf

12 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 Names are not equivalent

Endif

2. It is returned in the InfoStruct parameter of NetrMessageNameEnum (section 3.1.4.2) in
which it was retrieved from the message table in section 3.1.1, the NetBIOS suffix and any

trailing spaces removed, and the remaining characters converted to UTF-16.

2.2.2.2 MSG_INFO_1

MSG_INFO_1 is a data structure that contains a string that specifies the recipient name to which a
message is to be sent.

typedef struct _MSG_INFO_1 {

 [string] wchar_t* msgi1_name;

 DWORD msgi1_forward_flag;

 [string] wchar_t* msgi1_forward;

} MSG_INFO_1,

 *PMSG_INFO_1,

 *LPMSG_INFO_1;

msgi1_name: Pointer to a buffer that receives the name string in UTF-16 format. There are two

sources for this parameter:

1. It is the UTF-16 formatted Name parameter passed in NetrMessageNameGetInfo
(section 3.1.4.3) that has been verified to have an equivalent entry in the message table in
section 3.1.1 according to the following algorithm.

Function ConvertName (passed in Unicode name)

 Truncate to 15 bytes

 Remove trailing spaces

 Convert to all capitals

 Convert to OEM character set

 Return ComparedName

End ConvertName

If ComparedName == table entry

 Names are equivalent

Else

 Names are not equivalent

Endif

2. It is returned in the InfoStruct parameter of NetrMessageNameEnum (section 3.1.4.2) in

which it was retrieved from the message table in section 3.1.1, the NetBIOS suffix and any
trailing spaces removed, and the remaining characters converted to UTF-16.

msgi1_forward_flag: MUST be set to zero when sent and ignored on receipt.

msgi1_forward: MUST be NULL and ignored on receipt.

13 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.2.3 MSG_INFO_0_CONTAINER

MSG_INFO_0_CONTAINER is a container structure that holds one or more MSG_INFO_0
structures.

typedef struct _MSG_INFO_0_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] LPMSG_INFO_0 Buffer;

} MSG_INFO_0_CONTAINER,

 *PMSG_INFO_0_CONTAINER,

 *LPMSG_INFO_0_CONTAINER;

EntriesRead: A 32-bit value that MUST denote the number of entries in Buffer.

Buffer: Pointer to a buffer that MUST contain one or more MSG_INFO_0 structures.

2.2.2.4 MSG_INFO_1_CONTAINER

MSG_INFO_1_CONTAINER is a container structure that holds one or more MSG_INFO_1
structures.

typedef struct _MSG_INFO_1_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] LPMSG_INFO_1 Buffer;

} MSG_INFO_1_CONTAINER,

 *PMSG_INFO_1_CONTAINER,

 *LPMSG_INFO_1_CONTAINER;

EntriesRead: A 32-bit value that MUST denote the number of entries in Buffer.

Buffer: A pointer to a variable-size buffer that MUST contain one or more MSG_INFO_1

structures.

2.2.2.5 MSG_ENUM_STRUCT

MSG_ENUM_STRUCT is a container structure holding either one MSG_INFO_0_CONTAINER

container or one MSG_INFO_1_CONTAINER container. The structure also has a member to
indicate what type of container it contains.

typedef struct _MSG_ENUM_STRUCT {

 DWORD Level;

 [switch_is(Level)] union _MSG_ENUM_UNION {

 [case(0)]

 LPMSG_INFO_0_CONTAINER Level0;

 [case(1)]

 LPMSG_INFO_1_CONTAINER Level1;

 } MsgInfo;

} MSG_ENUM_STRUCT,

 *PMSG_ENUM_STRUCT,

 *LPMSG_ENUM_STRUCT;

14 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Level: A 32-bit enumerated number that MUST denote the type of structure contained in

MsgInfo. It must be either 0 or 1.

MsgInfo: A pointer to a buffer that MUST contain a union that consists of either an
MSG_INFO_0_CONTAINER structure or an MSG_INFO_1_CONTAINER structure.

Level0: If Level is 0, MsgInfo MUST contain an MSG_INFO_0_CONTAINER named
Level0.

Level1: If Level is 1, MsgInfo MUST contain an MSG_INFO_1_CONTAINER named
Level1.

2.2.2.6 MSG_INFO

MSG_INFO is a data structure that contains either an MSG_INFO_0 or an MSG_INFO_1

structure.

typedef

[switch_type(DWORD)]

 union _MSG_INFO {

 [case(0)]

 LPMSG_INFO_0 MsgInfo0;

 [case(1)]

 LPMSG_INFO_1 MsgInfo1;

} MSG_INFO,

 *PMSG_INFO,

 *LPMSG_INFO;

MsgInfo0: A pointer to a variable-size buffer that MUST contain an MSG_INFO_0 data

structure.

MsgInfo1: A pointer to a variable-size buffer that MUST contain an MSG_INFO_1 data
structure.

2.2.3 SMB Message Delivery Protocol

Text messages MAY be delivered by SMB to a message server. The SMB messages used for text
message delivery are defined in this section.

Each of these SMB messages MUST be preceded by an SMB header, as specified in [MS-SMB]
section 2.2.3.1. These messages MAY be transported by the NetBIOS over UDP transport, the
NetBIOS over IPX transport, or the NetBEUI transport, as specified in [RFC1001] and [MS-

SMB].<2>

Unless otherwise specified, numerical fields in these messages are in little-endian byte order.

2.2.3.1 SMB_COM_SEND_MESSAGE Request and Response Messages

The following two sections describe how to implement and interpret SMB_COM_SEND_MESSAGE

request messages and response messages.

2.2.3.1.1 SMB_COM_SEND_MESSAGE Request Message

The SMB_COM_SEND_MESSAGE message is used to send an entire text message in which the
length of the message is 128 bytes or less.

%5bMS-SMB%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90260

15 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

In the SMB header of these messages, the Command field MUST be set to 0xD0, as specified in
[MS-SMB] section 2.2.3.1. In the response message, the header MAY contain a Status code, as

specified in [MS-SMB] section 2.2.3.1. All other fields in the SMB header MUST be set to 0x00.<3>

The payload of the SMB_COM_SEND_MESSAGE request message is specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

WordCount ByteCount BufferFormat1

OriginatorName (variable)

...

BufferFormat2 DestinationName (variable)

...

BufferFormat3 DataLength Data (variable)

...

WordCount (1 byte): An 8-bit value that MUST denote the number of 2-byte word values
between the WordCount and ByteCount values. WordCount MUST be zero for this message.

ByteCount (2 bytes): A 16-bit value that MUST denote the total size of all of the fields that

follow, in bytes.

BufferFormat1 (1 byte): A constant that MUST denote the type of the next parameter.
BufferFormat1 MUST be 0x04 in this message, indicating that the next parameter is a null-

terminated ASCII string.

OriginatorName (variable): A null-terminated ASCII string that MUST denote the name of the
sender of the message. OriginatorName MUST NOT be more than 15 characters (bytes) long,
exclusive of the trailing null character (with the trailing null character, this field MAY be 16

bytes long).

BufferFormat2 (1 byte): An 8-bit value that MUST contain a constant that specifies the type of
the next parameter. BufferFormat2 MUST be 0x04 in this message, indicating that the next
parameter is a null-terminated ASCII string.

DestinationName (variable): A null-terminated ASCII string that MUST denote the name of
the intended recipient of the message. DestinationName MUST NOT be more than 15
characters (bytes) long, exclusive of the trailing null character (with the trailing null character,

this field MAY be 16 bytes long).

BufferFormat3 (1 byte): An 8-bit value that MUST contain a constant that specifies the type of
the next parameter. BufferFormat3 MUST be 0x01 in this message, indicating that the next
parameter is a length-prefixed buffer of bytes.

DataLength (2 bytes): A 16-bit value that MUST specify the length of the Data buffer. This
value MUST NOT be greater than 128 (0x0080).

