

1 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

[MS-EFSR]:
Encrypting File System Remote (EFSRPC) Protocol
Specification

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft's Open Specification Promise (available here:

http://www.microsoft.com/interop/osp) or the Community Promise (available here:

http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if
the technologies described in the Open Specifications are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

2 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Revision Summary

Date

Revision

History

Revision

Class Comments

03/14/2007 1.0 Version 1.0 release

04/10/2007 1.1 Version 1.1 release

05/18/2007 1.2 Version 1.2 release

06/08/2007 1.2.1 Editorial Revised and edited the technical content.

07/10/2007 1.3 Minor Updated the technical content.

08/17/2007 2.0 Major Updated and revised the technical content.

09/21/2007 3.0 Major Converted to unified format.

10/26/2007 3.1 Minor Updated the technical content.

01/25/2008 3.1.1 Editorial Revised and edited the technical content.

03/14/2008 3.1.2 Editorial Revised and edited the technical content.

06/20/2008 4.0 Major Updated and revised the technical content.

07/25/2008 4.0.1 Editorial Revised and edited the technical content.

08/29/2008 4.0.2 Editorial Revised and edited the technical content.

10/24/2008 4.0.3 Editorial Revised and edited the technical content.

12/05/2008 5.0 Major Updated and revised the technical content.

01/16/2009 5.0.1 Editorial Revised and edited the technical content.

02/27/2009 5.0.2 Editorial Revised and edited the technical content.

04/10/2009 5.0.3 Editorial Revised and edited the technical content.

05/22/2009 6.0 Major Updated and revised the technical content.

07/02/2009 6.0.1 Editorial Revised and edited the technical content.

08/14/2009 6.0.2 Editorial Revised and edited the technical content.

09/25/2009 7.0 Major Updated and revised the technical content.

11/06/2009 8.0 Major Updated and revised the technical content.

12/18/2009 9.0 Major Updated and revised the technical content.

01/29/2010 10.0 Major Updated and revised the technical content.

03/12/2010 11.0 Major Updated and revised the technical content.

3 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Date

Revision

History

Revision

Class Comments

04/23/2010 11.0.1 Editorial Revised and edited the technical content.

06/04/2010 12.0 Major Updated and revised the technical content.

07/16/2010 13.0 Major Significantly changed the technical content.

08/27/2010 14.0 Major Significantly changed the technical content.

10/08/2010 15.0 Major Significantly changed the technical content.

11/19/2010 15.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 15.0 No change No changes to the meaning, language, or formatting of

the technical content.

02/11/2011 16.0 Major Significantly changed the technical content.

4 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Contents

1 Introduction ... 7
1.1 Glossary ... 7
1.2 References .. 9

1.2.1 Normative References ... 9
1.2.2 Informative References ... 10

1.3 Overview .. 11
1.4 Relationship to Other Protocols .. 14
1.5 Prerequisites/Preconditions ... 15
1.6 Applicability Statement ... 15
1.7 Versioning and Capability Negotiation ... 15
1.8 Vendor-Extensible Fields ... 16
1.9 Standards Assignments .. 16

2 Messages.. 17
2.1 Transport .. 17
2.2 Common Data Types .. 17

2.2.1 EFSRPC Identifiers .. 17
2.2.2 EFSRPC Metadata ... 17

2.2.2.1 EFSRPC Metadata Version 1 ... 18
2.2.2.1.1 Key List Structure ... 20
2.2.2.1.2 Key List Entry ... 20
2.2.2.1.3 Public Key Information ... 22
2.2.2.1.4 Certificate Data ... 23
2.2.2.1.5 Encrypted FEK .. 25

2.2.2.2 EFSRPC Metadata Version 2 ... 26
2.2.2.2.1 Protector List Structure .. 27
2.2.2.2.2 EFSX Datum ... 28
2.2.2.2.3 Blob Datum .. 30
2.2.2.2.4 Descriptor Datum .. 30
2.2.2.2.5 Protector List Entry .. 31
2.2.2.2.6 Protector Info Datum ... 32
2.2.2.2.7 Key Agreement Datum ... 33
2.2.2.2.8 Fek Info Datum ... 33

2.2.3 EFSRPC Raw Data Format.. 34
2.2.3.1 Marshaled Stream ... 35
2.2.3.2 Stream Data Segment ... 36
2.2.3.3 Data Segment Encryption Header ... 37
2.2.3.4 Extended Header .. 38

2.2.4 PEXIMPORT_CONTEXT_HANDLE ... 39
2.2.5 EFS_EXIM_PIPE ... 39
2.2.6 EFS_CERTIFICATE_BLOB ... 39
2.2.7 EFS_HASH_BLOB ... 40
2.2.8 ENCRYPTION_CERTIFICATE ... 40
2.2.9 ENCRYPTION_CERTIFICATE_LIST ... 40
2.2.10 ENCRYPTION_CERTIFICATE_HASH.. 41
2.2.11 ENCRYPTION_CERTIFICATE_HASH_LIST ... 41
2.2.12 EFS_RPC_BLOB .. 41
2.2.13 ALG_ID ... 42
2.2.14 EFS_KEY_INFO ... 42
2.2.15 EFS_COMPATIBILITY_INFO .. 43

5 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.16 EFS_ENCRYPTION_STATUS_INFO ... 43
2.2.17 EFS_DECRYPTION_STATUS_INFO ... 43
2.2.18 ENCRYPTED_FILE_METADATA_SIGNATURE .. 44

3 Protocol Details .. 45
3.1 Server Details ... 45

3.1.1 Abstract Data Model ... 45
3.1.1.1 User-Certificate Binding ... 46
3.1.1.2 EFSRPC Server Control .. 47

3.1.2 Timers .. 47
3.1.3 Initialization .. 47
3.1.4 Message Processing Events and Sequencing Rules .. 47

3.1.4.1 Application Requests for a User-Certificate Binding 47
3.1.4.1.1 EFS Certificate Enrollment Algorithm ... 48

3.1.4.1.1.1 Inputs .. 48
3.1.4.1.1.2 Outputs .. 48
3.1.4.1.1.3 Internal Variables .. 48
3.1.4.1.1.4 Processing Rules ... 48

3.1.4.1.1.4.1 Building a List of CAs that Support a Particular Template 49
3.1.4.1.1.4.2 Creating a Request ... 49

3.1.4.2 EFSRPC Interface .. 50
3.1.4.2.1 Receiving an EfsRpcOpenFileRaw Message (Opnum 0) 52
3.1.4.2.2 Receiving an EfsRpcReadFileRaw Message (Opnum 1) 54
3.1.4.2.3 Receiving an EfsRpcWriteFileRaw Message (Opnum 2) 54
3.1.4.2.4 Receiving an EfsRpcCloseRaw Message (Opnum 3) 55
3.1.4.2.5 Receiving an EfsRpcEncryptFileSrv Message (Opnum 4) 55
3.1.4.2.6 Receiving an EfsRpcDecryptFileSrv Message (Opnum 5) 56
3.1.4.2.7 Receiving an EfsRpcQueryUsersOnFile Message (Opnum 6) 57
3.1.4.2.8 Receiving an EfsRpcQueryRecoveryAgents Message (Opnum 7) 57
3.1.4.2.9 Receiving an EfsRpcRemoveUsersFromFile Message (Opnum 8) 58
3.1.4.2.10 Receiving an EfsRpcAddUsersToFile Message (Opnum 9) 59
3.1.4.2.11 Receiving an EfsRpcNotSupported Message (Opnum 11) 59
3.1.4.2.12 Receiving an EfsRpcFileKeyInfo Message (Opnum 12) 60
3.1.4.2.13 Receiving an EfsRpcDuplicateEncryptionInfoFile Message (Opnum 13) 61
3.1.4.2.14 Receiving an EfsRpcAddUsersToFileEx Message (Opnum 15) 63
3.1.4.2.15 Receiving an EfsRpcFileKeyInfoEx Message (Opnum 16) 64
3.1.4.2.16 Receiving an EfsRpcGetEncryptedFileMetadata Message (Opnum 18) 65
3.1.4.2.17 Receiving an EfsRpcSetEncryptedFileMetadata Message (Opnum 19) 65
3.1.4.2.18 Receiving an EfsRpcFlushEfsCache Message (Opnum 20) 66

3.1.5 Timer Events ... 66
3.1.6 Other Local Events ... 66

4 Protocol Examples .. 67

5 Security .. 69
5.1 Security Considerations for Implementers ... 69
5.2 Index of Security Parameters .. 69

6 Appendix A: Full IDL ... 70

7 Appendix B: Product Behavior .. 74

8 Change Tracking... 80

6 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

9 Index ... 82

7 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1 Introduction

The Encrypting File System Remote (EFSRPC) Protocol is used for performing maintenance and
management operations on encrypted data that is stored remotely and accessed over a network. It
is used in Microsoft Windows® to manage files that reside on remote file servers and are encrypted
using the Encrypting File System (EFS).

1.1 Glossary

The following terms are defined in [MS-GLOS]:

access control list (ACL)
binary large object (BLOB)
binding
certificate
certificate template

constrained delegation

decryption
domain
Encrypting File System (EFS)
encryption
endpoint
file system

flags
fully qualified domain name (FQDN)
globally unique identifier (GUID)
key
Lightweight Directory Access Protocol (LDAP)
named pipe
opnum

plaintext

private key
public key
Public Key Infrastructure (PKI)
remote procedure call (RPC)
Rivest-Shamir-Adleman (RSA)
RPC protocol sequence

RPC transport
security context (1)
security identifier (SID)
security provider
Security Support Provider Interface (SSPI)
server

Server Message Block (SMB)
stream
UncPath

Unicode
Universal Naming Convention (UNC)
universally unique identifier (UUID)
well-known endpoint

X.509

The following terms are specific to this document:

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

8 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Advanced Encryption Standard (AES): A cryptographic algorithm that can be used to protect
electronic data. The AES algorithm can be used to encrypt (encipher) and decrypt (decipher)

information. Encryption converts data to an unintelligible form called ciphertext; decrypting
the ciphertext converts the data back into its original form, called plaintext. AES is a

symmetric cipher, meaning that the same key is used for the encryption and decryption
operations. It is also a block cipher, meaning that it operates on fixed-size blocks of plaintext
and ciphertext, and requires the size of the plaintext as well as the ciphertext to be an exact
multiple of this block size. AES is specified in [FIPS197].

Data Decryption Field (DDF): The portion of the EFSRPC Metadata that contains information
that enables authorized users to decrypt the file.

data recovery agent (DRA): A logical entity corresponding to an asymmetric key pair that is

configured as part of administrative policy by an administrator. When an EFS file is created or
modified, it is also automatically configured to give all DRAs in effect at that time the ability to
decrypt it.

data recovery field (DRF): The portion of the EFSRPC Metadata that contains information that

enables authorized DRAs to decrypt the file.

EFS Raw Data Format: The data format used by the EFSRPC raw methods to marshal the

contents and metadata of an encrypted file into a single-bit stream. It is specified in section
2.2.3.

EFSRPC Metadata: The additional data stored with an encrypted file to enable authorized users
to access the data in the file. The format of this metadata is implementation-dependent. The
EFSRPC Metadata general requirements are specified in detail in section 2.2.2 and the
Windows format is specified in associated endnotes in Appendix B of this specification.

file: A unit of data in the file system. An encrypted file consists of encrypted data along with the

metadata required for a user to decrypt the file. The file and its metadata are protected using
public key cryptography such that an authorized user's private key is required to decrypt
the file.

File Encryption Key (FEK): The symmetric key that is used to encrypt the data in an EFS-
protected file. The FEK is further encrypted and stored in the file metadata such that only
authorized users can access it.

folder: A container for files and other folders. A folder may be encrypted. The semantics of

encrypting a folder are implementation-dependent. In the Windows implementation,
encrypting a folder does not directly cause any data to be encrypted. Encrypting a folder in
Windows has the following consequences:

EFSRPC Metadata is created and stored with the folder.

An NTFS attribute is set on the folder to signify that it is encrypted. NTFS checks this

attribute when any new files or folders are created in the folder. NTFS will automatically
encrypt any files or folders created within a folder that has this attribute set.

New Technology File System (NTFS): The native file system of Windows 2000, Windows XP,

Windows Vista, and Windows 7. Within this document, this term is occasionally used to refer
to the operating system subsystem that implements NTFS support. For more information, see
[MSFT-NTFS].

sparse file: A file containing large sections of data composed only of zeros, which is marked as

such in the NTFS. The file system saves disk space by only allocating as many ranges on
disk as are required to completely reconstruct the non-zero data. When an attempt is made to

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89870
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90200
%5bMS-GLOS%5d.pdf

9 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

read in the nonallocated portions of the file (also known as holes), the file system
automatically returns zeros to the caller.

valid data length (VDL): In NTFS, there are two important concepts of file length: the end-of-
file (EOF) marker and the valid data length (VDL). The EOF indicates the actual length of the

file. The VDL identifies the length of valid data on disk. Any reads between VDL and EOF
automatically return zeros.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We

will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an

additional source.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
http://www.opengroup.org/public/pubs/catalog/c706.htm

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification", July 2006.

[MS-CRTD] Microsoft Corporation, "Certificate Templates Structure", July 2006.

[MS-DISO] Microsoft Corporation, "Domain Interactions System Overview", November 2009.

[MS-DTYP] Microsoft Corporation, "Windows Data Types", January 2007.

[MS-ERREF] Microsoft Corporation, "Windows Error Codes", January 2007.

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions", July 2006.

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol Specification", July 2006.

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Version 2 Protocol Specification",
July 2006.

[MS-WCCE] Microsoft Corporation, "Windows Client Certificate Enrollment Protocol Specification",
July 2006.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

[RFC2251] Wahl, M., Howes, T., and Kille, S., "Lightweight Directory Access Protocol (v3)", RFC
2251, December 1997, http://www.ietf.org/rfc/rfc2251.txt

[RFC3394] Schaad, J., Housley, R., "Advanced Encryption Standard (AES) Key Wrap Algorithm",
RFC 3394, September 2002, http://www.ietf.org/rfc/rfc3394.txt

[RFC5280] Cooper, D., Santesson, S., Farrell, S., et al., "Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, May 2008,
http://www.ietf.org/rfc/rfc5280.txt

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ADTS%5d.pdf
%5bMS-CRTD%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=163118
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-WCCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=131784
http://go.microsoft.com/fwlink/?LinkId=131034

10 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1.2.2 Informative References

[FIPS180] Federal Information Processing Standards Publication, "Secure Hash Standard", FIPS PUB
180-1, April 1995, http://www.itl.nist.gov/fipspubs/fip180-1.htm

[FIPS197] National Institute of Standards and Technology, "Federal Information Processing
Standards Publication 197: Advanced Encryption Standard (AES)", November 2001,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary", March 2007.

[MS-GPEF] Microsoft Corporation, "Group Policy: Encrypting File System Extension", March 2007.

[MS-SFU] Microsoft Corporation, "Kerberos Protocol Extensions: Service for User and Constrained
Delegation Protocol Specification", July 2006.

[MS-WDV] Microsoft Corporation, "Web Distributed Authoring and Versioning (WebDAV) Protocol:
Client Extensions", July 2006.

[MSDN-CRYPTO] Microsoft Corporation, "Cryptography Reference", http://msdn.microsoft.com/en-
us/library/aa380256.aspx

[MSDN-CSPCTX] Microsoft Corporation, "Cryptographic Service Provider Contexts",
http://msdn.microsoft.com/en-us/library/Aa380246

[MSDN-CSPR] Microsoft Corporation, "Cryptographic Service Providers",
http://msdn.microsoft.com/en-us/library/aa380245.aspx

[MSDN-RPCTSEC] Microsoft Corporation, "Using Transport-Level Security on the Client",
http://msdn.microsoft.com/en-us/library/aa379194.aspx

[MSFT-EFS] Microsoft Corporation, "The Encrypting File System",
http://www.microsoft.com/technet/security/guidance/cryptographyetc/efs.mspx

[MSFT-NTFS] Microsoft Corporation, "NTFS Technical Reference", March 2003,

http://technet2.microsoft.com/WindowsServer/en/Library/81cc8a8a-bd32-4786-a849-
03245d68d8e41033.mspx

[MSFT-XPUEFS] Microsoft Corporation, "Windows XP Professional Resource Kit: Using Encrypting File
System", November 2005, http://technet.microsoft.com/en-us/library/bb457116.aspx

[TDEA] National Institute of Standards and Technology, "Recommendation for the Triple Data
Encryption Algorithm (TDEA) Block Cipher", Special Publication 800-67, May 2004.

[X509] ITU-T, "Information Technology - Open Systems Interconnection - The Directory: Public-Key

and Attribute Certificate Frameworks", Recommendation X.509, August 2005,
http://www.itu.int/rec/T-REC-X.509/en

Note There is a charge to download the specification.

[X690] ITU-T, "Information Technology - ASN.1 Encoding Rules: Specification of Basic Encoding

Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)",
Recommendation X.690, July 2002, http://www.itu.int/rec/T-REC-X.690/en

Note There is a charge to download the specification.

http://go.microsoft.com/fwlink/?LinkId=89867
http://go.microsoft.com/fwlink/?LinkId=89870
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=179748
%5bMS-SFU%5d.pdf
%5bMS-SFU%5d.pdf
%5bMS-WDV%5d.pdf
%5bMS-WDV%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89984
http://go.microsoft.com/fwlink/?LinkId=89984
http://go.microsoft.com/fwlink/?LinkId=89986
http://go.microsoft.com/fwlink/?LinkId=89987
http://go.microsoft.com/fwlink/?LinkId=90113
http://go.microsoft.com/fwlink/?LinkId=90185
http://go.microsoft.com/fwlink/?LinkId=90200
http://go.microsoft.com/fwlink/?LinkId=90200
http://go.microsoft.com/fwlink/?LinkId=90713
http://go.microsoft.com/fwlink/?LinkId=90590
http://go.microsoft.com/fwlink/?LinkId=90593

11 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1.3 Overview

The Encrypting File System Remote Protocol (hereafter referred to as EFSRPC) is a Remote
Procedure Call (RPC) interface that is used to manage data objects stored in an encrypted form.

The objective of encrypting data in this fashion is to enforce access control policies and to provide
confidentiality from unauthorized users.

EFSRPC is implemented in Microsoft Windows® to provide remote management for files encrypted
by the Encrypting File System (EFS). EFS is the ability of the NTFS file system to encrypt files on
disk in a manner that is transparent to the user. For more information on EFS, see [MSFT-EFS]. For
more information about NTFS, see [MSFT-NTFS].

EFSRPC does not address how data is encrypted, how the encrypted data is stored, or how it is

accessed for routine operations such as reading, writing, creating, and deleting. All these actions are
specific to the server implementation. On Windows, NTFS provides the storage mechanism (the file
is the unit of storage) and the Server Message Block (SMB) Protocol provides remote access to such
files. For more information about SMB, see [MS-SMB] and [MS-SMB2].

EFSRPC models the underlying data encryption architecture using two basic constructs:

A set of data objects, each of which is encrypted independently and can be managed

independently.

A set of access control subjects, each of which is represented by a key pair generated by a

public key cryptographic algorithm. The public key of this key pair is embedded in a certificate
and may be widely distributed in that form. The corresponding private key is held solely by the
user or users who represent that subject. Thus, a given access control subject may correspond to
one or more users, and a given user may possess the private keys for zero or more access

control subjects. Access control subjects are further divided into two types:

Unprivileged user subjects, which are used for routine data access by ordinary users of the

system. For convenience, this specification refers to such subjects as user certificate.

Data Recovery Agents (DRAs), which are controlled by system administrators. The storage

system ensures that all active DRAs for the system are automatically authorized to access all
encrypted objects on the system. If an unprivileged user loses the private key, an

administrator can use a DRA's private key to recover the contents of encrypted objects.

EFSRPC also assumes that each encrypted object is associated with some security-related metadata,
which contains information required for authorized users and DRAs to access the plaintext of the
object. This specification refers to this security-related metadata as the EFSRPC Metadata.

EFSRPC does not specify how data is encrypted, stored, or accessed. It is possible to build a
compliant EFSRPC implementation that uses a mechanism, such as access control lists (ACLs),

instead of encryption to control access to data objects. For the purposes of this specification, the
term encrypted is used to indicate that a data object and its metadata can be successfully
manipulated through the EFSRPC methods, with the exception of the EfsRpcEncryptFileSrv
method, which converts data objects from an unencrypted state to an encrypted state.

