

1 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

[MS-TSGU]:
Terminal Services Gateway Server Protocol Specification

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft's Open Specification Promise (available here:
http://www.microsoft.com/interop/osp) or the Community Promise (available here:
http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if
the technologies described in the Open Specifications are not covered by the Open Specifications

Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the

aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

2 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Revision Summary

Date

Revision

History

Revision

Class Comments

02/22/2007 0.01 MCPP Milestone 3 Initial Availability

06/01/2007 1.0 Major Updated and revised the technical content.

07/03/2007 1.0.1 Editorial Revised and edited the technical content.

07/20/2007 1.1 Minor Updated the technical content.

08/10/2007 2.0 Major Updated and revised the technical content.

09/28/2007 3.0 Major Updated and revised the technical content.

10/23/2007 4.0 Major Updated and revised the technical content.

11/30/2007 4.0.1 Editorial Revised and edited the technical content.

01/25/2008 5.0 Major Updated and revised the technical content.

03/14/2008 6.0 Major Updated and revised the technical content.

05/16/2008 6.0.1 Editorial Revised and edited the technical content.

06/20/2008 6.0.2 Editorial Revised and edited the technical content.

07/25/2008 6.0.3 Editorial Revised and edited the technical content.

08/29/2008 7.0 Major Updated and revised the technical content.

10/24/2008 8.0 Major Updated and revised the technical content.

12/05/2008 9.0 Major Updated and revised the technical content.

01/16/2009 10.0 Major Updated and revised the technical content.

02/27/2009 11.0 Major Updated and revised the technical content.

04/10/2009 12.0 Major Updated and revised the technical content.

05/22/2009 13.0 Major Updated and revised the technical content.

07/02/2009 14.0 Major Updated and revised the technical content.

08/14/2009 15.0 Major Updated and revised the technical content.

09/25/2009 16.0 Major Updated and revised the technical content.

11/06/2009 17.0 Major Updated and revised the technical content.

12/18/2009 18.0 Major Updated and revised the technical content.

01/29/2010 19.0 Major Updated and revised the technical content.

3 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Date

Revision

History

Revision

Class Comments

03/12/2010 20.0 Major Updated and revised the technical content.

04/23/2010 21.0 Major Updated and revised the technical content.

06/04/2010 22.0 Major Updated and revised the technical content.

07/16/2010 23.0 Major Significantly changed the technical content.

08/27/2010 24.0 Major Significantly changed the technical content.

10/08/2010 25.0 Major Significantly changed the technical content.

11/19/2010 25.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 25.0 No change No changes to the meaning, language, or formatting of

the technical content.

02/11/2011 26.0 Major Significantly changed the technical content.

4 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Contents

1 Introduction ... 7
1.1 Glossary ... 7
1.2 References .. 8

1.2.1 Normative References ... 8
1.2.2 Informative References ... 9

1.3 Overview .. 9
1.3.1 RPC Call Phases ... 10

1.3.1.1 Connection Setup Phase .. 10
1.3.1.2 Data Transfer Phase .. 11
1.3.1.3 Shutdown Phase ... 13

1.4 Relationship to Other Protocols .. 14
1.5 Prerequisites/Preconditions ... 14
1.6 Applicability Statement ... 15
1.7 Versioning and Capability Negotiation ... 15
1.8 Vendor-Extensible Fields ... 15
1.9 Standards Assignments .. 15

2 Messages.. 17
2.1 Transport .. 17
2.2 Common Data Types .. 17

2.2.1 Data Types .. 17
2.2.1.1 RESOURCENAME .. 17
2.2.1.2 PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE .. 18
2.2.1.3 PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE ... 18
2.2.1.4 PTUNNEL_CONTEXT_HANDLE_SERIALIZE .. 18
2.2.1.5 PCHANNEL_CONTEXT_HANDLE_SERIALIZE .. 19

2.2.2 Constants .. 19
2.2.2.1 MAX_RESOURCE_NAMES ... 19
2.2.2.2 TSG_PACKET_TYPE_HEADER.. 19
2.2.2.3 TSG_PACKET_TYPE_VERSIONCAPS ... 19
2.2.2.4 TSG_PACKET_TYPE_QUARCONFIGREQUEST ... 19
2.2.2.5 TSG_PACKET_TYPE_QUARREQUEST .. 20
2.2.2.6 TSG_PACKET_TYPE_RESPONSE .. 20
2.2.2.7 TSG_PACKET_TYPE_QUARENC_RESPONSE .. 20
2.2.2.8 TSG_CAPABILITY_TYPE_NAP .. 20
2.2.2.9 TSG_PACKET_TYPE_CAPS_RESPONSE ... 20
2.2.2.10 TSG_PACKET_TYPE_MSGREQUEST_PACKET ... 20
2.2.2.11 TSG_PACKET_TYPE_MESSAGE_PACKET ... 21
2.2.2.12 TSG_PACKET_TYPE_AUTH .. 21
2.2.2.13 TSG_PACKET_TYPE_REAUTH .. 21
2.2.2.14 TSG_ASYNC_MESSAGE_CONSENT_MESSAGE ... 21
2.2.2.15 TSG_ASYNC_MESSAGE_SERVICE_MESSAGE .. 21
2.2.2.16 TSG_ASYNC_MESSAGE_REAUTH .. 22
2.2.2.17 TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST .. 22
2.2.2.18 TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST .. 22
2.2.2.19 TSG_NAP_CAPABILITY_QUAR_SOH ... 22
2.2.2.20 TSG_NAP_CAPABILITY_IDLE_TIMEOUT .. 22
2.2.2.21 TSG_MESSAGING_CAP_CONSENT_SIGN.. 23
2.2.2.22 TSG_MESSAGING_CAP_SERVICE_MSG .. 23
2.2.2.23 TSG_MESSAGING_CAP_REAUTH ... 23

5 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.2.24 Return Codes ... 23
2.2.3 Structures and Unions... 27

2.2.3.1 TSENDPOINTINFO... 27
2.2.3.2 TSG_PACKET ... 28

2.2.3.2.1 TSG_PACKET_TYPE_UNION .. 28
2.2.3.2.1.1 TSG_PACKET_HEADER ... 29
2.2.3.2.1.2 TSG_PACKET_VERSIONCAPS .. 30

2.2.3.2.1.2.1 TSG_PACKET_CAPABILITIES ... 30
2.2.3.2.1.2.1.1 TSG_CAPABILITIES_UNION ... 31
2.2.3.2.1.2.1.2 TSG_CAPABILITY_NAP .. 31

2.2.3.2.1.3 TSG_PACKET_QUARCONFIGREQUEST .. 32
2.2.3.2.1.4 TSG_PACKET_QUARREQUEST ... 32
2.2.3.2.1.5 TSG_PACKET_RESPONSE ... 33

2.2.3.2.1.5.1 responseData Format ... 33
2.2.3.2.1.5.2 TSG_REDIRECTION_FLAGS ... 34

2.2.3.2.1.6 TSG_PACKET_QUARENC_RESPONSE .. 36
2.2.3.2.1.7 TSG_PACKET_CAPS_RESPONSE .. 36
2.2.3.2.1.8 TSG_PACKET_MSG_REQUEST ... 37
2.2.3.2.1.9 TSG_PACKET_MSG_RESPONSE ... 37

2.2.3.2.1.9.1 TSG_PACKET_TYPE_MESSAGE_UNION .. 38
2.2.3.2.1.9.1.1 TSG_PACKET_STRING_MESSAGE ... 38
2.2.3.2.1.9.1.2 TSG_PACKET_REAUTH_MESSAGE ... 39

2.2.3.2.1.10 TSG_PACKET_AUTH ... 39
2.2.3.2.1.11 TSG_PACKET_REAUTH ... 40

2.2.3.2.1.11.1 TSG_INITIAL_PACKET_TYPE_UNION ... 40
2.2.3.3 Generic Send Data Message Packet ... 41
2.2.3.4 Generic Receive Pipe Message Packet .. 42

2.2.3.4.1 TSG Client to TSG Server Packet Format .. 42
2.2.3.4.2 TSG Server to TSG Client Packet Format for Intermediate Responses 43
2.2.3.4.3 TSG Server to TSG Client Packet Format for Final Response 43

3 Protocol Details .. 44
3.1 TsProxyRpcInterface Server Details .. 44

3.1.1 Abstract Data Model ... 44
3.1.1.1 TSG Server States .. 45

3.1.2 Timers .. 47
3.1.2.1 Session Timeout Timer .. 47
3.1.2.2 Re-authentication Timer .. 48
3.1.2.3 Connection Timer ... 48

3.1.3 Initialization .. 48
3.1.4 Message Processing Events and Sequencing Rules .. 48

3.1.4.1 Connection Setup Phase .. 49
3.1.4.1.1 TsProxyCreateTunnel (Opnum 1)... 49
3.1.4.1.2 TsProxyAuthorizeTunnel (Opnum 2) .. 53
3.1.4.1.3 TsProxyMakeTunnelCall (Opnum 3) ... 56
3.1.4.1.4 TsProxyCreateChannel (Opnum 4) ... 60

3.1.4.2 Data Transfer Phase .. 62
3.1.4.2.1 TsProxySendToServer (Opnum 9) ... 62
3.1.4.2.2 TsProxySetupReceivePipe (Opnum 8) .. 64

3.1.4.3 Shutdown Phase ... 70
3.1.4.3.1 TsProxyCloseChannel (Opnum 6) .. 70
3.1.4.3.2 TsProxyMakeTunnelCall (Opnum 3) ... 71
3.1.4.3.3 TsProxyCloseTunnel (Opnum 7) .. 72

6 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.4.3.4 Server Initiated Shutdown .. 73
3.1.5 Timer Events ... 73

3.1.5.1 Session Timeout Timer .. 73
3.1.5.2 Re-authentication Timer .. 74
3.1.5.3 Connection Timer ... 75

3.1.6 Other Local Events ... 75
3.1.6.1 Data Arrival from Target Server.. 75

3.2 TsProxyRpcInterface Client Details ... 75
3.2.1 Abstract Data Model ... 75
3.2.2 Timers .. 77

3.2.2.1 Idle Timeout Timer ... 77
3.2.2.1.1 Idle Time Processing .. 77

3.2.3 Initialization .. 77
3.2.4 Message Processing Events and Sequencing Rules .. 77
3.2.5 Timer Events ... 80

3.2.5.1 Idle Timeout Timer ... 80
3.2.6 Other Local Events ... 80

3.3 Data Representation forTsProxySetupReceivePipe and TsProxySendToServer 80
3.3.1 TsProxySendToServer Request ... 81
3.3.2 TsProxySendToServer Response ... 82
3.3.3 TsProxySetupReceivePipe Request .. 83
3.3.4 TsProxySetupReceivePipe Response .. 83
3.3.5 TsProxySetupReceivePipe Final Response .. 83

4 Protocol Examples .. 84
4.1 Normal Scenario .. 84
4.2 Pluggable Authentication Scenario with Consent Message Returned............................ 92
4.3 Reauthentication ... 95

5 Security .. 98
5.1 Security Considerations for Implementers ... 98
5.2 Index of Security Parameters .. 98

6 Appendix A: Full IDL ... 99

7 Appendix B: Product Behavior .. 105

8 Change Tracking... 110

9 Index ... 113

7 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1 Introduction

The Terminal Services Gateway Server Protocol [MS-TSGU] is a remote procedure call (RPC)
protocol using HTTP as the transport mechanism, as specified in [C706] and extended in [MS-RPCE]
and [MS-RPCH]. The Terminal Services Gateway Server Protocol is used primarily for tunneling
client to server traffic across firewalls when the Terminal Services Gateway (TSG) server is deployed
in the neutral zone of a network. The primary consumer of the Terminal Services Gateway Server
Protocol is Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

authentication level
Authentication Service (AS)
certificate

client

endpoint
globally unique identifier (GUID)
handle
HRESULT
Hypertext Transfer Protocol over Secure Sockets Layer (HTTPS)
Interface Definition Language (IDL)

Internet Protocol version 4 (IPv4)
Internet Protocol version 6 (IPv6)
Network Data Representation (NDR)
opnum
Remote Desktop Protocol (RDP)
remote procedure call (RPC)
server (1)

SHA-1 hash

statement of health (SoH)
statement of health response (SoHR)
Triple Data Encryption Standard
Unicode
universally unique identifier (UUID)
well-known endpoint

The following terms are specific to this document:

administrative message: A message sent by the TS Gateway administrator to all users
connected through TS Gateway. Typical would be messages sent for maintenance downtimes.
The term Administrative Message and Service Message is used interchangeably in this
document.

channel: A term indicating a successful connection between the TSG client and target server

via the TSG server. For more information, see Data Transfer Phase (section 1.3.1.2).

Consent Signing Message: This is a EULA which the user must accept in order to connect
successfully though TS Gateway.

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-RPCH%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

8 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Network Access Protection (NAP): A technology used to reduce the security risks associated
with allowing external clients to connect to the network. It is implemented through

quarantines and health checks, as specified in [MS-SOH].

out pipe: See pipe.

pipe: A supported IDL data type for streaming data, as specified in [C706] section 4.2.14. The
term out pipe refers to the pipe created between the client and the TSG server for
transferring data from the target server to the client via the TSG server. The term out pipe is
used because the data flows from TSG server to client.

pluggable authentication: There is an option to override the default RPC authentication
schemes by cookie-based authentication. TSG will load an installed plugin which will do the
authentication based on a cookie which is passed by the client. The cookie will be retrieved

when user browses a given site and enters their credentials.

RPC authentication: RPC supports several authentication methods as defined in [MS-RPCE]
sections 1.7 and 2.2.1.1.7. Out of these, TSG server supports NTLM and Schannel

authentication methods.

re-authentication: A process to validate the user credential's user authorization after the
connection is established. This gives the provision to check the validity of user credentials and

user authorization periodically, and disconnect the connection if the user credentials become
invalid. In the process of re-authentication, the TS Gateway server expects the client to
follow the same sequence of connection setup phase steps, as specified in section 1.3.1.1, to
enable the credentials of the user to be re-checked, or re-authenticated. If the same
sequence of steps is not followed, or an error occurs during the process, the existing
connection is disconnected.

Schannel: Secure channel (Schannel) is an authentication method which can be used with RPC

authentication by using RPC_C_AUTHN_GSS_SCHANNEL security provider as defined in
[MS-RPCE] section 2.2.1.1.7.

target server: The resource that the client connects to via TSG server. The target server name

is the machine name of such a resource. See sections 3.1.1 and 3.2.1 for more information on
the Abstract Data Model (ADM) element Target server name.

tunnel: A tunnel establishes a context in which all further method calls or data transfer can be
performed between the TSG client and the TSG server. A tunnel is unique to a given

combination of a TSG server and TSG client instance. All operations on the tunnel are
stateful.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
specified in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an

additional source.

%5bMS-SOH%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89829
http://go.microsoft.com/fwlink/?LinkId=89829
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624

9 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
http://www.opengroup.org/public/pubs/catalog/c706.htm

[MS-DTYP] Microsoft Corporation, "Windows Data Types", January 2007.

[MS-ERREF] Microsoft Corporation, "Windows Error Codes", January 2007.

[MS-NAPSO] Microsoft Corporation, "Network Policy and Access Services System Overview", August
2009.

[MS-RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting Specification", June 2007.

[MS-RNAP] Microsoft Corporation, "Vendor-Specific RADIUS Attributes for Network Access Protection
(NAP) Data Structure", January 2007.

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions", January 2007.

[MS-RPCH] Microsoft Corporation, "Remote Procedure Call over HTTP Protocol Specification",

January 2007.

[MS-SOH] Microsoft Corporation, "Statement of Health for Network Access Protection (NAP) Protocol
Specification", January 2007.

[MS-TSSO] Microsoft Corporation, "Terminal Services System Overview", February 2009.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary", March 2007.

[MSDN-MMSCH] Microsoft Corporation, "Mixed Mode Serialization of Context Handles",
http://msdn.microsoft.com/en-us/library/aa367098(VS.85).aspx

[MSDN-NAPAPI] Microsoft Corporation, "NAP Interfaces", http://msdn.microsoft.com/en-

us/library/aa369705(v=VS.85).aspx

[MSDN-RPCMESSAGE] Microsoft Corporation, "RPC_MESSAGE", http://msdn.microsoft.com/en-
us/library/aa378631.aspx

1.3 Overview

The Terminal Services Gateway Server Protocol is based on the Remote Procedure Call Over HTTP
Protocol. The Terminal Services Gateway Server Protocol is designed for remote connections from

Terminal Services Gateway (TSG) clients originating on the Internet to target servers behind a
firewall.<1>

This protocol establishes a connection from a TSG client to a TSG server in the neutral zone. This
connection is called a tunnel by the Terminal Services Gateway Server Protocol.

The TSG client then uses the tunnel to establish a channel between the TSG client and the target
server with the TSG server acting as a proxy. Data transfer between the TSG client and the target

server occurs by using the channel. The tunnel and channel maintain active connections.

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-NAPSO%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RNAP%5d.pdf
%5bMS-RNAP%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCH%5d.pdf
%5bMS-SOH%5d.pdf
%5bMS-SOH%5d.pdf
%5bMS-TSSO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=151562
http://go.microsoft.com/fwlink/?LinkId=199018
http://go.microsoft.com/fwlink/?LinkId=199018
http://go.microsoft.com/fwlink/?LinkId=92766
http://go.microsoft.com/fwlink/?LinkId=92766
%5bMS-RPCH%5d.pdf
%5bMS-RPCH%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

10 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Communication from the TSG server to the TSG client occurs by using an RPC out pipe.
Communication from the TSG client to the TSG server occurs by using RPC calls. The TSG client calls

TsProxyCreateTunnel, TsProxyAuthorizeTunnel, and TsProxyCreateChannel in the sequential
order as shown in Figure 1—the TSG client calls the next call only after a response for the already

issued call is received. Next, the TSG client calls TsProxySetupReceivePipe and
TsProxySendToServer only after the TsProxyCreateChannel call has successfully completed.
However, the TsProxySetupReceivePipe call may have multiple responses from the TSG server
and these may be interspersed with TsProxySendToServer. To end the connection, the TSG client
calls TsProxyCloseChannel and TsProxyCloseTunnel in the sequential order shown in the
diagrams in the subsequent sections. If the TSG client calls the TsProxyCloseTunnel method
before calling the TsProxyCloseChannel method, the TSG server closes the channel and then

closes the tunnel. If TsProxyCloseChannel is called after TsProxyCloseTunnel, the TSG client
receives an RPC exception. Refer to HRESULT Return Codes (section 2.2.2.24) for details on the
errors returned.

1.3.1 RPC Call Phases

The Terminal Services Gateway Server Protocol operates in three different phases: a connection

setup phase, a data transfer phase, and a shutdown phase. The following sections describe these
phases.

1.3.1.1 Connection Setup Phase

During this phase, a connection between the TSG client and TSG server is established. The TSG
server in turn establishes a connection to the target server. It consists of the following operations:

Tunnel creation: Involves negotiating protocol versioning and capabilities, returning the server

certificate, and returning a context representation for the tunnel to the TSG client. The TSG
client can then present the context representation to the TSG server in subsequent operations on
the tunnel. Tunnel creation is accomplished by using the TsProxyCreateTunnel method call.
This is always the first call in the protocol sequence. A tunnel shutdown, as specified in section
3.1.4.3.3, is possible without proceeding further in the TSG protocol sequence.

Tunnel authorization: Can involve performing any authorizing rules for the TSG client connection,

health checks, quarantine, enforcing user authentication, performing health remediation if
needed, and terminal server device redirection settings. This is accomplished by using a call to
the TsProxyAuthorizeTunnel method. This is the second call in the protocol sequence. A tunnel
shutdown is also possible after tunnel authorization.

Request for messages: After the tunnel is authorized, if the client and the server are both

capable of sending and receiving administrative messages, the TSG client can call

TsProxyMakeTunnelCall (section 3.1.4.1.3), with
TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST as the parameter. When the server has a message
to send over to the client, the server completes this pending call. The client should then make
another call to TsProxyMakeTunnelCall.

Channel creation: Requires making a connection to the target server and may include access

checks on whether a connection is allowed. A channel creation involves creating a server context

representation for the channel and returning the context representation to the TSG client. The

TSG client can then present the context representation in subsequent operations on the channel.
This is accomplished by using the TsProxyCreateChannel method call. This is the third call in
the protocol sequence. A channel shutdown, as specified in section 3.1.4.3.1, is possible without
proceeding further in the TSG protocol sequence. A tunnel shutdown is only possible after all
channels inside the tunnels are shut down. While TSG client SHOULD close the channels before

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

11 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

requesting tunnel shutdown, the channel closure will be done automatically by the server when
not already effected by the client.

Figure 1: Method call sequence between the TSG client and TSG server during Connection
Setup Phase

1.3.1.2 Data Transfer Phase

This phase allows for data transfer between the TSG client and the target server via the TSG

server.

Data transfer from the target server to the TSG client via the TSG server using an out pipe: The

data from the target server is sent by the TSG server to the TSG client via the out pipe. In order
to stream data from the TSG server to the TSG client, the Terminal Services Gateway Server
Protocol utilizes RPC out pipes. All the data is streamed via this pipe. The out pipe setup involves
creating an RPC out pipe. The out pipe setup is accomplished via a call to the
TsProxySetupReceivePipe method. This is the fourth call in the protocol sequence; it can be

called only once per channel. The TsProxySetupReceivePipe is called once, but data is sent
from the TSG server to TSG client multiple times.

Data transfer from the TSG client to the target server via the TSG server using an RPC call: The

TSG client uses an RPC method call to send the data that is intended to be delivered to the target
server by the TSG server. Data transfer from the TSG client to the TSG server is accomplished by

12 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

using an RPC method call. The method call transfers data from the TSG client to the TSG server
which then sends this data to the target server. The return value indicates success or failure. This

is accomplished by using a call to the TsProxySendToServer method. This is the fifth call in the
protocol sequence; it can be called multiple times within a channel.

The TSG server acts as a proxy between the TSG client and the target server, as shown in the

following diagram.

Figure 2: Connection between the TSG client and the target server.

The TSG client establishes a connection to the TSG server. The TSG server establishes a separate
connection to the target server. Thus, a channel is a logical connection between the TSG client
and the target server via the TSG server.

A channel can only be established within the context of a tunnel. The channel is specific to the
TSG client and tunnel instance. Multiple channels can exist within a tunnel.

13 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Figure 3: Method call sequence between the TSG client and TSG server during Data
Transfer Phase

1.3.1.3 Shutdown Phase

This phase is used to terminate the channel and tunnel.

Channel shutdown: Channel shutdown can be performed only after a successful channel creation.

A channel shutdown closes the RPC out pipe created in the data transfer phase and prevents any

further use of the channel. The closing of a channel can be initiated either by the client or the
TSG server. To initiate channel shutdown the client uses the TsProxyCloseChannel method call.
The TSG server initiates channel shutdown sending an RPC response PDU with the

PFC_LAST_FRAG bit set in the pfc_flags field as the final response PDU of the
TsProxySetupReceivePipe method, as specified in section 3.1.4.2.2.

Cancel pending messages: If the client has any pending administrative message request on the

TSG server, the client cancels the same by making a TsProxyMakeTunnel call with
TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST as a parameter.

14 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Tunnel shutdown: Tunnel shutdown can be performed only after a successful tunnel creation and

after all channels (if any) inside the tunnel are shut down successfully. A tunnel shutdown closes

the connection between the TSG client and TSG server. This is the last call in the protocol

sequence. The closing of a tunnel is accomplished by using the TsProxyCloseTunnel method
call.

Figure 4: Method call sequence between the TSG client and TSG server during Shutdown
Phase

1.4 Relationship to Other Protocols

This protocol is dependent upon [MS-RPCH] for its transport.

No other protocol currently depends on the Terminal Services Gateway Server Protocol.

The RDP client and target server can use the Terminal Services Gateway Server Protocol as its
transport for traversing corporate firewalls. RDP data is passed through this transport. Therefore,
RDP is not aware of the TSG protocol. RDP is specified in [MS-RDPBCGR].

1.5 Prerequisites/Preconditions

This protocol is a Remote Procedure Call Over HTTP Protocol type interface and therefore has the

prerequisites specified in [C706] parts 2, 3, and 4, [MS-RPCE] sections 2 and 3, and [MS-RPCH]
section 2.1.

It is assumed that a TSG client has obtained the name of the TSG server that supports the TSG
service before this protocol is invoked.

%5bMS-RPCH%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RPCH%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89828
http://go.microsoft.com/fwlink/?LinkId=89829
http://go.microsoft.com/fwlink/?LinkId=89831
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCH%5d.pdf

15 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

It is also assumed that a TSG client has obtained the name of the target server for making a
channel connection.

If HTTPS transport is used, a certificate must be deployed on the TSG server. The root authority of
the certificate must be trusted on the client as required by HTTPS.

1.6 Applicability Statement

This protocol is applicable when a client on the Internet or local private network requires a
connection to a target server that is behind a firewall.

1.7 Versioning and Capability Negotiation

Supported Transports: This protocol uses [MS-RPCH] as its only supported transport.

Protocol Version: The Terminal Services Gateway Server Protocol RPC interface has a single

version number of 1.3. The Terminal Services Gateway Server Protocol may be extended without
altering the version number by adding RPC methods to the interface with opnums lying

numerically beyond those defined in this specification. A TSG client determines whether such
methods are supported by attempting to invoke the method; if the method is not supported, the

TSG server returns an RPC_S_PROCNUM_OUT_OF_RANGE error. RPC versioning and capacity
negotiation is specified in [C706] section 4.2.4.2 and [MS-RPCE] section 1.7. The NDR version
required for this transport is 0x50002.

Security and Authentication Methods: The Terminal Services Gateway Server Protocol supports

all of the authentication methods as specified in [MS-RPCE] section 1.7. NTLM and Schannel are
two of the authentication methods that have pluggable security provider modules, as specified in
[MS-RPCE] section 2.2.1.1.7. RPC authentication APIs are also specified in [C706] section 2.7.

In addition to RPC authentication, the TSG protocol supports cookie-based pluggable
authentication.

Also, Terminal Services Gateway Server Protocol does not make NTLM, Schannel, and Basic
authentication calls directly but uses RPC over HTTP instead. RPC/HTTP (MS_RPCH) is pointed
out in [MS-RPCE] section 2.1.1.8 RPC over HTTP (ncacn_http). The NTLM sequence for RPC is in

section 4.2.

Capability Negotiation: This protocol does not enforce any explicit version negotiation, but there

is support for version negotiation. There is an explicit capabilities check done by the TSG client to
ensure that its capabilities are supported and matched by the TSG server. The TSG client and
TSG server announce their version and capabilities by using the TsProxyCreateTunnel method
call. For specifications on the current version and capabilities announced by the TSG client and
TSG server, see section 2.2.3.

1.8 Vendor-Extensible Fields

This protocol uses HRESULT datatypes as specified in [MS-ERREF] section 2.1. Vendors are free to
choose their own values for this field, as long as the C bit (0x20000000) is set, indicating it is a
customer code.

1.9 Standards Assignments

Parameter Value Reference

RPC interface UUID 44e265dd-7daf-42cd-8560-3cdb6e7a2729 [C706] section 2.3

%5bMS-GLOS%5d.pdf
%5bMS-RPCH%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89829
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89828
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89828
http://go.microsoft.com/fwlink/?LinkId=89828

16 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Parameter Value Reference

endpoint 80, 443 and 3388 Section 2.1

ProtocolSequence ncacn_http Section 1.5

17 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2 Messages

The following sections specify how the Terminal Services Gateway Server Protocol messages are
transported and common data types.

2.1 Transport

This protocol uses the Remote Procedure Call over HTTP Protocol [MS-RPCH] as transport.

This protocol uses the following static endpoints as well as well-known endpoints. These
endpoints are ports for [MS-RPCH] section 1.5 on the TSG server. The only protocol sequence used

for the transport is "ncacn_http".

Port 80: This endpoint is used by [MS-RPCH] as the underlying transport, when [MS-RPCH] runs

over plain HTTP.

Port 443: This endpoint is used by [MS-RPCH] as the underlying transport, when [MS-RPCH] runs

over HTTPS.

Port 3388: This endpoint is used by the TSG server to listen for incoming RPC method calls. The

authenticated RPC interface allows RPC to negotiate the use of authentication and the
authentication level on behalf of the TSG client and target server.

Port 3388 endpoint and at least one of Port 80 and Port 443 endpoints MUST be supported.