%5bMS-SMB%5d.pdf
%5bMS-SMB%5d.pdf

16 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Data (variable): A null-terminated ASCII string that MUST contain the text of the message.
Before the message is sent, the ASCII characters CR (0x0D) and LF (0x0A) MUST be

converted to the value 0x14. Pairs of these characters (CRLF or LFCR) SHOULD be converted
into a single 0x14 character. This buffer MUST NOT be more than 128 bytes in size.<4>

The response message to SMB_COM_SEND_MESSAGE is specified in section 2.2.3.1.2.

2.2.3.1.2 SMB_COM_SEND_MESSAGE Response Message

The payload of the SMB_COM_SEND_MESSAGE response message is specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

WordCount ByteCount

WordCount (1 byte): An 8-bit value that MUST be zero for this message.

ByteCount (2 bytes): A 16-bit value that MUST be zero for this message.

The request message to SMB_COM_SEND_MESSAGE is specified in section 2.2.3.1.1.

2.2.3.2 SMB_COM_SEND_START_MB_MESSAGE Request and Response Messages

The following two sections describe how to implement and interpret

SMB_COM_SEND_START_MB_MESSAGE request messages and response messages.

2.2.3.2.1 SMB_COM_SEND_START_MB_MESSAGE Request Message

The SMB_COM_SEND_START_MB_MESSAGE message is used to signal that a new text message is
being sent and to carry the strings that contain the names of the sender and the intended recipient
of the text message.

In the SMB header of this message, the Command field MUST be set to 0xD5, as specified in [MS-

SMB] section 2.2.3.1. In the response message, the header MAY contain a Status code, as specified
in [MS-SMB] section 2.2.3.1. All other fields in the SMB header MUST be set to 0x00.<5>

The payload of the SMB_COM_SEND_START_MB_MESSAGE request message is specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

WordCount ByteCount BufferFormat1

OriginatorName (variable)

...

BufferFormat2 DestinationName (variable)

...

%5bMS-SMB%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-SMB%5d.pdf

17 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

WordCount (1 byte): An 8-bit value that MUST specify the number of 2-byte word values
between the WordCount and ByteCount values. WordCount MUST be zero for this message.

ByteCount (2 bytes): A 16-bit value that MUST specify the size of the remainder of the
message (not including ByteCount), in bytes.

BufferFormat1 (1 byte): An 8-bit value that MUST contain the type of the next parameter.
BufferFormat1 MUST be 0x04 in this message, indicating that the next parameter is a null-
terminated ASCII string.

OriginatorName (variable): A buffer that MUST contain a null-terminated ASCII string that
denotes the name of the sender of the message. OriginatorName MUST NOT be more than 15
characters (bytes) long, exclusive of the trailing null character (with the trailing null character,
this field MAY be 16 bytes long).

BufferFormat2 (1 byte): An 8-bit value that MUST contain a constant that specifies the type of
the next parameter. BufferFormat2 MUST be 0x04 in this message, indicating that the next
parameter is a null-terminated ASCII string.

DestinationName (variable): A buffer that MUST contain a null-terminated ASCII string that
denotes the name of the intended recipient of the message. DestinationName MUST NOT be
more than 15 characters (bytes) long (with the trailing null character, this field MAY be 16

bytes long).

The response message to SMB_COM_SEND_START_MB_MESSAGE is specified in section 2.2.3.2.2.

2.2.3.2.2 SMB_COM_SEND_START_MB_MESSAGE Response Message

The payload of the SMB_COM_SEND_START_MB_MESSAGE response message is specified as
follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

WordCount MessageGroupId ByteCount

...

WordCount (1 byte): An 8-bit value that MUST be set to one (0x1) for this message.

MessageGroupId (2 bytes): A 16-bit value that MUST specify the NetBIOS session number on
which this group of messages is to be delivered.

ByteCount (2 bytes): A 16-bit value that MUST be zero for this message.

The request message to SMB_COM_SEND_START_MB_MESSAGE is specified in section 2.2.3.2.1.

2.2.3.3 SMB_COM_SEND_TEXT_MB_MESSAGE Request and Response Messages

The following two sections describe how to implement and interpret

SMB_COM_SEND_TEXT_MB_MESSAGE request messages and response messages.

18 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.3.3.1 SMB_COM_SEND_TEXT_MB_MESSAGE Request Message

The SMB_COM_SEND_TEXT_MB_MESSAGE message is used to transmit a block of text from a text
message when the text message is larger than 128 bytes.

In the SMB header of this message, the Command field MUST be set to 0xD7, as specified in [MS-
SMB] section 2.2.3.1. In the response message, the header MAY contain a Status code, as specified
in [MS-SMB] section 2.2.3.1. All other fields in the SMB header MUST be set to 0x00.<6>

The payload of the SMB_COM_SEND_TEXT_MB_MESSAGE request message is specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

WordCount MessageGroupId ByteCount

... BufferFormat DataLength

Data (variable)

...

WordCount (1 byte): An 8-bit value that MUST specify the number of 2-byte word values
between the WordCount and ByteCount values. WordCount MUST be one (0x1) for this
message.

MessageGroupId (2 bytes): A 16-bit value that MUST specify the NetBIOS session number on
which this group of messages is to be delivered.

ByteCount (2 bytes): A 16-bit value that MUST specify the size of all of the following fields, in
bytes.

BufferFormat (1 byte): An 8-bit value that MUST contain a constant value that specifies the
type of the next parameter. BufferFormat MUST be 0x01 in this message, indicating that the

next parameter is a length-prefixed buffer of bytes.

DataLength (2 bytes): A 16-bit value that MUST specify the length of the Data buffer. This
value MUST NOT be greater than 128.

Data (variable): A block of null-terminated ASCII message text. Before the message is sent,
the ASCII characters CR (0x0D) and LF (0x0A) MUST be converted to the value 0x14. Pairs of
these characters (CRLF or LFCR) MUST be converted into a single 0x14 character. This buffer
MUST NOT be more than 128 bytes in size.<7>

The response message to SMB_COM_SEND_TEXT_MB_MESSAGE is specified in section 2.2.3.3.2.

2.2.3.3.2 SMB_COM_SEND_TEXT_MB_MESSAGE Response Message

The payload of the SMB_COM_SEND_TEXT_MB_MESSAGE response message is specified as follows.

%5bMS-SMB%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-SMB%5d.pdf

19 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

WordCount ByteCount

WordCount (1 byte): An 8-bit value that MUST specify the number of 2-byte word values
between the WordCount and ByteCount values. WordCount MUST be zero for this
message.

ByteCount (2 bytes): A 16-bit value that MUST be zero for this message.

The request message to SMB_COM_SEND_TEXT_MB_MESSAGE is specified in section 2.2.3.3.1.

2.2.3.4 SMB_COM_SEND_END_MB_MESSAGE Request and Response Messages

The following two sections describe how to implement and interpret
SMB_COM_SEND_END_MB_MESSAGE request messages and response messages.

2.2.3.4.1 SMB_COM_SEND_END_MB_MESSAGE Request Message

The SMB_COM_SEND_END_MB_MESSAGE message is used to indicate that transmission of a
multiblock text message is complete.

In the SMB header of this message, the Command field MUST be set to 0xD6, as specified in [MS-

SMB] section 2.2.3.1. In the response message, the header MAY contain a Status code, as specified
in [MS-SMB] section 2.2.3.1. All other fields in the SMB header MUST be set to 0x00.<8>

The payload of the SMB_COM_SEND_END_MB_MESSAGE request message is specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

WordCount MessageGroupId ByteCount

...

WordCount (1 byte): An 8-bit value that MUST specify the number of 2-byte word values
between the WordCount and ByteCount values. WordCount MUST be one (0x1) for this
message.

MessageGroupId (2 bytes): A 16-bit value that MUST specify the NetBIOS session number on

which this group of messages is to be delivered.

ByteCount (2 bytes): A 16-bit value that MUST be 0 for this message.

The response message to SMB_COM_SEND_END_MB_MESSAGE is specified in section 2.2.3.4.2.

2.2.3.4.2 SMB_COM_SEND_END_MB_MESSAGE Response Message

The payload of the SMB_COM_SEND_END_MB_MESSAGE response message is specified as follows.