Within the preceding model, EFSRPC provides various categories of management routines. The

syntax of the individual methods and rules for how these methods are processed on the server are
specified in section 3.1.4.2. The categories of management routines that EFSRPC provides are as

follows:

Requesting the server to convert objects from encrypted state to unencrypted state and vice

versa.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90185
http://go.microsoft.com/fwlink/?LinkId=90200
%5bMS-SMB%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

12 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

EfsRpcEncryptFileSrv (section 3.1.4.2.5)

EfsRpcDecryptFileSrv (section 3.1.4.2.6)

Creating, querying, and manipulating the EFSRPC Metadata. Clients use the following methods to

query and change which user certificates can be used to decrypt an encrypted object. The set of
user certificates with access to an object needs to be changed when the set of users with access
to the object changes or when a user with access to the object changes the user certificate. The
following methods can also be used to copy the access rights from one object to another; the
EfsRpcDuplicateEncryptionInfoFile method is particularly well-suited for this
purpose.Methods:

EfsRpcQueryUsersOnFile (section 3.1.4.2.7)

EfsRpcQueryRecoveryAgents (section 3.1.4.2.8)

EfsRpcRemoveUsersFromFile (section 3.1.4.2.9)

EfsRpcAddUsersToFile (section 3.1.4.2.10)

EfsRpcFileKeyInfo (section 3.1.4.2.12)

EfsRpcDuplicateEncryptionInfoFile (section 3.1.4.2.13)

EfsRpcAddUsersToFileEx (section 3.1.4.2.14)

EfsRpcFileKeyInfoEx (section 3.1.4.2.15)

EfsRpcGetEncryptedFileMetadata (section 3.1.4.2.16)

EfsRpcSetEncryptedFileMetadata (section 3.1.4.2.17)

Performing backup of encrypted objects in ciphertext form along with their EFSRPC Metadata,

and restoring encrypted objects from such backups. Depending on the implementation of these
methods, the backups that are created may expose the implementation-specific EFSRPC

Metadata format to the client. The Windows implementation of these methods exposes the
Windows EFSRPC Metadata format; however, Windows applications do not manipulate this

information. The following methods are suitable for secure content archival or transferring
encrypted data securely between servers of the same implementation because they do not
require decrypting the data. Methods:

EfsRpcOpenFileRaw (section 3.1.4.2.1)

EfsRpcReadFileRaw (section 3.1.4.2.2)

EfsRpcWriteFileRaw (section 3.1.4.2.3)

EfsRpcCloseRaw (section 3.1.4.2.4)

Controlling the server's encryption subsystem. Methods:

EfsRpcFlushEfsCache (section 3.1.4.2.18)

Most of the EFSRPC routines are stateless and can be called in any order. When one of these

routines is called, the message exchange is as follows.

%5bMS-GLOS%5d.pdf

13 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Figure 1: Message exchange for stateless routines

There are two routines in EFSRPC that are an exception to the stateless nature of the protocol.
Several methods, collectively known as the EFSRPC raw methods, are an exception and need to be

called in a specific order. This includes the EfsRpcOpenFileRaw, EfsRpcReadFileRaw,
EfsRpcWriteFileRaw, and EfsRpcCloseRaw methods. The following two sequences are
permissible.

Figure 2: Message sequence for opening a file

14 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Figure 3: Message sequence for importing a file

1.4 Relationship to Other Protocols

The Encrypting File System Remote Protocol is built on the Microsoft Remote Procedure Call (RPC)
interface (as specified in [C706] and [MS-RPCE]). EFSRPC uses the Server Message Block (SMB)
Protocol [MS-SMB] [MS-SMB2] as its RPC transport. Specifically, it uses named pipes over SMB
(that is, RPC protocol sequence ncacn_np) as its transport mechanism. Either version 1 or version

2 of SMB may be used. The client has to connect to the server over SMB and negotiate a version of
SMB before it can access the named pipe that is the RPC endpoint on the server.

Microsoft Windows® also supports the storage of encrypted files via WebDAV [MS-WDV]. However,
this feature does not use EFSRPC. This feature does not alter the WebDAV Protocol. Windows clients
store encrypted files on WebDAV servers in the EFSRPC Raw Data Format, but the Windows
WebDAV client performs all encryption and decryption operations locally. It also performs the local
operations necessary to transform the file to and from the EFSRPC Raw Data Format during upload

and download respectively. For more information, see [MSFT-XPUEFS].

This specification provides an interface (see section 3.1.4.1) for applications to request a user
certificate. This interface uses methods outlined in [MS-WCCE] to enroll for a certificate and key.

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-WDV%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90713
%5bMS-WCCE%5d.pdf

15 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Figure 4: Protocol relationships

1.5 Prerequisites/Preconditions

To use EFSRPC with a remote server, the client is required to possess valid credentials recognized

by the server and be able to pass authentication and authorization checks for access to the
encrypted data on the server. If secure operation is desired, the server is required to register an
appropriate server principal name/authentication service pair that supports a protection level that
provides packet integrity. Additionally, the client must be configured to associate the appropriate
server principal name and authentication, and authorization and protection level with its binding,
when connecting to the server.<1>

The User-Certificate Binding interface described in section 3.1.1.1 stores user keys protected to the

user credentials and requires that the EFSRPC server be joined to the domain and configured for
Kerberos delegation.<2> Alternatively, the server can be configured for constrained delegation
(as specified in [MS-SFU]) for only the services used for user key storage.

1.6 Applicability Statement

This protocol is appropriate for remotely managing encrypted data objects on a server. It is used by

Microsoft Windows® clients to manage EFSRPC-protected files on remote file servers using either
version 1 or version 2 of the SMB Protocol. It does not specify any particular data protection
mechanism.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas.

Supported Transports: This protocol uses RPC for communication. It uses named pipes as the

transport mechanism, as specified in section 2.1.

Protocol Versions: The RPC runtime negotiates the version of the EFSRPC interface, as specified in
[C706]. The only supported version of this protocol is 1.0, as specified in section 3.1.4.2.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-SFU%5d.pdf
%5bMS-SMB%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824

16 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Security and Authentication Methods: EFSRPC does not specify any methods for authenticating
access to the objects it operates on. The underlying data encryption and storage system may

implement any authentication mechanism. In Microsoft Windows®, such authentication is provided
by SMB, as specified in [MS-SMB] and [MS-SMB2]. An EFSRPC server may register a server principal

name/authentication service pair to enable secure RPC communications, and a client may choose to
associate this security service with its binding when connecting to the server, as specified in section
3.

Capability Negotiation: Implicit negotiation of RPC security mechanisms may be performed through
the security-related APIs specified in [C706] Chapter 13. The security mechanisms negotiated by
Windows clients and servers are as specified in section 2.1.

1.8 Vendor-Extensible Fields

EFSRPC does not include any vendor-extensible fields.

This protocol uses Win32 error codes. These values are taken from the Windows error number space
as specified in [MS-ERREF] section 2.2. Vendors SHOULD reuse those values with their indicated

meaning. Using any other value runs the risk of a collision in the future.

1.9 Standards Assignments

Parameter Value

RPC Well-Known Endpoint \pipe\lsarpc

RPC Interface UUID {c681d488-d850-11d0-8c52-00c04fd90f7e}

Parameter Value

RPC Well-Known Endpoint \pipe\efsrpc

RPC Interface UUID {df1941c5-fe89-4e79-bf10-463657acf44d}

%5bMS-SMB%5d.pdf
%5bMS-SMB2%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89826
%5bMS-ERREF%5d.pdf

17 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2 Messages

2.1 Transport

The client and server MUST communicate over RPC, using named pipes over the Server Message
Block (SMB) Protocol. The SMB version, capabilities, and authentication used for this connection are
negotiated between the client and server when the connection is established, as specified in [MS-
SMB] and [MS-SMB2].

EFSRPC messages to remote servers SHOULD be sent using the well-known endpoint

\pipe\efsrpc. Remote servers MAY respond to EFSRPC messages sent using the well-known endpoint
\pipe\lsarpc. When connecting to \pipe\efsrpc, the server interface is identified by UUID [df1941c5-
fe89-4e79-bf10-463657acf44d], version 1.0. When connecting to \pipe\lsarpc, the server interface
is identified by UUID [c681d488-d850-11d0-8c52-00c04fd90f7e], version 1.0. <3>

The EFSRPC client MUST use explicit binding to create the RPC binding handle used to connect to the
server, unless otherwise specified in section 3.1.4.2.

A server SHOULD<4> register one or more server principal name/authentication service pairs that

provide a protection level that includes packet integrity. A client SHOULD attempt to associate
suitable security information with its binding for the EFSRPC methods. For EfsRpcOpenFileRaw,
clients SHOULD set the security options explicitly as noted in section 3. For all other EFSRPC
methods, clients SHOULD use default values for the binding security information as specified in [MS-
RPCE] section 3.3.2.3.1.

2.2 Common Data Types

This section specifies the syntax of EFSRPC data types. In addition to the RPC base types and
definitions specified in [C706] and [MS-DTYP], the additional data types described in the following
sections are defined in the Microsoft Interface Definition Language (MIDL) specification for this RPC
interface. This protocol MUST indicate to the RPC runtime that it is to support the NDR20 transfer
syntax only, as specified in [C706] Part 4.

This specification uses GUID structures as specified in [MS-DTYP] section 2.3.2.2.

2.2.1 EFSRPC Identifiers

An EFSRPC identifier is used to uniquely refer to an encrypted data object on a remote server. The
format of the identifier used is implementation-specific. It MUST be represented as a null-terminated
Unicode string in UTF-16 encoding. EFSRPC servers SHOULD use UncPaths for EFSRPC identifiers.
The server MUST return an error if it is passed an identifier that violates the syntactic rules imposed
by its implementation.<5>

2.2.2 EFSRPC Metadata

The EFSRPC Metadata is attached to an encrypted object and contains information required to
decrypt it. The EFSRPC Metadata is used implicitly by the EFSRPC raw methods, because it forms

part of the EFSRPC Raw Data Format.

The structure of the EFSRPC Metadata is implementation dependent. An EFSRPC server SHOULD
return an error if EFSRPC Metadata is passed to it in an unsupported format. An EFSRPC client

SHOULD NOT parse the EFSRPC Metadata, and SHOULD NOT rely on it being in any particular
format.

%5bMS-GLOS%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89829
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

18 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The EFSRPC Metadata SHOULD be represented on the server as follows.

2.2.2.1 EFSRPC Metadata Version 1

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Length

Reserved1

EFS_Version

Reserved2

EFS_ID

...

...

...

EFS_Hash

...

...

...

Reserved3

...

...

...

DDF_Offset

DRF_Offset

Reserved4

...

19 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

...

Data_Fields (variable)

...

Length (4 bytes): This field MUST contain a 32-bit unsigned integer equal to the length, in
bytes, of the EFSRPC Metadata.<6>

Reserved1 (4 bytes): MUST be set to zero and ignored upon receipt.

EFS_Version (4 bytes): This field represents the highest EFS version supported by the
implementation that created this metadata. It MUST be a 32-bit unsigned integer in little-
endian format. It MUST be set to one of the following values.

Value Meaning

Version_1

0x00000001

The FEK will be a DESX key, and encrypted with RSA only. The Flags field in all

key list entries will be zero.

Version_2

0x00000002

The FEK will use DESX, 3DES, or AES-256. The FEK will be encrypted with RSA only.

The Flags field in all key list entries will be zero.

Version_3

0x00000003

The FEK will use DESX, 3DES, or AES-256. The FEK will be encrypted with either

RSA or AES-256.

A server that supports a given version number MUST also support all lower numbered
versions. A server SHOULD support all versions listed.<7>

Reserved2 (4 bytes): MUST be set to zero and ignored upon receipt.

EFS_ID (16 bytes): A 16-byte GUID value that MUST be unique for the computer that created

this metadata.

EFS_Hash (16 bytes): This field SHOULD be set to zero and ignored by the server.<8>

Reserved3 (16 bytes): MUST be set to zero and ignored upon receipt.

DDF_Offset (4 bytes): This field MUST contain the offset, in bytes, of the DDF key list from
the start of the EFSRPC Metadata. It MUST be a 32-bit unsigned integer in little-endian

format. The DDF key list lies completely within the Data Fields and does not overlap the DRF
key list (if present).

DRF_Offset (4 bytes): This field MUST contain the offset, in bytes, of the DRF key list from the
start of the EFSRPC Metadata. It MUST be a 32-bit unsigned integer in little-endian format. A
zero value in this field indicates that the DRF key list is absent and no DRAs have been applied
to the file. If present, the DRF key list MUST lie completely within Data Fields and MUST NOT
overlap the DDF key list.

Reserved4 (12 bytes): MUST be set to zero and ignored upon receipt.

Data_Fields (variable): This field MUST contain the following two items in any order at the
locations indicated by the respective Offset fields previously listed. Both items MUST conform
to the key list format specified in section 2.2.2.1.1. The DDF key list MUST NOT overlap with
the DRF key list (if present). There MUST NOT be any unused areas within this field spanning

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

20 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

more than 8 contiguous bytes. Any unused areas within this field MUST be set to zero bytes
and ignored by the server.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

DDF_key_list (variable)

...

DRF_key_list (variable)

...

DDF_key_list (variable): This field MUST contain one or more entries. Each entry
consists of the file's FEK, encrypted with the public key of a user authorized to access

the file.

DRF_key_list (variable): This MUST contain one or more entries. Each entry consists of
the file's FEK, encrypted with the public key of a DRA authorized to access the file. This
MUST only be present if the value in the DRF offset field is nonzero.

2.2.2.1.1 Key List Structure

The DDF and Key List structure in the EFSRPC Metadata MUST be formatted as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Length

Key_List_1 (variable)

...

Key_List_n (variable)

...

Length (4 bytes): The number of entries in this key list. It MUST be a 32-bit unsigned integer
in little-endian format.

Key List entries 1 ... n: A number of entries equal to the value in the length of key list field.

The individual entries MUST be formatted as specified in section 2.2.2.1.2.

2.2.2.1.2 Key List Entry

Each individual Key List Entry MUST be formatted as follows.

21 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Length

Offset to Public Key Information

Encrypted FEK Length

Offset to Encrypted FEK

Flags

Data Fields (variable)

...

Length (4 bytes): MUST be equal to the length of this key list entry in bytes. It MUST be a 32-
bit unsigned integer in little-endian format.

Offset to Public Key Information (4 bytes): MUST contain the offset to the Public Key
Information field in bytes from the start of this entry. It MUST be a 32-bit unsigned integer
in little-endian format. The Public Key Information field MUST be completely contained
inside the Data Fields.

Encrypted FEK Length (4 bytes): MUST be set to the length of the data in the Encrypted

FEK field, in bytes. It MUST be a 32-bit unsigned integer in little-endian format.

Offset to Encrypted FEK (4 bytes): MUST contain the offset to the Encrypted FEK field, in
bytes from the start of this entry. It MUST be a 32-bit unsigned integer in little-endian format.

The Encrypted FEK MUST be completely contained inside the Data fields.

Flags (4 bytes): This field MUST indicate the algorithm used to encrypt the FEK in this key list
entry. It MUST be a 32-bit unsigned integer in little-endian format. EFSRPC servers SHOULD
support all the values listed below, and MUST ignore any unsupported values.

Value Meaning

0x00000000 The Encrypted FEK field is encrypted using RSA, with a public key belonging to a

user or DRA.

0x00000001 The Encrypted FEK field is encrypted using AES-256, with a key that is obtained by

signing the non-terminated Unicode string "MICROSOFTE" (20 bytes long) with the

user's RSA and computing the SHA-256 hash of the result.

This value is used when a user's private key is stored on a smart card to improve

performance by minimizing the number of smart card accesses.<9>

Data Fields (variable): This field MUST contain the following items, in any order, at the
locations indicated by the respective Offset fields previously listed. These items MUST be
completely contained inside this field and MUST NOT overlap each other. There MUST NOT be

unused areas within this field spanning more than 8 contiguous bytes.

22 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Public Key Information (variable)

...

Encrypted FEK (variable)

...

Public Key Information (variable): This field MUST contain information about the
X.509 certificate that contains the RSA public key, which is used to encrypt the
Encrypted FEK field. It MUST be formatted as specified in section 2.2.2.1.3.

Encrypted FEK (variable): This field MUST contain information about the FEK, encrypted

as indicated by the contents of the Flags field. It MUST be formatted as specified in
section 2.2.2.1.5.

2.2.2.1.3 Public Key Information

The Public Key Information structure MUST be formatted as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Length

Offset to Owner Hint

0x03 0x00 0x00 0x00

Length of Certificate Data

Offset to Certificate Data

Reserved

...

Data Fields (variable)

...

Length (4 bytes): This MUST be set to the length, in bytes, of this structure. It MUST be a 32-
bit unsigned integer in little-endian format.

Offset to Owner Hint (4 bytes): If the Owner Hint field is present, this field MUST be set to
the offset of the Owner Hint from the beginning of this structure, measured in bytes. If this

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

23 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

field is zero, then the Owner Hint field MUST NOT be present. This field MUST be a 32-bit
unsigned integer in little-endian format.

Length of Certificate Data (4 bytes): The size, in bytes, of the Certificate Data field. It
MUST be a 32-bit unsigned integer in little-endian format.

Offset to Certificate Data (4 bytes): The offset, in bytes, of the Certificate Data field from
the start of this structure. It MUST be a 32-bit unsigned integer in little-endian format.

Reserved (8 bytes): MUST be set to zero and ignored upon receipt.

Data Fields (variable): This field MUST contain the following items, in any order, and at the
locations indicated by the respective Offset fields above. These items MUST be completely
contained inside this field and MUST NOT overlap each other. There MUST NOT be any unused
areas within this field that span more than eight contiguous bytes.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Owner Hint (variable)

...

Certificate Data (variable)

...

Owner Hint (variable): A security identifier (SID) in RPC marshaling format that is
intended to be used as a hint regarding the identity of the key owner. This item MUST
be present only if the Offset to Owner Hint field is nonzero. The structure of an RPC
SID is specified in [MS-DTYP] section 2.4.2.3.

Certificate Data (variable): This field MUST contain information about the X.509
certificate associated with the public key that is used to encrypt the FEK data in this key

list entry. It MUST be formatted as specified in section 2.2.2.1.4.

2.2.2.1.4 Certificate Data

The Certificate Data structure MUST be formatted as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Offset to Certificate Thumbprint

Length of Certificate Thumbprint

Offset of Container Name

Offset of Provider Name

%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf

24 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Offset of Display Name

Data Fields (variable)

...

Offset to Certificate Thumbprint (4 bytes): Offset of the Certificate Thumbprint field from
the start of this structure. It MUST be a 32-bit unsigned integer in little-endian format.

Length of Certificate Thumbprint (4 bytes): The length of the Certificate Thumbprint
field. It MUST be a 32-bit unsigned integer in little-endian format.

Offset of Container Name (4 bytes): Offset of the Container Name field (in bytes) from the
start of this structure. It MUST be a 32-bit unsigned integer in little-endian format. If this field

is set to zero, then the Container Name field MUST be absent.

Offset of Provider Name (4 bytes): Offset of the Provider Name field (in bytes) from the
start of this structure. It MUST be a 32-bit unsigned integer in little-endian format. If this field
is set to zero, the Provider Name field MUST be absent. If a Provider Name field is present,
a Container Name field MUST also be present.

Offset of Display Name (4 bytes): Offset of the Display Name field, (in bytes) from the start
of this structure. It MUST be a 32-bit unsigned integer in little-endian format. If this field is

set to zero, then the Display Name field MUST be absent.

Data Fields (variable): This field MUST contain the following items, in any order, and at the
locations indicated by the respective Offset fields previously listed. These items MUST be
completely contained inside this field and MUST NOT overlap each other. There MUST NOT be
any unused areas within this field that span more than 8 contiguous bytes.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Certificate Thumbprint (variable)

...

Container Name (variable)

...

Provider Name (variable)

...

Display Name (variable)

...

25 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Certificate Thumbprint (variable): The SHA-1 hash of the DER-encoded form of the
certificate. For more information on SHA-1, see [FIPS180]. For more information on DER

encoding, see [X690].