The Terminal Services Gateway Server Protocol MUST use the UUID, as specified in section 1.9. The
RPC version number is 1.3.

2.2 Common Data Types

In addition to the RPC base types and definitions as specified in [C706] section 3.1, [MS-RPCE]
section 2.2 and [MS-DTYP], additional data types are defined below in section 2.2.1.

In addition to the RPC base types and definitions described, the additional data types given below
are defined in the MIDL specification for this RPC interface.

2.2.1 Data Types

2.2.1.1 RESOURCENAME

This type is declared as follows:

typedef [string] wchar_t* RESOURCENAME;

The target server name to which the TSG server connects. This refers to the ADM element Target

server name (sections 3.1.1 and 3.2.1). The name MUST not be NULL and SHOULD be a valid

server name. A valid target server name is one which DNS can resolve properly. Also, a valid target
server is one which should be up and running and can accept a terminal server connection.

A RESOURCENAME can be an IP address, FQDN, or NetBIOS name. It may be noted that DNS
cannot resolve all NetBIOS names - for example, there are differences in the allowed characters,
differences in length, and differences in composition rules. Therefore, RESOURCENAME can be a

%5bMS-RPCH%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCH%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90950
%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf

18 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

NetBIOS name if the NetBIOS name uses characters and length restrictions that DNS allows for,
allowing DNS to resolve the name.

2.2.1.2 PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE

An RPC context handle representing the tunnel for the given connection. Refer to [MSDN-MMSCH]
for details on the modes of the context handles. For the NOSERIALIZE context handle, there may be
more than one pending RPC call on the TSG server. However, on the wire it is identical to
PTUNNEL_CONTEXT_HANDLE_SERIALIZE.

This type is declared as follows:

typedef [context_handle] void* PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE;

The context handle MUST NOT be type_strict, but it MUST be strict. More details on RPC context

handles are specified in [C706] sections 4.2.16.6, 5.1.6, and 6.1 and [MS-RPCE] section
3.1.1.5.3.2.2.2 and 3.3.1.4.1.

2.2.1.3 PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE

An RPC context handle representing the channel for the given connection. Refer to [MSDN-MMSCH]
for details on modes of the context handles. For the NOSERIALIZE context handle, there may be

more than one pending RPC call on the TSG server. However, on the wire it is identical to
PCHANNEL_CONTEXT_HANDLE_SERIALIZE.

This type is declared as follows:

typedef [context_handle] void* PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE;

The context handle MUST NOT be type_strict, but it MUST be strict. More details on RPC context
handles are specified in [C706] sections 4.2.16.6, 5.1.6, and 6.1 and [MS-RPCE] section

3.1.1.5.3.2.2.2 and 3.3.1.4.1.

2.2.1.4 PTUNNEL_CONTEXT_HANDLE_SERIALIZE

An RPC context handle representing the tunnel for the given connection. Refer to [MSDN-MMSCH]
for details on the modes of the context handles. For this context handle, there can be no more than
one pending RPC call on the TSG server. On the wire it is identical to
PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE.

This type is declared as follows:

typedef [context_handle] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE PTUNNEL_CONTEXT_HANDLE_SERIALIZE;

The context handle MUST NOT be type_strict, but it MUST be strict. More details on RPC context

handles are specified in [C706] sections 4.2.16.6, 5.1.6, and 6.1 and [MS-RPCE] section
3.1.1.5.3.2.2.2 and 3.3.1.4.1.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=151562
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89829
http://go.microsoft.com/fwlink/?LinkId=89830
http://go.microsoft.com/fwlink/?LinkId=89831
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=151562
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89829
http://go.microsoft.com/fwlink/?LinkId=89830
http://go.microsoft.com/fwlink/?LinkId=89831
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=151562
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89829
http://go.microsoft.com/fwlink/?LinkId=89830
http://go.microsoft.com/fwlink/?LinkId=89831
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

19 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.1.5 PCHANNEL_CONTEXT_HANDLE_SERIALIZE

An RPC context handle representing the channel for the given connection. Refer to [MSDN-MMSCH]
for details on the modes of the context handles. For this context handle, there can be no more than

one pending RPC call on the TSG server. On the wire it is identical to
PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE.

This type is declared as follows:

typedef [context_handle] PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE

PCHANNEL_CONTEXT_HANDLE_SERIALIZE;

The context handle MUST NOT be type_strict, but it MUST be strict. More details on RPC context

handles are specified in [C706] sections 4.2.16.6, 5.1.6, and 6.1 and [MS-RPCE] section
3.1.1.5.3.2.2.2 and 3.3.1.4.1.

2.2.2 Constants

2.2.2.1 MAX_RESOURCE_NAMES

Constant/value Description

MAX_RESOURCE_NAMES

50

The maximum range allowed by the TSG server for the numResourceNames

data type in the TSENDPOINTINFO structure.

2.2.2.2 TSG_PACKET_TYPE_HEADER

Constant/value Description

TSG_PACKET_TYPE_HEADER

0x00004844

This constant is used by the packetId field of the TSG_PACKET structure.

The TSG client and TSG server SHOULD not use this type, as specified in

sections 2.2.3.2 and 2.2.3.2.1.1.

2.2.2.3 TSG_PACKET_TYPE_VERSIONCAPS

Constant/value Description

TSG_PACKET_TYPE_VERSIONCAPS

0x00005643

This constant is used by the packetId field of the TSG_PACKET

structure. When this constant is present, the packetVersionCaps

field of the tsgPacket union field in the TSG_PACKET structure

MUST be a pointer to a TSG_PACKET_VERSIONCAPS structure.

2.2.2.4 TSG_PACKET_TYPE_QUARCONFIGREQUEST

Constant/value Description

TSG_PACKET_TYPE_QUARCONFIGREQUEST

0x00005143

This constant is used by the packetId field of the

TSG_PACKET structure. When this constant is present, the

packetQuarConfigRequest field of the tsgPacket union

field in the TSG_PACKET structure MUST be a pointer to a

TSG_PACKET_QUARCONFIGREQUEST structure.

http://go.microsoft.com/fwlink/?LinkId=151562
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89829
http://go.microsoft.com/fwlink/?LinkId=89830
http://go.microsoft.com/fwlink/?LinkId=89831
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

20 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.2.5 TSG_PACKET_TYPE_QUARREQUEST

Constant/value Description

TSG_PACKET_TYPE_QUARREQUEST

0x00005152

This constant is used by the packetId field of the TSG_PACKET

structure. When this constant is present, the packetQuarRequest

field of the tsgPacket union field in the TSG_PACKET structure

MUST be a pointer to a TSG_PACKET_QUARREQUEST structure.

It is also used by the TSG server in the flags filed of the

TSG_PACKET_RESPONSE structure in response to the

TsProxyAuthorizeTunnel call.

2.2.2.6 TSG_PACKET_TYPE_RESPONSE

Constant/value Description

TSG_PACKET_TYPE_RESPONSE

0x00005052

This constant is used by the packetId field, of the TSG_PACKET

structure. When this constant is present, the packetResponse field of

the tsgPacket union field, in the TSG_PACKET structure, MUST be a

pointer to a TSG_PACKET_RESPONSE structure.

2.2.2.7 TSG_PACKET_TYPE_QUARENC_RESPONSE

Constant/value Description

TSG_PACKET_TYPE_QUARENC_RESPONSE

0x00004552

This constant is used by the packetId field of the

TSG_PACKET structure. When this type is present, the

packetQuarEncResponse field of the tsgPacket union field

in the TSG_PACKET structure MUST be a pointer to a

TSG_PACKET_QUARENC_RESPONSE structure.

2.2.2.8 TSG_CAPABILITY_TYPE_NAP

Constant/value Description

TSG_CAPABILITY_TYPE_NAP

0x1

This constant is used by the tsgCapNap field of

TSG_CAPABILITIES_UNION. It indicates whether Network Access

Protection (NAP) capabilities are supported by the TSG client and TSG

server.

2.2.2.9 TSG_PACKET_TYPE_CAPS_RESPONSE

Constant/value Description

TSG_PACKET_TYPE_CAPS_RESPONSE

0x00004350

This constant is used by the packetId field of the TSG_PACKET

structure. When this type is present, the packetCapsResponse

field of the tsgPacket union field in the TSG_PACKET structure

MUST be a pointer to a TSG_PACKET_CAPS_RESPONSE structure.

2.2.2.10 TSG_PACKET_TYPE_MSGREQUEST_PACKET

Constant/value Description

TSG_PACKET_TYPE_MSGREQUEST_PACKET This constant is used by the packetId field of the

TSG_PACKET structure. When this type is present, the

21 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Constant/value Description

0x00004752 packetMsgRequest field of the tsgPacket union field in

the TSG_PACKET structure MUST be a pointer to a

TSG_PACKET_MSG_REQUEST structure.

2.2.2.11 TSG_PACKET_TYPE_MESSAGE_PACKET

Constant/value Description

TSG_PACKET_TYPE_MESSAGE_PACKET

0x00004750

This constant is used by the packetId field of the

TSG_PACKET structure. When this type is present, the

packetMsgResponse field of the tsgPacket union field in the

TSG_PACKET structure MUST be a pointer to a

TSG_PACKET_MSG_RESPONSE structure.

2.2.2.12 TSG_PACKET_TYPE_AUTH

Constant/value Description

TSG_PACKET_TYPE_AUTH

0x00004054

This constant is used by the packetId field of the TSG_PACKET structure.

When this type is present, the packetAuth field of the tsgPacket union field

in the TSG_PACKET structure MUST be a pointer to a TSG_PACKET_AUTH

structure.

2.2.2.13 TSG_PACKET_TYPE_REAUTH

Constant/value Description

TSG_PACKET_TYPE_REAUTH

0x00005250

This constant is used by the packetId field of the TSG_PACKET structure.

When this type is present, the packetReauth field of the tsgPacket union

field in the TSG_PACKET structure MUST be a pointer to a

TSG_PACKET_REAUTH structure.

2.2.2.14 TSG_ASYNC_MESSAGE_CONSENT_MESSAGE

Constant/value Description

TSG_ASYNC_MESSAGE_CONSENT_MESSAGE

0x00000001

This constant is used by the msgType field of the

TSG_PACKET_MSG_RESPONSE structure. This value

indicates that the consentMessage field of the

TSG_PACKET_TYPE_MESSAGE_UNION contains the

Consent Message.

2.2.2.15 TSG_ASYNC_MESSAGE_SERVICE_MESSAGE

Constant/value Description

TSG_ASYNC_MESSAGE_SERVICE_MESSAGE

0x00000002

This constant is used by the msgType field of the

TSG_PACKET_MSG_RESPONSE structure. This value

indicates that the serviceMessage field of the

TSG_PACKET_TYPE_MESSAGE_UNION contains the Service

Message.

22 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.2.16 TSG_ASYNC_MESSAGE_REAUTH

Constant/value Description

TSG_ASYNC_MESSAGE_REAUTH

0x00000003

This constant is used by the msgType field of the

TSG_PACKET_MSG_RESPONSE structure. This value indicates that the

reauthMessage field of the TSG_PACKET_TYPE_MESSAGE_UNION

contains the Re-authentication request to the client.

2.2.2.17 TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST

Constant/value Description

TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST

0x00000001

This constant is used by the procId parameter of the

TsProxyMakeTunnelCall method. This value indicates that

the client can receive Service Messages and the TSG server

SHOULD send the same when available.

2.2.2.18 TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST

Constant/value Description

TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST

0x00000002

This constant is used by the procId parameter of the

TsProxyMakeTunnelCall method. This value indicates

that the client has requested to cancel the pending

service message request on the TSG server.

2.2.2.19 TSG_NAP_CAPABILITY_QUAR_SOH

Constant/value Description

TSG_NAP_CAPABILITY_QUAR_SOH

0x00000001

This constant is used to represent the NAP quarantine statement of

health (SoH) capability. If the TSG client supports this capability, it

means that the TSG client is capable of sending a quarantine

statement of health response (SoHR) to the TSG server as

specified in section 2.2.3.2.1.5.1. If the TSG server supports this

capability, it means that the TSG server is capable of receiving and

processing a quarantine statement of health response from the TSG

client as specified in section 2.2.3.2.1.5.1.<2>

2.2.2.20 TSG_NAP_CAPABILITY_IDLE_TIMEOUT

Constant/value Description

TSG_NAP_CAPABILITY_IDLE_TIMEOUT

0x00000002

This constant is used to represent the Idle timeout capability. If

the TSG client supports this capability, it means that the TSG

client is capable of receiving and processing an idle timeout

value as specified in section 2.2.3.2.1.5.1. If the TSG server

supports this capability, it means that the TSG server is capable

of sending an idle timeout value to the client as specified in

section 2.2.3.2.1.5.1.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

23 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.2.21 TSG_MESSAGING_CAP_CONSENT_SIGN

Constant/value Description

TSG_MESSAGING_CAP_CONSENT_SIGN

0x00000004

This constant is used to represent the consent message

capability. If the TSG client supports this capability, it means

that the TSG client is capable of receiving and processing a

consent message as specified in section 2.2.3.2.1.9.1. If the

TSG server supports this capability, it means that the TSG

server is capable of sending a consent message to the TSG

client as specified in section 2.2.3.2.1.9.1.

2.2.2.22 TSG_MESSAGING_CAP_SERVICE_MSG

Constant/value Description

TSG_MESSAGING_CAP_SERVICE_MSG

0x00000008

This constant is used to represent the service message

capability. If the TSG client supports this capability, it means

that the TSG client is capable of receiving and processing a

service message as specified in section 2.2.3.2.1.9.1. If the TSG

server supports this capability, it means that the TSG server is

capable of sending a service message to the TSG client as

specified in section 2.2.3.2.1.9.1.

2.2.2.23 TSG_MESSAGING_CAP_REAUTH

Constant/value Description

TSG_MESSAGING_CAP_REAUTH

0x00000010

This constant is used to represent the re-authentication capability. If

the TSG client supports this capability, it means that the TSG client is

capable of performing re-authentication according to the same methods

as initial authentication, as specified in section 2.1. If the TSG server

supports this capability, it means that the TSG server is capable of

sending a re-authentication request to the TSG client, as specified in

section 2.2.3.2.1.9.1

2.2.2.24 Return Codes

The following HRESULT return values are specified by this protocol. The protocol must be ended
when any of the below return codes, except ERROR_SUCCESS, are received. The phrase "ending the
protocol" refers to closing the channel and tunnel, if a channel has been created; or closing the
tunnel, if a channel has not been created, but the tunnel has been created. To close the channel,
TsProxyCloseChannel (section 3.1.4.3.1) must be called, and to close the tunnel,
TsProxyCloseTunnel (section 3.1.4.3.3) must be called. When these calls are completed, the

protocol ends. After the protocol ends, the binding handle should be closed. A binding handle is
specified in [C706] section 2.<3>

Return value/code Description

0x800759D8

E_PROXY_INTERNALERROR

Used as a generic catch-all when an

unexpected error happens.

0x800759DA

E_PROXY_RAP_ACCESSDENIED

Returned when an attempt to resolve or access

a target server is blocked by TSG server

policies.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824

24 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Return value/code Description

0x800759DB

E_PROXY_NAP_ACCESSDENIED

Returned when the TSG server denies the TSG

client access due to policy.

0x800759DF

E_PROXY_ALREADYDISCONNECTED

Returned when an operation is called on a

disconnected tunnel or channel.

0x800759ED

E_PROXY_QUARANTINE_ACCESSDENIED

The TSG server rejects the connection due to

quarantine policy.

0x800759EE

E_PROXY_NOCERTAVAILABLE

The TSG server cannot find a certificate to

register for SCHANNEL Authentication

Service (AS).

0x800759F7

E_PROXY_COOKIE_BADPACKET

An invalid cookie packet was sent by the client.

0x800759F8

E_PROXY_COOKIE_AUTHENTICATION_ACCESS_DENIED

Returned when the TSG server is in pluggable

authentication mode and the given user does

not have access to connect via TSG server.

0x800759F9

E_PROXY_UNSUPPORTED_AUTHENTICATION_METHOD

Returned to the TSG client from the call to

TsProxyCreateTunnel when the TSG server is

configured for pluggable authentication and the

value of the packetId member of the

tsgPacket parameter is not equal to

TSG_PACKET_TYPE_AUTH or

TSG_PACKET_TYPE_REAUTH.

0x800759E9

E_PROXY_CAPABILITYMISMATCH

Returned when the TSG server supports the

TSG_MESSAGING_CAP_CONSENT_SIGN

capability and is configured to allow only a TSG

client that supports the

TSG_MESSAGING_CAP_CONSENT_SIGN

capability, but the TSG client doesn't support

the capability.

0x8007071A

HRESULT_FROM_WIN32(RPC_S_CALL_CANCELLED)

Returned when a pending call is canceled by

the TSG client or the call is canceled because a

shutdown sequence is initiated.

0x00000000

ERROR_SUCCESS

Returned when the requested operation

succeeds.

In addition to the preceding HRESULTs, which are defined by the [MS-TSGU] protocol, the following
DWORDs are returned in an rpc_fault packet when an exception is raised on the TSG server.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Returned by the TSG server when the

requested operation is not allowed.

0x000004E3

ERROR_ONLY_IF_CONNECTED

Returned by the TSG server when an attempt

is made by the client to send data to the

target server on connection state other than

Pipe Created state.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

25 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

Returned by the TSG server when the TSG

client sends a non-NULL value in a data

member of the

TSG_PACKET_QUARREQUEST structure but

it is not prefixed with Nonce.

0x000004CA

ERROR_GRACEFUL_DISCONNECT

Returned by the TSG server when the

connection is disconnected gracefully by the

TSG client by calling TsProxyCloseChannel.

0x000059E8

HRESULT_CODE(E_PROXY_NOTSUPPORTED)

Returned when the TSG server receives a

wrong packet in the

TsProxyAuthorizeTunnel method.

0x000003E3

ERROR_OPERATION_ABORTED

Returned when the TSG server does not

receive a TsProxySetupReceivePipe

method call before the Connection Timer

(section 3.1.2.3) expires.

0x000059DD

HRESULT_CODE(E_PROXY_TS_CONNECTFAILED)

Returned by TsProxyCreateChannel when

the TSG server fails to connect to the target

server.<4>

0x000059E6

HRESULT_CODE(E_PROXY_MAXCONNECTIONSREACHED)

The TSG server has reached the maximum

connections allowed.<5>

In addition to the above DWORDs, the following DWORDs are returned from the
TsProxySetupReceivePipe and TsProxySendToServer methods.

Return value/code Description

0X000059D8

HRESULT_CODE(E_PROXY_INTERNALERROR)

Returned when an unexpected error occurs in

TsProxySetupReceivePipe or

TsProxySendToServer.

0x000059DD

HRESULT_CODE(E_PROXY_TS_CONNECTFAILED)

Returned by TsProxySetupReceivePipe when

the TSG server fails to connect to the target

server. It is returned in the rpc_fault

packet.<6>

0x000059F6

HRESULT_CODE(E_PROXY_SESSIONTIMEOUT)

Returned by TsProxySetupReceivePipe if a

session timeout occurs and "disconnect on

session timeout" is configured at the TSG server

and the ADM element Negotiated Capabilities

contains

TSG_NAP_CAPABILITY_IDLE_TIMEOUT.

0X000059FA

HRESULT_CODE(E_PROXY_REAUTH_AUTHN_FAILED)

Returned by TsProxySetupReceivePipe when

a re-authentication attempt by the client has

failed because the user credentials are no longer

valid and the ADM element Negotiated

Capabilities contains

TSG_NAP_CAPABILITY_IDLE_TIMEOUT.

0x000059FB

HRESULT_CODE(E_PROXY_REAUTH_CAP_FAILED)

Returned by TsProxySetupReceivePipe when

a re-authentication attempt by the client has

26 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Return value/code Description

failed because the user is not authorized to

connect through the TSG server anymore and

the ADM element Negotiated Capabilities

contains

TSG_NAP_CAPABILITY_IDLE_TIMEOUT.

0x000059FC

HRESULT_CODE(E_PROXY_REAUTH_RAP_FAILED)

Returned by TsProxySetupReceivePipe when

a re-authentication attempt by the client has

failed because the user is not authorized to

connect to the given end resource anymore and

the ADM element Negotiated Capabilities

contains

TSG_NAP_CAPABILITY_IDLE_TIMEOUT.

0x000059FD

HRESULT_CODE(E_PROXY_SDR_NOT_SUPPORTED_BY_TS

)

The TSG server is capable of exchanging policies

with some target servers.<7> If the TSG server

is configured to allow connections to only target

servers that are capable of policy exchange and

the target server is not capable of exchanging

policies with the TSG server, this error will be

returned by TsProxySetupReceivePipe.

0x00005A00

HRESULT_CODE(E_PROXY_REAUTH_NAP_FAILED)

Returned by TsProxySetupReceivePipe when

a re-authentication attempt by the TSG client

has failed because the health of the user's

computer is no longer compliant with the TSG

server configuration and the ADM element

Negotiated Capabilities contains

TSG_NAP_CAPABILITY_IDLE_TIMEOUT.

0x000004D4

HRESULT_CODE(E_PROXY_CONNECTIONABORTED)

Returned by TsProxySetupReceivePipe when

the following happens:

1. The TSG server administrator forcefully

disconnects the connection.

2. Or when the ADM element Negotiated
Capabilities doesn't contain
TSG_NAP_CAPABILITY_IDLE_TIME
OUT and any one of the following
happens:

1. Session timeout occurs and
disconnect on session timeout is
configured at the TSG server.

2. Re-authentication attempt by the
client has failed because the user
credentials are no longer valid.

3. Re-authentication attempt by the
client has failed because the user is
not authorized to connect through
the TSG server anymore.

4. Re-authentication attempt by the

27 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Return value/code Description

client has failed because the user is
not authorized to connect to the

given end resource anymore.

5. Re-authentication attempt by the
TSG client has failed because the
health of the user's computer is no
longer compliant with the TSG server
configuration.

0x000000A0

ERROR_BAD_ARGUMENTS

Returned by TsProxySetupReceivePipe when

the target server unexpectedly closes the

connection between the TSG server and the

target server.

2.2.3 Structures and Unions

2.2.3.1 TSENDPOINTINFO

The TSENDPOINTINFO structure contains information about the target server to which the TSG
server attempts to connect.

typedef struct _tsendpointinfo {

 [size_is(numResourceNames)] RESOURCENAME* resourceName;

 [range(0, MAX_RESOURCE_NAMES)] unsigned long numResourceNames;

 [unique, size_is(numAlternateResourceNames)]

 RESOURCENAME* alternateResourceNames;

 [range(0, 3)] unsigned short numAlternateResourceNames;

 unsigned long Port;

} TSENDPOINTINFO,

 *PTSENDPOINTINFO;

resourceName: An array of RESOURCENAME strings, as specified in section 2.2.1.1. The

range is from 0 to numResourceNames. This array, in conjunction with
alternateResourceNames parameter array, comprises the alias names of the target server to
which the TSG server can connect. As specified in the Protocol Overview (section 1.3), the
TSG server acts as a proxy to target server. The RDP client and target server MUST use [MS-

RDPBCGR] to communicate.

numResourceNames: The number of RESOURCENAME datatypes in the resourceName
array. The value must be in the range of 0 and 3; both inclusive.

alternateResourceNames: An array of RESOURCENAME strings to be used as alternative
names for the target server. The range is from 0 to numAlternateResourceNames.<8>

numAlternateResourceNames: The number of allowed alternateResourceNames. The
value must be in the range of 0 and 3; both inclusive.

Port: Specifies the protocol ID and TCP port number for the target server endpoint to which the
TSG server connects. The protocol ID is in the low order 16 bits of this field and port number

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

28 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

is in the high order 16 bits. These values can be ignored. The value of the protocol id is
protocol-dependent. For example, RDP uses 3.

2.2.3.2 TSG_PACKET

The TSG_PACKET structure specifies the type of structure to be used by the TSG client and TSG
server.

typedef struct _TSG_PACKET {

 unsigned long packetId;

 [switch_is(packetId)] TSG_PACKET_TYPE_UNION tsgPacket;

} TSG_PACKET,

 *PTSG_PACKET;

packetId: This value specifies the type of structure pointer contained in the tsgPacket field.

Valid values are specified in sections 2.2.2.2, 2.2.2.3, 2.2.2.4, 2.2.2.5, 2.2.2.6, 2.2.2.7,

2.2.2.9, 2.2.2.10, 2.2.2.11, 2.2.2.12, and 2.2.2.13.

tsgPacket: A union field containing the actual structure pointer corresponding to the value
contained in the packetId field. Valid structures for this field are specified in sections
2.2.3.2.1.1, 2.2.3.2.1.2, 2.2.3.2.1.3, 2.2.3.2.1.4, 2.2.3.2.1.5, 2.2.3.2.1.6, 2.2.3.2.1.7,

2.2.3.2.1.8, 2.2.3.2.1.9, 2.2.3.2.1.10, and 2.2.3.2.1.11.

2.2.3.2.1 TSG_PACKET_TYPE_UNION

The TSG_PACKET_TYPE_UNION union specifies an RPC switch_type union of structures as
follows.

typedef

[switch_type(unsigned long)]

 union {

 [case(TSG_PACKET_TYPE_HEADER)]

 PTSG_PACKET_HEADER packetHeader;

 [case(TSG_PACKET_TYPE_VERSIONCAPS)]

 PTSG_PACKET_VERSIONCAPS packetVersionCaps;

 [case(TSG_PACKET_TYPE_QUARCONFIGREQUEST)]

 PTSG_PACKET_QUARCONFIGREQUEST packetQuarConfigRequest;

 [case(TSG_PACKET_TYPE_QUARREQUEST)]

 PTSG_PACKET_QUARREQUEST packetQuarRequest;

 [case(TSG_PACKET_TYPE_RESPONSE)]

 PTSG_PACKET_RESPONSE packetResponse;

 [case(TSG_PACKET_TYPE_QUARENC_RESPONSE)]

 PTSG_PACKET_QUARENC_RESPONSE packetQuarEncResponse;

 [case(TSG_PACKET_TYPE_CAPS_RESPONSE)]

 PTSG_PACKET_CAPS_RESPONSE packetCapsResponse;

 [case(TSG_PACKET_TYPE_MSGREQUEST_PACKET)]

 PTSG_PACKET_MSG_REQUEST packetMsgRequest;

 [case(TSG_PACKET_TYPE_MESSAGE_PACKET)]

 PTSG_PACKET_MSG_RESPONSE packetMsgResponse;

 [case(TSG_PACKET_TYPE_AUTH)]

 PTSG_PACKET_AUTH packetAuth;

 [case(TSG_PACKET_TYPE_REAUTH)]

 PTSG_PACKET_REAUTH packetReauth;

} TSG_PACKET_TYPE_UNION,

29 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 *PTSG_PACKET_TYPE_UNION;

packetHeader: A PTSG_PACKET_HEADER as specified in section 2.2.3.2.1.1.

packetVersionCaps: A PTSG_PACKET_VERSIONCAPS as specified in section 2.2.3.2.1.2.

packetQuarConfigRequest: A PTSG_PACKET_QUARCONFIGREQUEST as specified in
section 2.2.3.2.1.3.

packetQuarRequest: A PTSG_PACKET_QUARREQUEST as specified in section 2.2.3.2.1.4.

packetResponse: A PTSG_PACKET_RESPONSE as specified in section 2.2.3.2.1.5.

packetQuarEncResponse: A PTSG_PACKET_QUARENC_RESPONSE as specified in section

2.2.3.2.1.6.

packetCapsResponse: A PTSG_PACKET_CAPS_RESPONSE as specified in section
2.2.3.2.1.7.

packetMsgRequest: A PTSG_PACKET_MSG_REQUEST as specified in section 2.2.3.2.1.8.

packetMsgResponse: A PTSG_PACKET_MSG_RESPONSE as specified in section 2.2.3.2.1.9.

packetAuth: A PTSG_PACKET_AUTH as specified in section 2.2.3.2.1.10.

packetReauth: A PTSG_PACKET_REAUTH as specified in section 2.2.3.2.1.11.

2.2.3.2.1.1 TSG_PACKET_HEADER

The TSG_PACKET_HEADER structure contains information about the ComponentID and
PacketID fields of the TSG_PACKET structure. The value of PacketID in TSG_PACKET MUST be
set to TSG_PACKET_TYPE_HEADER.

typedef struct _TSG_PACKET_HEADER {

 unsigned short ComponentId;

 unsigned short PacketId;

} TSG_PACKET_HEADER,

 *PTSG_PACKET_HEADER;

ComponentId: Represents the component sending the packet. This MUST be the following

value:

Value Meaning

0x5452 TS Gateway Transport

PacketId: Unused.

