[MS-XLOGIN]: Simple Mail Transfer Protocol (SMTP) AUTH LOGIN Extension #### **Intellectual Property Rights Notice for Open Specifications Documentation** - **Technical Documentation.** Microsoft publishes Open Specifications documentation for protocols, file formats, languages, standards as well as overviews of the interaction among each of these technologies. - Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you may make copies of it in order to develop implementations of the technologies described in the Open Specifications and may distribute portions of it in your implementations using these technologies or your documentation as necessary to properly document the implementation. You may also distribute in your implementation, with or without modification, any schema, IDL's, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications. - No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation. - Patents. Microsoft has patents that may cover your implementations of the technologies described in the Open Specifications. Neither this notice nor Microsoft's delivery of the documentation grants any licenses under those or any other Microsoft patents. However, a given Open Specification may be covered by Microsoft's Open Specification Promise (available here: http://www.microsoft.com/interop/osp) or the Community Promise (available here: http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if the technologies described in the Open Specifications are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting iplq@microsoft.com. - **Trademarks.** The names of companies and products contained in this documentation may be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights. - **Fictitious Names.** The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred. **Reservation of Rights.** All other rights are reserved, and this notice does not grant any rights other than specifically described above, whether by implication, estoppel, or otherwise. **Tools.** The Open Specifications do not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments you are free to take advantage of them. Certain Open Specifications are intended for use in conjunction with publicly available standard specifications and network programming art, and assumes that the reader either is familiar with the aforementioned material or has immediate access to it. # **Revision Summary** | Date | Revision
History | Revision
Class | Comments | |------------|---------------------|-------------------|--| | 04/04/2008 | 0.1 | | Initial Availability. | | 06/27/2008 | 1.0 | | Initial Release. | | 08/06/2008 | 1.01 | | Revised and edited technical content. | | 09/03/2008 | 1.02 | | Updated references. | | 12/03/2008 | 1.03 | | Updated IP notice. | | 04/10/2009 | 2.0 | | Updated applicable product releases. | | 07/15/2009 | 3.0 | Major | Revised and edited for technical content. | | 11/04/2009 | 4.0.0 | Major | Updated and revised the technical content. | | 02/10/2010 | 4.1.0 | Minor | Updated the technical content. | | 05/05/2010 | 4.1.1 | Editorial | Revised and edited the technical content. | | 08/04/2010 | 4.1.1 | No change | No changes to the meaning, language, or formatting of the technical content. | | 11/03/2010 | 4.1.1 | No change | No changes to the meaning, language, or formatting of the technical content. | # **Contents** | 1 | Introduction | | |---|---|------------| | | 1.1 Glossary | | | | 1.2 References | | | | 1.2.1 Normative References | | | | 1.2.2 Informative References | | | | 1.3 Overview | | | | 1.4 Relationship to Other Protocols | . 6 | | | 1.5 Prerequisites/Preconditions | . 6 | | | 1.6 Applicability Statement | . 6 | | | 1.7 Versioning and Capability Negotiation | . 6 | | | 1.8 Vendor-Extensible Fields | | | | 1.9 Standards Assignments | . 6 | | | | | | | Messages | | | | 2.1 Transport | | | | 2.2 Message Syntax | | | | 2.2.1 EHLO Response | | | | 2.2.2 Command and Response ABNF Grammar | . 7 | | _ | Protocol Details | _ | | | | | | | 3.1 Client Details | | | | 3.1.1 Abstract Data Model | | | | 3.1.2 Timers | | | | 3.1.3 Initialization | | | | 3.1.4 Higher-Layer Triggered Events | 1 O | | | 3.1.5 Message Processing Events and Sequencing Rules | | | | 3.1.5.1 Sending EHLO | | | | 3.1.5.2 Requesting Simple Login Authentication | 1 1
T O | | | 3.1.5.3 Requesting Login Authentication with Username | | | | 3.1.6 Timer Events | | | | 3.1.7 Other Local Events | | | | 3.2 Server Details | | | | | | | | 3.2.2 Timers | | | | 3.2.3 Initialization | | | | 3.2.4 Higher-Layer Triggered Events | | | | 3.2.5.1 Processing EHLO | | | | 3.2.5.2 Processing AUTH LOGIN | | | | 3.2.5.2 Processing AOTH LOGIN | | | | 3.2.5.4 Processing Password Response | | | | 3.2.6 Timer Events | | | | 3.2.7 Other Local Events | | | | 5.2./ Other Local Events | 13 | | 4 | Protocol Example | 16 | | _ | Security | . 7 | | ی | 5.1 Security Considerations for Implementers | ⊾./