Container Name (variable): A null-terminated Unicode string in UTF-16 encoding that

provides a hint as to the public key container in which the key is stored. This field MUST
always be present if the Provider Name is present. When the Container Name field is
present, the Offset of Container Name field MUST be nonzero; otherwise, this field is
ignored by the server and does not affect protocol behavior.

Provider Name (variable): A null-terminated Unicode string in UTF-16 encoding. This
field MUST always be present if the Container Name is present. It MUST be omitted if
the Offset of Provider Name field is 0; otherwise, this field is ignored by the server

and does not affect protocol behavior.

Display Name (variable): A null-terminated Unicode string in UTF-16 encoding that
provides a hint as to the friendly name that can be used to identify this certificate for
display purposes. This field MUST be omitted if the Offset of Display Name field is 0.

2.2.2.1.5 Encrypted FEK

The Encrypted FEK field in the DDF and DRF key list entries MUST consist of the following
structure, encrypted as specified in the description of the Flags field for the key list entry.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Key Length

Entropy

Algorithm

Reserved

Key (variable)

...

Key Length (4 bytes): The length, in bytes, of the Key field. It MUST be a 32-bit unsigned
integer in little-endian format. Possible values depend on the algorithm ID (ALG_ID) as
specified in section 2.2.13.<10>

Entropy (4 bytes): The number of bits of true randomness in the key contained in this
structure. It MUST be a 32-bit unsigned integer in little-endian format. Possible values depend

on the Algorithm as specified in section 2.2.13.

Algorithm (4 bytes): The symmetric cryptographic algorithm associated with this key. It MUST
be a 32-bit unsigned integer in little-endian format. Possible values are specified in section
2.2.13. The possible values for this field are constrained by the value of the EFS version field
in the EFSRPC Metadata.

Reserved (4 bytes): MUST be set to zero and ignored.

http://go.microsoft.com/fwlink/?LinkId=89867
http://go.microsoft.com/fwlink/?LinkId=90593

26 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Key (variable): The FEK for the file.

2.2.2.2 EFSRPC Metadata Version 2

This metadata format is specified by an EFS Version of 4 in the EFSRPC metadata header. This new

metadata format is referred to as "Version 2" of the EFSRPC metadata, but do not confuse this with
the EFS Version field specified within the metadata header. The format used for Version 2 EFSRPC
metadata is significantly different from Version 1 described in section 2.2.2.1. Servers SHOULD
support Version 2 of the EFSRPC Metadata.<11> A server that supports Version 2 of the EFSRPC
Metadata MUST also fully support EFSRPC Metadata Version 1.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Length

Reserved1

EFS_Version

Reserved2

EFS_ID

...

...

...

DDF_Offset

DRF_Offset

FekInfo_Datum

...

...

Data_Fields (variable)

...

Length (4 bytes): This field MUST contain a 32-bit unsigned integer equal to the length, in
bytes, of the EFSRPC Metadata.<12>

Reserved1 (4 bytes): MUST be set to zero and ignored upon receipt.

27 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

EFS_Version (4 bytes): This field represents the highest EFS version supported by the
implementation that created this metadata. It MUST be a 32-bit unsigned integer in little-

endian format. It MUST be set to 0x00000004.

Reserved2 (4 bytes): MUST be set to zero and ignored upon receipt.

EFS_ID (16 bytes): A 16-byte GUID value that MUST be unique for the computer that created
this metadata.

DDF_Offset (4 bytes): This field MUST contain the offset, in bytes, of the DDF protector list
from the start of the EFSRPC Metadata. It MUST be a 32-bit unsigned integer in little-endian
format. The DDF protector list lies completely within the Data Fields and does not overlap the
DRF protector list (if present).

DRF_Offset (4 bytes): This field MUST contain the offset, in bytes, of the DRF protector list

from the start of the EFSRPC Metadata. It MUST be a 32-bit unsigned integer in little-endian
format. A zero value in this field indicates that the DRF protector list is absent and no DRAs
have been applied to the file. If present, the DRF protector list MUST lie completely within

Data Fields and MUST NOT overlap the DDF protector list.

FekInfo_Datum (12 bytes): This field contains the encrypted Fek and the File IV. It also
contains the ALG_ID for the Fek. The FekInfo Datum MUST conform to the format described

in section 2.2.2.2.8.

Data_Fields (variable): This field MUST contain the following two items in any order at the
locations indicated by the respective Offset fields previously listed. Both items MUST conform
to the protector list format specified in section 2.2.2.2.1. The DDF key list MUST NOT overlap
with the DRF key list (if present).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

DDF_protector_list (variable)

...

DRF_protector_list (variable)

...

DDF_protector_list (variable): This field MUST contain one or more entries, each of
which consists of a key protector as specified in section 2.2.2.2.5. Each key protector in

this list is protected with a user public key.

DRF_protector_list (variable): This MUST contain one or more entries, each of which
consists of a key protector as specified in section 2.2.2.2.5. Each key protector in this
list is protected with the public key of a DRA authorized to access the file. This MUST
only be present if the value in the DRF offset field is nonzero.

2.2.2.2.1 Protector List Structure

The DDF and DRF Protector List structure in the Version 4 EFSRPC Metadata MUST be formatted as
follows.

28 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

StructureSize

ProtectorsCount Protector_List_Entry 1 (variable)

...

Protector_List_Entries (variable)

...

Protector_List_Entry ProtectorsCount (variable)

...

StructureSize (4 bytes): The size in bytes of the protector list. It MUST be a 32-bit unsigned
integer in little-endian format.

ProtectorsCount (2 bytes): This represents the number of protectors in the protector list. It
MUST be a 16-bit unsigned integer in little-endian format.

Protector_List_Entries (variable): A number of entries equal to the value in the
ProtectorsCount field. The individual entries MUST be formatted as specified in section
2.2.2.2.5.

2.2.2.2.2 EFSX Datum

The EFSX Datum represents the base type for every datum within the Version 4 EFSRPC Metadata

and MUST be formatted as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

StructureSize Role

Type Flags

StructureSize (2 bytes): The size in bytes of the EFSX Datum. It MUST be a 16-bit unsigned
integer in little-endian format.

Role (2 bytes): Specifies the EFSX Datum role. It MUST be a 16-bit unsigned integer in little-

endian format.

Value Meaning

0x0000 The EFSX Datum has no defined role.

0x0001 The EFSX Datum contains a reference to a user's certificate store. This reference could

29 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

be, for example, a certificate hash or the public key from a certificate.

0x0002 The EFSX Datum contains data specific to a protector type. See section 2.2.2.2.5 for

valid protector types and their associated protector data format.

0x0003 The EFSX Datum contains information that is suitable for user display. For example, this

could be the user name associated with a protector.

0x0004 The EFSX Datum contains information that identifies a private key container.

0x0005 The EFSX Datum contains information that identifies the provider name of a CSP or KSP.

0x0006 The EFSX Datum contains a user SID.

0x0007 The EFSX Datum contains the encrypted File Master Key (FMK).

0x0008 The EFSX Datum contains a user's public key.

0x0009 The EFSX Datum contains an ephemeral public key.

0x000a The EFSX Datum contains the encrypted File Encryption Key (FEK).

0x000b The EFSX Datum contains the file Initialization Vector (IV).

Type (2 bytes): Specifies the EFSX Datum type. It MUST be a 16-bit unsigned integer in little-
endian format.

Value Meaning

Reserved

0x0000

Reserved. Local use only.

EFSX_TYPE_BLOB

0x0001

The EFSX Datum MUST be formatted as specified in section

2.2.2.2.3.

EFSX_TYPE_DESCRIPTOR

0x0002

The EFSX Datum MUST be formatted as specified in section

2.2.2.2.4.

EFSX_TYPE_KEY_PROTECTOR

0x0003

The EFSX Datum MUST be formatted as specified in section

2.2.2.2.5.

EFSX_TYPE_PROTECTOR_INFO

0x0004

The EFSX Datum MUST be formatted as specified in section

2.2.2.2.6.

EFSX_TYPE_KEY_AGMT_DATA

0x0005

The EFSX Datum MUST be formatted as specified in section

2.2.2.2.7.

EFSX_TYPE_FEK_INFO

0x0006

The EFSX Datum MUST be formatted as specified in section

2.2.2.2.8.

Flags (2 bytes): Specifies datum flags. It MUST be a 16-bit unsigned integer in little-endian
format. The value of this field MUST be zero (0x0000) or a union of one or more of the
following values.

%5bMS-DTYP%5d.pdf

30 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

0x0001 The EFSX Datum is nested inside a parent structure.

0x0002 The EFSX Datum is a complex datum containing nested datum structures.

2.2.2.2.3 Blob Datum

The Blob Datum encapsulates an opaque binary object. It MUST be formatted as below.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

EFSX_Datum

...

BlobType BlobFlags

Blob_Data (variable)

...

EFSX_Datum (8 bytes): MUST be formatted as specified in section 2.2.2.2.2. The datum Type
MUST be EFSX_TYPE_BLOB (0x0001). The datum Flags MUST NOT include 0x0002.

BlobType (2 bytes): The type of the blob, which provides a hint to the format of the Blob
Data. It MUST be a 16-bit unsigned integer in little-endian format.

Value Meaning

0x0000 The blob has no special formatting.

0x0001 The blob contains a public key formatted as a BCRYPT_PUBLIC_KEY_BLOB.

0x0002 The blob contains a SHA-1 hash of a DER-encoded form of a certificate.

0x0003 The blob contains the encrypted form of an Encrypted FEK structure, as defined in

section 2.2.2.1.5. The contents of the key may be either the FEK or the FMK, see section

2.2.2.2.5.

0x0004 The blob contains key material wrapped with an AES-256 key wrapping key, as defined

by [RFC3394].

BlobFlags (2 bytes): Reserved, MUST be 0x0000.

Blob_Data (variable): Contains opaque, variable-length data. The Blob Data MUST be entirely
contained within the Blob Datum.

2.2.2.2.4 Descriptor Datum

The Descriptor Datum encapsulates a Unicode string in UTF-16 encoding. It MUST be formatted as

below.

http://go.microsoft.com/fwlink/?LinkId=131784

31 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

EFSX_Datum

...

Descriptor_Text (variable)

...

EFSX_Datum (8 bytes): MUST be formatted as specified in section 2.2.2.2.2. The datum Type
MUST be EFSX_TYPE_DESCRIPTOR (0x0002). The datum Flags MUST NOT include 0x0002.

Descriptor_Text (variable): Contains a null-terminated, variable-sized Unicode string in UTF-
16 encoding. The Descriptor Text MUST be entirely contained within the Descriptor Datum.

The length of the Descriptor Text MUST be at least 2 bytes to include the null terminator
(0x0000).

2.2.2.2.5 Protector List Entry

Each individual Protector List Entry MUST be formatted as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

EFSX_Datum

...

ProtectorType ProtectorFlags

Data_Fields (variable)

...

EFSX_Datum (8 bytes): MUST be formatted as specified in section 2.2.2.2.2. The datum Type
MUST be EFSX_TYPE_KEY_PROTECTOR (0x0003) and SHOULD have a Role of
EFSX_ROLE_IGNORE (0x0000). The datum Flags SHOULD include 0x0002 indicating a
complex datum.

ProtectorType (2 bytes): The type of the protector. It MUST be a 16-bit unsigned integer in

little-endian format. Possible values are specified below.

Value Meaning

0x0002 The protector was derived from a public/private key pair using a key agreement. The

Data Fields SHOULD include an EFSX_Datum of Type EFSX_TYPE_KEY_AGMT_DATA

(0x0005) and Role 0x0002.

32 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

0x0001 The protector was derived from a public/private key pair capable of performing

asymmetric encryption. The Data Fields SHOULD include an EFSX_Datum of Type

EFSX_TYPE_BLOB (0x0005) and Role 0x0002.

ProtectorFlags (2 bytes): The flags for the protector. It MUST be a 16-bit unsigned integer in
little-endian format. The value MUST be 0x0000 or a union of one or more of the following
values.

Value Meaning

0x0001 The protector is a legacy protector, and stores the Encrypted FEK as specified in section

2.2.2.1.5.

0x0002 If this is a legacy protector (flag 0x0001 is also set), the Encrypted FEK is encrypted

using AES 256, with a key that is obtained by signing the non-terminated Unicode string

"MICROSOFTE" (20 bytes long) with the user's RSA and computing the SHA-256 hash of

the result.

0x0004 If this bit is set, bit 0x0001 MUST also be set to indicate a legacy protector. This bit

indicates that the legacy protector stores the File Master Key (FMK) encrypted in the

Encrypted FEK structure instead of the File Encryption Key (FEK).

Data_Fields (variable): This field contains any number of nested EFSX_Datum structures. The
nested datum structures MUST NOT overlap, and MUST be entirely contained within the
protector list entry. It SHOULD contain a datum with a Role of 0x0001 (certificate store
reference), a datum with a Role of 0x0002 (protector data), and a datum with a Type of
EFSX_TYPE_PROTECTOR_INFO (0x0004).

2.2.2.2.6 Protector Info Datum

The Protector Info Datum encapsulates information describing the origin of a protector. It MUST be

formatted as below.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

EFSX_Datum

...

Data_Fields (variable)

...

EFSX_Datum (8 bytes): MUST be formatted as specified in section 2.2.2.2.2. The datum Type
MUST be EFSX_TYPE_PROTECTOR_INFO (0x0004). The datum Flags SHOULD include 0x0002
indicating a complex datum.

Data_Fields (variable): This field contains any number of nested EFSX_Datum structures. The
nested datum structures MUST NOT overlap, and MUST be entirely contained within the
protector info datum.

33 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.2.2.7 Key Agreement Datum

The Key Agreement datum encapsulates the parameters necessary to decrypt a key agreement
protector (ProtectorType of 0x0001).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

EFSX_Datum

...

KeyAgmtFlags Data_Fields (variable)

...

EFSX_Datum (8 bytes): MUST be formatted as specified in section 2.2.2.2.2. The datum Type
MUST be EFSX_TYPE_KEY_AGMT_DATA (0x0005). The datum Flags SHOULD include 0x0002,
indicating a complex datum.

KeyAgmtFlags (2 bytes): This field is reserved and SHOULD be set to 0x0000.

Data_Fields (variable): This field contains any number of nested EFSX_Datum structures. The
nested datum structures MUST NOT overlap, and MUST be entirely contained within the Key
Agreement datum. This field SHOULD contain three datum structures of type

EFSX_TYPE_BLOB (0x0001) and Roles of 0x0007, 0x0008, and 0x0009. The public keys
referenced by Roles 0x0008 and 0x0009 MUST have BlobType set to 0x0001.

2.2.2.2.8 Fek Info Datum

The Fek Info datum encapsulates the algorithm ID (ALG_ID) used for the FEK, the encrypted FEK,

and the File IV. The FEK and File IV are both protected using AES keywrap, with the FMK as the

wrapping key.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

EFSX_Datum

...

AlgorithmID

Data_Fields (variable)

...

EFSX_Datum (8 bytes): MUST be formatted as specified in section 2.2.2.2.2. The datum Type
MUST be EFSX_TYPE_FEK_INFO (0x0006). The datum Flags SHOULD include 0x0002,
indicating a complex datum.

34 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

AlgorithmID (4 bytes): The symmetric cryptographic algorithm associated with this key. It
MUST be a 32-bit unsigned integer in little-endian format. Possible values are specified in

section 2.2.13.

Data_Fields (variable): This field contains any number of nested EFSX_Datum structures. The

nested datum structures MUST NOT overlap, and MUST be entirely contained within the Fek
Info datum. This field MUST contain at least two datum structures of type EFSX_TYPE_BLOB
(0x0001). These blobs MUST have Role fields set to 0x000a (for the encrypted FEK) and
0x000b (for the encrypted File IV), respectively. The BlobType for these blobs MUST be
0x0004, indicating that the blob data contains a key wrapped with an AES 256 key encryption
key, as defined in [RFC3394].

2.2.3 EFSRPC Raw Data Format

The EFSRPC raw data format is used by the EFSRPC raw methods. The output of the
EfsRpcReadFileRaw method MUST conform to this format. The input to the EfsRpcWriteFileRaw
method MUST conform to the EFSRPC Raw Data Format. The details of this format are
implementation dependent. An EFSRPC client SHOULD NOT parse this format and SHOULD NOT rely

on it having any particular structure. An EFSRPC server MUST validate input data passed to it by the

EfsRpcWriteFileRaw method, and SHOULD abort the EfsRpcWriteFileRaw operation with an RPC
exception if this data is in an unsupported format.

The EFSRPC Raw Data Format SHOULD be formatted as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

0x00 0x01 0x00 0x00

0x52 0x00 0x4f 0x00

0x42 0x00 0x53 0x00

Reserved

...

EFSRPC Metadata Stream (variable)

...

Additional Stream 1 (variable)

...

Additional Stream n (variable)

...

Reserved (8 bytes): MUST be set to zero and ignored.

http://go.microsoft.com/fwlink/?LinkId=131784

35 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

EFSRPC Metadata Stream (variable): This field MUST be formatted as specified in section
2.2.3.1. This field MUST contain the EFSRPC Metadata for the file, along with a header. The

structure of the EFSRPC Metadata is specified in section 2.2.2.

Additional Stream 1 ... n: These MUST correspond to marshaled versions of all the streams

(except for EFSRPC Metadata) in the given file. They are optional and might not exist (for
example, for folders with no alternate streams). For more information on NTFS file streams,
see [MSFT-NTFS]. These fields MUST be formatted as specified in section 2.2.3.1.

2.2.3.1 Marshaled Stream

A Marshaled Stream (including the EFSRPC Metadata stream) MUST be formatted as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Length

0x4e 0x00 0x54 0x00

0x46 0x00 0x53 0x00

Flag

Reserved

...

Name Length

Stream Name (variable)

...

Stream Data Segment 1 (variable)

...

Stream Data Segment n (variable)

...

Length (4 bytes): The length, in bytes, of this stream header from the start of this field to the

end of the Stream Name field. It MUST be a 32-bit unsigned integer in little-endian format.

Flag (4 bytes): This MUST be a 32-bit unsigned integer in little-endian format. It MUST be set
to 0x00000000 if the stream data is encrypted with the FEK. Otherwise, it MUST be set to

0x00000001. It MUST always be set to zero in the case of the EFSRPC Metadata stream, and
ignored by the server in that case.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90200

36 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

0x00000000 FEK encryption present

0x00000001 FEK encryption not present

Reserved (8 bytes): This field MUST be set to zero and ignored.

Name Length (4 bytes): The length, in bytes, of the Stream Name field. It MUST be a 32-bit
unsigned integer in little-endian format. This field MUST be set to 0x00000002 for the EFSRPC
Metadata stream.

Stream Name (variable): The name of the stream. This is set to either a null-terminated

Unicode string in UTF-16 encoding, or an integer value stored in binary form. For the EFSRPC
Metadata stream, this is always set to 0x1910.

Value Meaning

0x1910 EFSRPC Metadata stream

Stream Data Segment 1 ... n: These segments MUST contain the contents of the stream as
well as some metadata for reassembling the segments. For encrypted streams, these
segments MUST also contain some metadata to aid in decryption. They MUST be formatted as
specified in section 2.2.3.2.

2.2.3.2 Stream Data Segment

Each stream data segment MUST be formatted as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Length

0x47 0x00 0x55 0x00

0x52 0x00 0x45 0x00

Reserved

Data Segment Encryption Header (variable)

...

Stream Data (variable)

...

Length (4 bytes): The length, in bytes, of this segment. It MUST be a 32-bit unsigned integer
in little-endian format. The length MUST be measured from the start of this field to the end of
the Stream Data field.

37 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Reserved (4 bytes): This field is set to zero and is ignored by the server.

Data Segment Encryption Header (variable): This header MUST be present only if the

stream is encrypted (that is, if the Flag field in the stream header is set to zero and this is not
the EFSRPC Metadata stream). It MUST be formatted as specified in section 2.2.3.3.

Stream Data (variable): This field MUST contain part or all of the stream data. If the Data
Segment Encryption Header field is present, Stream Data MUST be consistent with it.
Stream Data MUST consist of contiguous bytes taken from the stream except for zero bytes
that are omitted in accordance with the Data Segment Encryption Header. If the stream is
encrypted, its data MUST be encrypted with the FEK, using the algorithm indicated by the
Algorithm field in the EFSRPC Metadata (specified in section 2.2.2) in the Cipher Block
Chaining (CBC) mode.