This structure cannot be used by itself as part of any method call. It can be used only in the context
of other structures.

30 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.3.2.1.2 TSG_PACKET_VERSIONCAPS

The TSG_PACKET_VERSIONCAPS structure is used for version and capabilities negotiation. The
value of the packetId field in TSG_PACKET must be set to TSG_PACKET_TYPE_VERSIONCAPS.

This structure must be embedded in the TSG_PACKET_QUARENC_RESPONSE.

typedef struct _TSG_PACKET_VERSIONCAPS {

 TSG_PACKET_HEADER tsgHeader;

 [size_is(numCapabilities)] PTSG_PACKET_CAPABILITIES tsgCaps;

 [range(0, 32)] unsigned long numCapabilities;

 unsigned short majorVersion;

 unsigned short minorVersion;

 unsigned short quarantineCapabilities;

} TSG_PACKET_VERSIONCAPS,

 *PTSG_PACKET_VERSIONCAPS;

tsgHeader: Specified in 2.2.3.2.1.1.

tsgCaps: An array of TSG_PACKET_CAPABILITIES structures. The number of elements in the
array is indicated by the numCapabilities field.

numCapabilities: The number of array elements for the tsgCaps field. This value must be in

the range of 0 and 32. If the tsgCaps field is ignored, then this field must also be ignored.

majorVersion: Indicates the major version of the TSG client or TSG server, depending on the
sender. This MUST be the following value:

Value Meaning

0x0001 Current major version of the Terminal Services Gateway Server Protocol.

minorVersion: Indicates the minor version of the TSG client or TSG server, depending on the
sender. This MUST be the following value.

Value Meaning

0x0001 Current minor version of the Terminal Services Gateway Server Protocol.

quarantineCapabilities: Indicates quarantine capabilities of the TSG client and TSG server,
depending on the sender. This MAY be the following value:<9>

Value Meaning

0x0001 Quarantine is supported and required by the TSG server.

2.2.3.2.1.2.1 TSG_PACKET_CAPABILITIES

The TSG_PACKET_CAPABILITIES structure contains information about the capabilities of the TSG
client and TSG server.

This structure must be embedded in the TSG_PACKET_VERSIONCAPS structure.

31 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

typedef struct _TSG_PACKET_CAPABILITIES {

 unsigned long capabilityType;

 [switch_is(capabilityType)] TSG_CAPABILITIES_UNION tsgPacket;

} TSG_PACKET_CAPABILITIES,

 *PTSG_PACKET_CAPABILITIES;

capabilityType: Indicates the type of NAP capability supported by the TSG client or the TSG

server. This member MUST be the following value:

Value Meaning

0x00000001 The TSG server supports NAP capability type (TSG_CAPABILITY_TYPE_NAP).<10>

tsgPacket: Specifies the union containing the actual structure corresponding to the value
defined in the capabilityType field. Valid structures are specified in sections 2.2.3.2.1.2.1.1
and 2.2.3.2.1.2.1.2.

2.2.3.2.1.2.1.1 TSG_CAPABILITIES_UNION

The TSG_CAPABILITIES_UNION union specifies an RPC switch_type union of structures as
follows.

typedef

[switch_type(unsigned long)]

 union {

 [case(TSG_CAPABILITY_TYPE_NAP)]

 TSG_CAPABILITY_NAP tsgCapNap;

} TSG_CAPABILITIES_UNION,

 *PTSG_CAPABILITIES_UNION;

tsgCapNap: A TSG_CAPABILITY_NAP structure.

2.2.3.2.1.2.1.2 TSG_CAPABILITY_NAP

The TSG_CAPABILITY_NAP structure contains information about the NAP capabilities of the TSG
client and TSG server.

This structure must be embedded in the TSG_PACKET_CAPABILITIES structure.

typedef struct _TSG_CAPABILITY_NAP {

 unsigned long capabilities;

} TSG_CAPABILITY_NAP,

 *PTSG_CAPABILITY_NAP;

capabilities: Indicates the NAP capabilities supported by the TSG client and TSG server. This bit

field MUST be 0 or one or more of the following values.

Value

TSG_NAP_CAPABILITY_QUAR_SOH

32 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value

TSG_NAP_CAPABILITY_IDLE_TIMEOUT

TSG_MESSAGING_CAP_CONSENT_SIGN

TSG_MESSAGING_CAP_SERVICE_MSG

TSG_MESSAGING_CAP_REAUTH

2.2.3.2.1.3 TSG_PACKET_QUARCONFIGREQUEST

The TSG_PACKET_QUARCONFIGREQUEST structure contains information about quarantine
configuration. TSG server and TSG client MAY support this structure.<11> If the TSG server or TSG
client do not support the TSG_PACKET_QUARCONFIGREQUEST structure, then the error code
HRESULT_CODE(E_PROXY_NOTSUPPORTED) is returned.

typedef struct _TSG_PACKET_QUARCONFIGREQUEST {

 unsigned long flags;

} TSG_PACKET_QUARCONFIGREQUEST,

 *PTSG_PACKET_QUARCONFIGREQUEST;

flags: Contains information about quarantine configuration.

2.2.3.2.1.4 TSG_PACKET_QUARREQUEST

The TSG_PACKET_QUARREQUEST structure<12> contains information about the TSG client's
statement of health (SoH) and the name of the TSG client machine. The value of the packetId field
in TSG_PACKET MUST be set to TSG_PACKET_TYPE_QUARREQUEST.

typedef struct _TSG_PACKET_QUARREQUEST {

 unsigned long flags;

 [string, size_is(nameLength)] wchar_t* machineName;

 [range(0, 512 + 1)] unsigned long nameLength;

 [unique, size_is(dataLen)] byte* data;

 [range(0, 8000)] unsigned long dataLen;

} TSG_PACKET_QUARREQUEST,

 *PTSG_PACKET_QUARREQUEST;

flags: This field can be any value when sending and ignored on receipt.

machineName: A string representing the name of the TSG Client Machine Name (section
3.2.1).<13> This field can be ignored. The length of the name, including the terminating null
character, MUST be equal to the size specified by the nameLength field.

nameLength: An unsigned long specifying the number of characters in machineName,

including the terminating null character. The specified value MUST be in the range from 0 to
513 characters.

data: An array of bytes that specifies the statement of health prepended with nonce, which is
obtained in TSG_PACKET_QUARENC_RESPONSE (section 2.2.3.2.1.6) from the TSG

33 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

server in response to TsProxyCreateTunnel.<14> This field can be ignored. The length of
this data is specified by the dataLen field.

dataLen: The length, in bytes, of the data field. This value MUST be in the range between 0
and 8000, both inclusive.

2.2.3.2.1.5 TSG_PACKET_RESPONSE

The TSG_PACKET_RESPONSE structure contains the response of the TSG server to the TSG client
for the TsProxyAuthorizeTunnel method call. The value of the packetId field in TSG_PACKET
MUST be set to TSG_PACKET_TYPE_RESPONSE.

typedef struct _TSG_PACKET_RESPONSE {

 unsigned long flags;

 unsigned long reserved;

 [size_is(responseDataLen)] byte* responseData;

 [range(0, 24000)] unsigned long responseDataLen;

 TSG_REDIRECTION_FLAGS redirectionFlags;

} TSG_PACKET_RESPONSE,

 *PTSG_PACKET_RESPONSE;

flags: The TSG server MUST set this value to TSG_PACKET_TYPE_QUARREQUEST to indicate

that this structure is in response to the TsProxyAuthorizeTunnel method call. The TSG
client MAY ignore this field.

reserved: This field is unused and can be any value when sending and ignored on receipt.

responseData: Byte data representing the response from the TSG server for the
TsProxyAuthorizeTunnel method call. If the ADM element Negotiated Capabilities

contains TSG_NAP_CAPABILITY_QUAR_SOH and TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then
responseData MUST contain both the statement of health response (SoHR) and the idle
timeout value. If Negotiated Capabilities contains only TSG_NAP_CAPABILITY_QUAR_SOH,

then responseData MUST contain only the statement of health response. If Negotiated
Capabilities contains only TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then responseData MUST
contain only the idle timeout value. The length of the data MUST be equal to that specified by
responseDataLen. If Negotiated Capabilities does not contain both

TSG_NAP_CAPABILITY_QUAR_SOH and TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then
responseData is ignored and responseDataLen is set to zero.<15>

responseDataLen: Length, in bytes, of the data specified by the responseData field.

redirectionFlags: A TSG_REDIRECTION_FLAGS structure.<16>

2.2.3.2.1.5.1 responseData Format

The TSG server uses the responseData to send various data to the TSG client after tunnel
authorization. The responseData is shown below.

Note Both the Idle timeout value and Statement of health response fields are optional,
meaning either one of them or both can be absent. Also note that, in case of Idle timeout value
absence, Statement of health response begins from the first DWORD itself. If both of them are
absent, the responseData is ignored and responseDataLen is set to zero.

%5bMS-DTYP%5d.pdf

34 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Idle timeout value (optional)

Statement of health response (variable)

...

Idle timeout value (4 bytes): If the ADM element Negotiated Capabilities contains
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the first 4 bytes of the responseData field
is the Idle timeout value in units of minutes.

Statement of health response (variable): If the ADM element Negotiated Capabilities
contains TSG_NAP_CAPABILITY_QUAR_SOH and the Statement of health is passed in
the TsProxyAuthorizeTunnel call as specified in 2.2.3.2.1.4, then the remaining number of

bytes of the responseData field is the Statement of health response.

2.2.3.2.1.5.2 TSG_REDIRECTION_FLAGS

The TSG_REDIRECTION_FLAGS structure specifies the device redirection settings that MUST be
enforced by the TSG client. For details about device redirection, see [MS-TSSO] section 3.1.6.

This structure MUST be embedded in the TSG_PACKET_RESPONSE structure.

Note Both enableAllRedirections and disableAllRedirections must not be TRUE.

typedef struct _TSG_REDIRECTION_FLAGS {

 BOOL enableAllRedirections;

 BOOL disableAllRedirections;

 BOOL driveRedirectionDisabled;

 BOOL printerRedirectionDisabled;

 BOOL portRedirectionDisabled;

 BOOL reserved;

 BOOL clipboardRedirectionDisabled;

 BOOL pnpRedirectionDisabled;

} TSG_REDIRECTION_FLAGS,

 *PTSG_REDIRECTION_FLAGS;

enableAllRedirections: A Boolean value indicating whether the TSG server specifies any
control over the device redirection on the TSG client.

Value Meaning

FALSE

0x00000000

Device redirection is not enabled for all devices. Other fields of this structure specify

which device redirection is enabled or disabled.

TRUE

0x00000001

Device redirection is enabled for all devices. All other fields of this structure must be

ignored.

disableAllRedirections: A Boolean value indicating whether the TSG server specifies any
control over disabling all device redirection on the TSG client.

%5bMS-TSSO%5d.pdf

35 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

FALSE

0x00000000

Device redirection is not disabled for all devices. Other fields of this structure

specify which device redirection is enabled or disabled.

TRUE

0x00000001

Device redirection is disabled for all devices. All other fields of this structure must

be ignored.

driveRedirectionDisabled: A Boolean value indicating whether the TSG server specifies any

control over disabling drive redirection on the TSG client.

Value Meaning

FALSE

0x00000000

The TSG client is allowed to choose its own redirection settings for enabling or

disabling drive redirection.

TRUE

0x00000001

Drive redirection is disabled.

printerRedirectionDisabled: A Boolean value indicating whether the TSG server specifies any
control over disabling printer redirection on the TSG client.

Value Meaning

FALSE

0x00000000

The TSG client is allowed to choose its own redirection settings for enabling or

disabling printer redirection.

TRUE

0x00000001

Printer redirection is disabled.

portRedirectionDisabled: A Boolean value indicating whether the TSG server specifies any
control over disabling port redirection on the TSG client.

Value Meaning

FALSE

0x00000000

The TSG client is allowed to choose its own redirection settings for enabling or

disabling port redirection. Port redirection applies to both serial (COM) and parallel

ports (LPT).

TRUE

0x00000001

Port redirection is disabled.

reserved: Unused. MUST be 0.

clipboardRedirectionDisabled: A Boolean value indicating whether the TSG server specifies

any control over disabling clipboard redirection on the TSG client.

Value Meaning

FALSE

0x00000000

The TSG client is allowed to choose its own redirection settings for enabling or

disabling clipboard redirection.

TRUE

0x00000001

Clipboard redirection is disabled.

36 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

pnpRedirectionDisabled: A Boolean value indicating whether the TSG server specifies any
control over disabling Plug and Play redirection on the TSG client.

Value Meaning

FALSE

0x00000000

The TSG client is allowed to choose its own redirection settings for enabling or

disabling PnP redirection.

TRUE

0x00000001

PnP redirection is disabled.

2.2.3.2.1.6 TSG_PACKET_QUARENC_RESPONSE

The TSG_PACKET_QUARENC_RESPONSE structure contains the response of the TSG server for
the TsProxyCreateTunnel method call. The value of the packetId field in TSG_PACKET MUST be
set to TSG_PACKET_TYPE_QUARENC_RESPONSE.

typedef struct _TSG_PACKET_QUARENC_RESPONSE {

 unsigned long flags;

 [range(0, 24000)] unsigned long certChainLen;

 [string, size_is(certChainLen)]

 wchar_t* certChainData;

 GUID nonce;

 PTSG_PACKET_VERSIONCAPS versionCaps;

} TSG_PACKET_QUARENC_RESPONSE,

 *PTSG_PACKET_QUARENC_RESPONSE;

flags: Unused. MUST be 0.

certChainLen: An unsigned long specifying the number of characters in certChainData,
including the terminating null character. If the quarantineCapabilities field of the
TSG_PACKET_VERSIONCAPS structure is set to 1, this must be a nonzero value. This field

must be ignored if certChainData is ignored. The value must be in the range of 0 and 24000;
both inclusive.

certChainData: The certificate, along with the chain, that the TSG server used for the
SCHANNEL authentication service as part of registering the RPC interfaces and initialization. It
must be a string representation of the certificate chain if certChainLen is nonzero.<17> This
field can be ignored.

nonce: A GUID to uniquely identify this connection to prevent replay attacks by the TSG client.
This can be used for auditing purposes. A GUID is a unique ID using opaque sequence of bytes

as specified in [MS-DTYP] section 2.3.2.2.

versionCaps: A PTSG_PACKET_VERSIONCAPS structure, as specified in section 2.2.3.2.1.2.

2.2.3.2.1.7 TSG_PACKET_CAPS_RESPONSE

The TSG_PACKET_CAPS_RESPONSE structure contains the response of the TSG server, which
supports Consent Signing capability, to the TSG client for the TsProxyCreateTunnel method call.
This structure contains TSG_PACKET_QUARENC_RESPONSE followed by the consent signing

string. The value of the packetId field in TSG_PACKET MUST be set to
TSG_PACKET_TYPE_CAPS_RESPONSE.

%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf

37 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

typedef struct TSG_PACKET_CAPS_RESPONSE {

 TSG_PACKET_QUARENC_RESPONSE pktQuarEncResponse;

 TSG_PACKET_MSG_RESPONSE pktConsentMessage;

} TSG_PACKET_CAPS_RESPONSE,

 *PTSG_PACKET_CAPS_RESPONSE;

pktQuarEncResponse: A TSG_PACKET_QUARENC_RESPONSE structure as specified in

section 2.2.3.2.1.6.

pktConsentMessage: A TSG_PACKET_MSG_RESPONSE structure as specified in section
2.2.3.2.1.9.

2.2.3.2.1.8 TSG_PACKET_MSG_REQUEST

The TSG_PACKET_MSG_REQUEST structure contains the request from the client to the TSG
server to send across an administrative message whenever there is any. The value of the packetId

field in TSG_PACKET MUST be set to TSG_PACKET_TYPE_MSGREQUEST_PACKET.

typedef struct TSG_PACKET_MSG_REQUEST {

 unsigned long maxMessagesPerBatch;

} TSG_PACKET_MSG_REQUEST,

 *PTSG_PACKET_MSG_REQUEST;

maxMessagesPerBatch: An unsigned long that specifies how many messages can be sent by

the server at one time.

2.2.3.2.1.9 TSG_PACKET_MSG_RESPONSE

TSG_PACKET_MSG_RESPONSE structure contains the response of the TSG server to the client
when a message needs to be sent to the client. The value of the packetId field in TSG_PACKET

MUST be set to TSG_PACKET_TYPE_MESSAGE_PACKET.

typedef struct _TSG_PACKET_MSG_RESPONSE {

 unsigned long msgID;

 unsigned long msgType;

 long isMsgPresent;

 [switch_is(msgType)] TSG_PACKET_TYPE_MESSAGE_UNION messagePacket;

} TSG_PACKET_MSG_RESPONSE,

 *PTSG_PACKET_MSG_RESPONSE;

msgID: This field is unused.<18> This field can be ignored.

msgType: An unsigned long specifying what type of message is being sent by the server. This
MUST be one of the following values.

Value Meaning

TSG_ASYNC_MESSAGE_CONSENT_MESSAGE

0x00000001

The server is sending a Consent Signing

Message.

38 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

TSG_ASYNC_MESSAGE_SERVICE_MESSAGE

0x00000002

The server is sending an Administrative Message.

TSG_ASYNC_MESSAGE_REAUTH

0x00000003

The server expects the client to Reauthenticate.

isMsgPresent: A Boolean that indicates whether the messagePacket parameter is present or

not. If the value is TRUE, then messagePacket contains valid data and may be processed. If
the value is FALSE, messagePacket parameter must be ignored.

messagePacket: A TSG_PACKET_TYPE_MESSAGE_UNION union, as specified in section
2.2.3.2.1.9.1.

2.2.3.2.1.9.1 TSG_PACKET_TYPE_MESSAGE_UNION

The TSG_PACKET_TYPE_MESSAGE_UNION union contains the actual message that is sent by

the TS Gateway server to the client. The exact type of message depends on msgType field as
specified in section 2.2.3.2.1.9.

typedef

[switch_type(unsigned long)]

 union {

 [case(TSG_ASYNC_MESSAGE_CONSENT_MESSAGE)]

 PTSG_PACKET_STRING_MESSAGE consentMessage;

 [case(TSG_ASYNC_MESSAGE_SERVICE_MESSAGE)]

 PTSG_PACKET_STRING_MESSAGE serviceMessage;

 [case(TSG_ASYNC_MESSAGE_REAUTH)]

 PTSG_PACKET_REAUTH_MESSAGE reauthMessage;

} TSG_PACKET_TYPE_MESSAGE_UNION,

 *PTSG_PACKET_TYPE_MESSAGE_UNION ;

consentMessage: A PTSG_PACKET_STRING_MESSAGE structure, as defined in section

2.2.3.2.1.9.1.1. This field is used if msgType field specified in section 2.2.3.2.1.9 is set to
TSG_ASYNC_MESSAGE_CONSENT_MESSAGE.

serviceMessage: A PTSG_PACKET_STRING_MESSAGE structure, as defined in section

2.2.3.2.1.9.1.1. This field is used if msgType field specified in section 2.2.3.2.1.9 is set to
TSG_ASYNC_MESSAGE_SERVICE_MESSAGE.

reauthMessage: A PTSG_PACKET_REAUTH_MESSAGE structure, as defined in section
2.2.3.2.1.9.1.2. This field is used if msgType field specified in section 2.2.3.2.1.9 is set to
TSG_ASYNC_MESSAGE_REAUTH.

2.2.3.2.1.9.1.1 TSG_PACKET_STRING_MESSAGE

The TSG_PACKET_STRING_MESSAGE structure contains either the Consent Signing Message or

the Administrative Message that is being sent from the TSG server to the client.

typedef struct TSG_PACKET_STRING_MESSAGE {

 long isDisplayMandatory;

 long isConsentMandatory;

 [range(0,65536)] unsigned long msgBytes;

 [size_is(msgBytes)] wchar_t* msgBuffer;

39 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

} TSG_PACKET_STRING_MESSAGE,

 *PTSG_PACKET_STRING_MESSAGE;

isDisplayMandatory: A Boolean that specifies whether the client needs to display this
message.

isConsentMandatory: A Boolean that specifies whether the user needs to give its consent
before the connection can proceed.

msgBytes: An unsigned long specifying the number of characters in msgBuffer, including the
terminating null character. The value MUST be within 0 to 65536.

msgBuffer: An array of wchar_t specifying the string. The size of the buffer is as indicated by
msgBytes.

2.2.3.2.1.9.1.2 TSG_PACKET_REAUTH_MESSAGE

The TSG_PACKET_REAUTH_MESSAGE is sent by the TSG server to the client when the server
requires the user credential to be reauthenticated.

typedef struct TSG_PACKET_REAUTH_MESSAGE {

 unsigned __int64 tunnelContext;

} TSG_PACKET_REAUTH_MESSAGE,

 *PTSG_PACKET_REAUTH_MESSAGE;

tunnelContext: A unsigned __int64 that is sent by the server to client. When the client initiates

the reauthentication sequence, it MUST include this context. This is used by the server to
validate successful reauthentication by the client.

2.2.3.2.1.10 TSG_PACKET_AUTH

The TSG_PACKET_AUTH structure is sent by the client to the TS Gateway server when Pluggable
Authentication is used. This packet includes TSG_PACKET_VERSIONCAPS, which is used for
capability negotiation, and cookie, which is used for user authentication. This must be the first
packet from the client to the server if the server has Pluggable Authentication turned on. The value
of the packetId field in TSG_PACKET MUST be set to TSG_PACKET_TYPE_AUTH.

typedef struct _TSG_PACKET_AUTH {

 TSG_PACKET_VERSIONCAPS tsgVersionCaps;

 [range(0,65536)] unsigned long cookieLen;

 [size_is(cookieLen)] byte* cookie;

} TSG_PACKET_AUTH,

 *PTSG_PACKET_AUTH;

tsgVersionCaps: A TSG_PACKET_VERSIONCAPS structure as specified in section

2.2.3.2.1.2.

cookieLen: An unsigned long that specifies the size in bytes for the field cookie.

cookie: A byte pointer that points to the cookie data. The cookie is used for authentication.

40 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.3.2.1.11 TSG_PACKET_REAUTH

The TSG_PACKET_REAUTH structure is sent by the client to the TS Gateway server when the
client is reauthenticating the connection. The value of the packetId field in TSG_PACKET MUST be

set to TSG_PACKET_TYPE_REAUTH.

typedef struct TSG_PACKET_REAUTH {

 unsigned __int64 tunnelContext;

 unsigned long packetId;

 [switch_is(packetId)] TSG_INITIAL_PACKET_TYPE_UNION tsgInitialPacket;

} TSG_PACKET_REAUTH,

 *PTSG_PACKET_REAUTH;

tunnelContext: An unsigned __int64 that identifies which tunnel is being reauthenticated.

packetId: An unsigned long that specifies what type of packet is present inside tsgInitialPacket.

Value Meaning

TSG_PACKET_TYPE_VERSIONCAPS

0x00005643

This packet is sent when Pluggable Authentication is off.

TSG_PACKET_TYPE_AUTH

0x00004054

This packet is sent when Pluggable Authentication is on. This

packet includes TSG_PACKET_VERSIONCAPS as well as

the cookie that is required for authentication.

tsgInitialPacket: A TSG_INITIAL_PACKET_TYPE_UNION union as specified in section
2.2.3.2.1.11.1.

2.2.3.2.1.11.1 TSG_INITIAL_PACKET_TYPE_UNION

The TSG_INITIAL_PACKET_TYPE_UNION union is sent by the client to the TS Gateway server

when the client is reauthenticating the connection. Depending on packetId as specified in section
2.2.3.2.1.11, either TSG_PACKET_VERSIONCAPS or TSG_PACKET_AUTH is included.

typedef

[switch_type(unsigned long)]

 union {

 [case(TSG_PACKET_TYPE_VERSIONCAPS)]

 PTSG_PACKET_VERSIONCAPS packetVersionCaps;

 [case(TSG_PACKET_TYPE_AUTH)]

 PTSG_PACKET_AUTH packetAuth;

} TSG_INITIAL_PACKET_TYPE_UNION,

 *PTSG_INITIAL_PACKET_TYPE_UNION;

packetVersionCaps: A PTSG_PACKET_VERSIONCAPS structure as specified in section

2.2.3.2.1.2.

packetAuth: A PTSG_PACKET_AUTH structure as specified in section 2.2.3.2.1.10.

41 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.3.3 Generic Send Data Message Packet

This packet contains data sent by the TSG client to the TSG server which is then sent to the target
server. This is sent by the TSG client for the TsProxySendToServer method call.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE_NR

...

...

...

...

totalDataBytes

numBuffers

buffer1Length

buffer2Length (optional)

buffer3Length (optional)

buffer1 (variable)

...

buffer2 (variable)

...

buffer3 (variable)

...

PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE_NR (20 bytes): This MUST be the network
representation of the PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE data type returned

by the TSG server by using the TsProxyCreateChannel method call. Network representation
of a context handle is described in [C706] Appendix N.

totalDataBytes (4 bytes): An unsigned long that specifies the total number of bytes to be
sent to the target server. This MUST be in network order representation. It MUST be the sum
of buffer1Length, buffer2Length, and buffer3Length and the size of the data, in bytes,

for buffer1Length, buffer2Length, and buffer3Length. It MUST NOT be zero.

http://go.microsoft.com/fwlink/?LinkId=89824

42 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

numBuffers (4 bytes): An unsigned long that specifies the total number of data buffers that
follow this field. This MUST be in a network order representation.

buffer1Length (4 bytes): An unsigned long specifying the length of the first buffer. This
MUST be in a network order representation and be non-zero.

buffer2Length (4 bytes): An unsigned long specifying the length of the second buffer. This
MUST be in a network order representation. This is optional and can be 0.

buffer3Length (4 bytes): An unsigned long specifying the length of the third buffer. This
MUST be in a network order representation. This is optional and can be 0.

buffer1 (variable): The buffer1 is an array of bytes. Its length is specified by buffer1Length.
This MUST be non-NULL and contain the same number of bytes specified by buffer1Length.
The contents of buffer1 are opaque to the Terminal Services Gateway Server Protocol.

buffer2 (variable): The buffer2 is an array of bytes. Its length is specified by buffer2Length.
This MUST be non-NULL if buffer2Length is non-zero and contain the same number of bytes
specified by buffer2Length. If buffer2Length is 0, this SHOULD be NULL. If buffer2Length

is zero and buffer2 is non-NULL, then buffer2 must be ignored. The contents of buffer2 are
opaque to the Terminal Services Gateway Server Protocol.

buffer3 (variable): The buffer3 is an array of bytes. Its length is specified by buffer3Length.

This MUST be non-NULL if buffer3Length is nonzero and contain the same number of bytes
specified by buffer3Length. If buffer3Length is 0, this SHOULD be NULL. If buffer3Length
is zero and buffer3 is non-NULL, then buffer3 must be ignored. The contents of buffer3 are
opaque to the Terminal Services Gateway Server Protocol.

2.2.3.4 Generic Receive Pipe Message Packet

The Generic Receive Pipe Message packet has dual purposes. The packet is used by both the TSG

client for setting up the receive pipe and the TSG server to send the data that is received from the
target server to the TSG client.

The TSG client sends this packet in the TsProxySetupReceivePipe (section 3.1.4.2.2) method to set
up the receive pipe between the TSG server and the TSG client.

The packet has three different formats in various phases as explained in the following sections.

2.2.3.4.1 TSG Client to TSG Server Packet Format

The TSG client sends the packet to the TSG server in the format below.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE_NR

...

...

...

43 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

...

PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE_NR (20 bytes): This MUST be the network
representation of the PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.1.3)
data type returned by the TSG server obtained by using the TsProxyCreateChannel
(section 3.1.4.1.4) method call. Network representation of a context handle is described in
[C706] Appendix N.

2.2.3.4.2 TSG Server to TSG Client Packet Format for Intermediate Responses

The TSG server to TSG client Packet Format for Intermediate Responses is the intermediate
responses from the TSG server to the TSG client.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Data (variable)

...

Data (variable): This is data that the TSG server received from the target server and forwards
to the TSG client. The size of this data is in the RPC headers' alloc_hint field specified in
[C706]. Only the TSG server uses the Data field. This field MUST NOT be sent by the TSG
client.