%5bMS-SMB%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-SMB%5d.pdf

20 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

WordCount ByteCount

WordCount (1 byte): An 8-bit value that MUST specify the number of 2-byte word values
between the WordCount and ByteCount values. WordCount MUST be zero for this
message.

ByteCount (2 bytes): A 16-bit value that MUST be zero for this message.

The request message to SMB_COM_SEND_END_MB_MESSAGE is specified in section 2.2.3.4.1.

21 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3 Protocol Details

As noted in section 1.3, there are two protocols that form the Messenger Service Remote Protocol
suite. The first, the name management protocol, allows the invoker to control the names to which
the message server responds. The second, the messaging protocol, contains the methods by which
a message client can send a text message to the message server.

3.1 Name Management Protocol

The purpose of the name management protocol of the Messenger Service Remote Protocol suite is to

manage the name table.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The organization is provided to explain how the protocol
behaves. This document does not mandate that implementations adhere to this model as long as

their external behavior is consistent with that described in this document.

The message server maintains a table (in memory) of NetBIOS names for which messages can be
received. The message server maintains one such table per LANA. The names typically include the
name of the machine and the names of the users who are currently using the machine. Each name
MUST be a valid NetBIOS name with a NetBIOS suffix value of 0x03. The message server MUST only
listen for NetBIOS names with suffix value 0x03, which specifies a message alias type.<9>

3.1.2 Timers

Timers are used to retry some name management operations that might initially fail due to
contention issues with a name table. This behavior is specified in section 3.1.4.6. Timers are used
by RPC to implement resiliency to network outages, as specified in [MS-RPCE]. Timers are present in
NetBIOS name operations, as specified in [RFC1001] section 15 and [RFC1002] section 4.2.

3.1.3 Initialization

The message server side MUST register the endpoint (as specified in section 2.1.1) with RPC (as

specified in [MS-RPCE]) using default security settings and dynamic endpoints. The server SHOULD
register the local machine name as if it had received NetrMessageNameAdd, as specified in
section 3.1.4.6.

3.1.4 Message Processing and Sequencing Rules

Methods in RPC Opnum Order

Method Description

NetrMessageNameAdd Opnum: 0

NetrMessageNameEnum Opnum: 1

NetrMessageNameGetInfo Opnum: 2

NetrMessageNameDel Opnum: 3

%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf

22 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.4.1 NetrMessageNameAdd (Opnum 0)

The NetrMessageNameAdd (Opnum 0) interface is used to configure the message server to
listen for messages sent to an additional NetBIOS name.

NET_API_STATUS NET_API_FUNCTION NetrMessageNameAdd(

 [in, string, unique] MSGSVC_HANDLE ServerName,

 [in, string] wchar_t* MsgName

);

ServerName: A pointer to a null-terminated string that MUST denote the NetBIOS name (as

specified in [RFC1001] section 5.2) or the fully qualified domain name (FQDN) of the remote
computer on which the function is to execute. There are no other constraints on the format of
this string. The message server MUST ignore this parameter.

MsgName: A null-terminated Unicode string that MUST denote the recipient name to add. The
name is not guaranteed to be unique or reachable by this method. The string MUST be

represented using Unicode UTF-16.

Return Values: A NET_API_STATUS value that indicates return status. If the method returns a
negative value, the method has failed. If the 12-bit facility code (bits 16–27) is set to 0x007,
the value contains a Win32 error code (defined in [MS-ERREF]) in the lower 16 bits. Zero or
positive values indicate success, with the lower 16 bits in positive nonzero values containing
warnings or flags defined in the method implementation.

Return value/code Description

0x00000000

ERROR_SUCCESS

The operation completed successfully.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x0000007B

ERROR_INVALID_NAME

The file name, directory name, or volume label syntax is incorrect.

0x00000859

NERR_NetworkError

A general network error occurred.

0x0000085C

NERR_InternalError

An internal error occurred.

0x000008E4

NERR_AlreadyExists

This message alias already exists locally.

0x000008E5

NERR_TooManyNames

The maximum number of added message aliases has been exceeded.

0x000008F9

NERR_DuplicateName

The name specified is already in use as a message alias on the

network.

3.1.4.2 NetrMessageNameEnum (Opnum 1)

The NetrMessageNameEnum (Opnum 1) interface is used to enumerate the NetBIOS names for
which the message server is currently listening for messages.

http://go.microsoft.com/fwlink/?LinkId=90260
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

23 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

NET_API_STATUS NET_API_FUNCTION NetrMessageNameEnum(

 [in, string, unique] MSGSVC_HANDLE ServerName,

 [in, out] LPMSG_ENUM_STRUCT InfoStruct,

 [in] DWORD PrefMaxLen,

 [out] LPDWORD TotalEntries,

 [in, out, unique] LPDWORD ResumeHandle

);

ServerName: A pointer to a null-terminated string that MUST denote the NetBIOS name (as

specified in [RFC1001] section 5.2) or the fully qualified domain name (FQDN) of the remote
computer on which the function is to execute. There are no other constraints on the format of
this string. The message server MUST ignore this parameter.

InfoStruct: A pointer to a buffer that receives a variable-length data structure of type
MSG_ENUM_STRUCT. The buffer MUST be allocated, and the pointer MUST be assigned by

the message server. On return, the structure MUST contain the list of names for which the
message server is listening for messages.

PrefMaxLen: A 32-bit number that MUST denote the maximum number of bytes the message
server should allocate for the buffer. If PrefMaxLen is set to 0xFFFFFFFF, the message server
MUST always allocate a buffer that can hold all of the information available in a single
MSG_ENUM_STRUCT.

TotalEntries: A pointer to a 32-bit number that, on return, MUST contain the total number of

entries in InfoStruct.

ResumeHandle: A pointer to a 32-bit number that MUST contain the ordinal value of the name,
in the message server's internal list, on which to start enumeration. This MAY be null.

Return Values: A NET_API_STATUS value that indicates return status. If the method returns a
negative value, the method has failed. If the 12-bit facility code (bits 16–27) is set to 0x007,
the value contains a Win32 error code (defined in [MS-ERREF]) in the lower 16 bits. Zero or
positive values indicate success, with the lower 16 bits in positive nonzero values containing

warnings or flags defined in the method implementation.

Return value/code Description

0x00000000

NERR_Success

The operation completed successfully.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect.

0x0000007C

ERROR_INVALID_LEVEL

The system call level is not correct.

0x0000084B

NERR_BufTooSmall

The API return buffer is too small.

http://go.microsoft.com/fwlink/?LinkId=90260
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

24 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.4.3 NetrMessageNameGetInfo (Opnum 2)

The NetrMessageNameGetInfo (Opnum 2) interface is used to retrieve information from the
message server on a NetBIOS name for which the message server is currently listening for

messages.

NET_API_STATUS NET_API_FUNCTION NetrMessageNameGetInfo(

 [in, string, unique] MSGSVC_HANDLE ServerName,

 [in, string] wchar_t* MsgName,

 [in] DWORD Level,

 [out, switch_is(Level)] LPMSG_INFO InfoStruct

);

ServerName: A pointer to a null-terminated string that MUST denote the NetBIOS name (as

specified in [RFC1001] section 5.2) or the fully qualified domain name (FQDN) of the remote
computer on which the function is to execute. There are no other constraints on the format of
this string. The message server MUST ignore this parameter.

MsgName: A null-terminated Unicode UTF-16 string. It MUST denote the recipient name for
which to get information. The name is not guaranteed to exist.

Level: A 32-bit number that MUST be either 0 or 1. It represents the type of structure contained

in the InfoStruct MSG_INFO structure. If Level is 0, InfoStruct MUST contain an
MSG_INFO_0 data structure. If Level is 1, InfoStruct MUST contain an MSG_INFO_1 data
structure.

InfoStruct: A pointer to a structure of type MSG_INFO.

Return Values: A NET_API_STATUS value that indicates return status. If the method returns a
negative value, the method has failed. If the 12-bit facility code (bits 16–27) is set to 0x007,
the value contains a Win32 error code (defined in [MS-ERREF]) in the lower 16 bits. Zero or

positive values indicate success, with the lower 16 bits in positive nonzero values containing
warnings or flags defined in the method implementation.