2.2.3.3 Data Segment Encryption Header

The Data Segment Encryption Header MUST be formatted as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Starting File Offset

...

Length

Bytes Within Stream Size

Bytes Within VDL

0x0000 Data Unit Shift Chunk Shift

Cluster Shift 0x01 Number of Data Blocks

Data Block Sizes (variable)

...

Extended Header (optional)

...

...

...

Starting File Offset (8 bytes): This field MUST contain an unsigned 64-bit integer in little-
endian format denoting the offset, in bytes, into the stream being serialized of the first data
byte contained in this data segment.

38 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Length (4 bytes): The length of this header, in bytes, measured from the beginning of the
Starting File Offset field to the end of the Data Segment Encryption Header. It MUST be

a 32-bit unsigned integer in little-endian format. Any unused bytes within this structure MUST
be set to zero and ignored by the server.

Bytes Within Stream Size (4 bytes): The number of bytes contained within this stream data
segment that fall within the stream size. It MUST be a 32-bit unsigned integer in little-endian
format. This may be less than the number of bytes actually present due to padding required
by the encryption algorithm.

Bytes Within VDL (4 bytes): The number of bytes contained within this stream data segment
that fall within the valid data length (VDL). It MUST be a 32-bit unsigned integer in little-
endian format. This may be less than the number of bytes actually present due to padding

required by the encryption algorithm. Bytes beyond the VDL MUST be set to zero after
decryption.

Data Unit Shift (1 byte): The base-2 logarithm of the data unit size. It MUST be an 8-bit
unsigned integer. For files that are not sparse files, the data unit size MUST be set to the size

of the data in this segment. For sparse files, it MUST be equal to the size of a compression
unit, which is the smallest unit that all holes MUST be a multiple of.

Chunk Shift (1 byte): The base-2 logarithm of the chunk size. It MUST be an 8-bit unsigned
integer. The chunk size MUST be equal to the data unit size.

Cluster Shift (1 byte): The base-2 logarithm of the cluster size in bytes. It MUST be an 8-bit
unsigned integer. It MUST be equal to the smallest unit of allocation in the underlying file
system.

Number of Data Blocks (2 bytes): This field MUST contain the number of data blocks
specified in this segment. It MUST be a 16-bit unsigned integer in little-endian format. It

MUST be equal to the number of entries in the Data Block Sizes field specified next.

Data Block Sizes (variable): This field MUST consist of a sequence of unsigned 32-bit values
in little-endian format, denoting the sizes of the successive data blocks in the Stream Data

field that follows this header. Each value in the sequence MUST be less than or equal to the
data unit size, unless it spans the VDL or a hole in the case of a sparse file.

Extended Header (16 bytes): This field is optional, and its presence is indicated by the four-
byte signature located at the start of this field. If this field is present, the server SHOULD

interpret it as defined in section 2.2.3.4. The server MAY ignore this field. <13>

2.2.3.4 Extended Header

The Extended Header is an optional field within the Data Segment Encryption Header (section
2.2.3.3). If present, it MUST be formatted as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

0x45 0x58 0x54 0x44

0x10 0x00 0x00 0x00

Flags

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

39 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Reserved

Flags (4 bytes): This MUST be a 32-bit unsigned integer in little-endian format. It MUST be
either zero or the following value.

Value Meaning

0x00000001 Used to indicate that the stream is contained within a sparse file.

Reserved (4 bytes): This field MUST be set to zero and ignored by the server.

2.2.4 PEXIMPORT_CONTEXT_HANDLE

The PEXIMPORT_CONTEXT_HANDLE data type is used to represent a pointer to a context

handle. It MUST be treated as opaque by the client and used by the server, as specified in [C706].

This type is declared as follows:

typedef [context_handle] void* PEXIMPORT_CONTEXT_HANDLE;

2.2.5 EFS_EXIM_PIPE

The EFS_EXIM_PIPE type is used to represent a pipe for the EFSRPC raw methods. It consists of a
set of callback routines for sending and receiving data, as specified in [C706].

This type is declared as follows:

typedef pipe unsigned char EFS_EXIM_PIPE;

2.2.6 EFS_CERTIFICATE_BLOB

The EFS_CERTIFICATE_BLOB type is used to represent the encoded contents of an X.509
certificate.

typedef struct _CERTIFICATE_BLOB {

 DWORD dwCertEncodingType;

 [range(0,32768)] DWORD cbData;

 [size_is(cbData)] unsigned char* bData;

} EFS_CERTIFICATE_BLOB;

dwCertEncodingType: The certificate encoding type. This MUST be set to one of the following

values. If set to any other value, the certificate is considered invalid and behavior is
undefined.

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

40 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

0x00000001 Certificate uses X.509 ASN.1 encoding.

0x00000002 Certificate uses X.509 NDR encoding.

cbData: The number of bytes in the bData buffer.

bData: An encoded X.509 certificate. Its format is specified by the dwCertEncodingType
member. For more information on ASN encoding, see [X690]. NDR encoding is specified in
[C706].<14>

2.2.7 EFS_HASH_BLOB

The EFS_HASH_BLOB type is used to represent an X.509 certificate hash.

typedef struct _EFS_HASH_BLOB {

 [range(0, 100)] DWORD cbData;

 [size_is(cbData)] unsigned char* bData;

} EFS_HASH_BLOB;

cbData: The number of bytes in the bData buffer.

bData: The SHA-1 hash of an X.509 certificate. For more information on SHA-1, see
[FIPS180].<15>

2.2.8 ENCRYPTION_CERTIFICATE

The ENCRYPTION_CERTIFICATE type is used to represent a single X.509 certificate.

typedef struct _ENCRYPTION_CERTIFICATE {

 DWORD cbTotalLength;

 RPC_SID* UserSid;

 EFS_CERTIFICATE_BLOB* CertBlob;

} ENCRYPTION_CERTIFICATE;

cbTotalLength: The length, in bytes, of the structure.

UserSid: The SID of the user who owns the certificate. This is intended as a hint only. It MAY be
set to zero if no such hint is available. The structure of an RPC SID is as specified in [MS-
DTYP] section 2.4.2.3.

CertBlob: A pointer to an EFS_CERTIFICATE_BLOB (2.2.6) structure.

2.2.9 ENCRYPTION_CERTIFICATE_LIST

The ENCRYPTION_CERTIFICATE_LIST type is used to represent a set of X.509 certificates. For

more information on certificates, see [X509].

typedef struct _ENCRYPTION_CERTIFICATE_LIST {

 [range(0,500)] DWORD nUsers;

 [size_is(nUsers,)] ENCRYPTION_CERTIFICATE** Users;

http://go.microsoft.com/fwlink/?LinkId=90593
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89867
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90590

41 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

} ENCRYPTION_CERTIFICATE_LIST;

nUsers: The number of certificates in the list.

Users: A pointer to an array of pointers to ENCRYPTION_CERTIFICATE (2.2.8) structures.
This array is of size nUsers.<16>

2.2.10 ENCRYPTION_CERTIFICATE_HASH

The ENCRYPTION_CERTIFICATE_HASH type is used to represent a single certificate hash. For
more information on certificates, see [X509].

typedef struct _ENCRYPTION_CERTIFICATE_HASH {

 DWORD cbTotalLength;

 RPC_SID* UserSid;

 EFS_HASH_BLOB* Hash;

 [string] wchar_t* lpDisplayInformation;

} ENCRYPTION_CERTIFICATE_HASH;

cbTotalLength: The length, in bytes, of the structure.

UserSid: The SID of the user who owns the certificate. This is intended only as a hint. It MAY be
set to zero if no such hint is available. The structure of an RPC SID is specified in [MS-DTYP],
section 2.4.2.3.

Hash: A pointer to an EFS_HASH_BLOB (2.2.7) structure.

lpDisplayInformation: A string that contains the subject or principal name of the account the
certification is assigned to. The subject name and the principal name can be the same. This is
only intended as a hint for display purposes, and is implementation-dependent. This field MAY

be set to NULL if no such information is available.

2.2.11 ENCRYPTION_CERTIFICATE_HASH_LIST

The ENCRYPTION_CERTIFICATE_HASH_LIST type is used to represent a set of certificate
hashes.

typedef struct _ENCRYPTION_CERTIFICATE_HASH_LIST {

 [range(0,500)] DWORD nCert_Hash;

 [size_is(nCert_Hash,)] ENCRYPTION_CERTIFICATE_HASH** Users;

} ENCRYPTION_CERTIFICATE_HASH_LIST;

nCert_Hash: The number of certificate hashes in the list.

Users: A pointer to an array of pointers to ENCRYPTION_CERTIFICATE_HASH (2.2.10)
structures. This array is of size nCert_Hash.<17>

2.2.12 EFS_RPC_BLOB

The EFS_RPC_BLOB type is used to represent a generic binary large object (BLOB) (that is, an
opaque data type).

http://go.microsoft.com/fwlink/?LinkId=90590
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf

42 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

typedef struct _EFS_RPC_BLOB {

 [range(0,266240)] DWORD cbData;

 [size_is(cbData)] unsigned char* bData;

} EFS_RPC_BLOB,

 *PEFS_RPC_BLOB;

cbData: The length, in bytes, of the data object in the bData field.

bData: The contents of the data object.<18>

2.2.13 ALG_ID

The ALG_ID type is used to denote an algorithm type for cryptographic keys. An implementation

SHOULD<19> support all of the values shown in the following table. Implementations MAY<20>
choose to support other algorithms and values not shown here; if they do, they SHOULD reuse the
values specified in [MSDN-CRYPTO] in order to avoid collisions. Implementations MAY<21> restrict

the set of supported algorithms based on administrative policy.

Algorithm used Value for ALG_ID Entropy Key length

CALG_AES_256 0x6610 256 32

CALG_3DES 0x6603 168 24

In this table, Entropy represents the number of bits of true randomness in the algorithm's key
material, while Key length represents the total size of the key in bytes. For CALG_3DES, the

difference between entropy and key length is due to the parity bits included in the key. For more
information, see [TDEA].

This type is declared as follows:

typedef unsigned int ALG_ID;

2.2.14 EFS_KEY_INFO

The EFS_KEY_INFO type is used to represent information about a key of a symmetric
cryptosystem.

typedef struct {

 DWORD dwVersion;

 unsigned long Entropy;

 ALG_ID Algorithm;

 unsigned long KeyLength;

} EFS_KEY_INFO;

dwVersion: The version of this data structure. It MUST be equal to 0x00000001.

Entropy: The actual number of bits of entropy or true randomness in the key. This value,
divided by 8, MUST be less than or equal to the value of the KeyLength member.

http://go.microsoft.com/fwlink/?LinkId=89984

43 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Algorithm: The cryptographic algorithm with which the key is intended to be used.

KeyLength: The total length, in bytes, of the key. This value, multiplied by 8, MUST be greater

than or equal to the value of the Entropy member. Valid combinations of Entropy, Algorithm,
and KeyLength are specified in section 2.2.13.

2.2.15 EFS_COMPATIBILITY_INFO

The EFS_COMPATIBILITY_INFO type is used to represent information about the compatibility
restrictions of an encrypted file.

typedef struct {

 DWORD EfsVersion;

} EFS_COMPATIBILITY_INFO;

EfsVersion: The EfsVersion associated with the EFSRPC Metadata. Valid values for the

EfsVersion field are described in sections 2.2.2.1 and 2.2.2.2.<22>

2.2.16 EFS_ENCRYPTION_STATUS_INFO

The EFS_ENCRYPTION_STATUS_INFO structure is used to represent the predicted outcome if an
attempt were made to convert an unencrypted object to an encrypted state.

typedef struct {

 BOOL bHasCurrentKey;

 DWORD dwEncryptionError;

} EFS_ENCRYPTION_STATUS_INFO;

bHasCurrentKey: A Boolean value signifying whether an appropriate key was found that could

be used for encryption.

dwEncryptionError: The error code returned if encryption were attempted. If the operation

were to succeed, this value MUST be zero. Otherwise, it MUST be set to a nonzero value.

2.2.17 EFS_DECRYPTION_STATUS_INFO

The EFS_DECRYPTION_STATUS_INFO type is used to represent the predicted outcome if an
attempt were made to read the plaintext of an encrypted object.

typedef struct {

 DWORD dwDecryptionError;

 DWORD dwHashOffset;

 DWORD cbHash;

} EFS_DECRYPTION_STATUS_INFO;

dwDecryptionError: The error code returned if decryption were attempted. If the operation

were to succeed, this value MUST be zero. Otherwise it MUST be set to a nonzero value.

dwHashOffset: The offset of the appended certificate hash in bytes from the start of this
structure.

44 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

cbHash: The length in bytes of the appended certificate hash.

If dwDecryptionError is nonzero, the preceding fields are followed by the hash of a certificate whose

corresponding private key is required for the decryption to succeed.

2.2.18 ENCRYPTED_FILE_METADATA_SIGNATURE

The ENCRYPTED_FILE_METADATA_SIGNATURE structure is used by the client to prove to the
server that it possesses a private key that is authorized to decrypt a given object.

typedef struct _ENCRYPTED_FILE_METADATA_SIGNATURE {

 DWORD dwEfsAccessType;

 ENCRYPTION_CERTIFICATE_HASH_LIST* CertificatesAdded;

 ENCRYPTION_CERTIFICATE* EncryptionCertificate;

 EFS_RPC_BLOB* EfsStreamSignature;

} ENCRYPTED_FILE_METADATA_SIGNATURE;

dwEfsAccessType: The operation being performed. It MUST be set to one of the following

values.

Value Meaning

EFS_METADATA_ADD_USER

0x00000001

One or more additional user certificates are being granted

access to the object.

EFS_METADATA_REMOVE_USER

0x00000002

One or more user certificates are having their access to the

object revoked.

EFS_METADATA_REPLACE_USER

0x00000004

One or more user certificates with access to the object are

being replaced.

EFS_METADATA_GENERAL_OP

0x00000008

A change is being made to the metadata that is not fully

described by exactly one of the previous options.

CertificatesAdded: The X.509 certificates whose corresponding private keys are to be granted
or denied the ability to decrypt the object.

EncryptionCertificate: The X.509 certificates whose corresponding private key the caller claims
to possess.

EfsStreamSignature: The signature obtained by signing the SHA-1 hash of the new EFSRPC

Metadata with the private RSA key corresponding to EncryptionCertificate.

45 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3 Protocol Details

This section specifies the behavior of the EFSRPC server in more detail. The client side of this
protocol is simply a pass-through. There are no additional timers or other state requirements on the
client side of this protocol. Calls made by the higher-layer protocol or application are passed directly
to the transport, and the results returned by the transport are passed directly back to the higher-
layer protocol or application. The client SHOULD<23> attempt to associate the use of suitable RPC
security mechanisms with its binding when making the EfsRpcOpenFileRaw call, so that the data
transfer is protected from man-in-the-middle attacks.

3.1 Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to explain how the
protocol behaves. This document does not mandate that implementations adhere to this model as

long as their external behavior is consistent with that described in this document.

EFSRPC assumes the existence of an underlying storage encryption system on the server that
defines the following conceptual entities:

A set of data objects, each of which is encrypted independently and can be managed

independently.

A set of access control subjects, each of which is represented by a key pair generated by a public

key cryptographic algorithm. The public key of this key pair is embedded in a certificate and may
be widely distributed in that form. The private key is known only to the user or users who
represent that access control subject. Access control subjects are of two types:

Unprivileged user subjects are used by ordinary users to perform routine operations, including

managing files with the EFSRPC methods. For convenience, this specification refers to such
subjects as user certificates.

Data Recovery Agents (DRAs) are used by system administrators to perform data recovery

tasks. The storage system ensures that all active DRAs for the system are automatically
authorized to access all encrypted objects on the system. If a user loses his or her private
key, an administrator can use the DRA private key to recover the contents of their encrypted
objects.

The storage encryption system is also assumed to provide certain primitive operations:

Methods for reading, writing, creating, and destroying encrypted objects. The methods for

reading and writing objects must ensure that only a user who possesses the private key
corresponding to an authorized user certificate or DRA for that object can perform these
operations.

An operation to convert an existing unencrypted object to encrypted form. This causes the

original object to be replaced by its ciphertext, along with some metadata that is essential for

decrypting the ciphertext.

An operation to convert an existing encrypted object to unencrypted form. This replaces the

ciphertext of the object with the plaintext, and destroys the encryption-related metadata.

An operation to extract the EFSRPC Metadata of an existing encrypted object without modifying

the object itself in any other way.

46 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Operations to parse and manipulate the metadata obtained in this way, and in particular to add

or remove access to specific user certificates for users who pass certain authorization checks.

An operation to replace the EFSRPC Metadata of an existing encrypted object without modifying

the object in any way, which ensures that a user cannot modify the set of DRAs having access to
the object.

An operation to read the ciphertext and metadata of an encrypted object without decrypting it.

An operation to create an encrypted object directly by writing its ciphertext and metadata to the

store.

In addition, the following are assumed to be accessible to the server:

A logical credential store for each user of the system. Each user's credential store contains the

private keys to which that user has access. The credential store also provides a method of
locating the private key associated with a given certificate. The server is assumed to have some
implementation-specific method of maintaining this credential store.

A logical store that contains certificates belonging to various users of the system and provides a

means of retrieving individual certificates from this set.

A logical cache for each user that contains all the sensitive information associated with that user

necessary for performing EFSRPC operations on behalf of the user.

A method of ascertaining the DRAs desired by an appropriate administrator at any time.

3.1.1.1 User-Certificate Binding

Applications requesting a user-certificate binding (section 3.1.4.1) must supply a security context
for the user. The security context is used in two ways: to maintain per-user state based on the
unique principal security identifier (SID), and to authenticate the user during certificate enrollment.

The server maintains a persistent per-user collection of zero or more certificates, and corresponding
private keys. The format of the certificates within this collection MUST conform to that specified in

[RFC5280]. In addition, this collection MUST contain only certificates and private keys that are valid
for use by the EFS subsystem on the client. This collection is referred to as EFS User Certificates,

and is used by higher-layer protocols to perform encryption and decryption of EFS objects.

The EFS User Certificates collection on the client contains at most one certificate that is marked as
the EFS Current Key for the user. The EFS User Certificates collection and the EFS Current Key
can be populated by various implementation-specific methods.

The server defines a number of parameters for the certificate enrollment request. These parameters
are persistent across reboot, with no intermediate or volatile form. The parameters can be updated

by external entities (that is, other products). The parameters are as follows:

RequireV3Template (Public): A Boolean indicating whether to restrict the list of allowed
certificate templates to version 3 and higher. The server MUST initialize this to the default
value of False.

DisallowV3Template (Public): A Boolean indicating whether to restrict the list of allowed
certificate templates to version 2 and lower. The server MUST initialize this to the default
value of False.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=131034
%5bMS-GLOS%5d.pdf

47 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

RequireSmartCard (Public): A Boolean indicating whether to require that the resultant
private key from the enrollment operation be stored on a smart card device. The server MUST

initialize this to the default value of False.

TemplateName (Public): A variable length, null-terminated Unicode string indicating the name

of the certificate template to use in the enrollment operation. The server MUST initialize this to
the default value of "EFS".

Note The abstract interface notation "(Public)" indicates that the Abstract Data Model element can
be directly accessed from outside of this protocol.

3.1.1.2 EFSRPC Server Control

The server maintains a persistent parameter that indicates whether it is disabled. This parameter is

persistent across reboot, with no intermediate or volatile form. The parameter can be updated by
external entities (that is, other products). The parameter is as follows:

EfsDisabled (Public): A Boolean indicating whether the EFSRPC interface should reject

incoming requests and return an error. The server MUST initialize this to the default value of
false.

Note The abstract interface notation "(Public)" indicates that the Abstract Data Model element can

be directly accessed from outside this protocol.

3.1.2 Timers

This protocol does not specify any timers.

3.1.3 Initialization

After the server is initialized, the well-known endpoint \pipe\lsarpc or \pipe\efsrpc MUST be

available to remote callers, and the EFSRPC server MUST be available to service requests. The file
system and transport underlying this named pipe MUST be fully initialized.

When the server is initialized, it SHOULD<24> register one or more server principal
name/authentication service pairs to enable clients to connect over secure RPC.