2.2.3.4.3 TSG Server to TSG Client Packet Format for Final Response

This is the final response from the TSG server to the TSG client. To indicate connection disconnect,
TSG server MUST set the PFC_LAST_FRAG bit in pfc_flags of the header of the RPC response PDU as
described in TsProxySetupReceivePipe (section 3.1.4.2.2). For a description of RPC response

PDU, pfc_flags, PFC_LAST_FRAG, and stub data, refer to sections 12.6.2 and 12.6.4.10 in [C706].
PDU body contains the return value as shown in the following packet diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

ReturnValue

ReturnValue (4 bytes): Return value of the TsProxySetupReceivePipe (section 3.1.4.2.2)
method call.

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90952
http://go.microsoft.com/fwlink/?LinkId=90952
http://go.microsoft.com/fwlink/?LinkId=89824

44 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3 Protocol Details

The following sections specify details of the Terminal Services Gateway Server Protocol, including
abstract data models, interface method syntax, and message processing rules.

3.1 TsProxyRpcInterface Server Details

The following sections contain the details of the TsProxyRpcInterface on the Server.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Target server names: An array of alias names for a target server. A target server alias name is a
string of Unicode characters. The server name applies to the machine that the TSG server connects

to.<19> This is initialized by the TSG server when the TSG client calls TsProxyCreateChannel.
This data is passed by the TSG client in the structure TSENDPOINTINFO. An array of
resourceName and alternateResourceNames of TSENDPOINTINFO structure makes target server
alias names. The TSG server attempts to connect to the target server by each target server alias
name until it succeeds or until the array is traversed completely.

Tunnel id: An unsigned long representing the tunnel identifier for tracking purposes on the TSG
server. This is generated after a client call to TsProxyCreateTunnel. The Tunnel id, which is then

generated on the server, is stored by the TSG server and TSG client, and can later be used for
subsequent tunnel-related operations.<20> The Tunnel id is created by the TsProxyCreateTunnel
method and points to a binary large object (BLOB) that stores the ADM elements Tunnel Context
handle, Channel id, Nonce, and Number of Connections.

Channel id: An unsigned long representing the channel identifier for tracking purposes on the TSG

server. This is generated after a client call to TsProxyCreateChannel. The Channel id, which is then

generated on the server, is stored by the TSG server and TSG client and may later be used for
subsequent channel-related calls.<21> The Channel id points to a BLOB that is created by the
TsProxyCreateChannel method and that stores the target server name and Channel Context
handle ADM element.

Tunnel Context handle: An RPC context handle for the TSG client to TSG server connection
represented by an array of 20 bytes on the TSG server.

Channel Context handle: An RPC context handle for the connection from the TSG client to the

target server via a TSG server represented by an array of 20 bytes on the TSG server.

Nonce: A unique GUID created by the TSG server to identify the current connection. This is used to
prevent statement of health (SoH) replay attacks.

Number of Connections: An unsigned long representing the number of active connections the TSG

server is processing. This is incremented on every successful call to TsProxyCreateTunnel and
decremented on TsProxyCloseTunnel call.

Re-authentication Connection: A Boolean value representing whether the current connection is a

normal connection or a re-authentication connection.

%5bMS-GLOS%5d.pdf

45 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Re-authentication Tunnel Context: A ULONGLONG value representing a unique connection
identifier. For normal connections, this value represents the unique connection identifier of the same

connection. For a re-authentication connection, this value represents the unique connection
identifier of a connection that has initiated the re-authentication request.

Re-authentication Status: An enumeration value representing the re-authentication status of the
connection that has initiated the re-authentication.

Note Only normal connections can initiate re-authentication. Re-authentication connections cannot
initiate re-authentication.

Possible values are defined in the table below.

Enumeration Value Description

None No progress made on the re-authentication.

AuthenticationCompleted User authentication is done.

UserAuthorizationCompleted User authorization is done, and if the TSG server is

configured for quarantine, the TSG client is quarantine

compliant.

UserAuthorizationCompletedButQurantineFailed User authorization is done, and the TSG server is

configured for quarantine but the TSG client is not

quarantine compliant.

ResourceAuthorizationCompleted Resource authorization is done. If Re-authentication

Status reaches this state, it means that re-

authentication is completed.

This ADM element is valid only for normal connection, that is, when Re-authentication
Connection is FALSE.

Negotiated Capabilities: A ULONG bitmask value representing the negotiated capabilities between

the TSG client and the TSG server. It contains zero or more of the following NAP Capability values:

NAP Capability Value

TSG_NAP_CAPABILITY_QUAR_SOH

TSG_NAP_CAPABILITY_IDLE_TIMEOUT

TSG_MESSAGING_CAP_CONSENT_SIGN

TSG_MESSAGING_CAP_SERVICE_MSG

TSG_MESSAGING_CAP_REAUTH

3.1.1.1 TSG Server States

Connection State: An enum of different connection states. This is updated as per the state
transition rules mentioned in section 3.1.4. The following diagram represents the connection state
transition.

46 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The TSG server MUST use this ADM element to verify that the call sequence is not violated. In each
state the allowed calls and the state transitions therefore are described in this section. Section 3.1.4

describes the returns values and errors for each method call.

Each connection goes through a set of states as described in this section.

Figure 5: State transition diagram

Start: By default, the protocol starts in a disconnected state.

Connected: A successful TsProxyCreateTunnel call brings the connection to the Connected state.
Once a connection is in a Connected state, a TsProxyCloseTunnel call can be made to bring the
connection to the Disconnected state.

Authorized: A successful TsProxyAuthorizeTunnel call brings the connection to the Authorized
state. A TsProxyAuthorizeTunnel call can only be made when the connection is in a Connected
state. If a TsProxyAuthorizeTunnel call is made in any other state, then the result is undefined.

The TsProxyMakeTunnelCall call is allowed in this state. This call does not change the state.
TsProxyCloseTunnel can also be made in this state, which moves the connection to the
Disconnected state.

Channel Created: A successful TsProxyCreateChannel call brings the connection to the Channel
Created state. A TsProxyCreateChannel call is valid only when the tunnel is authorized. If a

47 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

TsProxyCreateChannel call is made before the tunnel is authorized, ERROR_ACCESS_DENIED will
be returned. TsProxyCloseChannel can also be made in this state, which moves the connection to

the Tunnel Close Pending state. The TsProxySetupReceivePipe call is valid only in this state. If
this call is made before the TSG client calls TsProxyCreateChannel, ERROR_ACCESS_DENIED will

be returned. If it is made after the call to TsProxyCloseChannel,
E_PROXY_ALREADYDISCONNECTED will be returned.

The TsProxyMakeTunnelCall call is allowed in this state. This call does not change the state.

When TsProxyCloseTunnel is called in this state before a call to TsProxyCloseChannel, the TSG
server closes the channel and completes the TsProxyCloseTunnel call. After completing this call,
the TSG server moves to the End state.

Pipe Created: When a call to TsProxySetupReceivePipe reaches the TSG server, the connection

goes to the Pipe Created state. The TsProxySendToServer call is valid only in this state. If this call
is made before the TSG client calls TsProxySetupReceivePipe, ERROR_ACCESS_DENIED will be
returned. If it is made after the call to TsProxyCloseTunnel, E_PROXY_ALREADYDISCONNECTED
will be returned.

The TsProxyMakeTunnelCall call is allowed in this state. This call does not change the state.

When TsProxyCloseTunnel is called in this state before a call to TsProxyCloseChannel, the TSG

server closes the channel and completes the TsProxyCloseTunnel call. After completing this call,
the TSG server moves to the End state.

Channel Close Pending: From Pipe Created state, either a final response to
TsProxySetupReceivePipe call or a failure in TsProxySendToServer call brings the connection to
the Channel Close Pending state. TsProxyCloseChannel, TsProxyMakeTunnelCall, and
TsProxyCloseTunnel calls are the only valid calls in this state.

When TsProxyCloseTunnel is called in this state before a call to TsProxyCloseChannel, the TSG

server closes the channel and completes the TsProxyCloseTunnel call. After completing this call,
the TSG server moves to the End state.

Tunnel Close Pending: Either a failure TsProxyAuthorizeTunnel call from Connected state or a
successful TsProxyCloseChannel call from Channel Close Pending state brings the connection to
Tunnel Close Pending state. If a previous TsProxyMakeTunnelCall has not completed, then
another call to TsProxyMakeTunnelCall MUST be made as specified in section 3.1.4.3.2. The
TsProxyCloseTunnel call SHOULD be made by the TSG client to end the protocol.

End: The TSG server MUST transition to this state when the TsProxyCloseTunnel method is
called. At this stage, the connection between the TSG client and the TSG server is disconnected.

3.1.2 Timers

3.1.2.1 Session Timeout Timer

After a successful call to the TsProxyCreateChannel method, if session timeout is configured at
the TSG server,<22> the TSG server MUST start this timer with the configured session-timeout
value. Default value of the timer is zero, which means no session timeout. The timeout value MUST

be between 0 and 4294967295 in units of minutes.

48 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.2.2 Re-authentication Timer

Default value of the timer is 1 minute.<23> The time value MUST be between 1 and 3, both
inclusive, in units of minutes. The TSG server MUST start this timer after it sends the re-

authentication message to the TSG client.

3.1.2.3 Connection Timer

The TSG server MAY use this timer to recover early instead of waiting for long periods for a
successful connection to the target server.<24>

Default value of the timer is 30 seconds.<25> The timer value MUST be between 30 seconds and 3
minutes, both inclusive, in units of minutes. This timer MUST be started after the call to

TsProxyCreateChannel is received by the TSG server.

If a call to TsProxySetupReceivePipe is received by the TSG server before the timer expires, the
timer MUST be stopped.

If the call to the TsProxySetupReceivePipe is received by the TSG server after the timer has
expired, the server MUST disconnect with the ERROR_OPERATION_ABORTED return value, as
specified in section 2.2.2.24.

3.1.3 Initialization

The protocol uses the transport and endpoints as described in section 2.1.

The initialization steps for the TSG server are as follows: The TSG server MUST register for ipv4 and
ipv6 local host addresses 127.0.0.1 and ::1 as the network address when operating in a non-load
balanced environment. The TSG server MUST register for RPC_C_AUTHN_GSS_NEGOTIATE and
SHOULD register for RPC_C_AUTHN_GSS_SCHANNEL as authentication services, as specified in

[MS-RPCE] section 2.2.1.1.7. The TSG client MUST use a minimum authentication level of
RPC_C_AUTHN_LEVEL_PKT_INTEGRITY (see [MS-RPCE] section 2.2.1.1.8) and MUST use one of the
following authentication services: RPC_C_AUTHN_GSS_NEGOTIATE or
RPC_C_AUTHN_GSS_SCHANNEL, or RPC_C_AUTHN_WINNT.<26>

All timers are connection-specific timers, and MUST not be started on initialization.

3.1.4 Message Processing Events and Sequencing Rules

This protocol asks the RPC runtime to perform a strict NDR data consistency check at target level
7.0 for all methods unless otherwise specified, as specified in [MS-RPCE] section 3.

The TSG server SHOULD<27> enforce appropriate security measures to be sure that the caller has
the required permissions to execute the following routines.

The methods MAY throw an exception, and the client MUST handle these exceptions gracefully. The
methods implemented by the TSG server MUST be sequential in order as specified in section 1.3.1.
The method details are specified as follows.

Methods in RPC Opnum Order

Method Description

Opnum0NotUsedOnWire Reserved for local use.

Opnum: 0

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

49 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Method Description

TsProxyCreateTunnel Sets up the context in which all further communication between the TSG

client and the TSG server occurs.

Opnum: 1

TsProxyAuthorizeTunnel Authorizes the tunnel based on rules defined by the TSG server.

Opnum: 2

TsProxyMakeTunnelCall Used to request for administrative messages from the TSG server when

the same are available. This method is only called when both the client and

the TSG server are capable of handling administrative messages. The

request is queued up on the TSG server. The same method is also called

during shutdown sequence to cancel any pending administrative message

request.<28>

Opnum: 3

TsProxyCreateChannel Creates a channel between the TSG client and the target server via the

TSG server that the TSG client desires to connect.

Opnum: 4

Opnum5NotUsedOnWire Reserved for local use.

Opnum: 5

TsProxyCloseChannel Closes the channel between the TSG client and the target server.

Opnum: 6

TsProxyCloseTunnel Closes the tunnel between the TSG client and the TSG server.

Opnum: 7

TsProxySetupReceivePipe Used for data transfer from the TSG server to the TSG client.

Opnum: 8

TsProxySendToServer Used for data transfer from the TSG client to the TSG server.

Opnum: 9

Note In the preceding table, the term "Reserved for local use" means that the client MUST NOT
send the opnum, and the TSG server behavior is undefined<29> because it does not affect
interoperability.

3.1.4.1 Connection Setup Phase

3.1.4.1.1 TsProxyCreateTunnel (Opnum 1)

The TsProxyCreateTunnel method sets up the tunnel in which all further communication between
the TSG client and the TSG server occurs. This is also used to exchange versioning and capability
information between the TSG client and TSG server. It is used to exchange the TSG server
certificate which has already been used to register for an authentication service. After this method

call has successfully been completed, a tunnel shutdown can be performed. This is accomplished by
using the TsProxyCloseTunnel method call.

Prerequisites: The connection state MUST be in Start state.

Sequential Processing Rules:

50 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1. If any unexpected error occurs in the below process, the TSG server MUST return
E_PROXY_INTERNALERROR.

2. The TSG server MUST verify that a server authentication certificate is registered with SCHANNEL
authentication service. Otherwise it MUST return E_PROXY_NOCERTAVAILABLE.

3. If the TSG server is configured for pluggable authentication:

1. The TSG server MUST verify that the packetId member of the tsgPacket parameter is either
TSG_PACKET_TYPE_AUTH or TSG_PACKET_TYPE_REAUTH. Otherwise, it MUST return
the E_PROXY_UNSUPPORTED_AUTHENTICATION_METHOD error code.

2. If the packetId member of tsgPacket parameter is TSG_PACKET_TYPE_AUTH, then the
TSG server MUST verify that tsgPacket->tsgPacket.packetAuth is not NULL and tsgPacket-
>tsgPacket.packetAuth->cookie is not NULL and tsgPacket->tsgPacket.packetAuth-

>cookieLen is not zero. Otherwise, it MUST return E_PROXY_COOKIE_BADPACKET. If the
packetId member of the tsgPacket parameter is TSG_PACKET_TYPE_REAUTH, then the
TSG server MUST verify that tsgPacket->tsgPacket.packetReauth-

>tsgInitialPacket.packetAuth is not NULL and tsgPacket->tsgPacket.packetReauth-
>tsgInitialPacket.packetAuth->cookie is not NULL and tsgPacket->tsgPacket.packetReauth-
>tsgInitialPacket.packetAuth->cookieLen is not zero. Otherwise, it MUST return

E_PROXY_COOKIE_BADPACKET.

3. The TSG server MUST authenticate the user using the cookie. If authentication fails, it MUST
return E_PROXY_COOKIE_AUTHENTICATION_ACCESS_DENIED error code.

4. If the TSG server is configured for RPC authentication:

1. The TSG server MUST verify that the packetId member of the tsgPacket parameter type is
either TSG_PACKET_TYPE_VERSIONCAPS or TSG_PACKET_TYPE_REAUTH. Otherwise,
it MUST return the E_PROXY_INTERNALERROR error code.

5. The TSG server MUST create a GUID and initialize the ADM element Nonce with it.

6. The TSG server MUST create a unique identifier and initialize the ADM element Tunnel Id with it.

7. If the packetId member of the tsgPacket parameter type is not TSG_PACKET_TYPE_REAUTH:

1. The TSG server MUST initialize the ADM element Re-authentication Connection to FALSE.

2. The TSG server MUST initialize the ADM element Re-authentication Status to NONE.

3. The TSG server MUST initialize the ADM element Re-authentication Tunnel Context with a
unique ULONGLONG identifier. This identifier MUST be used by the re-authentication

connection to find this connection and set its Re-authentication Status ADM element.

8. If the packetId member of the tsgPacket parameter is TSG_PACKET_TYPE_REAUTH:

1. The TSG server MUST initialize the ADM element Re-authentication Connection to TRUE.

2. The TSG server MUST not use the ADM element Re-authentication Status for this

connection.

3. The TSG server MUST initialize the ADM element Re-authentication Tunnel Context with

tsgPacket->tsgPacket.packetReauth->tunnelContext.

51 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4. The TSG server MUST find the original connection that has initiated the re-authentication
using Re-authentication Tunnel Context, and its ADM element Re-authentication Status

MUST be set to AuthenticationCompleted.

9. The TSG server MUST create a tunnel context handle and MUST initialize the ADM element

Tunnel Context Handle with it.

10.The TSG server MUST initialize the ADM element Negotiated Capabilities with the common
capabilities between the TSG client and the TSG server.

11.If the TSG server supports the TSG_MESSAGING_CAP_CONSENT_SIGN capability and is
configured to allow only a TSG client that supports the TSG_MESSAGING_CAP_CONSENT_SIGN
capability, but the TSG client doesn't support the capability, then the TSG server MUST return the
E_PROXY_CAPABILITYMISMATCH error.

12.If the ADM element Negotiated Capabilities contains the
TSG_MESSAGING_CAP_CONSENT_SIGN value, the packetId member of the
tsgPacketResponse out parameter MUST be TSG_PACKET_TYPE_CAPS_RESPONSE.

Otherwise, the packetId member of tsgPacketResponse MUST be
TSG_PACKET_TYPE_QUARENC_RESPONSE.

13.The TSG server MUST set the certChainData field of TSG_PACKET_QUARENC_RESPONSE

structure in tsgPacketResponse only when quarantine is configured at the TSG server and the
ADM element Negotiated Capabilities contains TSG_NAP_CAPABILITY_QUAR_SOH.

14.The TSG server MUST return ERROR_SUCCESS.

HRESULT TsProxyCreateTunnel(

 [in, ref] PTSG_PACKET tsgPacket,

 [out, ref] PTSG_PACKET* tsgPacketResponse,

 [out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* tunnelContext,

 [out] unsigned long* tunnelId

);

tsgPacket: Pointer to the TSG_PACKET structure. If this call is made for a re-authentication,

then the packetId field MUST be set to TSG_PACKET_TYPE_REAUTH and the packetReauth
field of the tsgPacket union field MUST be a pointer to the TSG_PACKET_REAUTH structure.
Otherwise, if this call is made for a new connection and the TSG server is configured for RPC
authentication, then the value of the packetId field MUST be set to

TSG_PACKET_TYPE_VERSIONCAPS and the packetVersionCaps field of the tsgPacket
union field MUST be a pointer to the TSG_PACKET_VERSIONCAPS structure. Otherwise, if
this call is made for a new connection and the TSG server is configured for pluggable
authentication<30>, then the value of the packetId field MUST be set to
TSG_PACKET_TYPE_AUTH and the packetAuth field of the tsgPacket union field MUST be a
pointer to the TSG_PACKET_AUTH structure. If TSG_PACKET_AUTH is not populated
correctly, the error E_PROXY_COOKIE_BADPACKET is returned.<31>

tsgPacketResponse: Pointer to the TSG_PACKET structure. If
TSG_MESSAGING_CAP_CONSENT_SIGN capability is negotiated, the packetId member of the

tsgPacketResponse out parameter MUST be TSG_PACKET_TYPE_CAPS_RESPONSE and the
packetCapsResponse field of the tsgPacket union field MUST be a pointer to the
TSG_PACKET_CAPS_RESPONSE (section 2.2.3.2.1.7). Otherwise, the packetId member
of tsgPacketResponse MUST be TSG_PACKET_TYPE_QUARENC_RESPONSE, and the
packetQuarEncResponse field of the tsgPacket union field MUST be a pointer to the

TSG_PACKET_QUARENC_RESPONSE structure. The ADM element Nonce MUST be

52 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

initialized to a unique GUID and assigned to the nonce field of the
TSG_PACKET_QUARENC_RESPONSE structure either in tsgPacketResponse-

>tsgPacket.packetQuarEncResponse or tsgPacketResponse->tsgPacket.packetCapsResponse-
>pktQuarEncResponse.

tunnelContext: An RPC context handle that represents context-specific information for the
tunnel. The TSG server MUST provide a non-NULL value. The TSG client MUST save and use
this context handle on all subsequent methods calls on the tunnel. The methods are
TsProxyAuthorizeTunnel, TsProxyCreateChannel, and TsProxyCloseTunnel.

tunnelId: An unsigned long identifier representing the tunnel. The TSG server MUST save this
value in the ADM element Tunnel id and SHOULD provide this value to the TSG client. The
TSG client SHOULD save the tunnel id for future use on the TSG client itself. This tunnel id is

not required on any future method calls to the TSG server; the tunnelContext is used instead.

Return Values: The method MUST return ERROR_SUCCESS on success. Other failures MUST be
one of the codes listed in the rest of this table. The client MAY interpret failures in any way it
deems appropriate. See 2.2.2.24 for details on these errors.

Return value

State

transiti

on Description

ERROR_SUCCESS (0x00000000) The

connecti

on

MUST

transitio

n to the

connect

ed

state.

Returned when a call to the

TsProxyCreateTunnel method

succeeds.

E_PROXY_INTERNALERROR (0x800759D8) The

connecti

on

MUST

transitio

n to end

state.

Returned when the server

encounters an unexpected error.

The TSG client MUST end the

protocol when this error is

received.

E_PROXY_COOKIE_BADPACKET (0x800759F7) The

connecti

on

MUST

transitio

n to end

state.

Returned if the packetAuth field

of the tsgPacket parameter is

NULL.

E_PROXY_NOCERTAVAILABLE (0x800759EE) The

connecti

on

MUST

transitio

n to end

state.

Returned when the TSG server

cannot find a certificate to register

for SCHANNEL Authentication

Service (AS). The TSG client MUST

end the protocol when this error is

received.

E_PROXY_UNSUPPORTED_AUTHENTICATION_METHO The Returned to the TSG client when

53 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Return value

State

transiti

on Description

D(0x800759F9) connecti

on

MUST

transitio

n to end

state.

the TSG server is configured for

pluggable authentication and the

value of the packetId member of

the tsgPacket parameter is not

equal to

TSG_PACKET_TYPE_AUTH or

TSG_PACKET_TYPE_REAUTH. The

TSG server MUST disconnect the

connection.

E_PROXY_COOKIE_AUTHENTICATION_ACCESS_DENI

ED (0x800759F8)

The

connecti

on

MUST

transitio

n to end

state.

Returned when the given user

does not have access to connect

via TSG server. The TSG server

MUST be in pluggable

authentication mode for this error

to be returned.

E_PROXY_CAPABILITYMISMATCH (0x800759E9) The

connecti

on

MUST

transitio

n to end

state.

Returned when the TSG server

supports the

TSG_MESSAGING_CAP_CONSE

NT_SIGN capability and is

configured to allow only a TSG

client that supports the

TSG_MESSAGING_CAP_CONSE

NT_SIGN capability, but the TSG

client doesn't support the

capability.

3.1.4.1.2 TsProxyAuthorizeTunnel (Opnum 2)

The TsProxyAuthorizeTunnel method is used to authorize the tunnel based on rules defined by

the TSG server. The TSG server SHOULD perform security authorization for the TSG client. The TSG
server MAY also use this method to require health checks from the TSG client which MAY require the
TSG client to perform health remediation.<32> After this method call has successfully been
completed, a tunnel shutdown can be performed. If there are existing channels within the tunnel,
the TSG server MUST close all the channels before the tunnel shutdown. The tunnel shutdown is
accomplished by using the TsProxyCloseTunnel method call.

If this method call completes successfully, the ADM element Number of Connections MUST be

incremented by 1.

Prerequisites: The connection MUST be in Connected state. If this call is made in any other state,
the result is undefined.

Sequential Processing Rules:

1. The TSG server MUST verify that the packetId field of the tsgPacket parameter is
TSG_PACKET_TYPE_QUARREQUEST. Otherwise, it MUST return

HRESULT_CODE(E_PROXY_NOTSUPPORTED).

2. If Negotiated Capabilities contains TSG_NAP_CAPABILITY_QUAR_SOH and tsgPacket-
>tsgPacket.packetQuarRequest->dataLen is not zero and tsgPacket-
>tsgPacket.packetQuarRequest->data is not NULL, then the following.

54 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The TSG server MUST verify the signature of the SoHR specified in tsgPacket-

>tsgPacket.packetQuarRequest->data with the TSG server certificate and decode it.

The TSG server MUST also verify that the decoded message is prefixed with the Nonce.

Otherwise, it MUST return ERROR_INVALID_PARAMETER.

The remaining bytes in the decoded message are the TSG client computer's statement of

health response (SoHR).

3. If Negotiated Capabilities doesn't contain TSG_NAP_CAPABILITY_QUAR_SOH, then the
TSG server MUST ignore tsgPacket->tsgPacket.packetQuarRequest->dataLen and tsgPacket-
>tsgPacket.packetQuarRequest->data.

4. The TSG server MUST verify that the ADM element Number of Connections has not already
reached the maximum number of connections configured by the TSG service. Otherwise, it MUST
return the E_PROXY_MAXCONNECTIONSREACHED error code.

5. The TSG server MUST do the user authorization as per policies configured at the TSG server. If
the user is not authorized, it MUST return E_PROXY_NAP_ACCESS_DENIED.

6. If quarantine is configured at the TSG server:

1. The TSG client computer's statement of health (SoH) SHOULD be passed to NAPSO by calling

Proxy SoH Task (section 7), as specified in [MS-NAPSO] section 7, with the correct
parameters.

2. As specified in [MS-NAPSO] section 7, control is subsequently returned to the protocol after
SoH processing by calling the TSGU server abstract interface and passing the result of the SoH
processing, which is the statement of health response (SoHR), to the TSG server abstract
interface.

3. The TSG server MUST sign the SoHR using SHA-1 hash and encode it with the TSG server
certificate and append the signed and encoded SoHR to tsgPacketResponse-
>tsgPacket.packetResponse->responseData, where tsgPacketResponse is an output
parameter to TsProxyAuthorizeTunnel.

4. If the TSG client computer's health is not compliant to quarantine settings:

If the ADM element Re-authentication Connection is TRUE:

1. The TSG server MUST find the original connection that has initiated the re-authentication

using Re-authentication Tunnel Context and MUST set its ADM element Re-
authentication Status to UserAuthorizationCompletedButQuarantineFailed.

2. The TSG server MUST return the E_PROXY_QUARANTINE_ACCESSDENIED error code.

7. If the ADM element Re-authentication Connection is TRUE:

The TSG server MUST find the original connection which has initiated the re-authentication

using Re-authentication Tunnel Context and MUST set its ADM element Re-

authentication Status to UserAuthorizationCompleted.

8. The TSG server MUST set the packetId member of the tsgPacketResponse out parameter to
TSG_PACKET_TYPE_RESPONSE.

9. The TSG server MUST increment the ADM element Number of Connections by 1.

10.The TSG server MUST return ERROR_SUCCESS.

%5bMS-NAPSO%5d.pdf
%5bMS-NAPSO%5d.pdf
%5bMS-NAPSO%5d.pdf
%5bMS-NAPSO%5d.pdf
%5bMS-NAPSO%5d.pdf
%5bMS-GLOS%5d.pdf

55 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

HRESULT TsProxyAuthorizeTunnel(

 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext,

 [in, ref] PTSG_PACKET tsgPacket,

 [out, ref] PTSG_PACKET* tsgPacketResponse

);

tunnelContext: The TSG client MUST provide the TSG server with the same context handle it

received from the TsProxyCreateTunnel method call. The TSG server SHOULD throw an
exception if the RPC validation and verification fails.

tsgPacket: Pointer to the TSG_PACKET structure. The value of the packetId field MUST be set

to TSG_PACKET_TYPE_QUARREQUEST. If this is set to any other value, the error
E_PROXY_NOT_SUPPORTED is returned. The packetQuarRequest field of the tsgPacket
union field MUST be a pointer to the TSG_PACKET_QUARREQUEST structure.

tsgPacketResponse: Pointer to the TSG_PACKET structure. The value of the packetId field
MUST be TSG_PACKET_TYPE_RESPONSE. The packetResponse field of the tsgPacket

union field MUST be a pointer to the TSG_PACKET_RESPONSE structure.

Return Values: The method MUST return ERROR_SUCCESS on success. Other failures MUST be

one of the codes listed. The client MAY interpret failures in any way it deems appropriate. See
2.2.2.24 for details on these errors.

Return value

State

transitio

n Description

ERROR_SUCCESS (0x00000000) The

connectio

n MUST

transition

to the

authorize

d state.