Return value/code Description

0x00000000

NERR_Success

The operation completed successfully.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000008

ERROR_NOT_ENOUGH_MEMORY

Not enough storage is available to process this command.

0x0000007B

ERROR_INVALID_NAME

The file name, directory name, or volume label syntax is

incorrect.

0x0000007C

ERROR_INVALID_LEVEL

The system call level is not correct.

0x000008ED

NERR_NotLocalName

The name is not on the local computer.

http://go.microsoft.com/fwlink/?LinkId=90260
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

25 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.4.4 NetrMessageNameDel (Opnum 3)

The NetrMessageNameDel (Opnum 3) interface is used to configure the message server to stop
listening for messages for a particular NetBIOS name.

NET_API_STATUS NET_API_FUNCTION NetrMessageNameDel(

 [in, string, unique] MSGSVC_HANDLE ServerName,

 [in, string] wchar_t* MsgName

);

ServerName: A pointer to a null-terminated string that MUST denote the NetBIOS name (as

specified in [RFC1001] section 5.2) or the fully qualified domain name (FQDN) of the remote
computer on which the function is to execute. There are no other constraints on the format of
this string. The message server MUST ignore this parameter.

MsgName: A null-terminated Unicode UTF-16 string that MUST denote the recipient name to
delete. It is limited in length to 16 characters.<10>

Return Values: A NET_API_STATUS value that indicates return status. If the method returns a
negative value, the method has failed. If the 12-bit facility code (bits 16–27) is set to 0x007,
the value contains a Win32 error code (defined in [MS-ERREF]) in the lower 16 bits. Zero or
positive values indicate success, with the lower 16 bits in positive nonzero values containing
warnings or flags defined in the method implementation.

Return value/code Description

0x00000000

NERR_Success

The operation completed successfully.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x0000007B

ERROR_INVALID_NAME

The file name, directory name, or volume label syntax is incorrect.

0x000008E6

NERR_DelComputerName

The computer name could not be deleted.

0x000008EB

NERR_NameInUse

The message alias is currently in use. Try again later.

0x000008ED

NERR_NotLocalName

The name is not on the local computer.

0x000008FB

NERR_IncompleteDel

The message alias was not successfully deleted from all networks.

3.1.4.5 Sending NetrMessageNameAdd

The message client MUST select a message server for the Messenger Service Remote Protocol by
means outside the protocol, and MUST set ServerName to the NetBIOS name or the fully qualified
domain name (FQDN) of the message server.

The message client MUST select a recipient name by means outside the protocol, and it MUST set

MsgName to the NetBIOS name of the recipient to add.<11>

http://go.microsoft.com/fwlink/?LinkId=90260
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

26 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.4.6 Receiving NetrMessageNameAdd

On receipt of this message, the message server SHOULD check an internal access control list
(ACL) to determine whether the message client is authorized to access the name list. If the ACL

authorization check is performed, and the message client is not authorized to perform the operation,
the message server MUST return ERROR_ACCESS_DENIED.<12>

Next, the message server MUST convert MsgName to a valid NetBIOS name, as specified in
[RFC1001] section 5.2 and [RFC1002] section 4.1. If MsgName is not valid, the message server
MUST return ERROR_INVALID_NAME. The process for conversion is as follows:

Server MUST convert MsgName to an ASCII string.

Server MUST truncate MsgName to 15 characters if MsgName is longer than 15 characters.

Server MUST pad MsgName to 15 characters with the ASCII space character if MsgName is

shorter than 15 characters.

Server MUST remove the null terminator for MsgName, if present.

Server MUST append the NetBIOS suffix value 0x03 to the converted MsgName.

If MsgName is valid, the message server MUST check each LANA to see if MsgName is currently in
the name table on that LANA.

If MsgName is in the name table on any LANA, the message server MUST return

NERR_AlreadyExists.

If MsgName is currently in a delete pending status on any LANA, the message server MUST wait

5 seconds and check again. At that time, if MsgName is still present in the name table on that

LANA, the message server MUST return NERR_AlreadyExists.

If MsgName is not in the name table on any LANA, the message server MUST add MsgName to

the name table on every LANA.

If the message server is unable to add MsgName to the name table on any LANA because the name
table is full on that LANA, the message server MUST return NERR_TooManyNames.<13>

If the message server fails to add MsgName to the name table on any LANA, the message server

MUST attempt to delete MsgName from the name table on any LANAs where it had successfully
added MsgName. If it fails to delete MsgName from any name tables on any LANA, the message
server MUST return NERR_InternalError.

If the message server successfully added MsgName to all LANAs, the message server MUST return
ERROR_SUCCESS.

3.1.4.7 Sending NetrMessageNameEnum

The message client MUST select a message server for this protocol by means outside the protocol,
and MUST set ServerName to the NetBIOS name or the fully qualified domain name (FQDN) of the
message server.

The message client MUST select the information Level that is wanted, either 0 or 1, by means
outside the protocol, and MUST set Level accordingly.

Fulfilling a NetrMessageNameEnum request may require multiple calls to this interface. If this is

the first call to the interface for a specific request, the message client MUST set ResumeHandle to

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261

27 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

zero. If this is not the first call in a sequence of calls for a specific request, the message client MUST
set ResumeHandle to the value of ResumeHandle returned by the message server in the last call to

NetrMessageNameEnum.

3.1.4.8 Receiving NetrMessageNameEnum

On receipt of this message, the message server SHOULD check an internal access control list (ACL)
to determine whether the message client is authorized to access the name list. If the ACL
authorization check is performed, and the message client is not authorized to perform the operation,
the message server MUST return ERROR_ACCESS_DENIED.<14>

Next, the message server MUST validate that the level passed in InfoStruct is either 0 or 1. If the
level is any other value, the message server MUST return ERROR_INVALID_LEVEL.

If the message client specifies PrefMaxLen of 0xFFFFFFFF, the message server MUST attempt to
return all names in a single buffer. Otherwise, if the message client specifies Level 0, and
PrefMaxLen is larger than 11,776 bytes, the message server MUST return
ERROR_INVALID_PARAMETER.<15>

The message server MUST iterate through its name table in order, starting with the name in ordinal
position ResumeHandle. If ResumeHandle is larger than the number of names in the name table, the

message server MUST return NERR_Success.

For each registered name, the message server MUST add a structure that contains the name to a
return buffer. The type of structure used MUST be based on the value of Level, and MUST be as
specified in section 2.2.2.5.

If the message server fills its buffer before it has iterated through all registered names, it MUST:

Return the buffer as InfoStruct.

Set ResumeHandle to the ordinal value of the last copied name plus 1.

Set TotalEntries to the number of names in the buffer.

Return NERR_BufTooSmall.

If the last registered name is copied into the buffer, the message server MUST:

Copy the buffer to InfoStruct.

Set TotalEntries to the number of names in the buffer.

Return NERR_Success.

3.1.4.9 Sending NetrMessageNameGetInfo

The message client MUST select a message server for this protocol by means outside the protocol,
and MUST set ServerName to the NetBIOS name or the fully qualified domain name (FQDN) of the

message server.

The message client MUST select a recipient name for this protocol by means outside the protocol,
and it MUST set MsgName to that name.<16>

The message client MUST select the information Level that is wanted, either 0 or 1, by means
outside the protocol, and it MUST set Level accordingly.

28 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.4.10 Receiving NetrMessageNameGetInfo

On receipt of this message, the message server SHOULD check an internal ACL to determine
whether the message client is authorized to access the name list. If the ACL authorization check is

performed, and the message client is not authorized to perform the operation, the message server
MUST return ERROR_ACCESS_DENIED.<17>

Before using MsgName, the message server MUST convert MsgName to a valid NetBIOS name, as
specified in [RFC1001] section 5.2 and [RFC1002] section 4.1. If MsgName is not valid, the message
server MUST return ERROR_INVALID_NAME. The process for conversion is as follows:

Server MUST convert MsgName to an ASCII string.