3.1.4 Message Processing Events and Sequencing Rules

3.1.4.1 Application Requests for a User-Certificate Binding

An application (including implementations of the EFSRPC protocol) may request a binding between a
user and an EFS certificate. The application MUST provide a security context for the user. Using this
security context, the EFS Group Policy client performs the following processes to establish a binding
between the user and a certificate.

1. If the EfsDisabled field equals true, return ERROR_NOT_SUPPORTED (specified in [MS-ERREF])
and do no further processing.

2. Using the principal SID from the security context as a key, retrieve a reference to the EFS User
Certificates for the user. Also, retrieve the EFS Current Key from the EFS User Certificates,
if one exists.

3. If an EFS Current Key does not exist, attempt to enroll for a new certificate using the algorithm
outlined in section 3.1.4.1.1.

%5bMS-ERREF%5d.pdf

48 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4. If the enrollment request is successful, add the new certificate and private key to the EFS User
Certificates collection, and mark the new certificate as the EFS Current Key within the

collection.

5. If an EFS Current Key now exists, return it as the bound certificate.

6. Otherwise, return an error.

3.1.4.1.1 EFS Certificate Enrollment Algorithm

This algorithm describes the process used to enroll for an EFS certificate, and is triggered by the
higher-layer event described in section 3.1.4.1. In order for an EFS server to enroll for a certificate,
the server MUST be a member of some Active Directory domain. The Lightweight Directory
Access Protocol (LDAP) search and modify operations used by this algorithm are specified in

sections 4.5 and 4.6 of [RFC2251]. Section 3.1.1.3 of [MS-ADTS] describes the profile of LDAP as
implemented by the Active Directory domain controller (DC).

3.1.4.1.1.1 Inputs

The following values (specified in section 3.1.1.1) control the behavior of this algorithm.

RequireV3Template

DisallowV3Template

RequireSmartCard

TemplateName

3.1.4.1.1.2 Outputs

On success, the output of this algorithm is a certificate and a private key.

3.1.4.1.1.3 Internal Variables

CAList: List of value pairs that contain the sanitized name and fully qualified domain name
(FQDN) of the CA that supports a given template.

Request: This certificate request is created based on an implementation-specific certificate
template.

3.1.4.1.1.4 Processing Rules

The following rules outline the steps necessary to initialize the algorithm state and to process an EFS
certificate enrollment.

1. Initialize the CAList variable as specified in section 3.1.4.1.1.4.1.

2. Create Request as specified in section 3.1.4.1.1.4.2.

3. For each item in the CAList, attempt to submit the certificate request created in step 2.

Use the FQDN value to target a specific WCCE server [MS-WCCE].

Use the CA name as the pwszAuthority parameter of the ICertRequestD2::Request2()

method.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-WCCE%5d.pdf
%5bMS-WCCE%5d.pdf

49 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Continue to process the items in the list until the request is successful or there are no more items
in the list.

3.1.4.1.1.4.1 Building a List of CAs that Support a Particular Template

The client performs the following steps to build a list of certificate authorities (CAs) supporting the
template specified by the TemplateName input:

Perform an LDAP search for the CA information (pKIEnrollmentService) objects (specified in

[MS-WCCE] section 2.2.2.9.2) under the following container:

"CN=Enrollment Services,CN=Public Key Services,CN=Services,CN=Configuration,DC=…"

where "CN=Configuration,DC=…" is replaced with the value of the configurationNamingContext

attribute (specified in [MS-ADTS] section 3.1.1.3.2.1) of the rootDSE object.

For each object in the search result:

If the ntSecurityDescriptor attribute of the object does not have Enroll permission, or has

Enroll permission denied (specified in [MS-CRTD] section 2.5) for the user's security context,
continue with the next object.

If the cACertificate attribute contains a value equal to the TemplateName field, add a value

pair to the CAList where the name is set to the value of the cn attribute, and FQDN is set to
the value of the dNSHostName attribute.

3.1.4.1.1.4.2 Creating a Request

The client creates an EFS certificate enrollment request using the procedure outlined below,
restricting the set of templates in the request according to the TemplateName,
RequireV3Template, DisallowV3Template, and RequireSmartCard inputs specified in section
3.1.4.1.1.1.

1. Perform an LDAP search for certificate template (pKICertificateTemplate) objects (specified in
[MS-CRTD]) under the following container:

"CN=Certificate Templates,CN-Public Key Services, CN=Services, CN=Configuration,DC=…"

where "CN=Configuration,DC=…" is replaced with the value of the

configurationNamingContext attribute (specified in [MS-ADTS] section 3.1.1.3.2.1) of the
rootDSE object. Restrict the search to objects that have cn attribute equal to the
TemplateName field.

2. If the RequireV3Template field equals True and the msPKI-Template-Schema-Version
attribute value is less than 3, return an error.

3. If the DisallowV3Template field equals True and the msPKI-Template-Schema-Version
attribute value is greater than 2, return an error.

4. Create a certificate request as specified in section 3.1.2 of [MS-WCCE], setting the WCCE ADM by
using the method in [MS-WCCE] section 3.1.2.6.1 with the following parameters:

The Parameters.Certificate.Template.* parameters are initialized by the corresponding

values from the objects retrieved in the first step above.

%5bMS-WCCE%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-CRTD%5d.pdf
%5bMS-CRTD%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-WCCE%5d.pdf
%5bMS-WCCE%5d.pdf
%5bMS-WCCE%5d.pdf

50 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The Parameters.IsRenewalRequest parameter is set to False.

The Parameters.CertificateToBeRenewed parameter is set to nothing.

The Parameters.RACertificates list parameter is empty.

5. If the Parameters.RequireSmartCard parameter is True, the private key for the request
created in the previous step MUST be stored on a smart card.

3.1.4.2 EFSRPC Interface

This protocol MUST instruct the RPC runtime to perform a strict NDR data consistency check at
target level 6.0, as specified in [MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime that it is to support both NDR and NDR64 transfer
syntaxes, in addition to the negotiation mechanism that determines which transfer syntax will be
used, as described in [MS-RPCE] section 3.

This protocol MUST instruct the RPC runtime to reject a NULL unique or full pointer with a nonzero-

conforming value, as defined in [MS-RPCE] section 3.

The server SHOULD use the RPC protocol to retrieve the identity of the caller, as described in [MS-
RPCE] section 3.3.3.4.3, and to enforce appropriate security measures to ensure that the caller has

required permissions to execute the following routines. If the caller does not have the required
permissions to execute a specific method, the server SHOULD fail the method call with
ERROR_ACCESS_DENIED (specified in [MS-ERREF]).

This subsection specifies the syntax of the methods specified by the EFSRPC protocol and how to
receive each one. These calls are received at the well-known endpoint of the named pipe
\pipe\lsarpc or \pipe\efsrpc. The server interface for \pipe\lsarpc MUST be identified by UUID
[c681d488-d850-11d0-8c52-00c04fd90f7e], version 1.0. The server interface for \pipe\efsrpc MUST

be identified by UUID [df1941c5-fe89-4e79-bf10-463657acf44d], version 1.0.

The following table specifies the opnum associated with each RPC method in this protocol. An

EFSRPC server SHOULD support all of the methods specified in this table.<25>

Methods in RPC Opnum Order

Method Description

EfsRpcOpenFileRaw Used to open an encrypted object on the server for backup or

restore.

Opnum: 0

EfsRpcReadFileRaw Used by a client to obtain marshaled data for an encrypted object

from the server.

Opnum: 1

EfsRpcWriteFileRaw Used to create an encrypted object on the server, from

marshaled data provided by the client.

Opnum: 2

EfsRpcCloseRaw Called to release any resources allocated by the

EfsRpcOpenFileRaw method, or by subsequent calls to the

EfsRpcReadFileRaw or EfsRpcWriteFileRaw methods.

Opnum: 3

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-GLOS%5d.pdf

51 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Method Description

EfsRpcEncryptFileSrv Used to convert a given object on the server to an encrypted

state in the server's data store.

Opnum: 4

EfsRpcDecryptFileSrv Used to convert an existing encrypted object to the plaintext

state in the server's data store.

Opnum: 5

EfsRpcQueryUsersOnFile Used by the client to query the metadata of an encrypted object

for the X.509 certificates whose associated private keys can be

used to decrypt the object.

Opnum: 6

EfsRpcQueryRecoveryAgents Used to query the object's metadata for the X.509 certificates of

the data recovery agents whose associated private keys can be

used to decrypt it.

Opnum: 7

EfsRpcRemoveUsersFromFile Used to revoke a user's access to an encrypted object. This

method revokes the ability of the private key corresponding to a

given X.509 certificate to decrypt the object.

Opnum: 8

EfsRpcAddUsersToFile Used to grant users the ability to decrypt the object with their

X.509 certificates.

Opnum: 9

Opnum10NotUsedOnWire Reserved for local use.

Opnum: 10

EfsRpcNotSupported Deprecated. Used to act in an identical manner to

EfsRpcDuplicateEncryptionInfoFile (3.1.4.2.13).

Opnum: 11

EfsRpcFileKeyInfo Used to query and modify information about the keys used to

encrypt a given object.

Opnum: 12

EfsRpcDuplicateEncryptionInfoFile Used to duplicate the EFSRPC Metadata of one object and attach

it to another object.

Opnum: 13

Opnum14NotUsedOnWire Reserved for local use.

Opnum: 14

EfsRpcAddUsersToFileEx Used to grant users the ability to decrypt an object using an

X.509 certificate.

Opnum: 15

EfsRpcFileKeyInfoEx Deprecated. Used to act similarly to EfsRpcFileKeyInfo, except

for the dwFileKeyInfoFlags and Reserved parameters.

Opnum: 16

%5bMS-DLTW%5d.pdf
%5bMS-DLTW%5d.pdf

52 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Method Description

Opnum17NotUsedOnWire Reserved for local use.

Opnum: 17

EfsRpcGetEncryptedFileMetadata Deprecated. Used to retrieve the EFSRPC Metadata associated

with an object.

Opnum: 18

EfsRpcSetEncryptedFileMetadata Deprecated. Used to set the EFSRPC Metadata on an object.

Opnum: 19

EfsRpcFlushEfsCache Causes EFS to flush the logical cache that holds all the sensitive

information required to perform EFSRPC operations for the calling

user.

Opnum: 20

In the previous table, the term "Reserved for local use" means that the client MUST NOT send the
opnum, and the server behavior is undefined<26> because it does not affect interoperability. When
a method marked as "Deprecated" is received, the server SHOULD ignore the parameters of the
method and return a nonzero value.<27>

All methods in this protocol MUST return 0 on success, and a nonzero value on failure. Servers

SHOULD use the values specified in [MS-ERREF] for all nonzero error codes. The client MUST treat
all nonzero return values identically.

When the server receives a message from an EFSRPC client, it SHOULD first check the value of the
EfsDisabled field. If it is True, the server SHOULD<28> return ERROR_EFS_DISABLED (specified in
[MS-ERREF]) and perform no further processing. Otherwise, it SHOULD perform any necessary steps
to read its configuration, validate its input parameters (such as any EFSRPC identifiers that refer to
local data objects), authenticate the client, and perform any access checks prescribed by the

implementation.

This protocol MUST indicate to the RPC runtime by way of the strict_context_handle attribute that
it is to reject use of context handles created by a method of an RPC interface other than this one, as
specified in [MS-RPCE] section 3.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC
protocol, as specified in [MS-RPCE].

3.1.4.2.1 Receiving an EfsRpcOpenFileRaw Message (Opnum 0)

The EfsRpcOpenFileRaw method is used to open an encrypted object on the server for backup or
restore. It allocates resources that MUST be released by calling the EfsRpcCloseRaw method.

long EfsRpcOpenFileRaw(

 [in] handle_t binding_h,

 [out] PEXIMPORT_CONTEXT_HANDLE* hContext,

 [in, string] wchar_t* FileName,

 [in] long Flags

);

binding_h: An explicit binding handle created by the client. This is an RPC binding handle

parameter, as specified in [C706] and [MS-RPCE] section 2.

%5bMS-DLTW%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf

53 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

hContext: An implementation-specific context handle that is used in subsequent calls by the
client to the EfsRpcReadFileRaw method, EfsRpcWriteFileRaw method, or

EfsRpcCloseRaw method.

FileName: An EFSRPC identifier, as specified in section 2.2.1.

Flags: This MUST be set to some combination of the following values. All servers and clients
MUST support the CREATE_FOR_IMPORT flag. Servers that implement a hierarchical
encrypted store, such as the NTFS file system, SHOULD also support the CREATE_FOR_DIR
flag. Servers SHOULD support the OVERWRITE_HIDDEN flag, and MAY interpret it in
implementation-specific ways. A client MUST ensure that all the flags it does not support are
set to zero. A server MUST ignore all flags it does not support. Flag values are specified in the
following table.

Value Meaning

CREATE_FOR_IMPORT

0x00000001

Open the object for writing (that is, restore). If this flag is not set, open

the object for reading (that is, backup).

CREATE_FOR_DIR

0x00000002

This flag is only intended for use in conjunction with the

CREATE_FOR_IMPORT flag. It indicates that the object being restored is

a container for other objects.<29>

OVERWRITE_HIDDEN

0x00000004

This flag is only intended for use in conjunction with the

CREATE_FOR_IMPORT flag. This flag indicates a request from the client

for the server to overwrite an existing object even if the existing object is

"hidden". The meaning of "hidden" is specific to the implementation of the

data store, and this meaning does not affect protocol behavior.

Return Values: The server MUST return 0 if it successfully processes the message received from
the client. The server MUST return a nonzero value if processing fails.

First, the server SHOULD perform any additional access checks prescribed by the implementation. If
any of these checks fail, it MUST return a nonzero value.

EFSRPC servers SHOULD return an error unless at least one of the following conditions is true:

The calling user has a private key that grants the user authorized access to the file.

The CREATE_FOR_IMPORT flag is set, and the user has restore rights on the server.

The CREATE_FOR_IMPORT flag is not set, and the user has backup rights on the server.

If the CREATE_FOR_IMPORT flag is set, the server MUST attempt to create an object with the
given name and prepare it for writing data received in future EfsRpcWriteFileRaw calls. The server
MUST return a nonzero value if this fails.

If the CREATE_FOR_IMPORT flag is not set, the server MUST attempt to locate the object
requested and prepare it for reading data to be sent through future EfsRpcReadFileRaw calls. The
server MUST return a nonzero value if it fails.

If the server supports the CREATE_FOR_DIR flag, and this flag is set:

If the CREATE_FOR_IMPORT flag is not set:

If the data object referred to by FileName exists on the server and is not a container for other

objects, the server SHOULD return a nonzero value.

54 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Otherwise, the server SHOULD ignore the CREATE_FOR_DIR flag.

If the CREATE_FOR_IMPORT flag is set, the server MUST attempt to create a container with

the given name and prepare it for writing data received in future EfsRpcWriteFileRaw calls. The

server MUST return a nonzero value if this fails.

If the server supports the OVERWRITE_HIDDEN flag, and this flag is set:

If the CREATE_FOR_IMPORT flag is not set, the server SHOULD ignore this flag.

If the CREATE_FOR_IMPORT flag is set, the server SHOULD overwrite an existing object even

if the object is "hidden". The meaning of "hidden" is specific to the implementation of the data
store, and this meaning does not affect protocol behavior.

The server MUST ignore any flags that it does not support.

On success, the server MUST create an appropriate context handle and return it to the client.

3.1.4.2.2 Receiving an EfsRpcReadFileRaw Message (Opnum 1)

The method EfsRpcReadFileRaw is used by a client to obtain marshaled data for an encrypted
object from the server.

long EfsRpcReadFileRaw(

 [in] PEXIMPORT_CONTEXT_HANDLE hContext,

 [out] EFS_EXIM_PIPE* EfsOutPipe

);

hContext: A context handle returned by the EfsRpcOpenFileRaw method, which MUST have

been called without the CREATE_FOR_IMPORT flag.

EfsOutPipe: A pipe structure. The push procedure of this pipe will be called with the marshaled
data. The structure of this marshaled data is specified in section 2.2.3.

Return Values: The server MUST return 0 if it successfully processes the message received from
the client.

If called with a context handle that has not been obtained by calling the EfsRpcOpenFileRaw
method without the CREATE_FOR_IMPORT flag set, the server SHOULD throw an RPC exception.

The server MUST read data from the object and write it to the pipe in EFSRPC Raw Data Format until
all the data in the object has been written. When all the data in the object has been written, the
server MUST flush the pipe by performing a 0-byte write to the pipe, and return 0 to the user to
indicate success.

If an error is encountered during the read, the server MUST flush the pipe and SHOULD throw an

RPC exception. The pipe MUST be flushed by performing a 0-byte write to the pipe.

3.1.4.2.3 Receiving an EfsRpcWriteFileRaw Message (Opnum 2)

The method EfsRpcWriteFileRaw is used to create an encrypted object on the server from the
marshaled data provided by the client.

long EfsRpcWriteFileRaw(

 [in] PEXIMPORT_CONTEXT_HANDLE hContext,

 [in] EFS_EXIM_PIPE* EfsInPipe

55 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

);

hContext: A context handle returned by the EfsRpcOpenFileRaw method, which MUST have

been called with the CREATE_FOR_IMPORT flag.

EfsInPipe: A pipe structure. The pull procedure of this pipe is expected to provide the marshaled
data. The structure of this marshaled data is specified in section 2.2.3.

Return Values: The server MUST return 0 if it successfully processes the message received from
the client.

If called with a context handle that has not been obtained by calling EfsRpcOpenFileRaw with the

CREATE_FOR_IMPORT flag set, the server MUST abort the operation. In this case, it SHOULD throw
an RPC exception.

The server MUST read data from the pipe and write it to the object indicated by the context handle.
If an error is encountered during the write, the server SHOULD throw an RPC exception.

3.1.4.2.4 Receiving an EfsRpcCloseRaw Message (Opnum 3)

The EfsRpcCloseRaw method is called to release any resources allocated by the

EfsRpcOpenFileRaw method, or by subsequent calls to the EfsRpcReadFileRaw or
EfsRpcWriteFileRaw methods.

void EfsRpcCloseRaw(

 [in, out] PEXIMPORT_CONTEXT_HANDLE* hContext

);

Return Values: This method has no return values.

3.1.4.2.5 Receiving an EfsRpcEncryptFileSrv Message (Opnum 4)

The EfsRpcEncryptFileSrv method is used to convert a given object on the server to an encrypted
state in the server's data store.

long EfsRpcEncryptFileSrv(

 [in] handle_t binding_h,

 [in, string] wchar_t* FileName

);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE]

section 2.

FileName: An EFSRPC identifier as specified in section 2.2.1.

Return Values: The server MUST return 0 if it successfully processes the message received from

the client. The server MUST return a nonzero value if processing fails.

If no object exists on the server with the specified name, the server MUST return a nonzero value. If
the object exists and is already encrypted:

If the object is a container for other objects, the server SHOULD return 0 to indicate success.

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf

56 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

If the object is not a container object, the server SHOULD check to confirm that the calling user

has access to a private key that can decrypt the file and, if so, return 0 to indicate success. If the

calling user does not have access to a private key that can decrypt the file, the server SHOULD

return a nonzero value.

If the object exists and is not encrypted, the server SHOULD use the algorithm specified in section
3.1.4.1 to locate a user certificate for the calling user, specifying the client identity associated with
the RPC call ([MS-RPCE] section 3.3.3.4.3) as input for the security context. If an error is returned
by the algorithm specified in section 3.1.4.1, the server MUST return a nonzero value.

The server then performs the following actions to convert the object to an encrypted state in its
data store:

If the data object referred to by FileName exists on the server and is a container for other

objects, the server MUST set an attribute on the container that instructs the data store to encrypt
any new objects created in that container. The server MAY encrypt unencrypted objects that were
already in the container before this message was received.

Otherwise, the server SHOULD:

Randomly generate a File Encryption Key (FEK) for the object and use it to encrypt the object.

Create EFSRPC Metadata for the object, formatted as specified in section 2.2.2. The Data

Decryption Field SHOULD contain a single entry corresponding to the user certificate
mentioned above.

Return 0 to indicate success.

Upon completion of this request, the converted object MUST be accessible to the calling user for

read and write methods of the storage encryption system.