Returned when a call to the

TsProxyAuthorizeTunnel

method succeeds.

E_PROXY_NAP_ACCESSDENIED (0x800759DB) The

connectio

n MUST

transition

to Tunnel

Close

Pending

state.

Returned when the TSG server

denies the TSG client access due

to policy. The TSG client MUST

end the protocol when this error

is received.

HRESULT_CODE(E_PROXY_NOTSUPPORTED)

(0x000059E8)

The

connectio

n MUST

transition

to Tunnel

Close

Pending

state.

Returned if the packetId field of

the tsgPacket parameter is not

TSG_PACKET_TYPE_QUARREQUE

ST. The TSG client MUST end the

protocol when this error is

received.

E_PROXY_QUARANTINE_ACCESSDENIED

(0x800759ED)

The

connectio

n MUST

transition

Returned when the TSG server

rejects the connection due to

quarantine policy. The TSG client

MUST end the protocol when this

56 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Return value

State

transitio

n Description

to Tunnel

Close

Pending

state.

error is received.

ERROR_ACCESS_DENIED (0x00000005) The

connectio

n MUST

transition

to Tunnel

Close

Pending

state.

Returned when this call is made

either in a state other than the

Connected state or the

tunnelContext parameter is NULL.

The TSG client MUST end the

protocol when this error is

received.

HRESULT_CODE(E_PROXY_MAXCONNECTIONSREAC

HED) (0x59E6)

The

connectio

n MUST

transition

to end

state.

Returned when the ADM element

Number of Connections is

equal to the maximum number of

connections when the call is

made.<33> The TSG client MUST

end the protocol when this error

is received.

ERROR_INVALID_PARAMETER (0x00000057) The

connectio

n MUST

not

transition

its state.

Returned when the Negotiated

Capabilities ADM element

contains

TSG_NAP_CAPABILITY_QUAR_SO

H and tsgPacket-

>tsgPacket.packetQuarRequest-

>dataLen is not zero and

tsgPacket-

>tsgPacket.packetQuarRequest-

>data is not NULL and tsgPacket-

>tsgPacket.packetQuarRequest-

>data is not prefixed with Nonce.

3.1.4.1.3 TsProxyMakeTunnelCall (Opnum 3)

The TsProxyMakeTunnelCall method is designed to be used as a general purpose API. If both the

client and the server support the administrative message, the client MAY request the same from the
TSG server. If the TSG server has any administrative messages, it SHOULD complete the pending
call at this point in time. After a call to TsProxyMakeTunnelCall returns, the TSG client SHOULD
queue up another request at this point in time. During the shutdown sequence, the client MUST
make this call, if a request is pending on the TSG server, to cancel the administrative message
request.

Prerequisites: The connection MUST be in Authorized state or Channel Created state or Pipe Created

state or Channel Close Pending state or Tunnel Close Pending state. If this call is made in any other

state, the error ERROR_ACCESS_DENIED is returned.

Sequential Processing Rules:

1. The TSG server MUST verify that the procId parameter is either
TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST or

57 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST. Otherwise, it MUST return
ERROR_ACCESS_DENIED.

2. The TSG server MUST verify that the tunnel has been authorized. Otherwise, it MUST return
ERROR_ACCESS_DENIED.

3. The TSG server MUST verify that the ADM element Re-authentication Connection is FALSE.
Otherwise, it MUST return ERROR_ACCESS_DENIED. TsProxyMakeTunnelCall is not valid on
re-authentication tunnels.

4. If procId is TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST:

1. If a TsProxyMakeTunnelCall has already been made and not yet returned, the TSG server
MUST return ERROR_ACCESS_DENIED.

2. If there is already a pending administrative message or re-authentication message to the

TSG client, the TSG server MUST fill tsgPacketResponse and return ERROR_SUCCESS.

3. If there is no pending administrative message or a re-authentication message, the TSG server

MUST wait until one of the following events occurs:

Re-authentication starts because the session timeout timer expires.

The TS Gateway server administrator sets the administrative message.

The TSG client cancels the call.

The connection shutdown sequence is initiated.

If any of the preceding events occurs, then the following steps MUST be performed:

1. If re-authentication is started because of session timeout timer expiration, then the TSG
server MUST return the TsProxyMakeTunnelCall as explained in section 3.1.5.1.

2. Or else, if the TS Gateway administrator has set the administrative message, then the TSG

server MUST do the following:

1. The TSG server MUST set the packetId member of the tsgPacketResponse out
parameter of TsProxyMakeTunnelCall to TSG_PACKET_TYPE_MESSAGE_PACKET.

2. The TSG server MUST set tsgPacketResponse->packetMsgResponse->msgType to
TSG_ASYNC_MESSAGE_SERVICE_MESSAGE.

3. The TSG server MUST initialize tsgPacketResponse->packetMsgResponse-
>messagePacket.serviceMessage->isDisplayMandatory to TRUE.

4. The TSG server MUST initialize tsgPacketResponse->packetMsgResponse-
>messagePacket.serviceMessage->isConsentMandatory to FALSE.

5. The TSG server MUST initialize tsgPacketResponse->packetMsgResponse-
>messagePacket.serviceMessage->msgBuffer with the administrative message.

6. The TSG server MUST initialize tsgPacketResponse->packetMsgResponse-
>messagePacket.serviceMessage->msgBytes with the number of characters in

tsgPacketResponse->packetMsgResponse->messagePacket.serviceMessage-
>msgBuffer.

58 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

7. The TSG server MUST complete the TsProxyMakeTunnelCall with error code
ERROR_SUCCESS.

3. Or else, if the TSG client cancels the call by calling another TsProxyMakeTunnelCall with
procId TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST, then the TSG server MUST

return HRESULT_FROM_WIN32(RPC_S_CALL_CANCELLED).

4. Or else, if the connection shutdown sequence is initiated, then the TSG server MUST return
HRESULT_FROM_WIN32(RPC_S_CALL_CANCELLED).

5. If procId is TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST:

1. If there is no unreturned TsProxyMakeTunnelCall call which is called with the procId value
TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST, the TSG server MUST return
ERROR_ACCESS_DENIED.

2. Otherwise, the TSG server MUST notify the waiting TsProxyMakeTunnelCall call, which is
called with the procId value TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST, that the TSG
client is canceling the call.

3. TSG server MUST return ERROR_SUCCESS.

HRESULT TsProxyMakeTunnelCall(

 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext,

 [in] unsigned long procId,

 [in, ref] PTSG_PACKET tsgPacket,

 [out, ref] PTSG_PACKET* tsgPacketResponse

);

tunnelContext: The TSG client MUST provide the TSG server with the same context handle it

received from the TsProxyCreateTunnel method call. The TSG server SHOULD throw an
exception if the RPC validation and verification fail.

procId: This field identifies the work that is performed by the API. This field can have the

following values.

Value Meaning

TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST

0x00000001

Used to request an administrative message when

the same is available on the server.

TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST

0x00000002

Used to cancel a pending administrative message

request.

tsgPacket: Pointer to the TSG_PACKET structure. The value of the packetId field MUST be set
to TSG_PACKET_TYPE_MSGREQUEST_PACKET. The packetMsgRequest field of the

tsgPacket union field MUST be a pointer to the TSG_PACKET_MSG_REQUEST structure.

tsgPacketResponse: Pointer to the TSG_PACKET structure. If procId is

TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST or if the return value is
HRESULT_FROM_WIN32(RPC_S_CALL_CANCELLED), *tsgPacketResponse MUST be set to
NULL. Otherwise, the value of the packetId field MUST be
TSG_PACKET_TYPE_MESSAGE_PACKET. The packetMsgResponse field of the tsgPacket
union field MUST be a pointer to the TSG_PACKET_MSG_RESPONSE structure.

59 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Return Values: The method MUST return ERROR_SUCCESS on success. Other failures MUST be
one of the codes listed. The client MAY interpret failures in any way it deems appropriate. See

2.2.2.24 for details on these errors. The connection MUST NOT transition its state after
completing the TsProxyMakeTunnelCall.

Return value

State

transiti

on Description

ERROR_SUCCESS (0x00000000) The

connecti

on

MUST

NOT

transitio

n its

state.

Returned when a call to the

TsProxyMakeTunnelCall method

succeeds.

ERROR_ACCESS_DENIED (0x00000005) The

connecti

on

MUST

NOT

transitio

n its

state.

Returned in the following cases.

When the call is made in any

state other than Authorized,
Channel Created, Pipe Created,
Channel Close Pending, or Tunnel
Close Pending.

If procId is neither

TSG_TUNNEL_CALL_ASYNC_MSG
_REQUEST nor
TSG_TUNNEL_CANCEL_ASYNC_M
SG_REQUEST.

If procId is

TSG_TUNNEL_CALL_ASYNC_MSG
_REQUEST and there is already a
call to TsProxyMakeTunnelCall
made earlier with procId
TSG_TUNNEL_CALL_ASYNC_MSG

_REQUEST and it is not yet
returned.

If procId is

TSG_TUNNEL_CANCEL_ASYNC_M
SG_REQUEST and there is no
call to TsProxyMakeTunnelCall
made earlier with procId
TSG_TUNNEL_CALL_ASYNC_MSG
_REQUEST that is not yet
returned.

If the tunnelContext parameter is

NULL.

If the tunnel is not authorized.

If the Re-authentication

Connection ADM element is
TRUE.

The TSG client MUST end the

60 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Return value

State

transiti

on Description

protocol when this error is received.

HRESULT_FROM_WIN32(RPC_S_CALL_CANCELLED

)(0x8007071A)

The

connecti

on

MUST

not

transitio

n its

state.

Returned when the call is canceled

by the TSG client or the call is

canceled because a shutdown

sequence is initiated.

3.1.4.1.4 TsProxyCreateChannel (Opnum 4)

The TsProxyCreateChannel method is used to create a channel between the TSG client and the

TSG server.<34> The TSG server SHOULD connect to the target server during this call to start
communication between the TSG client and target server. If connection to the target server cannot
be done, the TSG server MUST return HRESULT_CODE(E_PROXY_TS_CONNECTFAILED) as noted in
the Return Values section.<35> The TSG server MUST return a representation of the channel to the
TSG client. After this method call has successfully been completed, a channel shutdown can be
performed by using the TsProxyCloseChannel method. Please refer to section 3.1.1 for a state
transition diagram.

Prerequisites: The tunnel MUST be authorized; otherwise, the error ERROR_ACCESS_DENIED is
returned.

Sequential Processing Rules:

1. If some unexpected error occurs during the following process, the TSG server MUST return
E_PROXY_INTERNALERROR.

2. The TSG server MUST verify that the tunnel has been authorized. Otherwise, it MUST return

ERROR_ACCESS_DENIED.

3. The TSG server MUST verify that the tsEndPointInfo parameter is not NULL and tsEndPointInfo-
>numResources is not zero. Otherwise, it MUST return ERROR_ACCESS_DENIED.

4. The TSG server MUST initialize the ADM element Target server names with combined array of
the resourceName and alternateResourceNames members of the tsEndPointInfo parameter.

5. The TSG server MUST do the resource authorization as per policies configured at the TSG server.
If the resource is not authorized, then it MUST return E_PROXY_RAP_ACCESSDENIED.<36>

6. If Re-authentication Connection is TRUE:

1. The TSG server MUST find the original connection that has initiated the re-authentication
using Re-authentication Tunnel Context and MUST set its ADM element Re-
authentication Status to ResourceAuthorizationCompleted.

2. Return ERROR_SUCCESS.

7. The TSG server SHOULD try to connect to the target server by each name in the target server
names array until it succeeds or until the array is traversed completely. If connection fails for all

61 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

target server names, it MUST return HRESULT_CODE(E_PROXY_TS_CONNECTFAILED) in
rpc_fault packet.

8. The TSG server MUST create the channelId and channelContext RPC content handles and MUST
initialize the corresponding ADM elements.

9. The TSG server MUST also start the Session Timeout Timer (section 3.1.2.1), if the session
timeout is configured at the TSG server.

10.If the TSG server is implementing the Connection Timer, the TSG server MUST start the
Connection Timer.

11.The TSG server MUST return ERROR_SUCCESS.

HRESULT TsProxyCreateChannel(

 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext,

 [in, ref] PTSENDPOINTINFO tsEndPointInfo,

 [out] PCHANNEL_CONTEXT_HANDLE_SERIALIZE* channelContext,

 [out] unsigned long* channelId

);

tunnelContext: The TSG client MUST provide the TSG server with the same context handle it

received from the TsProxyCreateTunnel method call. The TSG server SHOULD throw an
exception if the RPC validation and verification fails.

tsEndPointInfo: Pointer to the TSENDPOINTINFO structure. The TSG client MUST provide a
non-NULL pointer to the TSG server for this structure. The TSG server initializes the ADM
element Target server names with an array of resourceName and
alternateResourceNames members of TSENDPOINTINFO structure. The TSG server
SHOULD try to connect to the target server by each name in the array until it succeeds or
until the array is traversed completely. If connection fails for all Target server names,
HRESULT_CODE(E_PROXY_TS_CONNECTFAILED) (0x000059DD) is returned.<37> The rules

for determining a valid server name are specified in section 2.2.1.1.

channelContext: A RPC context handle that represents context-specific information for the
channel. The TSG server MUST provide a non-NULL value. The TSG client MUST save and use
this context handle on all subsequent method calls on the channel. Specifically, these methods
are TsProxySendToServer, TsProxySetupReceivePipe, and TsProxyCloseChannel.

channelId: An unsigned long identifying the channel. The TSG server MUST provide this value to

the TSG client. The TSG client MUST save the returned channel ID for future use in the ADM
element "Channel id" (section 3.2.1). This channel ID is not required on any future method
calls.

Return Values: The method MUST return ERROR_SUCCESS on success. Other failures MUST be
one of the codes listed. The client MAY interpret failures in any way it deems appropriate. See
2.2.2.24 for details on these errors.

Return value

State

transition Description

ERROR_SUCCESS (0x00000000) The

connection

MUST

transition to

Channel

Returned when a call to the

TsProxyCreateChannel

method succeeds.

62 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Return value

State

transition Description

Created

state.

ERROR_ACCESS_DENIED (0x00000005) The

connection

MUST NOT

transition

its state.

Returned either if

tunnelContext parameter is

NULL, if this method is called

on a tunnel which is not

authorized, if the

tsEndPointInfo parameter is

NULL, or if the

numResourceNames

member of the

tsEndPointInfo parameter is

zero.

E_PROXY_RAP_ACCESSDENIED (0x800759DA) The

connection

MUST NOT

transition

its state.

Returned when an attempt to

resolve or access a target

server is blocked by TSG

server policies.

E_PROXY_INTERNALERROR (0x800759D8) The

connection

MUST NOT

transition

its state.

Returned when the server

encounters an unexpected

error while creating the

channel.

HRESULT_CODE(E_PROXY_TS_CONNECTFAILED)

(0x000059DD)

The

connection

MUST NOT

transition

its state.

This error is returned in

rpc_fault packet when the TSG

server fails to connect to any of

the target server names, as

specified in the members of

tsEndPointInfo.

The error ERROR_ACCESS_DENIED is returned when this call is made on a tunnel which is not

authorized.

3.1.4.2 Data Transfer Phase

3.1.4.2.1 TsProxySendToServer (Opnum 9)

The method is used for data transfer from the TSG client to the target server, via the TSG server.

The TSG server SHOULD send the buffer data received in this method to the target server. The RPC
runtime MUST NOT perform a strict NDR data consistency check for this method. The Terminal
Services Gateway Server Protocol bypasses NDR for this method. The wire data MUST follow the
regular RPC specifications as specified in [C706] section 2.1, and [MS-RPCE] minus all NDR headers,
trailers, and NDR-specific payload. The TSG server MUST have created the channel to the target
server before completing this method call. This method MAY be called multiple times by the TSG

client, but only after the previous method call finishes. The TSG server MUST handle multiple

sequential invocations of this method call. This method bypasses NDR. For this reason, unlike other
RPC methods that return an HRESULT, this method returns a DWORD. This is directly passed to the
callee from underlying RPC calls.<38> When this call fails, the TSG server MUST send the final
response to TsProxySetupReceivePipe call.

http://go.microsoft.com/fwlink/?LinkId=89828
%5bMS-RPCE%5d.pdf

63 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Prerequisites: The connection MUST be in Pipe Created state. If this call is made in any other state,
ERROR_ONLY_IF_CONNECTED is returned.

Sequential Processing Rules:

1. If some unexpected error occurs in the following process, the TSG server MUST return

HRESULT_CODE(E_PROXY_INTERNALERROR).

2. The TSG server MUST extract the channel context handle from the pRpcMessage parameter.
Refer to Generic Send Data Message Packet for the pRpcMessage format.

3. The TSG server MUST verify that the channel context handle is not NULL. Otherwise, it MUST
return ERROR_ACCESS_DENIED.

4. The TSG server MUST verify that the connection is in Pipe Created state. Otherwise, it MUST
return ERROR_ONLY_IF_CONNECTED.

5. The TSG server MUST extract the TSG client data from the pRpcMessage parameter. For the
pRpcMessage format, refer to Generic Send Data Message Packet (section 2.2.3.3).

1. The TSG server MUST verify that the totalDataBytes field in pRpcMessage is not zero.
Otherwise, it MUST return ERROR_ACCESS_DENIED.

2. The TSG server MUST verify that the numBuffers filed in pRpcMessage is in the range of 1
and 3, both inclusive. Otherwise, it MUST return ERROR_ACCESS_DENIED.

3. The TSG server MUST verify that buffer1Length + buffer2Length, (if numBuffers >= 2),
+ buffer3Length, (if numBuffers == 3), + size of buffer1Length + size of
buffer2Length, (if numBuffers >= 2), + size of buffer3Length, (if numBuffers == 3),
does not exceed totalDataBytes. Otherwise, it MUST return ERROR_ACCESS_DENIED.

4. The TSG server MUST verify that the buffer1Length field in pRpcMessage is not zero.
Otherwise, it MUST return HRESULT_CODE(E_PROXY_INTERNALERROR).

5. If numBuffers >= 2, then the TSG server MUST verify that the buffer2Length field is not

zero. Otherwise, it MUST return HRESULT_CODE(E_PROXY_INTERNALERROR).

6. If numBuffers == 3, then the TSG server MUST verify that the buffer3Length field is not
zero. Otherwise, it MUST return HRESULT_CODE(E_PROXY_INTERNALERROR).

6. The TSG server MUST send the data extracted in the preceding step to the target server.

7. The TSG server MUST return ERROR_SUCCESS.

DWORD TsProxySendToServer(

 [in, max_is(32767)] byte pRpcMessage[]

);

pRpcMessage: The protocol data between TSG client and TSG server MUST be decoded as

specified in section 2.2.3.3. RPC stub information is specified in [MS-RPCE] sections 1.1 and

1.5.

Return Values: The method MUST return ERROR_SUCCESS on success. Other failures MUST be
one of the codes listed. The client MAY interpret failures in any way it deems appropriate. See
2.2.2.24 for details on these errors.

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

64 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Return value

State

transition Description

ERROR_SUCCESS (0x00000000) The

connection

MUST remain

in PipeCreated

state.

Returned when a call to the

TsProxySendToServer

method succeeds.

ERROR_ONLY_IF_CONNECTED (0x000004E3) The

connection

MUST

transition to

Channel Close

Pending state.

Returned by the TSG server

when an attempt is made by

the client to send data to the

target server on connection

state other than Pipe Created

state.

The TSG client MUST end the

protocol when this error is

returned.

ERROR_ACCESS_DENIED (0x00000005) The

connection

MUST

transition to

Channel Close

Pending state.

Returned if the channel context

handle passed in the

pRpcMessage parameter is

NULL. The TSG client MUST end

the protocol when this error is

received.

HRESULT_CODE(E_PROXY_INTERNALERROR)

(0x000059D8)

The

connection

MUST

transition to

Channel Close

Pending state.

Returned when an unexpected

error occurs in

TsProxySendToServer. The

TSG client MUST end the

protocol when this error is

received.

3.1.4.2.2 TsProxySetupReceivePipe (Opnum 8)

The TsProxySetupReceivePipe method is used for data transfer from the TSG server to the TSG

client. The TSG server MUST create an RPC out pipe upon receiving this method call from the TSG
client. This call bypasses the NDR and hence, the RPC runtime MUST NOT perform a strict NDR data
consistency check for this method. Refer to section 3.3 for details on NDR-bypassing. Section 3.3.4
and section 3.3.5 give details on wire representation of data for responses to
TsProxySetupReceivePipe. The out pipe MUST be created by the TSG server in the same manner
as NDR creates it for a call.<39> The TSG server MUST use this out pipe and Stub Data field in RPC
response PDUs to send all data from the target server to the TSG client on the channel. The TSG

client MUST use this out pipe to pull data from the target server on the channel. On connection
disconnect, the TSG server MUST send the following on the pipe: A DWORD return code in an RPC
response PDU and set the PFC_LAST_FRAG bit in the pfc_flags field of the RPC response PDU. The
pipe close is indicated when the PFC_LAST_FRAG bit is set in the pfc_flags field of the RPC
response PDU. When the TSG client sees that the PFC_LAST_FRAG bit is set in the pfc_flags field of
the RPC response PDU, it MUST interpret the 4 bytes Stub Data as the return code of

TsProxySetupReceivePipe. For a description of RPC response PDU, pfc_flags, PFC_LAST_FRAG,

and Stub Data, refer to sections 12.6.2and 12.6.4.10 in [C706]. The TSG client and TSG server
MUST negotiate a separate out pipe for each channel. Out pipes MUST NOT be used or shared
across channels.<40>

As long as the channel is not closed, the RPC and Transport layer guarantee that any data that is
sent by the TSG server reaches the TSG client. RPC and Transport layer also ensure that the data is
delivered to the TSG client in the order it was sent by the TSG server.

%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90952
http://go.microsoft.com/fwlink/?LinkId=90952
http://go.microsoft.com/fwlink/?LinkId=89829

65 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

After the call reaches the TSG server, the connection MUST transition to Pipe Created state after
setting up the out pipe.

Prerequisites: The connection MUST be in Channel Created state. If this is called in Pipe Created
state or Channel Close Pending state, then the behavior is undefined. If this is called in any other

state, ERROR_ACCESS_DENIED MUST be returned by the TSG server.

Sequential Processing Rules:

1. If some unexpected error occurs in the following process, the TSG server MUST return
HRESULT_CODE(E_PROXY_INTERNALERROR).

2. If the TSG server is implementing the Connection Timer, then if TsProxySetupReceivePipe is
called after the Connection Timer has expired, the TSG server MUST return
ERROR_OPERATION_ABORTED; otherwise, the Connection Timer MUST be stopped.

3. The TSG server MUST extract the channel context handle from pRpcMessage parameter. For the
pRpcMessage format, refer to TSG Client to TSG Server Packet Format (section 2.2.3.4.1).

4. The TSG server MUST verify that the channel context handle is not NULL. Otherwise, it MUST
return ERROR_ACCESS_DENIED.

5. If the TSG server is configured such that the connections are allowed only to a resource that
allows policy exchanges between the TSG server and the target server, and the target server

does not support the same, then the TSG server MUST return
HRESULT_CODE(E_PROXY_SDR_NOT_SUPPORTED_BY_TS).

6. If connection to the target server is not set up in TsProxyCreateChannel call, then the TSG
server MUST try to connect to the target server by each name in the Target server names
array until it succeeds or until the array is traversed completely. If connection fails for all target
server names, it MUST return HRESULT_CODE(E_PROXY_TS_CONNECTFAILED).<41>

7. The TSG server MUST set up an out pipe to send data received from the target server to the TSG

client.

8. The connection MUST transition to Pipe Created state.

9. The TSG server MUST start receiving data from the target server and stream the same to the
TSG client. This process MUST be continued until one of the following events occurs.

1. If the Session Timeout Timer expires and "disconnect on session timeout" is configured at the
TSG server:

1. If the Abstract Data Model (ADM) element Negotiated Capabilities contains

TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the TSG server MUST disconnect the
session by sending the final response of the TsProxySetupReceivePipe method with the
HRESULT_CODE(E_PROXY_SESSIONTIMEOUT) error code.

2. If the ADM element Negotiated Capabilities does not contain
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the TSG server MUST disconnect the
session by sending the final response of the TsProxySetupReceivePipe method with the

HRESULT_CODE(E_PROXY_CONNECTIONABORTED) error code.

2. If the session timeout timer expires and "re-authentication on session timeout" is configured
at the TSG server, the TSG server initiates a re-authentication with the client and starts the
re-authentication timer, as explained in section 3.1.5.1. After the re-authentication timer
expires, the TSG server MUST check the value of Re-authentication Status ADM element.

66 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

If the ADM element Re-authentication Status is set to NONE:

1. If the ADM element Negotiated Capabilities contains

TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the TSG server MUST disconnect the

connection with HRESULT_CODE(E_PROXY_REAUTH_AUTHN_FAILED).

2. If the ADM element Negotiated Capabilities does not contain
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the TSG server MUST disconnect the
connection with HRESULT_CODE(E_PROXY_CONNECTIONABORTED).

If the ADM element Re-authentication Status is set to AuthenticationCompleted:

1. If the ADM element Negotiated Capabilities contains
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the TSG server MUST disconnect the

connection with HRESULT_CODE(E_PROXY_REAUTH_CAP_FAILED).

2. If the ADM element Negotiated Capabilities does not contain
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the TSG server MUST disconnect the
connection with HRESULT_CODE(E_PROXY_CONNECTIONABORTED).

If the ADM element Re-authentication Status is set to

UserAuthorizationCompletedButQurantineFailed:

1. If the ADM element Negotiated Capabilities contains
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the TSG server MUST disconnect the
connection with HRESULT_CODE(E_PROXY_REAUTH_NAP_FAILED).

2. If the ADM element Negotiated Capabilities does not contain
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the TSG server MUST disconnect the
connection with HRESULT_CODE(E_PROXY_CONNECTIONABORTED).

If the ADM element Re-authentication Status is set to UserAuthorizationCompleted:

1. If the ADM element Negotiated Capabilities contains
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the TSG server MUST disconnect the

connection with HRESULT_CODE(E_PROXY_REAUTH_RAP_FAILED).

2. If the ADM element Negotiated Capabilities does not contain
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the TSG server MUST disconnect the
connection with HRESULT_CODE(E_PROXY_CONNECTIONABORTED).

If the ADM element Re-authentication Status is set to ResourceAuthorizationCompleted,

the TSG server MUST start the Session Timeout Timer and MUST reset the ADM element
Re-authentication Status to NONE.

3. If the target server unexpectedly closes the connection between the TSG server and the target
server, the TSG server MUST return ERROR_BAD_ARGUMENTS.

4. If the TSG server administrator forcefully disconnects the connection, the TSG server MUST

return HRESULT_CODE(E_PROXY_CONNECTIONABORTED).

5. If the connection gets disconnected either by the TSG client or the TSG server, or by an
unknown error, the TSG server MUST send the corresponding error code to the TSG client in
the final response, as specified in TSG Server to TSG Client Packet Format for Final Response
(section 2.2.3.4.3).

DWORD TsProxySetupReceivePipe(

67 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 [in, max_is(32767)] byte pRpcMessage[]

);

pRpcMessage: The protocol data between TSG client and TSG server MUST be decoded as

specified in section 2.2.3.4. RPC stub information is specified in [MS-RPCE] sections 1.1 and
1.5.

Return Values: The method MUST return ERROR_GRACEFUL_DISCONNECT on success, that is,
if the TSG client gracefully disconnects the connection by calling TsProxyCloseChannel.
Other failures MUST be one of the codes listed. The client MAY interpret failures in any way it
deems appropriate. See 2.2.2.24 for details on these errors.

The error DWORD value is always sent, when the receive pipe closes down. The receive pipe

will always close down when a disconnect takes place.

Return value

State

transiti

on Description

ERROR_ACCESS_DENIED (0x00000005) The

connecti

on

MUST

transitio

n to

Tunnel

Close

Pending

state.

Returned either if this method is called

before TsProxyCreateChannel or if

the Channel Context Handle ADM

element is NULL. The TSG client MUST

end the protocol when this error is

received.

HRESULT_CODE(E_PROXY_INTERNALERROR)

(0x000059D8)

The

connecti

on

MUST

transitio

n to

Tunnel

Close

Pending

state.

Returned when an unexpected error

occurs in TsProxySetupReceivePipe.

The TSG client MUST end the protocol

when this error is received.