17 | | | 5.2 Index of Security Parameters | | | | , | | | 6 | Appendix A: Product Behavior | 18 | | 7 | Change Tracking1 | .9 | |---|------------------|----| | 8 | Index | 20 | #### 1 Introduction This document specifies an authentication mechanism that is provided through the **SMTP** Service Extension for Authentication [RFC4954] called AUTH LOGIN. #### 1.1 Glossary The following terms are defined in [MS-OXGLOS]: Augmented Backus-Naur Form (ABNF) base64 encoding Secure Sockets Layer (SSL) Simple Mail Transfer Protocol (SMTP) Transport Layer Security (TLS) The following terms are specific to this document: MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT. #### 1.2 References #### 1.2.1 Normative References We conduct frequent surveys of the normative references to assure their continued availability. If you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will assist you in finding the relevant information. Please check the archive site, http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an additional source. [RFC2045] Freed, N., and Borenstein, N., "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies", RFC 2045, November 1996, http://www.ietf.org/rfc/rfc2045.txt [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt [RFC2821] Klensin, J., Ed., "Simple Mail Transfer Protocol", RFC 2821, April 2001, http://www.ietf.org/rfc/rfc2821.txt [RFC4954] Siemborski, R., and Melnikov, A., Eds., "SMTP Service Extension for Authentication", RFC 4954, July 2007, ftp://ftp.rfc-editor.org/in-notes/rfc4954.txt [RFC5234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", STD 68, RFC 5234, January 2008, http://www.ietf.org/rfc/rfc5234.txt #### 1.2.2 Informative References [MS-OXGLOS] Microsoft Corporation, "Exchange Server Protocols Master Glossary", April 2008. [RFC4346] Dierks, T., and Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.1", RFC 4346, April 2006, http://www.ietf.org/rfc/rfc4346.txt #### 1.3 Overview Client applications that connect to the SMTP service can use a number of different authentication mechanisms. The SMTP Service Extension for Authentication [RFC4954] defines a service extension to SMTP as specified in [RFC2821], where a client specifies an authentication method to the server. AUTH LOGIN is one such authentication protocol for SMTP. # 1.4 Relationship to Other Protocols This specification defines an implementation of a protocol using [RFC4954]. # 1.5 Prerequisites/Preconditions All prerequisites and preconditions are specified in [RFC2821] and [RFC4954]. # 1.6 Applicability Statement This protocol extension does not change the way that <a>[RFC4954] is used. #### 1.7 Versioning and Capability Negotiation None. #### 1.8 Vendor-Extensible Fields None. # 1.9 Standards Assignments None. # 2 Messages The following sections specify the AUTH LOGIN message syntax and how they are transported. # 2.1 Transport This protocol extension does not change the base transport specified by [RFC2821] or its extension specified by [RFC4954]. ## 2.2 Message Syntax ## 2.2.1 EHLO Response Server support for the AUTH LOGIN extension is identified in the AUTH EHLO keyword in the EHLO response, as specified in [RFC4954] section 3. In the following example, "C:" and "S:" indicate lines sent by the client and server respectively. ``` S: 220 SMTP.example.com C: EHLO client.example.com S: 250-smtp.example.com Hello client.example.com S: 250 AUTH LOGIN ``` The server response of AUTH LOGIN as part of the responses to EHLO indicates support for AUTH LOGIN. # 2.2.2 Command and Response ABNF Grammar This section uses **Augmented Backus-Naur Form (ABNF)** (as specified in [RFC5234]) to define the format of commands and responses used by this document. Note that the values of *username* and *password* are encoded using **base64 encoding** as specified in [RFC2045] before being transmitted. ``` = %x0D LF = %x0A SP = %x20 = 1*CHAR username ; Base64-encoded username password = 1*CHAR ; Base64-encoded password auth_login_username_challenge = "334 VXNlcm5hbWU6" CR LF auth_login_username_response = username CR LF auth_login_password_challenge = "334 UGFzc3dvcmQ6" CR LF auth login password response = password CR LF ``` #### 3 Protocol Details The following sections specify details of the AUTH LOGIN protocol extension, including abstract data models and message processing rules. #### 3.1 Client Details #### 3.1.1 Abstract Data Model This section describes a conceptual model of possible data organization that an implementation maintains to participate in this protocol. The described organization is provided to facilitate the explanation of how the protocol behaves. This document does not mandate that implementations adhere to this model as long as their external behavior is consistent with that described in this document. The abstract data model shown below represents the sequence of messages relative to the client. #### Figure 1: Client abstract data model #### **3.1.2 Timers** None. #### 3.1.3 Initialization None. #### 3.1.4 Higher-Layer Triggered Events None. #### 3.1.5 Message