3.1.4.2.6 Receiving an EfsRpcDecryptFileSrv Message (Opnum 5)

The EfsRpcDecryptFileSrv method is used to convert an existing encrypted object to the

unencrypted state in the server's data store.

long EfsRpcDecryptFileSrv(

 [in] handle_t binding_h,

 [in, string] wchar_t* FileName,

 [in] unsigned long OpenFlag

);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE]
section 2.

FileName: An EFSRPC identifier as specified in section 2.2.1.

OpenFlag: This parameter is unused and MUST be ignored by the server. It MUST be set to zero
by the client.

Return Values: The server MUST return zero if it successfully processes the message received
from the client. The server MUST return a nonzero value if processing fails.

If no object exists on the server with the specified name, the server MUST return a nonzero value. If
the object exists and is not encrypted, the server MUST return success.

%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf

57 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Otherwise, the server performs the following actions to convert the object in its data store to an
unencrypted state:

If the data object referred to by FileName is a container for other objects, the server MUST clear

the attribute on the container that instructs the data store to encrypt any new objects created in
that container. The server MAY decrypt encrypted objects that were already in the container
before this message was received.

Otherwise, the server SHOULD:

Check that the calling user has access to a private key that will decrypt the file; if the user

does not have access, return a nonzero value.

Decrypt the object and discard its EFSRPC Metadata.

Return 0 to indicate success.

3.1.4.2.7 Receiving an EfsRpcQueryUsersOnFile Message (Opnum 6)

The EfsRpcQueryUsersOnFile method is used by the client to query the metadata of an encrypted
object for the X.509 certificates whose associated private keys can be used to decrypt the object.

DWORD EfsRpcQueryUsersOnFile(

 [in] handle_t binding_h,

 [in, string] wchar_t* FileName,

 [out] ENCRYPTION_CERTIFICATE_HASH_LIST** Users

);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE]

section 2.

FileName: An EFSRPC identifier, as specified in section 2.2.1.

Users: A list of certificate hashes, represented by an

ENCRYPTION_CERTIFICATE_HASH_LIST structure.

Return Values: The server MUST return 0 if it successfully processes the message received from
the client. The server MUST return a nonzero value if processing fails.

If no object exists on the server with the specified name, or if the object exists and is not encrypted,
the server MUST return a nonzero value. Otherwise, the server MUST read the object's EFSRPC
Metadata and return a list of the hashes of all the certificates that have been given access to the
object by implicit or explicit user action in the Users parameter. It MUST NOT include DRA
certificates in this list.

3.1.4.2.8 Receiving an EfsRpcQueryRecoveryAgents Message (Opnum 7)

The EfsRpcQueryRecoveryAgents method is used to query the EFSRPC Metadata of an encrypted
object for the X.509 certificates of the data recovery agents whose private keys can be used to

decrypt the object.

DWORD EfsRpcQueryRecoveryAgents(

 [in] handle_t binding_h,

 [in, string] wchar_t* FileName,

 [out] ENCRYPTION_CERTIFICATE_HASH_LIST** RecoveryAgents

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf

58 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE]

section 2.

FileName: An EFSRPC identifier as specified in section 2.2.1.

RecoveryAgents: A list of certificate hashes, represented by an
ENCRYPTION_CERTIFICATE_HASH_LIST structure.

Return Values: The server MUST return 0 if it successfully processes the message received from
the client. The server MUST return a nonzero value if processing fails.

If no object exists on the server with the specified name, or if the object exists and is not encrypted,
the server MUST return a nonzero value. Otherwise, the server MUST read the object's EFSRPC
Metadata and return a list of the hashes of all the DRA certificates that have access to the object in
the RecoveryAgents parameter. The server MUST NOT include any certificates that were not added

by virtue of being defined as DRAs in administrative policy. If no DRAs are defined on the object, the
call MUST return success and this list MUST be empty.

3.1.4.2.9 Receiving an EfsRpcRemoveUsersFromFile Message (Opnum 8)

The EfsRpcRemoveUsersFromFile method is used to revoke a user's access to an encrypted
object. This method revokes the ability of the private key corresponding to a given X.509 certificate
to decrypt the object.

DWORD EfsRpcRemoveUsersFromFile(

 [in] handle_t binding_h,

 [in, string] wchar_t* FileName,

 [in] ENCRYPTION_CERTIFICATE_HASH_LIST* Users

);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE]

section 2.

FileName: An EFSRPC identifier as specified in section 2.2.1.

Users: A list of certificate hashes, represented by an
ENCRYPTION_CERTIFICATE_HASH_LIST structure, whose access is to be removed.

Return Values: The server MUST return 0 if it successfully processes the message received from
the client. The server MUST return a nonzero value if processing fails.

If no object exists on the server with the specified name, or if the object exists and is not encrypted,
the server MUST return a nonzero value. The server SHOULD verify that the calling user is
authorized to access the object, SHOULD verify that the calling user possesses a private key

corresponding to a user certificate present in the EFSRPC Metadata for the object, and MUST return
a nonzero value if this verification fails. If the calling user is authorized to access the object and the

set of user certificates on the object contains only one entry, the server MUST return a nonzero
value.

If none of the preceding errors occur, the server MUST remove the parts of the object's EFSRPC
Metadata that refer to the user certificates listed in the Users structure.

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf

59 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.4.2.10 Receiving an EfsRpcAddUsersToFile Message (Opnum 9)

The EfsRpcAddUsersToFile method is used to grant the possessors of the private keys
corresponding to certain X.509 certificates the ability to decrypt the object.

DWORD EfsRpcAddUsersToFile(

 [in] handle_t binding_h,

 [in, string] wchar_t* FileName,

 [in] ENCRYPTION_CERTIFICATE_LIST* EncryptionCertificates

);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE]

section 2.

FileName: An EFSRPC nonzero name, as specified in section 2.2.1.

EncryptionCertificates: A list of certificates, represented by an
ENCRYPTION_CERTIFICATE_LIST structure, which are to be given access to the object.

Return Values: The server MUST return 0 if it successfully processes the message received from
the client. The server MUST return a nonzero value if processing fails.

If no object exists on the server with the specified name, or if the object exists and is not encrypted,
the server MUST return a nonzero value. Otherwise, the server MUST modify the object's EFSRPC
Metadata such that all the user certificates listed in the Users structure have the ability to decrypt
the object.

3.1.4.2.11 Receiving an EfsRpcNotSupported Message (Opnum 11)

On receiving the EfsRpcNotSupported method call, an EFSRPC server SHOULD implement the

EfsRpcNotSupported method as specified in this section and return a nonzero value. However, a
server MAY<30> choose to interpret and respond to the arguments as specified in section
3.1.4.2.13.

DWORD EfsRpcNotSupported(

 [in] handle_t binding_h,

 [in, string] wchar_t* Reserved1,

 [in, string] wchar_t* Reserved2,

 [in] DWORD dwReserved1,

 [in] DWORD dwReserved2,

 [in, unique] EFS_RPC_BLOB* Reserved,

 [in] BOOL bReserved

);

binding_h: This is an RPC binding handle parameter, as specified, in [C706] and in [MS-RPCE]

section 2.

Reserved1: This parameter is not used. It MUST be set to an empty string by the client and

ignored by the server.

Reserved2: This parameter is not used. It MUST be set to an empty string by the client and
ignored by the server.

dwReserved1: This parameter is not used. It MUST be set to zero by the client and ignored by
the server.

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf

60 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

dwReserved2: This parameter is not used. It MUST be set to zero by the client and ignored by
the server.

Reserved: This parameter is not used. It MUST be set to NULL by the client and ignored by the
server.

bReserved: This parameter is not used. It MUST be set to FALSE by the client and ignored by
the server.

Return Values: The EFSRPC server SHOULD return a nonzero value. However, the server
MAY<31> process this as described in section 3.1.4.2.13.

3.1.4.2.12 Receiving an EfsRpcFileKeyInfo Message (Opnum 12)

The EfsRpcFileKeyInfo method is used to query and modify information about the keys used to

encrypt a given object.

DWORD EfsRpcFileKeyInfo(

 [in] handle_t binding_h,

 [in, string] wchar_t* FileName,

 [in] DWORD InfoClass,

 [out] EFS_RPC_BLOB** KeyInfo

);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE]

section 2.

FileName: An EFSRPC identifier, as specified in section 2.2.1.

InfoClass: One of the values in the following table. With the exception of UPDATE_KEY_USED
(0x00000100), a server SHOULD support all of these values. A server MAY choose to support
UPDATE_KEY_USED.<32>

Value Meaning

BASIC_KEY_INFO

0x00000001

Request information about the keys used to encrypt the object's

contents. On success, the server will return the information in an

EFS_KEY_INFO (2.2.14)structure in the KeyInfo parameter.

CHECK_COMPATIBILITY_INFO

0x00000002

Requests the EfsVersion for the encrypted file. On success, the

server will return the information in an

EFS_COMPATIBILITY_INFO structure in the KeyInfo

parameter.

UPDATE_KEY_USED

0x00000100

Update the user certificates used to give a specific user access to

an object. The server will populate the KeyInfo parameter with a

zero-terminated, wide character Unicode string that contains a

newline-separated list of names of objects successfully updated.

CHECK_DECRYPTION_STATUS

0x00000200

Request a hint from the server as to whether the given object

could be successfully decrypted without further user intervention

or higher-level events. The server will return this information in

an EFS_DECRYPTION_STATUS_INFO structure in the KeyInfo

parameter.

CHECK_ENCRYPTION_STATUS Request a hint from the server as to whether the given object

could be successfully encrypted without further user intervention

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf

61 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

0x00000400 or higher-level events. The server will return this information in

an EFS_ENCRYPTION_STATUS_INFO structure in the KeyInfo

parameter.

KeyInfo: Returned by the server, as previously specified.

Return Values: The server MUST return 0 if it successfully processes the message received from
the client. The server MUST return a nonzero value if processing fails.

If no object exists on the server with the specified name the server MUST return a nonzero value.

If the InfoClass parameter is not equal to CHECK_ENCRYPTION_STATUS and the object with the
specified name is not encrypted, the server MUST return a nonzero value.

If the value in the InfoClass parameter is unsupported by the server, the server MUST return a
nonzero value.

If the value in the InfoClass parameter is equal to BASIC_KEY_INFO, the server SHOULD read the
EFSRPC Metadata of the object referred to by the FileName argument and return information about
its FEK in an EFS_KEY_INFO structure within the KeyInfo argument.

If the value in the InfoClass parameter is equal to UPDATE_KEY_USED, the implementation supports
this value, and the FileName parameter does not satisfy the implementation-specific requirements

for this operation<33>, the server MUST return a nonzero value.

If the value in the InfoClass parameter is equal to UPDATE_KEY_USED, the implementation supports
this value, and the FileName parameter does satisfy all implementation-specific requirements, the
server MUST update the EFSRPC Metadata of all the data objects referred by FileName in an
implementation-specific way<34>, and return a newline-separated list of EFSRPC Identifiers thus
updated in the KeyInfo parameter.

If the value in the InfoClass parameter is equal to CHECK_ENCRYPTION_STATUS, the server MUST

return an EFS_ENCRYPTION_STATUS_INFO structure in the KeyInfo parameter, which provides
a hint to the client what error code would be returned if encryption was attempted on this object
without any further user interaction or higher-level events.

If the value in the InfoClass parameter is equal to CHECK_DECRYPTION_STATUS, the server
SHOULD return ERROR_REQUIRES_INTERACTIVE_WINDOWSTATION ([MS-ERREF] section 2.2). The
server MAY, instead, return an EFS_DECRYPTION_STATUS_INFO structure in the KeyInfo

parameter, which provides a hint to the client what error code would be returned if decryption were
attempted on this object without any further user interaction or higher-level events.

If the value of the InfoClass parameter is equal to CHECK_COMPATIBILITY_INFO, the server MUST
return an EFS_COMPATIBILITY_INFO structure in the KeyInfo parameter, which provides the
EFSVersion of the EFSRPC metadata associated with the file.

3.1.4.2.13 Receiving an EfsRpcDuplicateEncryptionInfoFile Message (Opnum 13)

The EfsRpcDuplicateEncryptionInfoFile method is used to duplicate the EFSRPC Metadata of one
encrypted object and attach it to another encrypted object. This is typically done when copying
objects to maintain the same set of keys and users for the copy as for the original.

DWORD EfsRpcDuplicateEncryptionInfoFile(

 [in] handle_t binding_h,

%5bMS-ERREF%5d.pdf

62 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 [in, string] wchar_t* SrcFileName,

 [in, string] wchar_t* DestFileName,

 [in] DWORD dwCreationDisposition,

 [in] DWORD dwAttributes,

 [in, unique] EFS_RPC_BLOB* RelativeSD,

 [in] BOOL bInheritHandle

);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE]

section 2.

SrcFileName: An EFSRPC identifier, as specified in section 2.2.1.

DestFileName: An EFSRPC identifier, as specified in section 2.2.1.

dwCreationDisposition: This parameter specifies what action the server is advised to take if
the object referred to by DestFileName does not already exist. It MUST be one of the following

values.

Value Meaning

CREATE_NEW

0x00000001

Do not overwrite the data object referred to by DestFileName if it already

exists.

CREATE_ALWAYS

0x00000002

Overwrite the data object referred to by DestFileName if it already exists.

dwAttributes: Desired attributes for the target object. Clients SHOULD set this parameter to the
bitwise OR of zero or more of the following values. Servers SHOULD support all of these
values. These values can be interpreted by the underlying server data store, and they do not

affect protocol behavior.

Value Meaning

FILE_ATTRIBUTE_HIDDEN

0x00000002

The file is hidden (not displayed in normal folder

listings).

FILE_ATTRIBUTE_ARCHIVE

0x00000020

This attribute is used by applications to mark files for

backup or removal.

FILE_ATTRIBUTE_TEMPORARY

0x00000100

The file is being used for temporary storage.

FILE_ATTRIBUTE_NOT_CONTENT_INDEXED

0x00002000

The file's contents should not be indexed by the

content indexing service.

FILE_ATTRIBUTE_NORMAL

0x00000080

No other attributes are to be set.

RelativeSD: Relative security descriptor for the target object. The format of this is
implementation-dependent.<35>

bInheritHandle: This parameter SHOULD be set to FALSE by the client and SHOULD be ignored
by the server.

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf

63 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Return Values: The server MUST return 0 if it successfully processes the message received from
the client. The server MUST return a nonzero value if processing fails.<36>

If no object exists on the server with the name specified in the SrcFileName parameter, or if it exists
and is not encrypted, the server MUST return a nonzero value.

If an encrypted object exists with the name specified in the SrcFileName and dwCreationDisposition
parameters is equal to CREATE_NEW, then:

If an object exists with the name specified in the DestFileName parameter, the server MUST

return a nonzero value.

If no object exists with the name specified in the DestFileName parameter, the server MUST

create a new object with this name and duplicate the EFSRPC Metadata from the SrcFileName

parameter into it. If the object specified in SrcFileName is a container for other objects, the
server MUST create the object as a container for objects, and it MUST encrypt any objects that
are subsequently placed in the container after this message has been processed. Otherwise, the
server MUST create the object as a non-container encrypted data object.

If an encrypted object exists with the name specified in the SrcFileName and dwCreationDisposition
parameters is not equal to CREATE_NEW, then:

If an object already exists with the name specified in the DestFileName parameter, the server

MUST check whether the object referred to by SrcFileName is of the same type; if the object is
not of the same type, the server MUST return a nonzero value. In addition, if the object referred
to by DestFileName is a container for other objects, and it is not already encrypted, the server
MUST return a nonzero value. Otherwise, the server SHOULD overwrite the object, clear its
existing attributes, create a new object in its place with the attributes specified, and duplicate the

EFSRPC Metadata from the SrcFileName parameter into it.

If no object exists with the name specified in the DestFileName parameter, the server MUST

create a new object with this name and duplicate the EFSRPC Metadata from the SrcFileName
parameter into it. If the object specified in SrcFileName is a container for other objects, the
server MUST create the object as a container for objects, and it MUST encrypt any objects that

are subsequently placed in the container after this message has been processed. Otherwise, the
server MUST create the object as a non-container encrypted data object.

In duplicating the EFSRPC Metadata from the SrcFileName parameter to the DestFileName
parameter, the server MAY<37> change the metadata. However, upon successful completion, the
set of users and DRAs with access to the DestFileName parameter MUST be the same set of users
who had access to the SrcFileName parameter at the outset.

3.1.4.2.14 Receiving an EfsRpcAddUsersToFileEx Message (Opnum 15)

The EfsRpcAddUsersToFileEx method is used to grant the possessors of the private keys
corresponding to certain X.509 certificates the ability to decrypt the object.

DWORD EfsRpcAddUsersToFileEx(

 [in] handle_t binding_h,

 [in] DWORD dwFlags,

 [in, unique] EFS_RPC_BLOB* Reserved,

 [in, string] wchar_t* FileName,

 [in] ENCRYPTION_CERTIFICATE_LIST* EncryptionCertificates

);

64 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE]

section 2.

dwFlags: This MUST be set to a bitwise OR of 0 or more of the following flags. The descriptions
of the flags are specified in the following table. If the EFSRPC_ADDUSERFLAG_REPLACE_DDF

flag is used, then the EncryptionCertificates parameter MUST contain exactly one certificate.

Name Value

EFSRPC_ADDUSERFLAG_ADD_POLICY_KEYTYPE 0x00000002

EFSRPC_ADDUSERFLAG_REPLACE_DDF 0x00000004

Reserved: This parameter is not used. It MUST be set to NULL by the client and ignored by the
server.

FileName: An EFSRPC identifier, as specified in section 2.2.1.

EncryptionCertificates: A list of certificates, represented by an
ENCRYPTION_CERTIFICATE_LIST structure, which are to be given access to the object.

Return Values: The server MUST return 0 if it successfully processes the message received from
the client. The server MUST return a nonzero value if processing fails.

If no object exists on the server with the specified name, or if it exists and is not encrypted, the
server MUST return a nonzero value.

If the EFSRPC_ADDUSERFLAG_REPLACE_DDF flag is set in the dwFlags parameter, and the
EncryptionCertificates parameter contains more than one certificate, the server MUST return a
nonzero value.

If the EFSRPC_ADDUSERFLAG_REPLACE_DDF flag is set in the dwFlags parameter, and the calling

user does not have the ability to decrypt the object, the server MUST return a nonzero value.

If the EFSRPC_ADDUSERFLAG_REPLACE_DDF flag is set in the dwFlags parameter, and the user
certificate in the EncryptionCertificates parameter already has access to the object, then the server
MUST return a zero value.

If the EFSRPC_ADDUSERFLAG_ADD_POLICY_KEYTYPE flag is specified in the dwFlags parameter,
then for each certificate specified in the EncryptionCertificates parameter, the server MUST check
whether the private key for the certificate is stored on a smart card. If the key is stored, the server

MUST return a nonzero value; otherwise, the server MUST ignore this flag.

If the EFSRPC_ADDUSERFLAG_REPLACE_DDF flag is set in the dwFlags parameter, and the calling
user has the ability to decrypt the object, then the certificate in the EncryptionCertificates parameter
should be given access to the object, replacing one of the calling user's user certificates through
which he currently has access.

3.1.4.2.15 Receiving an EfsRpcFileKeyInfoEx Message (Opnum 16)

On receiving the EfsRpcFileKeyInfoEx method call, an EFSRPC server SHOULD ignore the input
parameters and return a nonzero value. The server MAY act on this method in an implementation-
specific manner.<38>

DWORD EfsRpcFileKeyInfoEx(

 [in] handle_t binding_h,

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf

65 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 [in] DWORD dwFileKeyInfoFlags,

 [in, unique] EFS_RPC_BLOB* Reserved,

 [in, string] wchar_t* FileName,

 [in] DWORD InfoClass,

 [out] EFS_RPC_BLOB** KeyInfo

);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE]

section 2.

dwFileKeyInfoFlags: This parameter is reserved. It MUST be set to zero by the client and
ignored by the server.

Reserved: This parameter is reserved. It MUST be set to NULL by the client and ignored by the

server.

FileName: An EFSRPC identifier, as specified in section 2.2.1.

InfoClass: One of the values specified for the InfoClass parameter of the EfsRpcFileKeyInfo
method.