Server MUST truncate MsgName to 15 characters if MsgName is longer than 15 characters.

Server MUST pad MsgName to 15 characters with the ASCII space character if MsgName is

shorter than 15 characters.

Server MUST remove the null terminator for MsgName, if present.

Server MUST append the NetBIOS suffix value 0x03 to the converted MsgName.

Then the message server MUST check to see if MsgName is in the name table on any LANA. If
MsgName is not in the name table on any LANA, the message server MUST return
NERR_NotLocalName.

Next, the message server MUST validate that the level passed in InfoStruct is either 0 or 1. If Level
is any other value, the message server MUST return ERROR_INVALID_LEVEL.

The message server MUST allocate memory for a structure to return information on the name. If the
message server fails to allocate a buffer, the message server MUST return

ERROR_NOT_ENOUGH_MEMORY.

The type of structure returned MUST be based on the value of Level; fields other than names in the
structure MUST be populated as specified in section 2.2.2. The message server MUST return all

names as Unicode UTF-16 strings.

If the structure is successfully allocated and populated, the message server MUST return
NERR_Success and return a pointer to the structure as InfoStruct.

3.1.4.11 Sending NetrMessageNameDel

The message client MUST select a message server for this protocol by means outside the protocol,
and it MUST set ServerName to the NetBIOS name or the fully qualified domain name (FQDN) of the
message server.

The message client MUST select a recipient name by means outside the protocol, and it MUST set
MsgName to the name of the recipient to delete.<18>

3.1.4.12 Receiving NetrMessageNameDel

On receipt of this message, the message server SHOULD check an internal ACL to determine
whether the message client is authorized to access the name list. If the ACL authorization check is
performed, and the message client is not authorized to perform the operation, the message server
MUST return ERROR_ACCESS_DENIED.<19>

http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261

29 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Before using MsgName, the message server MUST convert MsgName to a valid NetBIOS name, as
specified in [RFC1001] section 5.2 and [RFC1002] section 4.1. The process for conversion is as

follows:

Server MUST convert MsgName to an ASCII string.

Server MUST truncate MsgName to 15 characters if MsgName is longer than 15 characters.

Server MUST pad MsgName to 15 characters with the ASCII space character if MsgName is

shorter than 15 characters.

Server MUST remove the null terminator for MsgName, if present.

Server MUST append the NetBIOS suffix value 0x03 to the converted MsgName.

If conversion of MsgName to a NetBIOS name fails, the message server MUST return
ERROR_INVALID_NAME.

If MsgName is the name of the computer, the message server MUST return

NERR_DelComputerName.<20>

The message server MUST check the name table on each LANA to verify whether MsgName is in the
name table on that LANA. If MsgName is not in the name table on any LANA, the message server

MUST return NERR_NotLocalName.

The message server MUST iterate through each LANA and attempt to delete MsgName from the
name table for that LANA. If MsgName is locked (for example, currently being added) in the name
table on any LANA and cannot be deleted, the message server MUST return NERR_NameInUse.

If MsgName is not locked in the name table for any LANA, and the message server attempted to
delete MsgName from that name table, the message server MUST check the name table after the

deletion to see if MsgName still exists. If the name still exists, the message server MUST return
NERR_IncompleteDel.

If the deletion is successful, the message server MUST return NERR_Success.

3.1.5 Timer Events

There are no timer events for this protocol.

3.1.6 Other Local Events

There are no other local events for this protocol.

3.2 Messaging Protocol

The messaging protocol is used for the actual transmission of the text messages from the message
client to the message server.

3.2.1 Abstract Data Model

The messaging protocol relies on the name tables maintained by the name management protocol, as
specified in section 3.1.1.

http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261

30 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.2.2 Timers

There are no timers in the transmission of the text messages. The messages are unreliable when
sent by datagram. They are reliable when sent by SMB, as specified in [MS-SMB].

3.2.3 Initialization

The message server MUST register the RPC endpoint for messaging, as specified in section 2.1.1.
Also, the message server MUST register the names from the name table on each LANA as NetBIOS
names for mailslot delivery.

The message server SHOULD also register the NetBIOS name of the computer on which it resides as
a NetBIOS name of type Messenger (NetBIOS suffix value 0x03) in the name table on each LANA to

which it listens.

3.2.4 Message Processing and Sequencing Rules

Methods in RPC Opnum Order

Method Description

NetrSendMessage Opnum: 0

3.2.4.1 NetrSendMessage (Opnum 0)

The NetrSendMessage (Opnum 0) method is used to send a text message to a message server.

error_status_t NetrSendMessage(

 [in] handle_t hRpcBinding,

 [in, string] LPSTR From,

 [in, string] LPSTR To,

 [in, string] LPSTR Text

);

hRpcBinding: An RPC primitive binding handle, which MUST be as specified in [C706-

Ch4InterfaceDef] and [C706-Ch5Stubs].<21>

From: A null-terminated string that MUST denote the name of the sender of the message. The
name is not guaranteed to be unique or reachable by this method. The string MUST be
expressed in the original equipment manufacturer (OEM) character set, as specified in
[MS-UCODEREF] section 2.2.1, of the invoker of this method.

To: A null-terminated string that MUST represent the name of the intended recipient of the
message. The name is not guaranteed to be unique or reachable by this method. The string is

expressed in the OEM character set, as specified in [MS-UCODEREF] section 2.2.1, of the
invoker of this method.

Text: A null-terminated string that MUST contain the message that is being sent to the recipient

in the To parameter. The string is expressed in the OEM character set, as specified in [MS-
UCODEREF] section 2.2.1.

Return Values: An error_status_t value that indicates return status. If the method returns a
negative value, the method has failed. If the 12-bit facility code (bits 16–27) is set to 0x007,

the value contains a Win32 error code (defined in [MS-ERREF]) in the lower 16 bits. Zero or

%5bMS-SMB%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89829
http://go.microsoft.com/fwlink/?LinkId=89829
http://go.microsoft.com/fwlink/?LinkId=89830
%5bMS-GLOS%5d.pdf
%5bMS-UCODEREF%5d.pdf
%5bMS-UCODEREF%5d.pdf
%5bMS-UCODEREF%5d.pdf
%5bMS-UCODEREF%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

31 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

positive values indicate success, with the lower 16 bits in positive nonzero values containing
warnings or flags defined in the method implementation.

Return value/code Description

0x00000000

ERROR_SUCCESS

The operation completed successfully.

0x00000005

ERROR_ACCESS_DENIED

Access is denied.

0x00000032

ERROR_NOT_SUPPORTED

The request is not supported.<22>

0x00000057

ERROR_INVALID_PARAMETER

The parameter is incorrect.

0x00000858

NERR_NetworkError

A general network error occurred.

0x000008E1

NERR_NameNotFound

The message alias could not be found on the network.

0x000008E8

NERR_GrpMsgProcessor

An error occurred in the domain message processor.

0x000008E9

NERR_PausedRemote

The message was sent, but the recipient has paused the

Messenger service.

0x000008EA

NERR_BadReceive

The message was sent but not received.

0x000008EB

NERR_NameInUse

The message alias is currently in use. Try again later.

0x000008ED

NERR_NotLocalName

The name is not on the local computer.

0x000008F1

NERR_TruncatedBroadcast

The broadcast message was truncated.

0x000008F9

NERR_DuplicateName

A duplicate message alias exists on the network.

3.2.4.2 Sending NetrSendMessage

The message client MUST select a message server for this protocol by means outside the protocol.
After the name of the message server is selected, the message client MUST compose a primitive
binding handle, as specified in [C706], for RPC over UDP.<23>

3.2.4.3 Receiving NetrSendMessage

When the message server receives a NetrSendMessage message, it MUST check the table of
names it is maintaining for each LANA to see if the name supplied in the To parameter matches one
of the names in the table. If there is a match, the message server SHOULD display the message in
the Text parameter. The method of displaying the message is implementation-specific. A message

http://go.microsoft.com/fwlink/?LinkId=89824

32 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

server MAY impose security or other policies that control whether the message is displayed, the
maximum length of a message, and so on.<24>

3.2.4.4 Sending Mailslot Messages or SMB Messages

Although this protocol has no methods for constructing or sending mailslot messages or SMB
messages, the message server MUST be able to receive such messages. Therefore, it is necessary to
discuss how such messages are constructed.