Processing Events and Sequencing Rules This protocol does not change message processing events or sequencing rules of messages specified in [RFC4954]. Clients SHOULD ignore any enhanced status codes returned by the server. #### 3.1.5.1 Sending EHLO Before requesting authentication, the client SHOULD send an EHLO command and examine the response. If the response does not contain the AUTH LOGIN keyword specified in section 2.2.1, the client SHOULD NOT attempt to use LOGIN authentication. ## 3.1.5.2 Requesting Simple Login Authentication To request LOGIN authentication, the client issues the AUTH command with the parameter LOGIN (auth_login_command as specified in section 2.2.2). ``` AUTH LOGIN<CR><LF> ``` If AUTH LOGIN is not supported, then the server responds with a 504 error message as specified in [RFC4954] section 4. If AUTH LOGIN is supported on the server, then the server responds with auth_login_username_challenge (as specified in section 2.2.2). ``` 334 VXNlcm5hbWU6<CR><LF> ``` The client then responds with <code>auth_login_username_response</code> (as specified in section <code>2.2.2</code>) with the user name to be used for authentication, base64 encoded as specified in <code>[RFC2045]</code>. For example, if the client's user name is "Charlie", then the client responds with the following: ``` Q2hhcmxpZQ==<CR><LF> ``` The server then responds with auth_login_password_challenge (as specified in section 2.2.2). ``` 334 UGFzc3dvcmQ6<CR><LF> ``` The client then responds with *auth_login_password_response* (as specified in section <u>2.2.2</u>) with the password to be used for authentication, base64 encoded. For example, if the client's password was "password", then the client would respond with the following: ``` cGFzc3dvcmQ=<CR><LF> ``` If the authentication is complete, then the server issues a 235 reply for success or a 535 reply for failure as specified in [RFC4954]. #### 3.1.5.3 Requesting Login Authentication with Username To request LOGIN authentication, the client issues the AUTH command with the parameter LOGIN and the user name to be used for authentication, base64 encoded as specified in [RFC2045]. For example, if the client's user name was "Charlie", then the client would initiate AUTH LOGIN as follows (auth login command user as specified in section 2.2.2): ``` AUTH LOGIN Q2hhcmxpZQ==<CR><LF> ``` If AUTH LOGIN is not supported, then the server responds with a 504 error message as specified in [RFC4954] section 4. If AUTH LOGIN is supported on the server, then the server responds with *auth_login_password_challenge* (as specified in section <u>2.2.2</u>). ``` 334 UGFzc3dvcmO6<CR><LF> ``` The client then responds with *auth_login_password_response* (as specified in section 2.2.2) with the password to be used for authentication, base64 encoded. For example, if the client's password was "password", then the client would respond with the following: ``` cGFzc3dvcmQ=<CR><LF> ``` If the authentication is complete, then the server issues a 235 reply for success or a 535 reply for failure as specified in [RFC4954]. #### 3.1.6 Timer Events None. #### 3.1.7 Other Local Events None. #### 3.2 Server Details #### 3.2.1 Abstract Data Model This section describes a conceptual model of possible data organization that an implementation maintains to participate in this protocol. The described organization is provided to facilitate the explanation of how the protocol behaves. This document does not mandate that implementations 11 / 20 [MS-XLOGIN] — v20101026 Simple Mail Transfer Protocol (SMTP) AUTH LOGIN Extension Copyright © 2010 Microsoft Corporation. Release: Tuesday, October 26, 2010 | adhere to this model as long as their external behavior is consistent with that described in document. | this | |--|-----------| | The abstract data model shown below represents the sequence of messages relative to the | e server. | | | | | | | | | | #### Figure 2: Server abstract data model #### **3.2.2 Timers** None. #### 3.2.3 Initialization None. #### 3.2.4 Higher-Layer Triggered Events None. #### 3.2.5 Message Processing Events and Sequencing Rules #### 3.2.5.1 Processing EHLO If the server supports AUTH LOGIN, it MUST include the AUTH keyword with the LOGIN parameter in its response to the EHLO command, as specified in section 2.2.1. #### 3.2.5.2 Processing AUTH LOGIN If the server supports AUTH LOGIN, it MUST respond to the *auth_login_command* request with an *auth_login_username_challenge* response, and it MUST respond to the *auth_login_command_user* request with an *auth_login_password_challenge* response. If the server does not support AUTH LOGIN, it SHOULD respond with a 504 error message as specified in [RFC4954] section 4. ## 3.2.5.3 Processing Username Response In order to process an <code>auth_login_username_response</code> request, the server MUST have sent an <code>auth_login_username_challenge</code> response. If the server receives an <code>auth_login_username_response</code> request without having