KeyInfo: The server SHOULD ignore this parameter.<39>

Return Values: The server SHOULD return a nonzero value.<40>

3.1.4.2.16 Receiving an EfsRpcGetEncryptedFileMetadata Message (Opnum 18)

On receiving the EfsRpcGetEncryptedFileMetadata method call, an EFSRPC server SHOULD
ignore the input parameters and return a nonzero value. The server MAY choose to act on this
method in an implementation-specific manner.<41>

DWORD EfsRpcGetEncryptedFileMetadata(

 [in] handle_t binding_h,

 [in, string, ref] wchar_t* FileName,

 [out, ref] EFS_RPC_BLOB** EfsStreamBlob

);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE]

section 2.

FileName: An EFSRPC identifier, as specified in section 2.2.1.

EfsStreamBlob: The server SHOULD ignore this parameter.<42>

Return Values: The server SHOULD return a nonzero value.<43>

3.1.4.2.17 Receiving an EfsRpcSetEncryptedFileMetadata Message (Opnum 19)

On receiving the EfsRpcSetEncryptedFileMetadata method call, an EFSRPC server SHOULD

ignore the input parameters and return a nonzero value. The server MAY choose to act on this
method in an implementation-specific manner.<44>

DWORD EfsRpcSetEncryptedFileMetadata(

 [in] handle_t binding_h,

 [in, string, ref] wchar_t* FileName,

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf

66 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 [in, unique] EFS_RPC_BLOB* OldEfsStreamBlob,

 [in, ref] EFS_RPC_BLOB* NewEfsStreamBlob,

 [in, unique] ENCRYPTED_FILE_METADATA_SIGNATURE* NewEfsSignature

);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE]

section 2.

FileName: An EFSRPC identifier as specified in section 2.2.1.

OldEfsStreamBlob: This parameter SHOULD be set to NULL by the client and ignored by the
server.<45>

NewEfsStreamBlob: This parameter SHOULD be set to a zero-length EFS_RPC_BLOB by the
client and ignored by the server.<46>

NewEfsSignature: This parameter SHOULD be set to NULL by the client and ignored by the
server.<47>

Return Values: The server SHOULD return a nonzero value.<48>

3.1.4.2.18 Receiving an EfsRpcFlushEfsCache Message (Opnum 20)

The EfsRpcFlushEfsCache method causes EFS to flush the logical cache that holds all the sensitive
information required to perform EFSRPC operations for the calling user.

DWORD EfsRpcFlushEfsCache(

 [in] handle_t binding_h

);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE]

section 2.

Return Values: The server MUST return 0 if it successfully processes the message received from
the client. The server MUST return a nonzero value if processing fails.

The server MUST completely discard the logical cache being maintained on behalf of the calling user.
The logical cache is as specified in section 3.1.1.

3.1.5 Timer Events

This protocol does not specify any timers or timer events.

3.1.6 Other Local Events

If an RPC connection between the client and the server is broken while transferring data using the
EFSRPC raw methods, the server SHOULD take steps to de-allocate all resources allocated to that
connection. If an error is encountered while processing any of the EFSRPC raw methods, the server

SHOULD promptly tear down the connection to the client and reallocate all resources the connection

was using.

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf

67 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4 Protocol Examples

This section contains a complete example of how EFSRPC is used. In the following example, a user
(User) uses a Windows client to encrypt a file on a Windows SMB file server (Server1). The User
then gives a colleague (Colleague) authorized access to this file, and requests one of the employees
(Employee) to place the file on a second Windows SMB file server (Server2) so that the Colleague
can access it.

Before starting this process, the User has obtained the Colleague's user certificate through some
implementation-specific method. The User has also imported that certificate into the certificate

stores on both the client computer and Server1. No explicit action from the User or Colleague is
required for this step if User and Colleague are members of the same Active Directory domain and
the domain has been configured to automatically publish users' EFS user certificates to the Active
Directory.

First, the User creates a file with the information he wants to share and places it on Server1. He
then accesses the file's properties through the Windows Explorer user interface and marks the file as
encrypted. This causes Windows Explorer to send an EfsRpcEncryptFileSrv message to Server1,

and as a result the EFSRPC server encrypts the file located on Server1's disk to allow access to the
file by the User alone. The User has now created an encrypted file on Server1 using EFSRPC.

To give the Colleague authorized access to this newly encrypted file, the User accesses the file's
properties once more through Windows Explorer, and examines the list of user certificates that are
authorized to decrypt the file. This causes Windows Explorer to send an EfsRpcQueryUsersOnFile
message to the server to retrieve the list of authorized user certificates. After this call succeeds,

Windows Explorer retrieves the list of authorized DRAs for the file by sending an
EfsRpcQueryRecoveryAgents message to the server. The authorized user certificates and DRAs
are then displayed in the user interface. The User can now see that he or she is currently the only
user authorized to access the file.

The User then accesses the user interface to select the Colleague's user certificate, and chooses to
authorize this user certificate to access the file. The Microsoft Windows® Explorer user interface
sends an EfsRpcAddUsersToFile message to the server, which processes the request successfully.

The Windows Explorer user interface once again sends an EfsRpcQueryUsersOnFile message and
an EfsRpcQueryRecoveryAgents message to the server. The results are displayed to the User.
The User can now see that both the Colleague and the User are authorized to access the file.

The User then leaves instructions with the Employee to transfer the file to another server, so that
the Colleague can more easily obtain it. (The Employee has backup permissions on Server1 and
restore permissions on Server2, but does not have a user or DRA private key that would allow
authorized access to the encrypted file.) The Employee runs the ntbackup.exe utility to create a

backup of the file from Server1 on the client machine. The ntbackup.exe utility sends an
EfsRpcOpenFileRaw message to Server1. When Server1 responds successfully, the ntbackup.exe
utility sends an EfsRpcReadFileRaw message to Server1 and writes the data returned over the
associated pipe to a file on the Employee's client computer. When Server1 indicates that the end of
the file has been reached, the ntbackup.exe utility sends an EfsRpcCloseRaw message to the
Server1. At this point, the Employee has a file on the client computer that contains the encrypted

file from Server1 in the EFSRPC Raw Data Format.

To complete the transfer of the encrypted file from Server1 to Server2, the Employee runs the
ntbackup.exe utility again. This time, ntbackup.exe is invoked to restore the file on to Server2 from
the backup file on the Employee's client computer. The ntbackup.exe utility sends an
EfsRpcOpenFileRaw message to Server2. After receiving a successful response from Server2, the
ntbackup.exe utility sends an EfsRpcWriteFileRaw message to Server2. The ntbackup.exe utility
reads the data from the EFSRPC Raw Data Format file and sends that data over the pipe associated

68 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

with the EfsRpcWriteFileRaw message. When the end of the EFSRPC Raw Data Format file has
been reached, the ntbackup.exe utility flushes the pipe by performing a 0-byte write, and sends an

EfsRpcCloseRaw message to Server2.

Now, the encrypted file has been recreated on Server2. The Colleague can access this file using SMB

and work with it as needed. The User has successfully utilized EFSRPC to allow the Colleague access
to a critical file, using only secure EFSRPC methods.

69 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

5 Security

5.1 Security Considerations for Implementers

Encrypted data should be stored so as to minimize the risk of information disclosure in case of
offline attack. In particular, the plaintext of encrypted objects and all keying material should be
treated as highly sensitive information. It is also important to protect against attackers substituting
a user's certificate and private keys with ones of their choosing.

The EFSRPC raw methods are used for backup and restoration of encrypted data. Because this data

typically has high value, these methods should be implemented so as to avoid exposing any
plaintext to the caller or to an eavesdropper. Care should be taken to avoid man-in-the-middle
attacks where a malicious adversary can modify the contents of the marshaled data in transit by
implementing some form of integrity protection. Windows Vista® operating system and Windows
Server® 2008 operating system use packet privacy to achieve this, as described in section 2.1.

Implementers should be careful to pick an encryption algorithm and key length that is appropriate

given the use scenario. For example, in version 1 of the protocol, the export version of CALG_DESX

described in this document is no longer considered secure against brute force attacks and its use
should be avoided. The use of CALG_3DES is also deprecated at present. The use of CALG_AES_256
is strongly recommended. When using RSA for asymmetric cryptography, it is currently
recommended that the keys used be at least 2,048 bits long.

5.2 Index of Security Parameters

Security Parameter Section

Transport security on EFSRPC calls 2.1

Use of RPC security 2.1

Encryption algorithms 2.2.14

70 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

6 Appendix A: Full IDL

For ease of implementation, the full Interface Definition Language (IDL) is provided here, where
"ms-dtyp.idl" is the IDL found in [MS-DTYP] Appendix A.

This IDL does not include a pointer_default declaration. As noted in [MS-RPCE], this declaration is
not required in MIDL, and, in this case, pointer_default(unique) is assumed.

import "ms-dtyp.idl";

[

uuid(c681d488-d850-11d0-8c52-00c04fd90f7e),

version(1.0),

]

interface efsrpc

{

typedef [context_handle] void * PEXIMPORT_CONTEXT_HANDLE;

typedef pipe unsigned char EFS_EXIM_PIPE;

typedef struct _EFS_RPC_BLOB {

 [range(0,266240)] DWORD cbData;

 [size_is(cbData)] unsigned char * bData;

} EFS_RPC_BLOB;

typedef struct {

 DWORD EfsVersion;

} EFS_COMPATIBILITY_INFO;

typedef unsigned int ALG_ID;

typedef struct _EFS_HASH_BLOB {

 [range(0,100)] DWORD cbData;

 [size_is(cbData)] unsigned char * bData;

} EFS_HASH_BLOB;

typedef struct _ENCRYPTION_CERTIFICATE_HASH {

 DWORD cbTotalLength;

 RPC_SID * UserSid;

 EFS_HASH_BLOB * Hash;

 [string] wchar_t * lpDisplayInformation;

} ENCRYPTION_CERTIFICATE_HASH;

typedef struct _ENCRYPTION_CERTIFICATE_HASH_LIST {

 [range(0,500)] DWORD nCert_Hash;

 [size_is(nCert_Hash ,)] ENCRYPTION_CERTIFICATE_HASH ** Users;

} ENCRYPTION_CERTIFICATE_HASH_LIST;

typedef struct _CERTIFICATE_BLOB {

 DWORD dwCertEncodingType;

 [range(0,32768)] DWORD cbData;

 [size_is(cbData)] unsigned char * bData;

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf

71 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

} EFS_CERTIFICATE_BLOB;

typedef struct _ENCRYPTION_CERTIFICATE {

 DWORD cbTotalLength;

 RPC_SID * UserSid;

 EFS_CERTIFICATE_BLOB * CertBlob;

} ENCRYPTION_CERTIFICATE;

typedef struct _ENCRYPTION_CERTIFICATE_LIST {

 [range(0,500)] DWORD nUsers;

 [size_is(nUsers ,)] ENCRYPTION_CERTIFICATE ** Users;

} ENCRYPTION_CERTIFICATE_LIST;

typedef struct _ENCRYPTED_FILE_METADATA_SIGNATURE {

 DWORD dwEfsAccessType;

 ENCRYPTION_CERTIFICATE_HASH_LIST * CertificatesAdded;

 ENCRYPTION_CERTIFICATE * EncryptionCertificate;

 EFS_RPC_BLOB * EfsStreamSignature;

} ENCRYPTED_FILE_METADATA_SIGNATURE;

typedef struct {

 DWORD dwVersion;

 unsigned long Entropy;

 ALG_ID Algorithm;

 unsigned long KeyLength;

} EFS_KEY_INFO;

typedef struct {

 DWORD dwDecryptionError;

 DWORD dwHashOffset;

 DWORD cbHash;

} EFS_DECRYPTION_STATUS_INFO;

typedef struct {

 BOOL bHasCurrentKey;

 DWORD dwEncryptionError;

} EFS_ENCRYPTION_STATUS_INFO;

long EfsRpcOpenFileRaw(

 [in] handle_t binding_h,

 [out] PEXIMPORT_CONTEXT_HANDLE * hContext,

 [in, string] wchar_t * FileName,

 [in] long Flags

);

long EfsRpcReadFileRaw(

 [in] PEXIMPORT_CONTEXT_HANDLE hContext,

 [out] EFS_EXIM_PIPE * EfsOutPipe

);

long EfsRpcWriteFileRaw(

 [in] PEXIMPORT_CONTEXT_HANDLE hContext,

 [in] EFS_EXIM_PIPE * EfsInPipe

);

void EfsRpcCloseRaw(

72 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 [in, out] PEXIMPORT_CONTEXT_HANDLE * hContext

);

long EfsRpcEncryptFileSrv(

 [in] handle_t binding_h,

 [in, string] wchar_t * FileName

);

long EfsRpcDecryptFileSrv(

 [in] handle_t binding_h,

 [in, string] wchar_t * FileName,

 [in] unsigned long OpenFlag

);

DWORD EfsRpcQueryUsersOnFile(

 [in] handle_t binding_h,

 [in, string] wchar_t * FileName,

 [out] ENCRYPTION_CERTIFICATE_HASH_LIST ** Users

);

DWORD EfsRpcQueryRecoveryAgents(

 [in] handle_t binding_h,

 [in, string] wchar_t * FileName,

 [out] ENCRYPTION_CERTIFICATE_HASH_LIST ** RecoveryAgents

);

DWORD EfsRpcRemoveUsersFromFile(

 [in] handle_t binding_h,

 [in, string] wchar_t * FileName,

 [in] ENCRYPTION_CERTIFICATE_HASH_LIST * Users

);

DWORD EfsRpcAddUsersToFile(

 [in] handle_t binding_h,

 [in, string] wchar_t * FileName,

 [in] ENCRYPTION_CERTIFICATE_LIST * EncryptionCertificates

);

//local only method

void Opnum10NotUsedOnWire(void);

DWORD EfsRpcNotSupported(

 [in] handle_t binding_h,

 [in, string] wchar_t * Reserved1,

 [in, string] wchar_t * Reserved2,

 [in] DWORD dwReserved1,

 [in] DWORD dwReserved2,

 [in, unique] EFS_RPC_BLOB * Reserved,

 [in] BOOL bReserved

);

DWORD EfsRpcFileKeyInfo(

 [in] handle_t binding_h,

 [in, string] wchar_t * FileName,

 [in] DWORD InfoClass,

 [out] EFS_RPC_BLOB ** KeyInfo

);

DWORD EfsRpcDuplicateEncryptionInfoFile(

73 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 [in] handle_t binding_h,

 [in, string] wchar_t * SrcFileName,

 [in, string] wchar_t * DestFileName,

 [in] DWORD dwCreationDisposition,

 [in] DWORD dwAttributes,

 [in, unique] EFS_RPC_BLOB * RelativeSD,

 [in] BOOL bInheritHandle

);

//local only method

void Opnum14NotUsedOnWire(void);

DWORD EfsRpcAddUsersToFileEx(

 [in] handle_t binding_h,

 [in] DWORD dwFlags,

 [in, unique] EFS_RPC_BLOB * Reserved,

 [in, string] wchar_t * FileName,

 [in] ENCRYPTION_CERTIFICATE_LIST * EncryptionCertificates

);

DWORD EfsRpcFileKeyInfoEx(

 [in] handle_t binding_h,

 [in] DWORD dwFileKeyInfoFlags,

 [in, unique] EFS_RPC_BLOB * Reserved,

 [in, string] wchar_t * FileName,

 [in] DWORD InfoClass,

 [out] EFS_RPC_BLOB ** KeyInfo

);

//local only method

void Opnum17NotUsedOnWire(void);

DWORD EfsRpcGetEncryptedFileMetadata(

 [in] handle_t binding_h,

 [in, string, ref] wchar_t * FileName,

 [out, ref] EFS_RPC_BLOB ** EfsStreamBlob

);

DWORD EfsRpcSetEncryptedFileMetadata(

 [in] handle_t binding_h,

 [in, string, ref] wchar_t * FileName,

 [in, unique] EFS_RPC_BLOB * OldEfsStreamBlob,

 [in, ref] EFS_RPC_BLOB * NewEfsStreamBlob,

 [in, unique] ENCRYPTED_FILE_METADATA_SIGNATURE * NewEfsSignature

);

DWORD EfsRpcFlushEfsCache(

 [in] handle_t binding_h

);

}

74 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft Windows® 2000 operating system

Windows® XP operating system

Windows Server® 2003 operating system

Windows Vista® operating system

Windows Server® 2008 operating system

Windows® 7 operating system

Windows Server® 2008 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product

edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 1.5: EFSRPC calls to a Windows-based EFSRPC server will fail, returning an error, if the
server is running an edition of the operating system that does not include EFS. Specifically,

Windows XP Home Edition and Windows XP Starter Edition editions of Windows do not include EFS
functionality and do not support EFSRPC.

Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 use SSPI to
secure the EFSRPC raw methods. For more details, see the product behavior notes in Appendix B
regarding section 2.1.

<2> Section 1.5: The Windows 2000 implementation supports EFSRPC in workgroup settings and on
domain-joined computers that are not configured for Kerberos delegation.

<3> Section 2.1: Windows 2000, Windows XP, Windows Server 2003, Windows Vista, and Windows
Server 2008 servers only listen for EFSRPC messages on the well-known endpoint \pipe\lsarpc.
Windows 7 and Windows Server 2008 R2 servers listen for EFSRPC messages on both \pipe\lsarpc
and \pipe\efsrpc.

<4> Section 2.1: Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2
EFSRPC servers register the RPC_C_AUTHN_LEVEL_PKT_PRIVACY security provider.

Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 clients attempt to
negotiate the use of this provider for the EFSRPC raw methods with

RPC_C_AUTHN_GSS_NEGOTIATE, and can be configured to require its use. Server versions of
Windows up to Windows Server 2003 do not register this provider, and clients up to and including
Windows XP SP2 do not attempt to use it.

<5> Section 2.2.1: Windows implementations restrict file and folder names to 5,120 Unicode
characters, not including the null terminator. An error is returned if this limit is exceeded.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

75 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<6> Section 2.2.2.1: Windows implementations place an upper limit of 262,144 bytes on the length
of the EFSRPC Metadata. Windows servers will return an error when passed EFSRPC Metadata that

exceeds this limit, or when an EFSRPC call would require Windows servers to create or extend a
file's EFSRPC Metadata beyond this limit.

<7> Section 2.2.2.1: Windows 2000 supports only version 1. Windows XP and Windows
Server 2003 support only versions 1 and 2.

<8> Section 2.2.2.1: The Windows 2000 implementation sets this field to the MD5 hash of the
complete EFSRPC Metadata, computed with the EFS hash field set to zero. The Windows 2000
implementation will also verify the checksum whenever EFSRPC Metadata is passed to it, and will
return an error in case of a mismatch.

<9> Section 2.2.2.1.2: This value is unsupported on Windows 2000, Windows XP, and Windows

Server 2003. These versions of Windows set this field to zero when creating the EFSRPC Metadata,
ignore its value when processing the metadata, and expect the FEK to be encrypted using RSA.

<10> Section 2.2.2.1.5: A Windows EFSRPC server will return an error if the total length of this

structure exceeds 1,086 bytes.

<11> Section 2.2.2.2:

Windows 2000, Windows XP, Windows Server 2003, Windows Vista, and Windows Server 2008 do

not support Version 2 of the EFSRPC Metadata.

Windows servers only generate Version 2 metadata for encrypted files when an ECDH protector is
added to an encrypted file. This could happen through any of the below procedures:

Calling EfsRpcAddUsers* with at least one ECDH certificate. If the existing file has version 1

metadata, it is updated to version 2 before adding the new certificate.

A file is encrypted and the user's current key is an ECDH certificate.

DRA policy specifies at least one ECDH certificate.

<12> Section 2.2.2.2: Windows implementations place an upper limit of 262,144 bytes on the
length of the EFSRPC Metadata. Windows servers will return an error when passed EFSRPC Metadata
that exceeds this limit, or when an EFSRPC call would require Windows servers to create or extend a
file's EFSRPC Metadata beyond this limit.

<13> Section 2.2.3.3: Windows 2000, Windows XP, Windows Server 2003, Windows Vista, and

Windows Server 2008 R2 ignore this field.

<14> Section 2.2.6: The Windows implementation of the EFSRPC server returns an error if the size
of this encoded certificate exceeds 32 kilobytes. This restriction is represented in the range attribute
of cbData.