HRESULT_CODE(E_PROXY_TS_CONNECTFAILE

D) (0x000059DD)

The

connecti

on

MUST

transitio

n to

Tunnel

Close

Pending

state.

Returned when the TSG server fails to

connect to target server. It is returned

in an rpc_fault packet.<42> The TSG

client MUST end the protocol when this

error is received.

HRESULT_CODE(E_PROXY_SESSIONTIMEOUT)

(0x000059F6)

The

connecti

on

MUST

transitio

Returned by TSG server if a session

timeout occurs and "disconnect on

session timeout" is configured at the

TSG server and the ADM element

Negotiated Capabilities contains

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

68 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Return value

State

transiti

on Description

n to

Tunnel

Close

Pending

state.

TSG_NAP_CAPABILITY_IDLE_TIME

OUT. The TSG client MUST end the

protocol when this error is received.

HRESULT_CODE(E_PROXY_REAUTH_AUTHN_FA

ILED) (0x000059FA)

The

connecti

on

MUST

transitio

n to

Tunnel

Close

Pending

state.

Returned when a re-authentication

attempt by the client has failed because

the user credentials are no longer valid

and the ADM element Negotiated

Capabilities contains

TSG_NAP_CAPABILITY_IDLE_TIME

OUT. The TSG client MUST end the

protocol when this error is received.

HRESULT_CODE(E_PROXY_REAUTH_CAP_FAILE

D) (0x000059FB)

The

connecti

on

MUST

transitio

n to

Tunnel

Close

Pending

state.

Returned when a re-authentication

attempt by the client has failed because

the user is not authorized to connect

through the TSG server anymore and

the ADM element Negotiated

Capabilities contains

TSG_NAP_CAPABILITY_IDLE_TIME

OUT. The TSG client MUST end the

protocol when this error is received.

HRESULT_CODE(E_PROXY_REAUTH_RAP_FAILE

D) (0x000059FC)

The

connecti

on

MUST

transitio

n to

Tunnel

Close

Pending

state.

Returned when a re-authentication

attempt by the client has failed because

the user is not authorized to connect to

the given end resource anymore and

the ADM element Negotiated

Capabilities contains

TSG_NAP_CAPABILITY_IDLE_TIME

OUT. The TSG client MUST end the

protocol when this error is received.

HRESULT_CODE(E_PROXY_CONNECTIONABORT

ED) (0x000004D4)

The

connecti

on

MUST

transitio

n to

Tunnel

Close

Pending

state.

Returned when the following happens:

1. The TSG server administrator
forcefully disconnects the
connection.

2. Or when the ADM element

Negotiated Capabilities
doesn't contain

TSG_NAP_CAPABILITY_IDLE
_TIMEOUT and any one of the
following happens:

1. Session timeout occurs and
disconnect on session

timeout is configured at the

69 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Return value

State

transiti

on Description

TSG server.

2. Re-authentication attempt by
the client has failed because
the user credentials are no
longer valid.

3. Re-authentication attempt by
the client has failed because

the user is not authorized to
connect through the TSG
server anymore.

4. Re-authentication attempt by

the client has failed because
the user is not authorized to

connect to the given end
resource anymore.

5. Re-authentication attempt by
the TSG client has failed
because the health of the
user's computer is no longer
compliant with the TSG

server configuration.

The TSG client MUST end the protocol

when this error is received.

HRESULT_CODE(E_PROXY_SDR_NOT_SUPPORT

ED_BY_TS) (0x000059FD)

The

connecti

on

MUST

transitio

n to

Tunnel

Close

Pending

state.

The TSG server is capable of

exchanging policies with some target

servers. The TSG server MAY be

configured to allow connections to only

target servers that are capable of policy

exchange. If such a setting is

configured and the target server is not

capable of exchanging policies with the

TSG server, this error will be returned.

The TSG client MUST end the protocol

when this error is received.

ERROR_GRACEFUL_DISCONNECT

(0x000004CA)

The

connecti

on

MUST

transitio

n to

Tunnel

Close

Pending

state.

Returned when the connection is

disconnected gracefully by the TSG

client calling TsProxyCloseChannel.

HRESULT_CODE(E_PROXY_REAUTH_NAP_FAILE

D) (0x00005A00)

The

connecti

Returned when a re-authentication

attempt by the TSG client has failed

70 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Return value

State

transiti

on Description

on

MUST

transitio

n to

Tunnel

Close

Pending

state.

because the user's computer's health is

no longer compliant with the TSG

server configuration and the ADM

element Negotiated Capabilities

contains

TSG_NAP_CAPABILITY_IDLE_TIME

OUT. The TSG client MUST end the

protocol when this error is received.

ERROR_OPERATION_ABORTED(0x000003E3) The

connecti

on

MUST

transitio

n to

Tunnel

Close

Pending

state.

Returned when the call to

TsProxySetupReceivePipe is received

after the Connection Timer has expired.

ERROR_BAD_ARGUMENTS(0x000000A0) The

connecti

on

MUST

transitio

n to

Tunnel

Close

Pending

state.

Returned when the target server

unexpectedly closes the connection

between the TSG server and the target

server.

3.1.4.3 Shutdown Phase

Shutdown phase is used to terminate the channel and tunnel. Channel closure can either be initiated
by the TSG client or the TSG server. The TSG client SHOULD initiate it by closing the channel using
method TsProxyCloseChannel. The TSG server initiates it by setting the PFC_LAST_FRAG bit in

the pfc_flags field in the final response for the TsProxySetupReceivePipe method. If the client
has any pending administrative message requests on the TSG server, the client cancels the same by
making a TsProxyMakeTunnelCall call with TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST as
a parameter. The closing of tunnel is accomplished by using the TsProxyCloseTunnel method.

3.1.4.3.1 TsProxyCloseChannel (Opnum 6)

The TsProxyCloseChannel method is used to terminate the channel from the TSG client to the

TSG server. This SHOULD be called only if the TSG client has not received the RPC response PDU
with the PFC_LAST_FRAG bit set in the pfc_flags field. All communication between the TSG client
and the target server MUST stop after the TSG server executes this method. The TSG client MUST

NOT use this context handle in any subsequent operations after calling this method. This will
terminate the channel between the TSG client and the target server. If the TSG server has not
already sent the RPC response PDU with the PFC_LAST_FRAG bit set in the pfc_flags field, which
happens if the TSG server initiated the disconnect, the TSG client will also receive a return code for

TsProxySetupReceivePipe in an RPC response PDU with the PFC_LAST_FRAG bit set in the

71 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

pfc_flags. For a description of RPC response PDU, pfc_flags, and PFC_LAST_FRAG, refer to sections
12.6.2 and 12.6.14.10 in [C706].

The TSG server completes the TsProxyCloseChannel only after sending all of the data it received
before this call was made. The TSG client receives the call complete notification only after it receives

all of the data that was sent by the TSG server before completing TsProxyCloseChannel. Please
refer to section 3.1.4.2.2 for details on how the data is ensured to reach the destination.

Prerequisites: The connection MUST be in Channel Created state or Pipe Created state or Channel
Close Pending state.

Sequential Processing Rules:

1. The TSG server MUST check whether the channel context handle is NULL or not a valid context
handle. If so, the TSGU server MUST return ERROR_ACCESS_DENIED.

2. The TSG server MUST disconnect the connection to the target server.

3. The TSG server MUST send all data received from the target server to the TSG client and MUST

end TsProxySetupReceivePipe with ERROR_GRACEFUL_DISCONNECT.

4. The TSG server MUST return ERROR_SUCCESS.

HRESULT TsProxyCloseChannel(

 [in, out] PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE* context

);

context: The TSG client MUST provide the TSG server with the same context handle it received

from the TsProxyCreateChannel method call.

Return Values:

Return value State transition Description

ERROR_SUCCESS

(0x00000000)

The connection MUST

transition to Tunnel

Close Pending state.

Returned when the call to the

TsProxyCloseChannel method

succeeds.

ERROR_ACCESS_DENIED

(0x00000005)

The connection MUST

NOT transition its

state.

Returned when the provided context

parameter is NULL or not a valid channel

context handle.

3.1.4.3.2 TsProxyMakeTunnelCall (Opnum 3)

The TsProxyMakeTunnelCall method MUST be called with the
TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST parameter before the TsProxyCloseTunnel method
is called if the previous TsProxyMakeTunnelCall has not returned. The TsProxyMakeTunnelCall
method has been defined in section 3.1.4.1.3.

The TsProxyCloseTunnel method call uses a serialized context handle. If a previous call to the
TsProxyMakeTunnelCall has not returned, then the TSG client cannot call TsProxyCloseTunnel,

because of the serialized nature of the context handle.

http://go.microsoft.com/fwlink/?LinkId=90952
http://go.microsoft.com/fwlink/?LinkId=90952
http://go.microsoft.com/fwlink/?LinkId=89824

72 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.4.3.3 TsProxyCloseTunnel (Opnum 7)

The TsProxyCloseTunnel method is used to terminate the tunnel between the TSG client and the
TSG server. All communication between the TSG client and TSG server MUST stop after the TSG

server executes this method. The TSG client MUST NOT use this tunnel context handle in any
subsequent operations after this method call. This MUST be the final tear down phase of the TSG
client to TSG server tunnel. If the ADM element Re-authentication Connection is FALSE, then the
ADM element Number of Connections MUST be decremented by 1 in this call. If there is an
existing channel within the tunnel, it SHOULD first be closed using TsProxyCloseChannel. If the
TSG client calls the TsProxyCloseTunnel method before calling the TsProxyCloseChannel
method, the TSG server MUST close the channel and then close the tunnel.

Prerequisites: The connection MUST be in any of the following states: Connected state, Authorized
state, Channel Created state, Pipe Created state, Channel Close Pending state, or Tunnel Close
Pending state.

Sequential Processing Rules:

1. The TSG server MUST check whether the tunnel context handle is NULL or not a valid context
handle. If so, it MUST return ERROR_ACCESS_DENIED.

2. If there are any channels in the tunnel then the TSG server MUST disconnect them. If
TsProxyCloseChannel has not already been called then the TSG server MUST close the RPC out
pipe and return ERROR_GRACEFUL_DISCONNECT for the TsProxySetupReceivePipe.

3. The TSG server MUST disconnect the tunnel.

4. If the ADM element Re-authentication Connection is FALSE:

The TSG server MUST decrement the ADM element Number of Connections by 1.

5. The connection MUST transition to the End state.

6. The TSG server MUST return ERROR_SUCCESS.

HRESULT TsProxyCloseTunnel(

 [in, out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* context

);

context: The TSG client MUST provide the TSG server with the same context handle it received

from the TsProxyCreateTunnel method call.

Return Values: The method MUST return 0 on success. This function SHOULD NOT fail from a
TSG protocol perspective. If TsProxyCloseTunnel is called while any of the channels are not

closed, then the TSG server MUST close all the channels and then close the tunnel.

Return value State transition Description

ERROR_SUCCESS

(0x00000000)

The connection MUST

transition to the end

state.

Returned when a call to the

TsProxyCloseTunnel method succeeds.

ERROR_ACCESS_DENIED

(0x00000005)

The connection MUST

NOT transition its

state.

Returned when the provided context

parameter is NULL or not a valid tunnel

context handle.

73 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.4.3.4 Server Initiated Shutdown

The server initiates shutdown by sending the final response packet to TsProxySetupReceivePipe call
with the PFC_LAST_FRAG bit set in the pfc_flags field. The server closes the channel after sending

this response. The client SHOULD not call TsProxyCloseChannel after receiving this final response.
The client SHOULD call the TsProxyCloseChannel method if the client initiates the shutdown, but not
if the server initiates shutdown.

Prerequisites: The connection MUST be in Pipe Created state.

Sequential Processing Rules:

1. The TSG server MUST send the final response packet to TsProxySetupReceivePipe call with the
PFC_LAST_FRAG bit set in the pfc_flags field.

2. The TSG server MUST close the channel.

3. The connection MUST be transitioned to Tunnel Close Pending state.

3.1.5 Timer Events

3.1.5.1 Session Timeout Timer

1. If the Session Timeout Timer expires and "disconnect on session timeout" is configured at the

TSG server, then review the following.

1. If the ADM element Negotiated Capabilities contains
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the TSG server MUST disconnect the
session by sending the final response of the TsProxySetupReceivePipe method with the
HRESULT_CODE(E_PROXY_SESSIONTIMEOUT) error code.

2. If the ADM element Negotiated Capabilities doesn't contain

TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the TSG server MUST disconnect the
session by sending the final response of the TsProxySetupReceivePipe method with the

HRESULT_CODE(E_PROXY CONNECTIONABORTED) error code.

2. Otherwise, if this timer expires and "re-authentication on session timeout" is configured at the
TSG server, the TSG server MUST initiate the re-authentication connection as follows:

1. The TSG server MUST set the ADM element Re-authentication Status to None.

2. The TSG server MUST start the Re-authentication Timer.

3. If there is no waiting TsProxyMakeTunnelCall call, do nothing.

4. If there is a waiting TsProxyMakeTunnelCall call:

1. The TSG server MUST set the packetId member of the tsgPacketResponse out parameter
of TsProxyMakeTunnelCall to TSG_PACKET_TYPE_MESSAGE_PACKET.

2. The TSG server MUST set tsgPacketResponse->packetMsgResponse->msgType to

TSG_ASYNC_MESSAGE_REAUTH.

3. The TSG server MUST initialize tsgPacketResponse->packetMsgResponse-

>messagePacket.reauthMessage->tunnelContext by the ADM element Re-authentication
Tunnel Context.

74 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4. The TSG server MUST complete the waiting TsProxyMakeTunnelCall with error code
ERROR_SUCCESS.

3.1.5.2 Re-authentication Timer

If the Re-authentication Timer expires, the TSG server MUST check the ADM element Re-
authentication Status value.

If the ADM element Re-authentication Status is set to NONE:

1. If the ADM element Negotiated Capabilities contains
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the TSG server MUST disconnect the
connection with HRESULT_CODE(E_PROXY_REAUTH_AUTHN_FAILED).

2. If the ADM element Negotiated Capabilities doesn't contain
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the TSG server MUST disconnect the
connection with HRESULT_CODE(E_PROXY_CONNECTIONABORTED).

If the ADM element Re-authentication Status is set to AuthenticationCompleted:

1. If the ADM element Negotiated Capabilities contains
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the TSG server MUST disconnect the

connection with HRESULT_CODE(E_PROXY_REAUTH_CAP_FAILED).

2. If the ADM element Negotiated Capabilities doesn't contain
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the TSG server MUST disconnect the
connection with HRESULT_CODE(E_PROXY_CONNECTIONABORTED).

If the ADM element Re-authentication Status is set to

UserAuthorizationCompletedButQurantineFailed:

1. If the ADM element Negotiated Capabilities contains

TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the TSG server MUST disconnect the
connection with HRESULT_CODE(E_PROXY_REAUTH_NAP_FAILED).

2. If the ADM element Negotiated Capabilities doesn't contain
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the TSG server MUST disconnect the
connection with HRESULT_CODE(E_PROXY_CONNECTIONABORTED).

If the ADM element Re-authentication Status is set to UserAuthorizationCompleted:

1. If the ADM element Negotiated Capabilities contains
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the TSG server MUST disconnect the
connection with HRESULT_CODE(E_PROXY_REAUTH_RAP_FAILED).

2. If the ADM element Negotiated Capabilities doesn't contain
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the TSG server MUST disconnect the
connection with HRESULT_CODE(E_PROXY_CONNECTIONABORTED).

If the ADM element Re-authentication Status is set to ResourceAuthorizationCompleted, the

TSG server MUST start the Session Timeout Timer and MUST reset the ADM element Re-

authentication Status to NONE.

75 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.5.3 Connection Timer

If the Connection Timer expires and the call to the TsProxySetupReceivePipe method is received
by the TSG server after the timer has expired, the server MUST disconnect with the

ERROR_OPERATION_ABORTED return value, as specified in section 2.2.2.24.

3.1.6 Other Local Events

This section describes the use of an abstract interface on the server between NAPSO and the TSGU
server. This interface is not used between the TSGU client and the TSGU server.

SoHRAsyncCallback

When NAPSO finishes processing the statement of health (SoH) on the TSG server, it sends the

statement of health response (SoHR) to the TSG server, as specified in [MS-NAPSO] section 10.3.7,
in the form of SoHR, as described in [MS-SOH], using this abstract interface.

Inputs: None.

Outputs:

dwSoHRSize: A 32-bit unsigned integer specifying the number of bytes returned in the

ppSoHR parameter.

ppSoHR: Pointer to buffers returning the SoHR.

dwResponse: A 32-bit unsigned integer specifying the type of response.

hr: HRESULT specifying result of the SoH processing by NAPSO.

Constraints:

The TSG server MUST not allow the connection if the value of the dwResponse indicates that

the TSG client's health is not acceptable.

3.1.6.1 Data Arrival from Target Server

This event occurs when the target server data arrives at the TSG server, which is destined for the
TSG client. When this event occurs, the TSG server MUST stream the data to the TSG client, in

response to the TsProxySetupReceivePipe, in the same order that it arrived.

3.2 TsProxyRpcInterface Client Details

The following sections contain the details of the TsProxyRpcInterface on the Client.

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

Target server name: A string of Unicode characters. The server name applies to the machine that
the TSG server connects to.<43>

%5bMS-NAPSO%5d.pdf
%5bMS-SOH%5d.pdf

76 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Client Machine name: A string of Unicode characters that cannot exceed 513 bytes,<44>
including the terminating null character. The Client Machine name refers to the machine that runs

the TSG client. It is possible for the Client Machine name to be the same as the server name (in
value) if the client and the server run on the same physical machine.<45>

Tunnel id: An unsigned long representing the tunnel identifier for tracking purposes on the TSG
server. It MAY be used by the TSG client to help the TSG server administrator troubleshoot
connection issues.

Channel id: An unsigned long representing the channel identifier for tracking purposes on the TSG
server. It MAY be used by the TSG client to help the TSG server administrator troubleshoot
connection issues.

Binding Handle: An RPC binding handle created by the TSG client to bind to the TSG server. For

more details about Binding Handle, see [C706] section 2.1.

Tunnel Context handle: An RPC context handle for the TSG client to TSG server represented by an
array of 20 bytes on the TSG server. The context handle is used to identify a specific connection

from the TSG client to the TSG server.

Channel Context handle: An RPC context handle for the connection from the TSG client to the
target server via the TSG server represented by an array of 20 bytes on the TSG server. The

context handle is used to identify a specific connection to the target server from the TSG client via
the TSG server.

CertChainData: A string of variable data returned by the TSG server representing the certificate
chain used by the TSG server for the HTTPS communication between TSG client and TSG server.
The TSG client MAY use this data to verify the identity of the TSG server before sending sensitive
data, such as the health information of the TSG client machine.

Nonce: A unique GUID returned by the TSG server to identify the current connection. The TSG

client sends this GUID to the TSG server if it sends the statement of health (SoH), as specified in
section 2.2.3.2.1.4.

Idle Timeout Value: An unsigned long value that specifies connection idle time in minutes before
the connection is torn down.

Negotiated Capabilities: A ULONG bitmask value representing the negotiated capabilities between
the TSG client and the TSG server. It contains zero or more of the following values:

NAP Capability Value

TSG_NAP_CAPABILITY_QUAR_SOH

TSG_NAP_CAPABILITY_IDLE_TIMEOUT

TSG_MESSAGING_CAP_CONSENT_SIGN

TSG_MESSAGING_CAP_SERVICE_MSG

TSG_MESSAGING_CAP_REAUTH

http://go.microsoft.com/fwlink/?LinkId=89828

77 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.2.2 Timers

3.2.2.1 Idle Timeout Timer

If idle timeout capability is negotiated between the TSG client and the TSG server, then the TSG
server MUST send the idle timeout value to the TSG client in the TSG_PACKET_RESPONSE
structure in response to the TsProxyAuthorizeTunnel call. If idle timeout is not configured at the
TSG server, it MUST send zero.

3.2.2.1.1 Idle Time Processing

If the idle timeout value is zero, no idle timeout is configured at the TSG server, and therefore, no

idle time processing is required by the TSG client.

If the idle timeout value is nonzero, the TSG client SHOULD start this timer and SHOULD reset the
timer whenever the TSG client sends some payload data in the TsProxySendToServer (section
3.1.4.2.1) method to the TSG server. The TSG client SHOULD end the protocol when the timer
expires as the connection has been idle for the specified Idle Timeout Value.

Other than that described in this section, no protocol timers are required beyond those used
internally by RPC to implement resiliency to network outages, as specified in [MS-RPCE] section 3.

3.2.3 Initialization

The TSG client creates an RPC binding handle to the TSG server's RPC endpoint. The TSG client
MUST create a binding handle, a binding handle is specified in [C706] section 2.1, and make the
first method invocation to receive the tunnel context handle, as specified in section 3.1.4.1.
Subsequent method invocations MUST use either the tunnel context handle or the channel context

handle, as each method requires. The TSG client MUST create an authenticated RPC binding handle
with a minimum of RPC_C_AUTHN_LEVEL_PKT_INTEGRITY and other parameters as specified in
section 2.1. This requires establishing the binding to the well-known endpoint as specified in section
2.1.

If an authenticated binding handle is established, the TSG client MUST match the version and
capabilities of the TSG server; if no match can be made, the TSG client SHOULD stop further
progress on the protocol connection.

3.2.4 Message Processing Events and Sequencing Rules

This protocol asks the RPC runtime to perform a strict NDR data consistency check at target level
7.0 for all methods unless otherwise specified, as specified in [MS-RPCE] section 1.3.

All the methods implemented by the TSG server SHOULD enforce appropriate security measures to
make sure that the TSG client has the required permissions to execute the routines. All methods
MUST be RPC calls. However, these methods MUST be called in a sequence specified in section 1.3.

The methods MAY throw an exception and the TSG client MUST handle these exceptions
appropriately. The methods called by the TSG client MUST be sequential in order, as specified in
section 1.3.1. The method details are specified in section 3.1.4.

A TSG client's invocation of each method is typically the result of local application activity. The local
application at the TSG client specifies values for all input parameters. No other higher-layer
triggered events are processed.

The TSG client SHOULD process errors returned from the TSG server and notify the application

invoker of the error received in the higher layer.

%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89828
%5bMS-RPCE%5d.pdf

78 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Sequential processing rules for connection process:

1. The TSG client MUST call TsProxyCreateTunnel to create a tunnel to the gateway.

2. If the call fails, the TSG client MUST end the protocol and MUST NOT perform the following steps.

3. The TSG client MUST initialize the following ADM elements using TsProxyCreateTunnel out

parameters:

1. The TSG client MUST initialize the ADM element Tunnel id with the tunnelId out parameter.

2. The TSG client MUST initialize the ADM element Tunnel Context Handle with the
tunnelContext out parameter. This Tunnel Context Handle is used for subsequent tunnel-
related calls.

3. If tsgPacketResponse->packetId is TSG_PACKET_TYPE_CAPS_RESPONSE, where
tsgPacketResponse is an out parameter,

1. The TSG client MUST initialize the ADM element Nonce with tsgPacketResponse-

>tsgPacket.packetCapsResponse->pktQuarEncResponse.nonce.

2. The TSG client MUST initialize the ADM element Negotiated Capabilities with
tsgPacketResponse->tsgPacket.packetCapsResponse->pktQuarEncResponse.versionCaps-
>tsgCaps[0].tsgPacket.tsgCapNap.capabilities.

4. If tsgPacketResponse->packetId is TSG_PACKET_TYPE_QUARENC_RESPONSE, where

tsgPacketResponse is an out parameter,

1. The TSG client MUST initialize the ADM element Nonce with tsgPacketResponse-
>tsgPacket.packetQuarEncResponse->nonce.

2. The TSG client MUST initialize the ADM element Negotiated Capabilities with
tsgPacketResponse->tsgPacket.packetQuarEncResponse->versionCaps-
>tsgCaps[0].tsgPacket.tsgCapNap.capabilities.

4. The TSG client MUST get its statement of health (SoH) by calling NAP EC API, as specified in

[MS-NAPSO] section 3.3.1.<46>Details of the SoH format are specified in [MS-SOH] section
2.2.5. If the SoH is received successfully, then the TSG client MUST encrypt the SoH using the
Triple Data Encryption Standard algorithm and encode it with the TSG server certificate
context available in the ADM element CertChainData.

5. The TSG client MUST copy the ADM element Nonce to tsgPacket.packetQuarRequest->data and
append the encrypted SoH message into tsgPacket.packetQuarRequest->data. The TSG client
MUST set the tsgPacket.packetQuarRequest->dataLen to the sum of the number of bytes in the

encrypted SoH message and number of bytes in the ADM element Nonce, where tsgpacket is an
input parameter of TsProxyAuthorizeTunnel. The format of the packetQuarRequest field is
specified in section 2.2.3.2.1.4.

6. The TSG client MUST call TsProxyAuthorizeTunnel to authorize the tunnel.

7. If the call succeeds or fails with error E_PROXY_QUARANTINE_ACCESSDENIED, follow the steps

later in this section. Else, the TSG client MUST end the protocol and MUST NOT follow the steps

later in this section.

8. If the ADM element Negotiated Capabilities contains
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the ADM element Idle Timeout Value
SHOULD be initialized with first 4 bytes of tsgPacketResponse->tsgPacket.packetResponse-

%5bMS-NAPSO%5d.pdf
%5bMS-SOH%5d.pdf
%5bMS-GLOS%5d.pdf

79 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

>responseData and the Statement of health response variable should be initialized with the
remaining bytes of responseData, where tsgPacketResponse is an out parameter of

TsProxyAuthorizeTunnel. The format of the responseData member is specified in section
2.2.3.2.1.5.1.

9. If the ADM element Negotiated Capabilities doesn't contain
TSG_NAP_CAPABILITY_IDLE_TIMEOUT, then the ADM element Idle Timeout Value
SHOULD be initialized to zero and the Statement of health response variable should be
initialized with all the bytes of tsgPacketResponse->tsgPacket.packetResponse->responseData.

10.Verify the signature of the Statement of health response variable and decode it using the TSG
server certificate context available in the ADM element CertChainData, and pass it to Process
SoHR Task (section 14) as specified in [MS-NAPSO] section 14.

11.If the call TsProxyAuthorizeTunnel fails with error E_PROXY_QUARANTINE_ACCESSDENIED,
the TSG client MUST end the protocol and MUST NOT follow the steps later in this section.

12.If the ADM element Idle Timeout Value is nonzero, the TSG client SHOULD start the idle time

processing as specified in section 3.2.2.1.1 and SHOULD end the protocol when the connection
has been idle for the specified Idle Timeout Value.

13.If the ADM element Negotiated Capabilities contains

TSG_MESSAGING_CAP_SERVICE_MSG, a TsProxyMakeTunnelCall call MAY be made by the
client, with TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST as the parameter, to receive
messages from the TSG server.

14.The TSG client MUST call TsProxyCreateChannel to create a channel to the target server name
as specified by the ADM element Target Server Name (section 3.2.1).

15.If the call fails, the TSG client MUST end the protocol and MUST not follow the below steps.

16.The TSG client MUST initialize the following ADM elements using TsProxyCreateChannel out

parameters.

1. The TSG client MUST initialize the ADM element Channel id with the channelId out

parameter.

2. The TSG client MUST initialize the ADM element Channel Context Handle with the
channelContext out parameter. This Channel Context Handle is used for subsequent
channel-related calls.

Sequential processing rules for data transfer:

1. The TSG client MUST call TsProxySetupReceivePipe to receive data from the target server, via
the TSG server.

2. The TSG client MUST call TsProxySendToServer to send data to the target server via the TSG
server, and if the Idle Timeout Timer is started, the TSG client SHOULD reset the Idle Timeout
Timer.

3. If TsProxyMakeTunnelCall is returned, the TSG client MUST process the message and MAY call

TsProxyMakeTunnelCall again with TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST as the
parameter.

4. The TSG client MUST end the protocol after it receives the final response to
TsProxySetupReceivePipe. The final response format is specified in section 2.2.3.4.3.

%5bMS-NAPSO%5d.pdf
%5bMS-NAPSO%5d.pdf
%5bMS-NAPSO%5d.pdf
%5bMS-NAPSO%5d.pdf
%5bMS-NAPSO%5d.pdf

80 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Sequential processing rules for ending the protocol:

1. If a channel was successfully created in the connection process, the TSG client MUST call

TsProxyCloseChannel to close the channel.

2. If the TSG client called TsProxyMakeTunnelCall during the connection process and the call has

not yet returned, the TSG client MUST call TsProxyMakeTunnelCall with the
TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST parameter to cancel the previous pending
call.