sent an <code>auth_login_username_challenge</code> response, the server SHOULD respond with a 500 error message. If the server receives <code>auth_login_username_response</code> request after sending a <code>auth_login_username_challenge</code> response, the server SHOULD defer validating the username and SHOULD always send a <code>auth_login_password_challenge</code> response. #### 3.2.5.4 Processing Password Response In order to process an <code>auth_login_password_response</code> request, the server MUST have sent an <code>auth_login_password_challenge</code> response. If the server receives an <code>auth_login_password_response</code> request without having sent an <code>auth_login_password_challenge</code> response, the server SHOULD respond with a 500 error message. The server SHOULD check that the user indicated by the previous <code>auth_login_username_response</code> request is a valid user and that the password sent in the <code>auth_login_password_response</code> request is a valid password for that user. If the user and password are valid, then the server SHOULD respond with a 235 response. If the user or password are invalid, then the server SHOULD respond with a 535 response. # 3.2.6 Timer Events None. # 3.2.7 Other Local Events None. # 4 Protocol Example The following is an example of the use of the AUTH LOGIN protocol extension. The example demonstrates SMTP authentication using the AUTH LOGIN protocol. ``` S: 220 SMTP.example.com C: EHLO client.example.com S: 250-smtp.example.com Hello client.example.com S: 250 AUTH LOGIN C: AUTH LOGIN S: 334 VXNlcm5hbWU6 C: Q2hhcmxpZQ== S: 334 UGFzc3dvcmQ6 C: cGFzc3dvcmQ= S: 235 authentication successful ``` In this example, a client connects to an SMTP server. The initial response by the server ("220 SMTP.example.com") is the greeting by the server. The client responds with the EHLO command, which is required to activate the extended command set. The server responds with, among other things, an indication of support for AUTH LOGIN. The client then issues the AUTH LOGIN command. The server responds with the first base64-encoded challenge. The client responds with "Q2hhcmxpZQ==", which is the base64-encoded name "Charlie". The server then issues the second base64-encoded challenge, and the client responds with "cGFzc3dvcmQ=", which is the base64-encoded password "password". Successful authentication then results in a server response of "235". # **5** Security #### **5.1 Security Considerations for Implementers** This protocol offers no inherent security mechanisms to protect the user credentials during authentication. Because of this, it is extremely important to only use this protocol when also using a secure communication channel such as **Secure Sockets Layer (SSL)** or **Transport Layer Security (TLS)**. Even when using SSL or TLS, the authentication credentials are available to the SMTP server, where it is possible that they could be recorded for future use. The recommendation, therefore, is to not use this protocol except in circumstances where no other option is available. In environments where the use of TLS or other external security is mandated, it is strongly recommended that the AUTH LOGIN advertisement be suppressed until a secure channel is negotiated. TLS in particular exhibits this behavior where the SMTP session is restarted after TLS is negotiated. For more information, see [RFC4346]. # **5.2 Index of Security Parameters** None. # 6 Appendix A: Product Behavior The information in this specification is applicable to the following Microsoft products: - Microsoft® Office Outlook® 2003 - Microsoft® Exchange Server 2003 - Microsoft® Office Outlook® 2007 - Microsoft® Exchange Server 2007 - Microsoft® Outlook® 2010 - Microsoft® Exchange Server 2010 Exceptions, if any, are noted below. If a service pack number appears with the product version, behavior changed in that service pack. The new behavior also applies to subsequent service packs of the product unless otherwise specified. If a product edition appears with the product version, behavior is different in that product edition. Unless otherwise specified, any statement of optional behavior in this specification prescribed using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that product does not follow the prescription. | 7 | Change Tracking | |---|--| | | No table of changes is available. The document is either new or has had no changes since its last release. | | | | | | | # 8 Index ``` Transport 7 Applicability 6 Change tracking 19 Ε Examples overview 16 Glossary 5 Ι Implementer - security considerations 17 <u>Informative references</u> 5 Introduction 5 М Messages overview 7 transport 7 Ν Normative references 5 0 Overview (synopsis) 6 Preconditions 6 Prerequisites 6 Product behavior 18 R References informative 5 normative 5 Relationship to other protocols 6 S Security overview₁₇ Security - implementer considerations 17 Tracking changes 19 ``` Release: Tuesday, October 26, 2010