The sender MUST select a recipient name (called To) for the message. To MUST be a valid NetBIOS
name of type 0x03. To MUST not begin with an asterisk character.

The sender SHOULD provide a From name field, indicating the sender of the message. If no sender
name is available, the sender SHOULD use the NetBIOS name of the local computer as the From

field.

The sender SHOULD provide textual content for the message (called Text). Text MUST be
represented in the OEM character set and MUST be 652 bytes or less in length.

The sender MAY send the message to the mailslot \\recipient name\MAILSLOT\MESSNGR on all
LANAs.

The sender MAY send the message as a directed SMB on each LANA, as defined in the following.

If the message text is 128 bytes or less in length, the sender SHOULD send the message as an
SMB_COM_SEND_MESSAGE request message. The SMB_COM_SEND_MESSAGE request message
MUST be constructed as follows:

From MUST be a valid NetBIOS name.

From MUST be converted to a null-terminated ASCII string and be placed in the

OriginatorName field.

To MUST be a valid NetBIOS name.

To MUST be converted to a null-terminated ASCII string and be placed in the DestinationName

field.

Text MUST be placed in the Data buffer.

If the message text is more than 128 bytes in length, the sender SHOULD break the message text

into 128-byte segments. In this case:

The sender MUST send the first segment as an SMB_COM_SEND_START_MB_MESSAGE request

message. The SMB_COM_SEND_START_MB_MESSAGE request message MUST be constructed as
follows:

From MUST be a valid NetBIOS name.

From MUST be converted to a null-terminated ASCII string and be placed in the

OriginatorName field.

To MUST be a valid NetBIOS name.

To MUST be converted to a null-terminated ASCII string and be placed in the

DestinationName field.

33 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The sender SHOULD wait for the acknowledgment, an SMB_COM_SEND_START_MB_MESSAGE

response message, before proceeding.

The sender MUST send each additional segment as an SMB_COM_SEND_TEXT_MB_MESSAGE

request message. The SMB_COM_SEND_TEXT_MB_MESSAGE request message MUST be
constructed as follows:

The Data field of each of these messages MUST contain sequential, contiguous segments of

Text.

Every segment of Text except the last SHOULD be exactly 128 bytes in length.

The sender SHOULD NOT send additional segments until acknowledgment is received that the

previous segment is received in the form of an SMB_COM_SEND_TEXT_MB_MESSAGE
response message.

After sending the last segment of Text, the sender MUST send an

SMB_COM_SEND_END_MB_MESSAGE request message.<25>

3.2.4.5 Receiving Mailslot Messages or SMB Messages

When the message server receives a mailslot message, it MUST check the table of names it is
maintaining for each LANA to see whether the name supplied in the To parameter matches one of
the names in the table. If there is a match, the message server SHOULD display the message in the
Text parameter. The method of displaying the message is implementation-specific. A message
server MAY impose security or other policies that control whether the message is displayed, the
maximum length of a message, and so on.<26>

When the message server receives an SMB message, it MUST validate the name supplied in the To
parameter against the table of names that it is maintaining for each LANA. If there is a match, the
message server SHOULD display the message in the Text parameter. The method of displaying the
message is implementation-specific. A message server MAY impose security or other policies that
control whether the message is displayed, the maximum length of a message, and so on. On
receiving and successfully processing any SMB request message, the message server MUST send

the corresponding SMB response message back to the message client.<27>

When the message server receives an SMB message, it MUST validate the SMB message, and, if the
message is not valid, it MUST return an appropriate SMB error code.<28>

Validation test

SMB error code to return if

validation fails

Message size is greater than or equal to the size of a valid SMB

header structure.

2

SMB protocol prefix = 0xFF. 3

SMB protocol = S M B. 4

SMB command matches expected function code. 5

SMB has the correct number of parameters for the function

performed.

6

SMB header length is less than or equal to the length of the buffer

containing the SMB.

7

34 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Validation test

SMB error code to return if

validation fails

Variable-length data block fields in the SMB payload are prefixed by

\001 or \005.

8

Null-terminated dialect strings in the SMB payload are prefixed by

\002.

9

Null-terminated path strings in the SMB payload are prefixed by

\003.

10

Null-terminated strings in the SMB payload are prefixed by \004. 11

Total length of SMB message is less than or equal to the buffer used

to contain the message.

12

When the message server receives an SMB message, if it is unable to buffer the message, it MUST
return SMB_ERR_NO_ROOM to the message client in an appropriate SMB reply message. If it is able

to successfully buffer the message, it MUST return SMB_ERR_SUCCESS to the message client in an
appropriate SMB reply message.

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

35 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4 Protocol Examples

Consider two computers, PRINTSERVER (a print server) and WORKSTATION (a user's desktop).
WORKSTATION has only one network interface card, which is on a physical network that is remote
to PRINTSERVER, accessible by way of TCP/IP.

Figure 1: Name management protocol flow diagram

Example 1. The message server on WORKSTATION, during boot, registers the NetBIOS name

"WORKSTATION [03]" with its sole LANA. The component that caused the name to be registered did
so by using the NetrMessageNameAdd method of the name management protocol. The flow of
this protocol is illustrated in Figure 1.

Example 2. A user "ALICE" logs on to WORKSTATION. The message server on WORKSTATION
registers the NetBIOS name "ALICE [03]" with the LANA. The component that caused the name to
be registered did so by using the NetrMessageNameAdd method of the name management
protocol. The flow of this protocol is illustrated in Figure 1.

Figure 2: Message sending protocol diagram

Example 3. Subsequently, Alice uses some program to print a document. Through means unrelated
to this example, the print job is delivered to the print server. On finishing its work, the print server
needs to notify Alice. The print server must select among the three protocols available to it for

message delivery. Because mailslots and SMB use broadcast mechanisms, and, therefore, are

suitable only for machines in the same collision domain, the print server selects the
NetrSendMessage method of the message-sending protocol.

The print server constructs the message, setting To to Alice's NetBIOS name, From to its own
NetBIOS name, and Text to the text Print Job Completed. The print server invokes the

36 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

NetrSendMessage method that delivers the message to the message service on Alice's machine.
The message service causes the text of the message to display on the console. The flow of this

protocol is illustrated in Figure 2.

37 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

5 Security

Some interfaces in this protocol do not support remote authentication or authorization, and can
potentially be abused to interfere with or cause spurious message delivery.

5.1 Security Considerations for Implementers

Because some interfaces of this protocol are unauthenticated and do not perform authorization, a
service that receives and acts on messages in this protocol can be used by an attacker to cause
unwanted notifications to a console user. This occurred in the Microsoft Windows® implementation

of this protocol (for more information, see [MSKB-330904]) and was not due to a code defect in the
message server that acted on the protocol messages. It is recommended that this protocol not be
implemented due to the lack of security features in the protocol.

5.2 Index of Security Parameters

There are no security parameters associated with this protocol.

http://go.microsoft.com/fwlink/?LinkId=89940

38 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

6 Appendix A: Full IDL

The Messenger Service Remote protocol uses two IDL files, msgsvcsend.idl and msgsvc.idl.