3. If the tunnel was successfully created during the connection process, the TSG client MUST call
TsProxyCloseTunnel to close the tunnel.

Sequential processing rules when the TSG client receives a re-authentication message from the TSG
server:

1. The TSG client MUST start a new connection by calling TsProxyCreateTunnel. The packetId
member of the tsgPacket MUST be set to TSG_PACKET_TYPE_REAUTH. Also, tsgPacket-
>packetReauth.tunnelContext MUST be initialized by the tsgPacketResponse-

>packetMsgResponse->messagePacket.reauthMessage->tunnelContext, which is received in the
TsProxyMakeTunnelCall response.

2. If TsProxyCreateTunnel fails, go to step 6.

3. On successful completion of TsProxyCreateTunnel, the TSG client MUST call
TsProxyAuthorizeTunnel.

4. If TsProxyAuthorizeTunnel fails, go to step 6.

5. On successful completion of TsProxyAuthorizeTunnel, the TSG client MUST call
TsProxyCreateChannel.

6. End of processing re-authentication message.

Other than the above, no other special message processing is required on the TSG client beyond the

processing required in the underlying RPC protocol, as specified in [MS-RPCE].

3.2.5 Timer Events

None.

3.2.5.1 Idle Timeout Timer

If the Idle Timeout Timer expires, the TSG client SHOULD end the protocol.

3.2.6 Other Local Events

Whenever there is a change in the TSG client computer's health, NAPSO informs the TSG client.
However, because the TSG client does not process the change, this does not result in an exchange
of data between the TSG client and the TSG server.

3.3 Data Representation forTsProxySetupReceivePipe and TsProxySendToServer

NDR64 specifies a method to package the data before sending it on the wire. For improved
performance, TsProxySetupReceivePipe and TsProxySendToServer deviate from the [C706]
specification of the Network Data Representation. This section documents how these two calls

http://go.microsoft.com/fwlink/?LinkId=89824

81 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

bypass NDR64 and how the data is represented on the wire. For more information about NDR64, see
[MS-RPCE] section 2.2.5.

In the case of TsProxySetupReceivePipe and TsProxySendToServer, the Stub Data is not
encoded using NDR64, instead it is sent over the wire as it is. Verification Trailer ([MS-RPCE] section

2.2.2.13) is also not passed with the Stub Data.

TsProxySetupReceivePipe and TsProxySendToServer modify the RPC Stub Data. Other
elements, represented in the below table, are not modified.

Elements that are not modified:

Ethernet

IPv4

IPv6

TCP

HTTP

RPC

RPC Stub Data

RPC

3.3.1 TsProxySendToServer Request

The wire representation of the Stub Data in case of a TsProxySendToServer request is defined as
follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Context Handle

...

...

...

...

Total Bytes

Number of Buffers

Buffer1 Length

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

82 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Buffer2 Length (optional)

Buffer3 Length (optional)

Buffer1 (variable)

...

Buffer2 (variable)

...

Buffer3 (variable)

...

Context Handle (20 bytes): This field MUST be set to the context handle returned by a call to
the TsProxyCreateChannel call. This context handle MUST be aligned to the 4-byte
boundary.

Total Bytes (4 bytes): This field MUST be set to sum total of sizes of all the buffers and 4
bytes for each buffer. This is represented in the network byte order.

Number of Buffers (4 bytes): This field MUST be set to the total number of buffers. This
MUST not exceed 0x00000003. This is represented in the network byte order.

Buffer1 Length (4 bytes): This field MUST be set to the length of the first buffer. This is
represented in the network byte order

Buffer2 Length (4 bytes): This field MUST be set to the length of the first buffer. This is

represented in the network byte order. If the Number of Buffers is set to 0x00000002 or
0x00000003, then this field is sent.

Buffer3 Length (4 bytes): This field MUST be set to the length of the first buffer. This is
represented in the network byte order. If the Number of Buffers is set to 0x00000003, then
this field is sent.

Buffer1 (variable): This field MUST contain the data corresponding to first buffer.

Buffer2 (variable): This field MUST contain the data corresponding to second buffer.

Buffer3 (variable): This field MUST contain the data corresponding to the third buffer.

3.3.2 TsProxySendToServer Response

The following is the response sent to the client.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

ReturnValue

83 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

ReturnValue (4 bytes): Must be set to the return value of the TsProxySendToServer call.

3.3.3 TsProxySetupReceivePipe Request

The wire representation of the Stub Data in case of TsProxySetupReceivePipe request is as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Context Handle

...

...

...

...

Context Handle (20 bytes): Must be set to the context handle returned by a call to the
TsProxyCreateChannel call. This context handle must be aligned to the 4-byte boundary.

3.3.4 TsProxySetupReceivePipe Response

There can be multiple responses to the TsProxySetupReceivePipe call. Except for the last response,
specified in section 3.3.5, the following is the representation of the Stub Data for all other
responses.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Data (variable)

...

Data (variable): Must be set to the data to be sent to the TSG client. The size of this data is in
the RPC header alloc_hint field specified in [C706].

3.3.5 TsProxySetupReceivePipe Final Response

The following represents the Stub data for the TsProxySetupReceivePipe call. For the final response
PDU, the PFC_LAST_FRAG bit MUST be set in the pfc_flags field of the RPC response PDU.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

ReturnValue

ReturnValue (4 bytes): Must be set to the return value of the call.

http://go.microsoft.com/fwlink/?LinkId=89824

84 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4 Protocol Examples

4.1 Normal Scenario

1. Initialization

The TSG client obtains the name of a TSG server by using an out-of-band mechanism. The TSG
client establishes a binding handle (a binding handle is specified in [C706] section 2.1) to the
TSG server at the well-known endpoint of 443 and 3388.

2. The TSG server performs the authentication steps specified in section 2.1.

3. TSGU Protocol

The TSG client then calls the TsProxyCreateTunnel method to create and obtain the tunnel
context handle. As part of this call, the client sends current version capabilities to the server.

4. The TSG server receives the TsProxyCreateTunnel method. The TSG server authenticates the

TSG client and uses policies to determine if the TSG client is allowed access to create a tunnel.
The TSG server then creates a context handle to represent the tunnel and returns this to the TSG
client. The server response includes the common capabilities of both the client and the server.

5. The TSG client makes the TsProxyAuthorizeTunnel method call using the tunnel context
handle, optionally passing its health statement.

6. The TSG server receives TsProxyAuthorizeTunnel method call and verifies the tunnel context
handle. The TSG server also performs RPC's verification and uses NAP policies to determine if the
client is healthy. Assuming the TSG client is healthy, the TSG server returns success.

7. If both the client and the server are capable of handling administrative messages, the client can

request for administrative message by making the TsProxyMakeTunnelCall method. This call is
queued up on the server and is completed only when the said messages are available.

8. The TSG client makes the TsProxyCreateChannel method call using the tunnel context handle.

The TSG client passes the target server information to the TSG server and obtains the channel
context handle from the TSG server.

9. The TSG server receives the TsProxyCreateChannel method and determines, based on the NAP
policy, if the TSG client is allowed to connect to the target server. If the connection is allowed,

the TSG server creates a context handle to represent the channel and returns this to the TSG
client.

10.The TSG client makes the TsProxySetupReceivePipe method call.

11.The TSG server receives the TsProxySetupReceivePipe method and creates an RPC out pipe.
The TSG server can now send data on the pipe.

12.The TSG client and TSG server start sending and receiving data from this point.

13.The TSG client makes the TsProxyCloseChannel method call to close the channel.

14.The TSG server receives the TsProxyCloseChannel method and correctly closes the channel.

15.The TSG client then makes the TsProxyCloseTunnel method call to end the connection.

16.The TSG server receives the TsProxyCloseTunnel method and destroys the client connection.

http://go.microsoft.com/fwlink/?LinkId=89828

85 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

For example, the client calls the TsProxyCreateTunnel method on a server named
"fourthcoffee.example.com".

Example for the TsProxyCreateTunnel method:

HRESULT = {to be filled in by server}

TsProxyCreateTunnel(

 [in, ref] PTSG_PACKET tsgPacket;

 [out, ref] PTSG_PACKET* tsgPacketResponse =

 {to be filled in by server};

 [out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* tunnelContext =

 {to be filled in by server,

 and saved as m_tunnelcontext by client};

 [out] unsigned long* tunnelid =

 {to be filled in by server and saved as m_tunnelid by client};

);

Where TSG_PACKET is set as follows.

typedef struct _TSG_PACKET

{

 unsigned long packetId = TSG_PACKET_TYPE_VERSIONCAPS;

 TSG_PACKET_TYPE_UNION tsgPacket {= packetVersionCaps};

} TSG_PACKET;

Where TSG_PACKET_VERSIONCAPS is filled in as follows.

typedef struct _TSG_PACKET_VERSIONCAPS

{

 TSG_PACKET_HEADER tsgHeader

 {

 ComponentId = 0x5452;

 PacketId = {unused};

 }

 PTSG_PACKET_CAPABILITIES tsgCaps

 {

 capabilityType = 1;

 tsgPacket.tsgCapNap = {1};

 }

 unsigned long numCapabilities = 1;

 unsigned short majorVersion = 1;

 unsigned short minorVersion = 1;

 unsigned short quarantineCapabilities = 0;

} TSG_PACKET_VERSIONCAPS;

The TSG server receives this method and returns the following.

HRESULT = S_OK

TsProxyCreateTunnel(

 [in, ref] PTSG_PACKET tsgPacket = {unchanged};

 [out, ref] PTSG_PACKET* tsgPacketResponse = =

 {filled in as shown below};

 [out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* tunnelContext =

 pContextHandleObject;

86 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 [out] unsigned long* tunnelId = 1;

);

Where TSG_PACKET_RESPONSE is set as follows.

typedef struct _TSG_PACKET

{

 unsigned long packetId = TSG_PACKET_TYPE_QUARENC_RESPONSE;

 TSG_PACKET_TYPE_UNION tsgPacket {= packetQuarEncResponse};

} TSG_PACKET;

Where the TSG_PACKET_QUARENC_RESPONSE is set as follows.

typedef struct _TSG_PACKET_QUARENC_RESPONSE

{

 unsigned long flags = 0;

 unsigned long certChainLen = {number of characters in certChainData};

 wchar_t* certChainData = {certificate chain data};

 GUID nonce = CreateGuid();

 PTSG_PACKET_VERSIONCAPS versionCaps

 {

 TSG_PACKET_HEADER tsgHeader

 {

 ComponentId = 0x5452;

 PacketId = TSG_PACKET_TYPE_VERSIONCAPS;

 }

 PTSG_PACKET_CAPABILITIES tsgCaps

 {

 capabilityType = 1;

 tsgPacket.tsgCapNap = {1};

 }

 unsigned long numCapabilities = 1;

 unsigned short majorVersion = 1;

 unsigned short minorVersion = 1;

 unsigned short quarantineCapabilities = 0;

 }

} TSG_PACKET_QUARENC_RESPONSE;

Example for TsProxyAuthorizeTunnel method.

HRESULT = {to be filled in by server}

TsProxyAuthorizeTunnel(

 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext =

 m_tunnelcontext;

 [in, ref] PTSG_PACKET tsgPacket;

 [out, ref] PTSG_PACKET* tsgPacketResponse =

 { to be filled in by server};

);

Where TSG_PACKET is set as follows.

87 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

typedef struct _TSG_PACKET

{

 unsigned long packetId = TSG_PACKET_TYPE_QUARREQUEST;

 TSG_PACKET_TYPE_UNION tsgPacket

 {=PTSG_PACKET_QUARREQUEST packetQuarRequest};

} TSG_PACKET;

Where the TSG_PACKET_QUARREQUEST is set as follows.

typedef struct _TSG_PACKET_QUARREQUEST

{

 unsigned long flags = 0;

 wchar_t* machineName = "mymachine";

 unsigned long nameLength = 10;

 byte *data = {statement of health prefixed with Nonce, which is received in response to

TsProxyCreateTunnel};

 unsigned long dataLen = {Number of bytes in the data field};

} TSG_PACKET_QUARREQUEST;

The TSG server receives this method and returns the following.

HRESULT = S_OK

TsProxyAuthorizeTunnel(

 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext = unchanged;

 [in, ref] PTSG_PACKET tsgPacket = unchanged;

 [out, ref] PTSG_PACKET* tsgPacketResponse= filled in as below;

);

Where the TSG_PACKET_RESPONSE is set as follows.

typedef struct _TSG_PACKET

{

 unsigned long packetId = TSG_PACKET_TYPE_RESPONSE;

 TSG_PACKET_TYPE_UNION tsgPacket

 {=PTSG_PACKET_RESPONSE packetResponse};

} TSG_PACKET;

Where the packetResponse is set as follows.

typedef struct _TSG_PACKET_RESPONSE

{

 unsigned long flags = TSG_PACKET_TYPE_QUARREQUEST;

 unsigned long reserved = 0;

 byte *responseData = NULL;

 unsigned long responseDataLen = 0;

 TSG_REDIRECTION_FLAGS redirectionFlags = {0,0,0,0,0,0,0,0};

} TSG_PACKET_RESPONSE;

Example for the TsProxyMakeTunnelCall method.

HRESULT = {to be filled in by server}

TsProxyMakeTunnelCall(

88 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext = m_tunnelcontext;

 [in] unsigned long procId,

 [in, ref] PTSG_PACKET tsgPacket,

 [out, ref] PTSG_PACKET* tsgPacketResponse = { to be filled in by server }

);

Where the procId and tsgPacket are set as follows.

procId = TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST = 0x1

typedef struct _TSG_PACKET

{

 unsigned long packetId = TSG_PACKET_TYPE_MSGREQUEST_PACKET;

 TSG_PACKET_TYPE_UNION tsgPacket

 {=PTSG_PACKET_MSG_REQUEST packetMsgRequest};

} TSG_PACKET;

Where the TSG_PACKET_MSG_REQUEST is set as follows.

typedef struct _TSG_PACKET_MSG_REQUEST

 {

 unsigned long maxMessagesPerBatch = 1;

 } TSG_PACKET_MSG_REQUEST;

The TSG server receives this method and returns:

HRESULT = S_OK

TsProxyMakeTunnelCall(

 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext = unchanged;

 [in] unsigned long procId = unchanged,

 [in, ref] PTSG_PACKET tsgPacket = unchanged,

 [out, ref] PTSG_PACKET* tsgPacketResponse = { filled in as below }

);

Where the TSG_PACKET_RESPONSE is set as follows.

typedef struct _TSG_PACKET

{

 unsigned long packetId = TSG_PACKET_TYPE_MESSAGE_PACKET;

 TSG_PACKET_TYPE_UNION tsgPacket

 {=PTSG_PACKET_MSG_RESPONSE packetMsgResponse};

} TSG_PACKET;

Where the packetMsgResponse is set as follows.

typedef struct _TSG_PACKET_MSG_RESPONSE

 {

89 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 unsigned long msgID = 1;

 unsigned long msgType = TSG_ASYNC_MESSAGE_SERVICE_MESSAGE = 2;

 long isMsgPresent = 1;

 [switch_is(msgType)] TSG_PACKET_TYPE_MESSAGE_UNION messagePacket;

 } TSG_PACKET_MSG_RESPONSE;

Where the messagePacket is set as follows.

typedef [switch_type(unsigned long)] union

 {

 [case (TSG_ASYNC_MESSAGE_CONSENT_MESSAGE)]

 PTSG_PACKET_STRING_MESSAGE consentMessage;

 [case (TSG_ASYNC_MESSAGE_SERVICE_MESSAGE)]

 PTSG_PACKET_STRING_MESSAGE serviceMessage;

 [case (TSG_ASYNC_MESSAGE_REAUTH)]

 PTSG_PACKET_REAUTH_MESSAGE reauthMessage;

 } TSG_PACKET_TYPE_MESSAGE_UNION;

Where the servicemessage is set as follows.

typedef struct _TSG_PACKET_STRING_MESSAGE

 {

 long isDisplayMandatory = 1;

 long isConsentMandatory = 1;

 [range(0, 65536)] unsigned long msgBytes = 4;

 [size_is(msgBytes)] wchar_t* msgBuffer = "Test";

 } TSG_PACKET_STRING_MESSAGE;

Example for the TsProxyCreateChannel method.

HRESULT = {to be filled in by server}

TsProxyCreateChannel(

 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext =

 m_tunnelcontext;

 [in, ref] PTSENDPOINTINFO tsEndPointInfo;

 [out] PCHANNEL_CONTEXT_HANDLE_SERIALIZE* channelContext =

 { to be filled in by server};

 [out] unsigned long* channelId = { to be filled in by server};

);

Where the tsEndPointInfo is set as follows.

typedef struct _tsendpointinfo

{

 RESOURCENAME *resourceNames = "myTsMachine";

 unsigned long numResourceNames = 1;

 RESOURCENAME *alternateResourceNames = NULL;

 unsigned short numAlternateResourceNames = 0;

 unsigned long Port = 222101507;

90 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

}TSENDPOINTINFO;

The TSG server receives this method and returns:

HRESULT = S_OK

TsProxyCreateChannel(

 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext = unchanged;

 [in, ref] PTSENDPOINTINFO tsEndPointInfo = unchanged;

 [out] PCHANNEL_CONTEXT_HANDLE_SERIALIZE* channelContext =

 pServerChannelContextHandle;

 [out] unsigned long* channelId = 1;

);

Example for the TsProxySendToServer method.

DWORD = {to be filled in by server}

TsProxySendToServer(

 [in] TSG_SEND_MESSAGE_tsgSendMessage;

);

Where the Generic Send Data Message Packet is as follows.

 m_channelContextHandle = {00 00 00 00 36 41 18

 41 dd 2d 84 43 83 63 82 cc b6 ea f3 f9 };

typedef struct _TSG_SEND_MESSAGE

{

 PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE m_channelContextHandle; //as above

 DWORD totalDataLength = 0x00000008; //buffer1Length+sizeof(buffer1Length)

 DWORD numBuffers = 0x00000001; //number of buffers that follow is 1

 DWORD buffer1Length=0x04; //length of data that follows is 4 bytes

 PBYTE buffer1 = {04,00,00,03}; //data of 4 bytes

} TSG_SEND_MESSAGE;

The TSG server receives this method, verifies m_channelContextHandle, and sends the
buffer1Length of buffer1 to the target server and returns the following.

DWORD = ERROR_SUCCESS

TsProxySendToServer (

 [in] TSG_SEND_MESSAGE_tsgSendMessage = unchanged;

);

Example for the TsProxySetupReceivePipe method.

DWORD = {to be filled in by server}

TsProxySetupReceivePipe (

 [in, max_is(32767)] byte pRpcMessage[]

);

91 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Where an example value of pRpcMessage is as follows.

{

00 00 00 00 EC EC 2E 7D DB E2 E3 4A AE 61 A3 51 DC 53 55 61

}

The TSG server receives this method, sets up the out pipe, streams all necessary data to the TSG

client in RPC response PDUs without setting the PFC_LAST_FRAG bit in the pfc_flags field, and
when the TSG client calls TsProxyCloseChannel or calls TsProxyCloseTunnel without calling
TsProxyCloseChannel, it returns the following return code in an RPC response PDU with
PFC_LAST_FRAG bit set in the pfc_flags field.

DWORD = ERROR_GRACEFUL_DISCONNECT

TsProxySetupReceivePipe (

 [in, max_is(32767)] byte pRpcMessage[] = unchanged

);

Example for the TsProxyCloseChannel method.

HRESULT = {to be filled in by server}

TsProxyCloseChannel (

 [in, out] PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE* context =

 m_channelContext;

);

The TSG server receives this method and returns:

HRESULT = S_OK

TsProxyCloseChannel(

 [in, out] PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE* context = NULL;

);

Example for the TsProxyCloseTunnel method.

HRESULT = {to be filled in by server}

TsProxyCloseTunnel (

 [in, out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* context =

 m_tunnelContext;

);

The TSG server receives this method and returns:

HRESULT = S_OK

TsProxyCloseTunnel(

 [in, out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* context = NULL;

92 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

);

4.2 Pluggable Authentication Scenario with Consent Message Returned

The TSG client obtains the name of a TSG server by using an out-of-band mechanism. The TSG

client also obtains the cookie required for authenticating the user on the server by an out-of-
band mechanism. The TSG client establishes a binding handle (a binding handle is specified in
[C706] section 2.1) to the TSG server at the well-known endpoint of 443 and 3388. The TSG
client then calls the TsProxyCreateTunnel method to create and obtain the tunnel context
handle. It may be noted that at this point in time, the connection is unauthenticated. The TSG

server then authenticates the user using the cookie that is passed in. As part of this call, the
client sends current version capabilities to the server.

The rest of the call flow is identical to what is specified in section 4.1.

For example, the client calls the TsProxyCreateTunnel method on a server named

"fourthcoffee.example.com". The cookie content "Test" is used for authenticating the user. The
Consent Message "Accept" is returned.

Example for the TsProxyCreateTunnel method:

HRESULT = {to be filled in by server}

TsProxyCreateTunnel(

 [in, ref] PTSG_PACKET tsgPacket;

 [out, ref] PTSG_PACKET* tsgPacketResponse =

 {to be filled in by server};

 [out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* tunnelContext =

 {to be filled in by server,

 and saved as m_tunnelcontext by client};

 [out] unsigned long* tunnelid =

 {to be filled in by server and saved as m_tunnelid by client};

);

Where TSG_PACKET is set as follows.

typedef struct _TSG_PACKET

{

 unsigned long packetId = TSG_PACKET_TYPE_AUTH;

 TSG_PACKET_TYPE_UNION tsgPacket {= packetAuth};

} TSG_PACKET;

Where TSG_PACKET_AUTH is filled in as follows.

typedef struct _TSG_PACKET_AUTH

 {

 TSG_PACKET_VERSIONCAPS tsgVersionCaps;

 [range(0, 65536)]unsigned long cookieLen = 4;

 [size_is(cookieLen)]byte* cookie = "Test";

 } TSG_PACKET_AUTH;

http://go.microsoft.com/fwlink/?LinkId=89828

93 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Where TSG_PACKET_VERSIONCAPS is filled in as follows.

typedef struct _TSG_PACKET_VERSIONCAPS

{

 TSG_PACKET_HEADER tsgHeader

 {

 ComponentId = 0x5452;

 PacketId = TSG_PACKET_TYPE_VERSIONCAPS;

 }

 PTSG_PACKET_CAPABILITIES tsgCaps

 {

 capabilityType = 1;

 tsgPacket.tsgCapNap = {1};

 }

 unsigned long numCapabilities = 1;

 unsigned short majorVersion = 1;

 unsigned short minorVersion = 1;

 unsigned short quarantineCapabilities = 0;

} TSG_PACKET_VERSIONCAPS;

The TSG server receives this method and returns the following.

HRESULT = S_OK

TsProxyCreateTunnel(

 [in, ref] PTSG_PACKET tsgPacket = {unchanged};

 [out, ref] PTSG_PACKET* tsgPacketResponse = =

 {filled in as shown below};

 [out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* tunnelContext =

 pContextHandleObject;

 [out] unsigned long* tunnelId = 1;

);

Where TSG_PACKET_RESPONSE is set as follows.

typedef struct _TSG_PACKET

{

 unsigned long packetId = TSG_PACKET_TYPE_CAPS_RESPONSE;

 TSG_PACKET_TYPE_UNION tsgPacket {= packetCapsResponse};

} TSG_PACKET;

Where the TSG_PACKET_CAPS_RESPONSE is set as follows.

typedef struct _TSG_PACKET_CAPS_RESPONSE

 {

 TSG_PACKET_QUARENC_RESPONSE pktQuarEncResponse;

 TSG_PACKET_MSG_RESPONSE pktConsentMessage;

 } TSG_PACKET_CAPS_RESPONSE;

Where the TSG_PACKET_QUARENC_RESPONSE is set as follows.

94 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

typedef struct _TSG_PACKET_QUARENC_RESPONSE

{

 unsigned long flags = 0;

 unsigned long certChainLen = 0;

 wchar_t* certChainData = "";

 GUID nonce = CreateGuid();

 PTSG_PACKET_VERSIONCAPS versionCaps

 {

 TSG_PACKET_HEADER tsgHeader

 {

 ComponentId = 0x5452;

 PacketId = TSG_PACKET_TYPE_VERSIONCAPS;

 }

 PTSG_PACKET_CAPABILITIES tsgCaps

 {

 capabilityType = 1;

 tsgPacket.tsgCapNap = {1};

 }

 unsigned long numCapabilities = 1;

 unsigned short majorVersion = 1;

 unsigned short minorVersion = 1;

 unsigned short quarantineCapabilities = 0;

 }

} TSG_PACKET_QUARENC_RESPONSE;

Where the TSG_PACKET_MSG_RESPONSE is set as follows.

 typedef struct _TSG_PACKET_MSG_RESPONSE

 {

 unsigned long msgID = 1;

 unsigned long msgType = TSG_ASYNC_MESSAGE_CONSENT_MESSAGE = 1;

 long isMsgPresent = 1;

 [switch_is(msgType)] TSG_PACKET_TYPE_MESSAGE_UNION messagePacket;

 } TSG_PACKET_MSG_RESPONSE;

Where the msgPacket is set as follows.

typedef [switch_type(unsigned long)] union

 {

 [case (TSG_ASYNC_MESSAGE_CONSENT_MESSAGE)]

PTSG_PACKET_STRING_MESSAGE consentMessage;

 [case (TSG_ASYNC_MESSAGE_SERVICE_MESSAGE)]

PTSG_PACKET_STRING_MESSAGE serviceMessage;

 [case (TSG_ASYNC_MESSAGE_REAUTH)]

PTSG_PACKET_REAUTH_MESSAGE reauthMessage;

 } TSG_PACKET_TYPE_MESSAGE_UNION;

Where the consentMessage is set as follows.

typedef struct _TSG_PACKET_STRING_MESSAGE

 {

 long isDisplayMandatory = 1;

95 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 long isConsentMandatory = 1;

 [range(0, 65536)] unsigned long msgBytes = 7;

 [size_is(msgBytes)] wchar_t* msgBuffer = "Accept";

 } TSG_PACKET_STRING_MESSAGE;

4.3 Reauthentication

Reauthentication is possible only if both the client and the server have the capability to handle

the same. This capability is found out during the capability exchange during tunnel creation. This

capability is based on capability to support Service Messages. As noted in section 4.1, a message
request is queued up on the server using the TsProxyMakeTunnelCall method. The following
sequence of calls takes place when the server expects the client to reauthenticate.

The server completes the pending call. In the message type, it specifies that reauthentication is

required. It also passes in the specific tunnel context so that when the client actually
reauthenticates, the server can find out which client is doing the same.

The client follows the steps 1, 2, 3, 4, 6, and 7 as specified in section 4.1. Only the initial packet

is different, because it contains the tunnel context information that was passed back by the
server.

The TSG server completes the pending TsProxyMakeTunnel calls as follows.

HRESULT = S_OK

TsProxyMakeTunnelCall(

 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext = unchanged;

 [in] unsigned long procId = unchanged,

 [in, ref] PTSG_PACKET tsgPacket = unchanged,

 [out, ref] PTSG_PACKET* tsgPacketResponse = { filled in as below }

);

Where the TSG_PACKET_RESPONSE is set as follows.

typedef struct _TSG_PACKET

{

 unsigned long packetId = TSG_PACKET_TYPE_MESSAGE_PACKET;

 TSG_PACKET_TYPE_UNION tsgPacket

 {=PTSG_PACKET_MSG_RESPONSE packetMsgResponse};

} TSG_PACKET;

Where the packetMsgResponse is set as follows.

typedef struct _TSG_PACKET_MSG_RESPONSE

 {

 unsigned long msgID = 1;

 unsigned long msgType = TSG_ASYNC_MESSAGE_REAUTH = 3;

 long isMsgPresent = 1;

 [switch_is(msgType)] TSG_PACKET_TYPE_MESSAGE_UNION messagePacket;

 } TSG_PACKET_MSG_RESPONSE;

96 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Where the messagePacket is set as follows.

typedef [switch_type(unsigned long)] union

 {

 [case (TSG_ASYNC_MESSAGE_CONSENT_MESSAGE)]

PTSG_PACKET_STRING_MESSAGE consentMessage;

 [case (TSG_ASYNC_MESSAGE_SERVICE_MESSAGE)]

PTSG_PACKET_STRING_MESSAGE serviceMessage;

 [case (TSG_ASYNC_MESSAGE_REAUTH)]

PTSG_PACKET_REAUTH_MESSAGE reauthMessage;

 } TSG_PACKET_TYPE_MESSAGE_UNION;

Where the reauthPacket is set as follows.

typedef struct _TSG_PACKET_REAUTH_MESSAGE

 {

 __int64 tunnelContext = 0x00123456;

 } TSG_PACKET_REAUTH_MESSAGE, *PTSG_PACKET_REAUTH_MESSAGE;

The client responds with the following call.