<15> Section 2.2.7: As a defensive measure against overflow attacks, the Windows implementation
of the EFSRPC server restricts the size of the bData field to 100 bytes, and returns an error if this
size is exceeded. This restriction is represented by the range attribute of cbData.

<16> Section 2.2.9: As a defensive measure against overflow attacks, the Windows implementation
of the EFSRPC server restricts the number of entries in this array to 500, and returns an error if this
size is exceeded. This restriction is represented in the range attribute of nUsers.

<17> Section 2.2.11: As a defensive measure against overflow attacks, the Windows
implementation of the EFSRPC server restricts the number of entries in this array to 500, and

76 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

returns an error if this size is exceeded. This restriction is represented in the range attribute of
nCert_Hash.

<18> Section 2.2.12: As a defensive measure against overflow attacks, the Windows
implementation of the EFSRPC server restricts the size of this object to 260 kilobytes, and returns

an error if this size is exceeded. This restriction is represented in the range attribute of cbData.

<19> Section 2.2.13: Windows 2000 does not support either of these algorithms. Windows XP only
supports CALG_3DES.

<20> Section 2.2.13: Windows 2000 only supports the following algorithms:

Algorithm used Value for ALG_ID Entropy Key length

CALG_DESX (domestic) 0x6604 128 16

CALG_DESX (export) 0x6604 56 16

In the preceding table, the difference between entropy and key length for CALG_DESX (export)

exists only because the first 56 bits are random and the rest are set to zero.

When accessing existing encrypted objects, Windows XP, Windows Server 2003, Windows Vista,
Windows Server 2008, Windows 7, and Windows Server 2008 R2 support the two CALG_DESX
algorithms.

When creating new encrypted objects, Windows XP, Windows Server 2003, Windows Vista, and
Windows Server 2008 support the two CALG_DESX algorithms only if allowed by the prevailing
policy.

<21> Section 2.2.13: When accessing existing encrypted objects, Windows implementations do not
restrict the set of supported algorithms according to policy.

When creating new encrypted objects, Windows implementations restrict the algorithm according to
the FIPSAlgorithmPolicy setting defined in the following registry locations:

Operating

system Registry Key Registry Value Type

Windows XP/Win

dows

Server 2003

HKLM\System\CurrentControlSet\Control\Lsa FIPSAlgorithmP

olicy

REG_DWO

RD

Windows Vista/

Windows

Server 2008

Windows 7/Wind

ows

Server 2008 R2

HKLM\System\CurrentControlSet\Control\Lsa\FIPSAl

gorithmPolicy

Enabled REG_DWO

RD

On Windows XP and Windows Server 2003, if the value is non-zero (enabled), newly created

encrypted objects are restricted to using the CALG_3DES algorithm.

On Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2, if the value is
not zero (enabled), newly created encrypted objects are restricted to using the CALG_AES_256

algorithm.

77 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<22> Section 2.2.15: Windows compatibility with EFSRPC Metadata versions is summarized by the
following table.

EfsVersion Minimum operating system

1 Windows 2000

2 Windows XP / Windows Server 2003

3 Windows Vista / Windows Server 2008

4 Windows 7 / Windows Server 2008 R2

<23> Section 3: Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2
EFSRPC client implementations attempt to negotiate the RPC_C_AUTHN_LEVEL_PKT_PRIVACY
option with RPC_C_AUTHN_GSS_NEGOTIATE. If an error is encountered and the client is not
configured to require security, the client falls back to connecting over an unsecured RPC connection.
Versions of Windows up to and including Windows XP SP2 do not support this option; they neither

register any SSPI providers on the server side, nor do they request any on the client.

<24> Section 3.1.3: Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2
register an SSPI provider to support RPC_C_AUTHN_LEVEL_PKT_PRIVACY.

<25> Section 3.1.4.2: Windows 2000 supports methods with opnums 0 through 11. For opnum 11,
it behaves as the EfsRpcDuplicateEncryptionInfoFile method. Windows XP and Windows
Server 2003 support opnum 0 through opnum 13, with opnum 11 being implemented as the
EfsRpcNotSupported method.

<26> Section 3.1.4.2: Gaps in the opnum numbering sequence apply to Windows as follows.

Opnum Description

10 Only used locally by Windows, never remotely.

14 Only used locally by Windows, never remotely.

17 Only used locally by Windows, never remotely.

<27> Section 3.1.4.2: Implementations of nonstandard behavior for deprecated methods in
Windows are summarized below. See the behavior notes for each corresponding method section for
details of nonstandard behavior on each Windows implementation.

Method Opnum Operating System

EfsRpcNotSupported 11 Windows 2000

EfsRpcFileKeyInfoEx 16 Windows Vista, Windows Server 2008

EfsRpcGetEncryptedFileMetadata 18 Windows Vista, Windows Server 2008

EfsRpcSetEncryptedFileMetadata 19 Windows Vista, Windows Server 2008

<28> Section 3.1.4.2: Windows 2000 returns ERROR_NO_RECOVERY_POLICY (specified in [MS-
ERREF]).

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

78 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<29> Section 3.1.4.2.1: If the CREATE_FOR_DIR flag is set, and the CREATE_FOR_IMPORT flag
is also set, Windows will attempt to create a folder with the specified name instead of a file.

<30> Section 3.1.4.2.11: Windows 2000 responds to this opnum as described in section 3.1.4.2.13.

<31> Section 3.1.4.2.11: Windows 2000 performs the processing specified in section 3.1.4.2.13.

<32> Section 3.1.4.2.12: UPDATE_KEY_USED is only supported on Windows Server 2003.
CHECK_DECRYPTION_STATUS and CHECK_ENCRYPTION_STATUS are not supported on Windows XP
or Windows Server 2003. CHECK_COMPATIBILITY_INFO is not supported on Windows XP, Windows
Server 2003, Windows Vista, or Windows Server 2008.

<33> Section 3.1.4.2.12: Windows Server 2003 requires that UPDATE_KEY_USED only be used with
a folder name. If not, an error is returned.

<34> Section 3.1.4.2.12: Windows Server 2003 updates the EFSRPC Metadata of all the encrypted

files and folders accessible by the calling user in the FileName parameter or one of its subfolders to
use a single user certificate for that user.

<35> Section 3.1.4.2.13: The data portion of the EFS_RPC_BLOB structure is expected to contain a
security descriptor. This is an opaque data type in Windows that is best manipulated only indirectly
through the APIs provided for this purpose, as specified in [MS-DTYP] sections 2.4.6 and 2.5.

<36> Section 3.1.4.2.13: The EfsRpcDuplicateEncryptionInfoFile method was associated with

opnum 11 in Windows 2000; therefore, it cannot be used between a Windows 2000 client and a
server running a different version of Windows, or vice versa.

<37> Section 3.1.4.2.13: For files using version 1 of the EFSRPC metadata, Windows Vista,
Windows Server 2008, Windows 7, and Windows Server 2008 R2 servers will generate a new FEK
for the DestFileName parameter if only one user has access to the SrcFileName parameter. This is to
ensure that users who get access to one of the two files at a later date do not automatically get the
ability to decrypt the other file.

For files using version 2 of the EFSRPC Metadata, Windows 7 and Windows Server 2008 R2 servers
will always generate a new file IV for the DestFileName parameter, and will generate a new

FEK/FMK for the DestFileName parameter if no legacy RSA user protectors exist on the SrcFileName
parameter.

<38> Section 3.1.4.2.15: Windows Vista and Windows Server 2008 implement this method
identically to the implementation of EfsRpcFileKeyInfo, ignoring the dwFileKeyInfoFlags and
Reserved parameters.

<39> Section 3.1.4.2.15: Windows Vista and Windows Server 2008 use this parameter in the
manner identical to how it is used in the implementation of EfsRpcFileKeyInfo.

<40> Section 3.1.4.2.15: Windows Vista and Windows Server 2008 return "0" if all conditions listed
in the description for EfsRpcFileKeyInfo are met.

<41> Section 3.1.4.2.16: Windows Vista and Windows Server 2008 implement this method in the
following way:

If no object exists with the name specified in the FileName parameter, or if it exists and is not
encrypted, the server returns a nonzero value. Otherwise, the server returns the EFSRPC Metadata
of the object in the EfsStreamBlob parameter, and returns 0 for the method.

<42> Section 3.1.4.2.16: Windows Vista and Windows Server 2008 use this parameter to return the
EFSRPC Metadata associated with the object referred to by FileName.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

79 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<43> Section 3.1.4.2.16: Windows Vista and Windows Server 2008 return "0" if all conditions listed
in the first Product Behavior note for this section are met.

<44> Section 3.1.4.2.17: Windows Vista and Windows Server 2008 implement this method in the
following way:

If no object exists on the server with the name specified in the FileName parameter, or if it exists
and is not encrypted, the server returns a nonzero value.

If an encrypted object exists with the name specified in the FileName parameter, and its metadata
does not match exactly with the contents of the OldEfsStreamBlob parameter, the server returns a
nonzero value.

If the NewEfsSignature field is non-NULL and the certificate thumbprint in that field does not
correspond to a certificate whose corresponding private key is capable of decrypting the object, the

server returns a nonzero value.

If the NewEfsSignature field is NULL and the calling user does not have access to any private key
that can decrypt the object, the server returns a nonzero value.

If the NewEfsStreamBlob parameter does not satisfy the Windows Vista and Windows Server 2008
requirements for the syntax of EFSRPC Metadata, the server returns a nonzero value.

If none of the preceding conditions are true, then the server replaces the object's EFSRPC Metadata

with the contents of the NewEfsStreamBlob and returns a 0 value.

<45> Section 3.1.4.2.17: Windows Vista and Windows Server 2008 expect this parameter to be the
existing EFSRPC Metadata on the object referred to by FileName. If this parameter is not NULL,
Windows Vista and Windows Server 2008 will return an error if the metadata does not match the
existing EFSRPC Metadata on the object.

<46> Section 3.1.4.2.17: Windows Vista and Windows Server 2008 expect this parameter to be the
new EFSRPC Metadata (as specified in section 2.2.2) intended for the object, and will return an error

if this is not so.

<47> Section 3.1.4.2.17: Windows Vista and Windows Server 2008 expect that if this parameter is
not NULL, it contains an X.509 certificate whose corresponding private key already has the ability to
decrypt the object and the signature over the new EFSRPC Metadata with this key, and will return
an error if this is not so.

<48> Section 3.1.4.2.17: Windows Vista and Windows Server 2008 return 0 if all conditions listed in
the first Product Behavior note for this section are met and the new EFSRPC Metadata on the file or

folder is successfully modified.

80 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

8 Change Tracking

This section identifies changes that were made to the [MS-EFSR] protocol document between the
January 2011 and February 2011 releases. Changes are classified as New, Major, Minor, Editorial, or
No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A document revision that incorporates changes to interoperability requirements or functionality.

An extensive rewrite, addition, or deletion of major portions of content.

The removal of a document from the documentation set.

Changes made for template compliance.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are

updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the language and formatting in the technical content was
changed. Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical or language changes were introduced.
The technical content of the document is identical to the last released version, but minor editorial
and formatting changes, as well as updates to the header and footer information, and to the revision

summary, may have been made.

Major and minor changes can be described further using the following change types:

New content added.

Content updated.

Content removed.

New product behavior note added.

Product behavior note updated.

Product behavior note removed.

New protocol syntax added.

Protocol syntax updated.

Protocol syntax removed.

New content added due to protocol revision.

Content updated due to protocol revision.

Content removed due to protocol revision.

New protocol syntax added due to protocol revision.

81 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Protocol syntax updated due to protocol revision.

Protocol syntax removed due to protocol revision.

New content added for template compliance.

Content updated for template compliance.

Content removed for template compliance.

Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please

contact protocol@microsoft.com.

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

1.1

Glossary

60090

Added "constrained delegation" from [MS-

GLOS].

Y Content

updated.

1.2.2

Informative References

60090

Added reference [MS-SFU].

Y Content

updated.

1.5

Prerequisites/Preconditions

60090

Described server delegation and the

constrained delegation alternative for

user key storage services.

Y Content

updated.

3.1.1.2

EFSRPC Server Control

60879

Added section.

Y Content

updated.

3.1.4.1

Application Requests for a User-

Certificate Binding

60879

Specified that requests for a user-

certificate binding are failed if EFS is

disabled.

Y Content

updated.

3.1.4.2

EFSRPC Interface

59593

Specified that if EFS is disabled, the

server returns an error. Added a product

behavior note.

Y Content

updated.

mailto:protocol@microsoft.com

82 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

9 Index

A

Abstract data model 45
Applicability 15

B

Blob_Datum packet 30

C

Capability negotiation 15
CERTIFICATE_DATA packet 23
Change tracking 80
Common data types 17

D

Data model - abstract 45
Data types 17
DATA_SEGMENT_ENCRYPTION_HEADER packet 37
Descriptor_Datum packet 30

E

EFS_CERTIFICATE_BLOB structure 39
EFS_COMPATIBILITY_INFO structure 43
EFS_DECRYPTION_STATUS_INFO structure 43
EFS_ENCRYPTION_STATUS_INFO structure 43
EFS_HASH_BLOB structure 40
EFS_KEY_INFO structure 42
EFS_RPC_BLOB structure 41
EFSRPC_METADATA_V1 packet 18
EFSRPC_METADATA_V2 packet 26
EfsRpcAddUsersToFile method 59
EfsRpcAddUsersToFileEx method 63
EfsRpcCloseRaw method 55
EfsRpcDecryptFileSrv method 56
EfsRpcDuplicateEncryptionInfoFile method 61
EfsRpcEncryptFileSrv method 55
EfsRpcFileKeyInfo method 60
EfsRpcFileKeyInfoEx method 64
EfsRpcFlushEfsCache method 66
EfsRpcGetEncryptedFileMetadata method 65
EfsRpcNotSupported method 59
EfsRpcOpenFileRaw method 52
EfsRpcQueryRecoveryAgents method 57
EfsRpcQueryUsersOnFile method 57
EfsRpcReadFileRaw method 54
EfsRpcRemoveUsersFromFile method 58
EfsRpcSetEncryptedFileMetadata method 65
EfsRpcWriteFileRaw method 54
EFSX_Datum packet 28
ENCRYPTED_FILE_METADATA_SIGNATURE

structure 44
ENCRYPTION_CERTIFICATE structure 40
ENCRYPTION_CERTIFICATE_HASH structure 41

ENCRYPTION_CERTIFICATE_HASH_LIST structure
41

ENCRYPTION_CERTIFICATE_LIST structure 40
Examples 67
Extended Header packet 38

F

FEK packet 25
Fek_Info packet 33
Fields - vendor-extensible 16
Full IDL 70

G

Glossary 7

I

Identifiers 17
IDL 70
Implementer considerations - security 69
Index of security parameters 69
Informative references 10
Initialization 47
Introduction 7

K

KEY_LIST packet 20
KEY_LIST_ENTRY packet 20

L

Local events 66

M

MARSHALED_STREAM packet 35
Message processing 50
Messages

common data types 17
transport 17

N

Normative references 9

O

Overview (synopsis) 11

P

Parameters index - security 69

PEFS_RPC_BLOB 41
Preconditions 15
Prerequisites 15

83 / 83

[MS-EFSR] — v20110204
 Encrypting File System Remote (EFSRPC) Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Product behavior 74
Protector_Info_Datum packet 32
Protector_List packet 27
Protector_List_Entry packet 31
Public_Key_Information packet 22

R

Raw data format 34
RAW_DATA packet 34
References

informative 10
normative 9

Relationship to other protocols 14

S

Security
implementer considerations 69
parameters index 69

Sequencing rules 50
Standards assignments 16
STREAM_DATA_SEGMENT packet 36

T

Timer events 66
Timers 47
Tracking changes 80
Transport 17
TS_COMPDESK_REDIRSURF_ASSOC_LSURFACE

packet 33

V

Vendor-extensible fields 16
Versioning 15

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 EFSRPC Identifiers
	2.2.2 EFSRPC Metadata
	2.2.2.1 EFSRPC Metadata Version 1
	2.2.2.1.1 Key List Structure
	2.2.2.1.2 Key List Entry
	2.2.2.1.3 Public Key Information
	2.2.2.1.4 Certificate Data
	2.2.2.1.5 Encrypted FEK

	2.2.2.2 EFSRPC Metadata Version 2
	2.2.2.2.1 Protector List Structure
	2.2.2.2.2 EFSX Datum
	2.2.2.2.3 Blob Datum
	2.2.2.2.4 Descriptor Datum
	2.2.2.2.5 Protector List Entry
	2.2.2.2.6 Protector Info Datum
	2.2.2.2.7 Key Agreement Datum
	2.2.2.2.8 Fek Info Datum

	2.2.3 EFSRPC Raw Data Format
	2.2.3.1 Marshaled Stream
	2.2.3.2 Stream Data Segment
	2.2.3.3 Data Segment Encryption Header
	2.2.3.4 Extended Header

	2.2.4 PEXIMPORT_CONTEXT_HANDLE
	2.2.5 EFS_EXIM_PIPE
	2.2.6 EFS_CERTIFICATE_BLOB
	2.2.7 EFS_HASH_BLOB
	2.2.8 ENCRYPTION_CERTIFICATE
	2.2.9 ENCRYPTION_CERTIFICATE_LIST
	2.2.10 ENCRYPTION_CERTIFICATE_HASH
	2.2.11 ENCRYPTION_CERTIFICATE_HASH_LIST
	2.2.12 EFS_RPC_BLOB
	2.2.13 ALG_ID
	2.2.14 EFS_KEY_INFO
	2.2.15 EFS_COMPATIBILITY_INFO
	2.2.16 EFS_ENCRYPTION_STATUS_INFO
	2.2.17 EFS_DECRYPTION_STATUS_INFO
	2.2.18 ENCRYPTED_FILE_METADATA_SIGNATURE

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 User-Certificate Binding
	3.1.1.2 EFSRPC Server Control

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 Application Requests for a User-Certificate Binding
	3.1.4.1.1 EFS Certificate Enrollment Algorithm
	3.1.4.1.1.1 Inputs
	3.1.4.1.1.2 Outputs
	3.1.4.1.1.3 Internal Variables
	3.1.4.1.1.4 Processing Rules
	3.1.4.1.1.4.1 Building a List of CAs that Support a Particular Template
	3.1.4.1.1.4.2 Creating a Request

	3.1.4.2 EFSRPC Interface
	3.1.4.2.1 Receiving an EfsRpcOpenFileRaw Message (Opnum 0)
	3.1.4.2.2 Receiving an EfsRpcReadFileRaw Message (Opnum 1)
	3.1.4.2.3 Receiving an EfsRpcWriteFileRaw Message (Opnum 2)
	3.1.4.2.4 Receiving an EfsRpcCloseRaw Message (Opnum 3)
	3.1.4.2.5 Receiving an EfsRpcEncryptFileSrv Message (Opnum 4)
	3.1.4.2.6 Receiving an EfsRpcDecryptFileSrv Message (Opnum 5)
	3.1.4.2.7 Receiving an EfsRpcQueryUsersOnFile Message (Opnum 6)
	3.1.4.2.8 Receiving an EfsRpcQueryRecoveryAgents Message (Opnum 7)
	3.1.4.2.9 Receiving an EfsRpcRemoveUsersFromFile Message (Opnum 8)
	3.1.4.2.10 Receiving an EfsRpcAddUsersToFile Message (Opnum 9)
	3.1.4.2.11 Receiving an EfsRpcNotSupported Message (Opnum 11)
	3.1.4.2.12 Receiving an EfsRpcFileKeyInfo Message (Opnum 12)
	3.1.4.2.13 Receiving an EfsRpcDuplicateEncryptionInfoFile Message (Opnum 13)
	3.1.4.2.14 Receiving an EfsRpcAddUsersToFileEx Message (Opnum 15)
	3.1.4.2.15 Receiving an EfsRpcFileKeyInfoEx Message (Opnum 16)
	3.1.4.2.16 Receiving an EfsRpcGetEncryptedFileMetadata Message (Opnum 18)
	3.1.4.2.17 Receiving an EfsRpcSetEncryptedFileMetadata Message (Opnum 19)
	3.1.4.2.18 Receiving an EfsRpcFlushEfsCache Message (Opnum 20)

	3.1.5 Timer Events
	3.1.6 Other Local Events

	4 Protocol Examples
	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