6.1 Appendix A.1: msgsvcsend.idl

The msgsvcsend.idl file appears as follows.

import "ms-dtyp.idl";

[uuid (5a7b91f8-ff00-11d0-a9b2-00c04fb6e6fc),

 version(1.0),

 pointer_default(unique)

]

interface msgsvcsend

{

 error_status_t

 NetrSendMessage(

 [in] handle_t hRpcBinding,

 [in, string] LPSTR From,

 [in, string] LPSTR To,

 [in, string] LPSTR Text

);

}

6.2 Appendix A.2: msgsvc.idl

The msgsvc.idl file appears as follows.

import "ms-dtyp.idl";

#if (_MSC_VER >= 800) || defined(_STDCALL_SUPPORTED)

 #define NET_API_FUNCTION __stdcall

#else

 #define NET_API_FUNCTION

#endif

[uuid(17FDD703-1827-4E34-79D4-24A55C53BB37),

 version(1.0),

 ms_union,

 pointer_default(unique)

]

interface msgsvc

{

 typedef [handle] wchar_t* MSGSVC_HANDLE;

 typedef struct _MSG_INFO_0 {

 [string] wchar_t* msgi0_name;

 }MSG_INFO_0, *PMSG_INFO_0, *LPMSG_INFO_0;

 typedef struct _MSG_INFO_1 {

 [string] wchar_t* msgi1_name;

39 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 DWORD msgi1_forward_flag;

 [string] wchar_t* msgi1_forward;

 }MSG_INFO_1, *PMSG_INFO_1, *LPMSG_INFO_1;

 typedef struct _MSG_INFO_0_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] LPMSG_INFO_0 Buffer;

 } MSG_INFO_0_CONTAINER, *PMSG_INFO_0_CONTAINER,

 *LPMSG_INFO_0_CONTAINER;

 typedef struct _MSG_INFO_1_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] LPMSG_INFO_1 Buffer;

 } MSG_INFO_1_CONTAINER, *PMSG_INFO_1_CONTAINER,

 *LPMSG_INFO_1_CONTAINER;

 typedef struct _MSG_ENUM_STRUCT {

 DWORD Level;

 [switch_is(Level)] union _MSG_ENUM_UNION {

 [case(0)] LPMSG_INFO_0_CONTAINER Level0;

 [case(1)] LPMSG_INFO_1_CONTAINER Level1;

 } MsgInfo;

 } MSG_ENUM_STRUCT, *PMSG_ENUM_STRUCT, *LPMSG_ENUM_STRUCT;

 typedef [switch_type(DWORD)] union _MSG_INFO {

 [case(0)] LPMSG_INFO_0 MsgInfo0;

 [case(1)] LPMSG_INFO_1 MsgInfo1;

 } MSG_INFO, *PMSG_INFO, *LPMSG_INFO;

 NET_API_STATUS NET_API_FUNCTION

 NetrMessageNameAdd (

 [in,string,unique] MSGSVC_HANDLE ServerName,

 [in,string] wchar_t* MsgName

);

 NET_API_STATUS NET_API_FUNCTION

 NetrMessageNameEnum (

 [in,string,unique] MSGSVC_HANDLE ServerName,

 [in,out] LPMSG_ENUM_STRUCT InfoStruct,

 [in] DWORD PrefMaxLen,

 [out] LPDWORD TotalEntries,

 [in,out,unique] LPDWORD ResumeHandle

);

 NET_API_STATUS NET_API_FUNCTION

 NetrMessageNameGetInfo (

 [in,string,unique] MSGSVC_HANDLE ServerName,

 [in,string] wchar_t* MsgName,

 [in] DWORD Level,

 [out, switch_is(Level)] LPMSG_INFO InfoStruct

);

 NET_API_STATUS NET_API_FUNCTION

 NetrMessageNameDel (

 [in,string,unique] MSGSVC_HANDLE ServerName,

 [in,string] wchar_t* MsgName

40 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

);

}

41 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft Windows® 2000 operating system

Windows® XP operating system

Windows Server® 2003 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product

edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 1.6: The Messenger Service Remote Protocol has been present in Windows operating

system products since before the release of Windows NT 4.0. In Windows 2000, the RPC over UDP
delivery option was introduced. The protocol specified in this document was present through
Windows Server 2003. Support for the protocol was disabled by default (but could be enabled by
administrator action) for new installations of Windows Server 2003 with SP1 and Windows XP SP2.
This protocol was supported only in Windows 2000, Windows XP, and Windows Server 2003.

<2> Section 2.2.3: Windows uses whatever transport is bound to a particular local area network
adapter (LANA), and supports all of these transports.

<3> Section 2.2.3.1.1: Windows returns a 32-bit error code in the Status field when an SMB error
occurs.

<4> Section 2.2.3.1.1: Windows always converts ASCII CR, LF, CRLF, and LFCR into a single 0x14
character.

<5> Section 2.2.3.2.1: Windows returns a 32-bit error code in the Status field when an SMB error
occurs.

<6> Section 2.2.3.3.1: Windows returns a 32-bit error code in the Status field when an SMB error

occurs.

<7> Section 2.2.3.3.1: Windows always converts ASCII CR, LF, CRLF, and LFCR into a single 0x14
character.

<8> Section 2.2.3.4.1: Windows returns a 32-bit error code in the Status field when an SMB error
occurs.

<9> Section 3.1.1: The Windows implementation supports a table of up to 256 names for each

LANA. Windows does not permit the deletion of the computer name from any LANA while the
message server is running.

<10> Section 3.1.4.4: Windows XP and Windows Server 2003 both limit the MsgName parameter to
16 characters, including the terminating null character, when calling NetrMessageNameDel(). If the
MsgName is longer than 16 characters, the server returns ERROR_INVALID_PARAMETER.

42 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Windows 2000 does not check the length of the MsgName parameter when calling
NetrMessageNameDel() but reads in only the first 255 characters.

<11> Section 3.1.4.5: Windows XP and Windows Server 2003 both limit the MsgName parameter to
16 characters, including the terminating null character, when calling NetrMessageNameAdd(). If

the MsgName is longer than 16 characters, the server returns ERROR_INVALID_PARAMETER.
Windows 2000 does not check the length of the MsgName parameter when calling
NetrMessageNameAdd() but reads in only the first 255 characters.

<12> Section 3.1.4.6: Windows implementations require that the message client be an
administrator or a local user of the machine.

<13> Section 3.1.4.6: The name table for each LANA on Windows can hold up to 256 entries.

<14> Section 3.1.4.8: Windows implementations require that the message client be an

administrator or a local user of the machine.

<15> Section 3.1.4.8: If the message client specifies Level 0, and PrefMaxLen is larger than 11,776
bytes, a Windows 2000 Server message server returns ERROR_SUCCESS.

<16> Section 3.1.4.9: Windows XP and Windows Server 2003 both limit the MsgName parameter to
16 characters, including the terminating null character, when calling
NetrMessageNameGetInfo(). If the MsgName is longer than 16 characters, the server returns

ERROR_INVALID_PARAMETER. Windows 2000 does not check the length of the MsgName parameter
when calling NetrMessageNameGetInfo() but reads in only the first 255 characters.

<17> Section 3.1.4.10: Windows implementations require that the message client be an
administrator or a local user of the machine.

<18> Section 3.1.4.11: Windows XP and Windows Server 2003 both limit the MsgName parameter
to 16 characters, including the terminating null character, when calling NetrMessageNameDel().
If the MsgName is longer than 16 characters, the server returns ERROR_INVALID_PARAMETER.

Windows 2000 does not check the length of the MsgName parameter when calling
NetrMessageNameDel() but reads in only the first 255 characters.

<19> Section 3.1.4.12: Windows implementations require that the message client be an
administrator or a local user of the machine.

<20> Section 3.1.4.12: If MsgName is the name of the computer, a Windows Server 2003 message
server returns ERROR_SUCCESS.

<21> Section 3.2.4.1: hRpcBinding is an interface field, not a wire field, and was implicit rather

than explicit in the interface prior to Windows XP. In Windows XP, the interface was changed to add
the explicit RPC binding handle. The RPC binding handle is never seen in messages on the network.

<22> Section 3.2.4.1: This error is returned by Windows Vista, Windows Server 2008, Windows 7
and Windows Server 2008 R2, to indicate that that the method is not supported by those versions.

<23> Section 3.2.4.2: Windows-based clients format the name specified in the To parameter as the
NetBIOS name of the recipient (with NetBIOS suffix value 0x03) and use that to form the binding

handle. For how the name may be truncated or padded, see section 3.1.4.1.

<24> Section 3.2.4.3: When the message server receives a message for a registered recipient
name, the message server causes the message to be displayed on the console of the interactive
user of the machine. The maximum message length that displays is 4,095 characters.

43 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<25> Section 3.2.4.4: Windows sends messages of up to 128 bytes using
SMB_COM_SEND_MESSAGE and uses the multiblock SMB sequence for messages larger than 128

bytes. When a message is more than 128 bytes, Windows breaks the messages into 128-byte
segments prior to transmission. Where a behavior is defined as SHOULD, Windows implements that

behavior.

The Windows implementation of the message client for the protocols defined in this document
rejects messages sent to the recipient name *.

For recipient names that end in an asterisk, Windows attempts to deliver the message through
mailslots.

For recipient names that do not end in an asterisk, Windows attempts to deliver the message by
way of SMB.

If message delivery over SMB is attempted and fails, Windows attempts to deliver the message by
way of a call to NetrSendMessage.

<26> Section 3.2.4.5: When the message server receives a mailslot message for a registered

recipient name, the message server causes the message to be displayed on the console of the
interactive user of the machine. The maximum message length that displays is 4,095 characters.

<27> Section 3.2.4.5: When the message server receives an SMB message for a registered

recipient name, the message server causes the message to be displayed on the console of the
interactive user of the machine. The maximum message length that displays is 4,095 characters.

<28> Section 3.2.4.5: If the message client is unable to validate the SMB, it returns
NERR_NetworkError.

44 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

45 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

9 Index

A

Abstract data model
messaging 29
name management 21

Applicability 8

C

Capability negotiation 8
Change tracking 44

D

Data model - abstract
messaging 29
name management 21

Data types 11

E

Examples 35

F

Fields - vendor-extensible 8
Full IDL (section 6 38, section 6.1 38, section 6.2

38)

G

Glossary 6

I

IDL (section 6 38, section 6.1 38, section 6.2 38)
Implementer - security considerations 37
Index of security parameters 37
Informative references 7
Initialization

messaging 30
name management 21

Introduction 6

L

Local events
messaging 34
name management 29

LPMSG_ENUM_STRUCT 13
LPMSG_INFO_0 11
LPMSG_INFO_0_CONTAINER 13
LPMSG_INFO_1 12
LPMSG_INFO_1_CONTAINER 13

M

Mailslots
receiving messages 33

sending messages 32
transport 10

Messages
syntax 11
transport 10

Messaging
abstract data model 29
initialization 30
overview 29
timer events 34
timers 30

MSG_ENUM_STRUCT structure 13
MSG_INFO_0 structure 11
MSG_INFO_0_CONTAINER structure 13
MSG_INFO_1 structure 12
MSG_INFO_1_CONTAINER structure 13

N

Name management
abstract data model 21
initialization 21
local events 29
overview 21
timer events 29
timers 21

NetrMessageNameAdd (section 3.1.4.5 25, section
3.1.4.6 26)

NetrMessageNameAdd method 22
NetrMessageNameDel (section 3.1.4.11 28, section

3.1.4.12 28)
NetrMessageNameDel method 25
NetrMessageNameEnum (section 3.1.4.7 26,

section 3.1.4.8 27)
NetrMessageNameEnum method 22
NetrMessageNameGetInfo (section 3.1.4.9 27,

section 3.1.4.10 28)
NetrMessageNameGetInfo method 24
NetrSendMessage (section 3.2.4.2 31, section

3.2.4.3 31)

NetrSendMessage method 30
Normative references 6

O

Overview (synopsis) 7

P

Parameters - security index 37
PMSG_ENUM_STRUCT 13
PMSG_INFO_0 11
PMSG_INFO_0_CONTAINER 13
PMSG_INFO_1 12
PMSG_INFO_1_CONTAINER 13
Preconditions 8
Prerequisites 8
Product behavior 41

46 / 46

[MS-MSRP] — v20110204
 Messenger Service Remote Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

R

References
informative 7
normative 6

Relationship to other protocols 8
RPC transport 10

S

Security
implementer considerations 37
overview 37
parameter index 37

SMB

receiving messages 33
sending messages 32
transport 10

SMB message delivery protocol (section 2.2.3 14,
section 2.2.3.1 14, section 2.2.3.2 16, section
2.2.3.3 17, section 2.2.3.4 19)

SMB_COM_SEND_END_MB_MESSAGE packet 19
SMB_COM_SEND_END_MB_MESSAGE_Response

packet 19
SMB_COM_SEND_MESSAGE packet 14
SMB_COM_SEND_MESSAGE_Response packet 16
SMB_COM_SEND_START_MB_MESSAGE packet 16
SMB_COM_SEND_START_MB_MESSAGE_Response

packet 17
SMB_COM_SEND_TEXT_MB_MESSAGE packet 18
SMB_COM_SEND_TEXT_MB_MESSAGE_Response

packet 18
Standards assignments 9
Structures 11
Syntax 11

T

Timer events
messaging 34
name management 29

Timers
messaging 30
name management 21

Tracking changes 44
Transport 10

V

Vendor-extensible fields 8
Versioning 8

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.1.1 RPC Transport
	2.1.2 Mailslots
	2.1.3 SMB

	2.2 Message Syntax
	2.2.1 Data Types
	2.2.1.1 MSGSVC_HANDLE

	2.2.2 Structures
	2.2.2.1 MSG_INFO_0
	2.2.2.2 MSG_INFO_1
	2.2.2.3 MSG_INFO_0_CONTAINER
	2.2.2.4 MSG_INFO_1_CONTAINER
	2.2.2.5 MSG_ENUM_STRUCT
	2.2.2.6 MSG_INFO

	2.2.3 SMB Message Delivery Protocol
	2.2.3.1 SMB_COM_SEND_MESSAGE Request and Response Messages
	2.2.3.1.1 SMB_COM_SEND_MESSAGE Request Message
	2.2.3.1.2 SMB_COM_SEND_MESSAGE Response Message

	2.2.3.2 SMB_COM_SEND_START_MB_MESSAGE Request and Response Messages
	2.2.3.2.1 SMB_COM_SEND_START_MB_MESSAGE Request Message
	2.2.3.2.2 SMB_COM_SEND_START_MB_MESSAGE Response Message

	2.2.3.3 SMB_COM_SEND_TEXT_MB_MESSAGE Request and Response Messages
	2.2.3.3.1 SMB_COM_SEND_TEXT_MB_MESSAGE Request Message
	2.2.3.3.2 SMB_COM_SEND_TEXT_MB_MESSAGE Response Message

	2.2.3.4 SMB_COM_SEND_END_MB_MESSAGE Request and Response Messages
	2.2.3.4.1 SMB_COM_SEND_END_MB_MESSAGE Request Message
	2.2.3.4.2 SMB_COM_SEND_END_MB_MESSAGE Response Message

	3 Protocol Details
	3.1 Name Management Protocol
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing and Sequencing Rules
	3.1.4.1 NetrMessageNameAdd (Opnum 0)
	3.1.4.2 NetrMessageNameEnum (Opnum 1)
	3.1.4.3 NetrMessageNameGetInfo (Opnum 2)
	3.1.4.4 NetrMessageNameDel (Opnum 3)
	3.1.4.5 Sending NetrMessageNameAdd
	3.1.4.6 Receiving NetrMessageNameAdd
	3.1.4.7 Sending NetrMessageNameEnum
	3.1.4.8 Receiving NetrMessageNameEnum
	3.1.4.9 Sending NetrMessageNameGetInfo
	3.1.4.10 Receiving NetrMessageNameGetInfo
	3.1.4.11 Sending NetrMessageNameDel
	3.1.4.12 Receiving NetrMessageNameDel

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 Messaging Protocol
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing and Sequencing Rules
	3.2.4.1 NetrSendMessage (Opnum 0)
	3.2.4.2 Sending NetrSendMessage
	3.2.4.3 Receiving NetrSendMessage
	3.2.4.4 Sending Mailslot Messages or SMB Messages
	3.2.4.5 Receiving Mailslot Messages or SMB Messages

	3.2.5 Timer Events
	3.2.6 Other Local Events

	4 Protocol Examples
	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	6.1 Appendix A.1: msgsvcsend.idl
	6.2 Appendix A.2: msgsvc.idl

	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