HRESULT = {to be filled in by server}

TsProxyCreateTunnel(

 [in, ref] PTSG_PACKET tsgPacket;

 [out, ref] PTSG_PACKET* tsgPacketResponse =

 {to be filled in by server};

 [out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* tunnelContext =

 {to be filled in by server,

 and saved as m_tunnelcontext by client};

 [out] unsigned long* tunnelid =

 {to be filled in by server and saved as m_tunnelid by client};

);

Where TSG_PACKET is set as follows.

typedef struct _TSG_PACKET

{

 unsigned long packetId = TSG_PACKET_TYPE_REAUTH;

 TSG_PACKET_TYPE_UNION tsgPacket {= packetReauth};

} TSG_PACKET;

Where packetReauth is set as follows.

typedef struct _TSG_PACKET_REAUTH

 {

 __int64 tunnelContext = 0x00123456;

 unsigned long packetId = 0x5250;

 [switch_is(packetId)] TSG_INITIAL_PACKET_TYPE_UNION tsgInitialPacket;

 } TSG_PACKET_REAUTH, *PTSG_PACKET_REAUTH;

97 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Where tsgInitialPacket is set as follows.

typedef [switch_type(unsigned long)] union

 {

 [case (TSG_PACKET_TYPE_VERSIONCAPS)]

 PTSG_PACKET_VERSIONCAPS packetVersionCaps;

 [case (TSG_PACKET_TYPE_AUTH)]

 PTSG_PACKET_AUTH packetAuth;

 } TSG_INITIAL_PACKET_TYPE_UNION;

Where TSG_PACKET_VERSIONCAPS is filled in as follows.

packetVersionCaps has been specified in section 4.1 and packetAuth in section 4.2.

98 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

5 Security

The following sections specify security considerations for implementers of the Terminal Services
Gateway Server Protocol and an index of security parameters.

5.1 Security Considerations for Implementers

Authenticated RPC should be used by this protocol, as specified in [C706] section 13.

The TSG server should audit all tunnel and channel connections to the target server. The TSG server
should have policies that determine which TSG clients are allowed to connect and which

authentication service they use. A two-factor authentication should be required due to the nature of
the deployment for this protocol, which is typically at the neutral zone. The TSG server should have
policies that determine which TSG clients are allowed to connect to which target servers.
Deployments should also consider having a front-end security mechanism such as an outside firewall
before allowing connections to the TSG server.

During the TsProxyCreateTunnel, the TSG server sends a nonce represented by a GUID to

uniquely identify the connection to prevent statement of health (SoH) replay attacks. The TSG client

MUST send this GUID if it sends the statement of health, as specified in section 2.2.3.2.1.4.

5.2 Index of Security Parameters

Security parameter Section

Authentication service settings 2.1

http://go.microsoft.com/fwlink/?LinkId=89826
http://go.microsoft.com/fwlink/?LinkId=89826

99 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided below, where "ms-dtyp.idl" is the IDL as
specified in [MS-DTYP] Appendix A.

import "ms-dtyp.idl";

[

 uuid(44e265dd-7daf-42cd-8560-3cdb6e7a2729),

 version(1.3),

 pointer_default(unique)

]

interface TsProxyRpcInterface

{

 typedef [context_handle] void*

 PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE;

 typedef [context_handle] void*

 PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE;

 typedef [context_handle]

 PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE

 PTUNNEL_CONTEXT_HANDLE_SERIALIZE;

 typedef [context_handle]

 PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE

 PCHANNEL_CONTEXT_HANDLE_SERIALIZE;

 typedef [string] wchar_t* RESOURCENAME;

#define MAX_RESOURCE_NAMES 50

 typedef struct _tsendpointinfo {

 [size_is(numResourceNames)] RESOURCENAME* resourceName;

 [range(0, MAX_RESOURCE_NAMES)]

 unsigned long numResourceNames;

 [unique, size_is(numAlternateResourceNames)]

 RESOURCENAME* alternateResourceNames;

 [range(0, 3)]

 unsigned short numAlternateResourceNames;

 unsigned long Port;

 } TSENDPOINTINFO,

 *PTSENDPOINTINFO;

#define TSG_PACKET_TYPE_HEADER 0x00004844

#define TSG_PACKET_TYPE_VERSIONCAPS 0x00005643

#define TSG_PACKET_TYPE_QUARCONFIGREQUEST 0x00005143

#define TSG_PACKET_TYPE_QUARREQUEST 0x00005152

#define TSG_PACKET_TYPE_RESPONSE 0x00005052

#define TSG_PACKET_TYPE_QUARENC_RESPONSE 0x00004552

#define TSG_CAPABILITY_TYPE_NAP 0x00000001

#define TSG_PACKET_TYPE_CAPS_RESPONSE 0x00004350

#define TSG_PACKET_TYPE_MSGREQUEST_PACKET 0x00004752

#define TSG_PACKET_TYPE_MESSAGE_PACKET 0x00004750

#define TSG_PACKET_TYPE_AUTH 0x00004054

#define TSG_PACKET_TYPE_REAUTH 0x00005250

%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

100 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

#define TSG_ASYNC_MESSAGE_CONSENT_MESSAGE 0x00000001

#define TSG_ASYNC_MESSAGE_SERVICE_MESSAGE 0x00000002

#define TSG_ASYNC_MESSAGE_REAUTH 0x00000003

#define TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST 0x00000001

#define TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST 0x00000002

 typedef struct _TSG_PACKET_HEADER {

 unsigned short ComponentId;

 unsigned short PacketId;

 } TSG_PACKET_HEADER,

 *PTSG_PACKET_HEADER;

 typedef struct _TSG_CAPABILITY_NAP{

 unsigned long capabilities;

 } TSG_CAPABILITY_NAP,

 *PTSG_CAPABILITY_NAP;

 typedef [switch_type(unsigned long)] union {

 [case (TSG_CAPABILITY_TYPE_NAP)]

 TSG_CAPABILITY_NAP tsgCapNap;

 } TSG_CAPABILITIES_UNION,

 *PTSG_CAPABILITIES_UNION;

 typedef struct _TSG_PACKET_CAPABILITIES {

 unsigned long capabilityType;

 [switch_is(capabilityType)]

 TSG_CAPABILITIES_UNION tsgPacket;

 } TSG_PACKET_CAPABILITIES,

 *PTSG_PACKET_CAPABILITIES;

 typedef struct _TSG_PACKET_VERSIONCAPS {

 TSG_PACKET_HEADER tsgHeader;

 [size_is(numCapabilities)]

 PTSG_PACKET_CAPABILITIES tsgCaps;

 [range(0, 32)] unsigned long numCapabilities;

 unsigned short majorVersion;

 unsigned short minorVersion;

 unsigned short quarantineCapabilities;

 } TSG_PACKET_VERSIONCAPS,

 *PTSG_PACKET_VERSIONCAPS;

 typedef struct _TSG_PACKET_QUARCONFIGREQUEST {

 unsigned long flags;

 } TSG_PACKET_QUARCONFIGREQUEST,

 *PTSG_PACKET_QUARCONFIGREQUEST;

 typedef struct _TSG_PACKET_QUARREQUEST {

 unsigned long flags;

 [string, size_is(nameLength)] wchar_t* machineName;

 [range(0, 512 + 1)] unsigned long nameLength;

 [unique, size_is(dataLen)] byte* data;

 [range(0, 8000)] unsigned long dataLen;

 } TSG_PACKET_QUARREQUEST,

 *PTSG_PACKET_QUARREQUEST;

 typedef struct _TSG_REDIRECTION_FLAGS {

 BOOL enableAllRedirections;

101 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 BOOL disableAllRedirections;

 BOOL driveRedirectionDisabled;

 BOOL printerRedirectionDisabled;

 BOOL portRedirectionDisabled;

 BOOL reserved;

 BOOL clipboardRedirectionDisabled;

 BOOL pnpRedirectionDisabled;

 } TSG_REDIRECTION_FLAGS,

 *PTSG_REDIRECTION_FLAGS;

 typedef struct _TSG_PACKET_RESPONSE {

 unsigned long flags;

 unsigned long reserved;

 [size_is(responseDataLen)] byte* responseData;

 [range(0, 24000)] unsigned long responseDataLen;

 TSG_REDIRECTION_FLAGS redirectionFlags;

 } TSG_PACKET_RESPONSE,

 *PTSG_PACKET_RESPONSE;

 typedef struct _TSG_PACKET_QUARENC_RESPONSE {

 unsigned long flags;

 [range(0, 24000)] unsigned long certChainLen;

 [string, size_is(certChainLen)] wchar_t* certChainData;

 GUID nonce;

 PTSG_PACKET_VERSIONCAPS versionCaps;

 } TSG_PACKET_QUARENC_RESPONSE,

 *PTSG_PACKET_QUARENC_RESPONSE;

typedef struct _TSG_PACKET_MSG_REQUEST {

unsigned long maxMessagesPerBatch;

} TSG_PACKET_MSG_REQUEST, *PTSG_PACKET_MSG_REQUEST;

typedef struct _TSG_PACKET_STRING_MESSAGE {

 long isDisplayMandatory;

 long isConsentMandatory;

 [range(0,65536)] unsigned long msgBytes;

 [size_is(msgBytes)] wchar_t* msgBuffer;

} TSG_PACKET_STRING_MESSAGE,

 *PTSG_PACKET_STRING_MESSAGE;

typedef struct _TSG_PACKET_REAUTH_MESSAGE {

unsigned __int64 tunnelContext;

} TSG_PACKET_REAUTH_MESSAGE, *PTSG_PACKET_REAUTH_MESSAGE;

typedef

[switch_type(unsigned long)]

union {

 [case(TSG_ASYNC_MESSAGE_CONSENT_MESSAGE)]

PTSG_PACKET_STRING_MESSAGE consentMessage;

 [case(TSG_ASYNC_MESSAGE_SERVICE_MESSAGE)]

PTSG_PACKET_STRING_MESSAGE serviceMessage;

 [case(TSG_ASYNC_MESSAGE_REAUTH)]

PTSG_PACKET_REAUTH_MESSAGE reauthMessage;

} TSG_PACKET_TYPE_MESSAGE_UNION,

 *PTSG_PACKET_TYPE_MESSAGE_UNION ;

typedef struct _TSG_PACKET_MSG_RESPONSE {

unsigned long msgID;

102 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

unsigned long msgType;

long isMsgPresent;

[switch_is(msgType)] TSG_PACKET_TYPE_MESSAGE_UNION messagePacket;

} TSG_PACKET_MSG_RESPONSE,

*PTSG_PACKET_MSG_RESPONSE;

typedef struct _TSG_PACKET_CAPS_RESPONSE {

TSG_PACKET_QUARENC_RESPONSE pktQuarEncResponse;

TSG_PACKET_MSG_RESPONSE pktConsentMessage;

} TSG_PACKET_CAPS_RESPONSE, *PTSG_PACKET_CAPS_RESPONSE;

typedef struct _TSG_PACKET_AUTH {

 TSG_PACKET_VERSIONCAPS tsgVersionCaps;

 [range(0, 65536)] unsigned long cookieLen;

 [size_is(cookieLen)] byte* cookie;

} TSG_PACKET_AUTH, *PTSG_PACKET_AUTH;

typedef

[switch_type(unsigned long)]

union {

 [case(TSG_PACKET_TYPE_VERSIONCAPS)]

PTSG_PACKET_VERSIONCAPS packetVersionCaps;

 [case(TSG_PACKET_TYPE_AUTH)]

PTSG_PACKET_AUTH packetAuth;

} TSG_INITIAL_PACKET_TYPE_UNION,

 *PTSG_INITIAL_PACKET_TYPE_UNION;

typedef struct _TSG_PACKET_REAUTH {

 unsigned __int64 tunnelContext;

 unsigned long packetId;

 [switch_is(packetId)] TSG_INITIAL_PACKET_TYPE_UNION tsgInitialPacket;

} TSG_PACKET_REAUTH,

 *PTSG_PACKET_REAUTH;

typedef [switch_type(unsigned long)] union {

 [case (TSG_PACKET_TYPE_HEADER)]

 PTSG_PACKET_HEADER packetHeader;

 [case (TSG_PACKET_TYPE_VERSIONCAPS)]

 PTSG_PACKET_VERSIONCAPS packetVersionCaps;

 [case (TSG_PACKET_TYPE_QUARCONFIGREQUEST)]

 PTSG_PACKET_QUARCONFIGREQUEST packetQuarConfigRequest;

 [case (TSG_PACKET_TYPE_QUARREQUEST)]

 PTSG_PACKET_QUARREQUEST packetQuarRequest;

 [case (TSG_PACKET_TYPE_RESPONSE)]

 PTSG_PACKET_RESPONSE packetResponse;

 [case (TSG_PACKET_TYPE_QUARENC_RESPONSE)]

 PTSG_PACKET_QUARENC_RESPONSE packetQuarEncResponse;

 [case (TSG_PACKET_TYPE_CAPS_RESPONSE)]

 PTSG_PACKET_CAPS_RESPONSE packetCapsResponse;

 [case (TSG_PACKET_TYPE_MSGREQUEST_PACKET)]

 PTSG_PACKET_MSG_REQUEST packetMsgRequest;

 [case (TSG_PACKET_TYPE_MESSAGE_PACKET)]

 PTSG_PACKET_MSG_RESPONSE packetMsgResponse;

 [case (TSG_PACKET_TYPE_AUTH)]

 PTSG_PACKET_AUTH packetAuth;

 [case (TSG_PACKET_TYPE_REAUTH)]

 PTSG_PACKET_REAUTH packetReauth;

 } TSG_PACKET_TYPE_UNION,

 *PTSG_PACKET_TYPE_UNION;

103 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 typedef struct _TSG_PACKET {

 unsigned long packetId;

 [switch_is(packetId)] TSG_PACKET_TYPE_UNION tsgPacket;

 } TSG_PACKET,

 *PTSG_PACKET;

 void Opnum0NotUsedOnWire(void);

 HRESULT

 TsProxyCreateTunnel(

 [in, ref] PTSG_PACKET tsgPacket,

 [out, ref] PTSG_PACKET* tsgPacketResponse,

 [out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* tunnelContext,

 [out] unsigned long* tunnelId

);

 HRESULT

 TsProxyAuthorizeTunnel(

 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext,

 [in, ref] PTSG_PACKET tsgPacket,

 [out, ref] PTSG_PACKET* tsgPacketResponse

);

 HRESULT

 TsProxyMakeTunnelCall(

 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext,

 [in] unsigned long procId,

 [in, ref] PTSG_PACKET tsgPacket,

 [out, ref] PTSG_PACKET* tsgPacketResponse

);

 HRESULT

 TsProxyCreateChannel(

 [in] PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE tunnelContext,

 [in, ref] PTSENDPOINTINFO tsEndPointInfo ,

 [out] PCHANNEL_CONTEXT_HANDLE_SERIALIZE* channelContext,

 [out] unsigned long* channelId

);

 void Opnum5NotUsedOnWire(void);

 HRESULT

 TsProxyCloseChannel(

 [in, out] PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE* context

);

 HRESULT

 TsProxyCloseTunnel(

 [in, out] PTUNNEL_CONTEXT_HANDLE_SERIALIZE* context

);

//see section 2.2.3.3 for decoding instructions

 DWORD

 TsProxySetupReceivePipe(

 [in, max_is(32767)] byte pRpcMessage[]

);

104 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

//see section 2.2.3.4 for decoding instructions

 DWORD

 TsProxySendToServer(

 [in, max_is(32767)] byte pRpcMessage[]

);

};

105 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows® XP operating system Service Pack 2 (SP2)

Windows Server® 2003 operating system with Service Pack 1 (SP1)

Windows Vista® operating system

Windows Server® 2008 operating system

Windows® 7 operating system

Windows Server® 2008 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number

appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 1.3: The Microsoft RDP client uses the Terminal Services Gateway Server Protocol as a
transport mechanism to establish a connection to a target server behind a firewall. The connection
frequently originates from a client located on the Internet. Terminal Services Gateway Server
Protocol may also be used to connect to an isolated target server from clients located on a different

private network. A Terminal Services Gateway Server Protocol server serves as the termination
point for the tunnel and will relay RDP client data to and from the target server by using the

channel.

<2> Section 2.2.2.19: Only Windows 7 and Windows Server 2008 R2 support Consent Message,
Service Message, Idle Timeout, and Reauthentication.

<3> Section 2.2.2.24: All TSG–supported versions of Windows use the identity of the caller to

perform method-specific access checks. The TSG server allows only authenticated users to call any
method. Windows Server 2008 imposes a minimum impersonation level of
RPC_C_IMPL_LEVEL_IDENTIFY ([MS-RPCE] section 2.2.1.1.9) on all method calls. If the TSG server
is operating in a load-balanced environment, Windows Server 2008 registers for the hostname, not
IPv4/IPv6 addresses. Windows Server 2008 registers for RPC_C_AUTHN_GSS_SCHANNEL
Authentication Service (AS) using the same certificate that is set for HTTPS communications on the
machine.

<4> Section 2.2.2.24: Windows Server 2008 does not attempt to connect to the target server
during the TsProxyCreateChannel call. The actual connection to the target server happens during the

call to TsProxySetupReceivePipe.

<5> Section 2.2.2.24: The Windows Server 2008 R2 Standard Edition implementation limits the
number of connections to 250.

The Windows Server 2008 R2 Foundation Edition implementation limits the number of connections
to 50.

%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

106 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

All other Windows implementations allow an unlimited number of connections.

<6> Section 2.2.2.24: This error is returned only by the Windows Server 2008 TSG server, because

only this version attempts connecting to the target server in the TsProxySetupReceivePipe call.

<7> Section 2.2.2.24: Windows 7 and Windows Server 2008 R2 are capable of exchanging policies

with the TSG server. Windows XP SP2, Windows Server 2003 with SP1, Windows Vista, and
Windows Server 2008 are not capable of exchanging policies with the TSG server.

<8> Section 2.2.3.1: Windows Server 2003 with SP1, Windows XP SP2, and Windows Vista send a
list of IP addresses in the resourceName field and NetBIOS or FQDN names in
alternateResourceNames when it is redirected by the TS session directory.

<9> Section 2.2.3.2.1.2: Windows XP SP2, Windows Vista, Windows Server 2003 with SP1,
Windows Server 2008, and Windows Server 2008 R2 send quarantineCapabilities type 1—indicating

that each understands network access protection capability. Based on quarantine policies set on
Windows Server 2008, it will require quarantine information be sent from client to server.

<10> Section 2.2.3.2.1.2.1: Windows XP SP2, Windows Vista, Windows Server 2003 with SP1, and

Windows Server 2008 send the capability type 0x00000001 indicating that each understands NAP
capability. Based on quarantine policies set on Windows Server 2008, it will require quarantine
information to be sent from client to server.

<11> Section 2.2.3.2.1.3: The TSG_PACKET_QUARCONFIGREQUEST structure is not used by any
version of Windows. If this structure is used, an error code of
HRESULT_CODE(E_PROXY_NOTSUPPORTED) is returned.

<12> Section 2.2.3.2.1.4: If Windows Server 2008 requires that quarantine information be sent,
the client's health is queried using quarantine agent and is sent to the Windows Server 2008 in an
encrypted manner. If this data is not present and quarantine is required by Windows Server 2008,
the server rejects the TsProxyAuthorizeTunnel call with an

E_PROXY_QUARANTINE_ACCESSDENIED (0x800759ED) response.

<13> Section 2.2.3.2.1.4: Windows Server 2008 uses machineName value to determine the

machine domain membership based on the network access policies set by the administrator on the
server.

<14> Section 2.2.3.2.1.4: Windows XP SP2, Windows Server 2003 with SP1, and Windows Vista
obtain the statement of health from the NAP agent and encrypt it using the certificate sent by the
server during the TsProxyCreateTunnel method. Windows Server 2008 decrypts the statement of

health from the client using the private key corresponding to the same certificate it sent to the client
during the tunnel creation. If the packet contains health data, Windows Server 2008 performs all
access checks, including quarantine, and network policies in this call to allow operations on the
tunnel.

<15> Section 2.2.3.2.1.5: In Windows Server 2008, responseData is ignored and
responseDataLen is set to zero.

Windows Server 2008 R2 may send the statement of health response (SoHR) and idle timeout
values, depending on its policies. The statement of health response is signed and encoded using the

TSG server's private key. The TSG client sends the statement of health response to the NAP agent,
which verifies and decodes the data using the server public key that was passed during a call to
TsProxyCreateTunnel. If the TSG server can support idle timeout as specified in section
2.2.3.2.1.2.1.2, then the idle timeout is prepended to the statement of health response.

Idle timeout is configured on the TSG server and is enforced on the TSG client. Only Windows

Server 2008 R2 TSG server supports idle timeout.

107 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<16> Section 2.2.3.2.1.5: Windows Server 2008 sends the redirectionFlags value based on
network policies configured for Windows terminal server. Regarding the details of redirectionFlag

values please refer to section 2.2.1.27 of [MS-RNAP].

<17> Section 2.2.3.2.1.6: Windows Server 2008 sends the base64-encoded version of the

certificate chain if quarantine is required. This certificate is the same as that registered for the
RPC_C_AUTHN_GSS_SCHANNEL authentication service.

<18> Section 2.2.3.2.1.9: Windows implementation of TSG server always sets this field to 1 and
Windows implementation of TSG client never uses this field.

<19> Section 3.1.1: On machines running Windows, this is the machine name that is returned by
the gethostname function.

<20> Section 3.1.1: Windows Server 2003 with SP1, Windows Server 2008, and Windows

Server 2008 R2 use Tunnel id to map to a Tunnel context handle, Channel id capabilities
information, and user information.

<21> Section 3.1.1: Windows Server 2003 with SP1, Windows Server 2008, and Windows

Server 2008 R2 use the Channel id for an auditing purpose at server side and to show the
connection details to the administrator.

<22> Section 3.1.2.1: The Session Timeout Timer is not implemented in Windows XP SP2, Windows

Server 2003 with SP1, Windows Vista, Windows Server 2008, and Windows 7.

<23> Section 3.1.2.2: The Re-authentication Timer is not implemented in Windows XP SP2,
Windows Server 2003 with SP1, Windows Vista, Windows Server 2008, and Windows 7.

<24> Section 3.1.2.3: Windows Server 2008 implements this timer, but Windows Server 2008 R2
does not implement this timer. In Windows Server 2008, if a call to TsProxySetupReceivePipe is
not made within 30 seconds of a call to TsProxyCreateChannel, the Windows Server 2008 TSG
server will disconnect the connection. The disconnection will occur in order to implement

TsProxyCreateChannel. Note that the protocol, however, does not mandate the timer.

<25> Section 3.1.2.3: The timer value is not mandated by the protocol. Different implementations

may choose to use this timer if required. The timer value may be set to a value appropriate to the
implementation.

<26> Section 3.1.3: Windows Server 2008 uses the identity of the caller to perform method-specific
access checks. The TSG service allows only authenticated users to call any method. Windows
Server 2008 imposes a minimum impersonation level of RPC_C_IMPL_LEVEL_IDENTIFY ([MS-RPCE]

section 2.2.1.1.9) on all method calls. If TSG is operating in a load-balanced environment, Windows
Server 2008 registers for the hostname, not the ipv4/ipv6 addresses. Windows Server 2008
registers for RPC_C_AUTHN_GSS_SCHANNEL authentication service using the same certificate that
is set for HTTPS communications on the machine.

<27> Section 3.1.4: Windows Server 2008 implementation uses RPC protocol to retrieve the
identity of the caller as specified in [MS-RPCE] section 3.2.3.4.2. The server uses the underlying

Windows security subsystem to determine the permissions for the caller. If the caller does not have
the required permissions to execute a specific method, the method call fails with

ERROR_ACCESS_DENIED. This error code is returned to the caller in a rpc_fault packet.

<28> Section 3.1.4: This method is available only in Windows 7 and Windows Server 2008 R2.

<29> Section 3.1.4: Opnums that are not used apply to Windows XP SP2, Windows Vista, Windows
Server 2003 with SP1, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

%5bMS-RNAP%5d.pdf
%5bMS-RNAP%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

108 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Opnum 3 is used only by Windows 7 and Windows Server 2008 R2. Windows XP SP2 and Windows
Server 2008 do not use opnum 3.

Opnum Description

0 Reserved for local use.

5 Reserved for local use.

<30> Section 3.1.4.1.1: Pluggable authentication is available only in Windows 7 and Windows

Server 2008 R2. Windows does not implement any authentication plugins, but ISVs can create their
plugins and use them for authentication.

<31> Section 3.1.4.1.1: In Windows Server 2008, the results are undefined when the tsgPacket is
set to anything other than the TSG_PACKET_VERSIONCAPS structure. However, in Windows
Server 2008 R2, if the tsgPacket is set to anything other than the TSG_PACKET_VERSIONCAPS
structure in case of RPC authentication or TSG_PACKET_AUTH structure in case of pluggable

authentication, the error <E_PROXY_INTERNALERROR> is returned.

<32> Section 3.1.4.1.2: Windows implementation of TS Gateway protocol does user authorization
based on user group membership, client computer group membership (optional), user
authentication method (password or smartcard), and client computer health status (optional). These
authorization conditions are specified using connection authorization policies (CAPs). When the CAPs
set by the administrator require TSG client computer health status checks, the TSG server will
require that TSG clients send health information and remediate themselves if health check is not

met.

<33> Section 3.1.4.1.2: The Windows Server 2008 R2 Standard implementation limits the number
of connections to 250.

The Windows Server 2008 R2 Foundation implementation limits the number of connections to 50.

All other Windows implementations allow an unlimited number of connections.

<34> Section 3.1.4.1.4: Windows Server 2008 rejects this call and all channel-related calls if the
TsProxyAuthorizeTunnel method call does not succeed. Windows Server 2008 performs access

checks to determine if a connection to the target server is allowed by policies in this call.

<35> Section 3.1.4.1.4: Windows Server 2008 does not attempt to connect to the target server
during the TsProxyCreateChannel call. The actual connection to the target server happens during the
call to TsProxySetupReceivePipe.

<36> Section 3.1.4.1.4: Windows Server 2008 returns
HRESULT_CODE(E_PROXY_RAP_ACCESSDENIED), such as 0x000059DA, if resource authorization

fails.

<37> Section 3.1.4.1.4: In Windows Server 2008, even if the RESOURCENAME strings in the
resourceName member are not valid, ERROR_SUCCESS is returned. In Windows Server 2008 R2,
if the RESOURCENAME is not valid, HRESULT_CODE(E_PROXY_TS_CONNECTFAILED)
(0x000059DD) is returned.

<38> Section 3.1.4.2.1: Windows Server 2008, Windows Server 2003 with SP1, Windows XP SP2,
and Windows Vista do not use the NDR for this call. Windows Server 2008 rejects this call if any

discrepancies in the data are noted, such as the data lengths not matching those reported by the
server stub.

109 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<39> Section 3.1.4.2.2: To bypass NDR, the Windows implementation of Terminal Services
Gateway Server Protocol hooks into the RPC layer directly and reads from the Buffer field of the

_RPC_MESSAGE struct defined in [MSDN-RPCMESSAGE].

<40> Section 3.1.4.2.2: Windows Server 2008, Windows Server 2003 with SP1, Windows XP SP2,

and Windows Vista do not use the NDR for this call. Windows Server 2003 with SP1, Windows XP
SP2, Windows Vista, and Windows Server 2008 disable RPC buffering for this call. The Windows
Server 2008 rejects this call if any discrepancies in the data are noted, such as the data lengths not
matching those reported by the server stub. Windows Server 2008 makes a socket connection to
the target server as part of this call.

<41> Section 3.1.4.2.2: Only Windows Server 2008 attempts to connect to the target server during
the TsProxySetupReceivePipe call because it doesn't attempt to connect to the target server

during TsProxyCreateChannel call.

<42> Section 3.1.4.2.2: This error is returned only by the Windows Server 2008 TSG server,
because only this version attempts connecting to the target server in the
TsProxySetupReceivePipe call.

<43> Section 3.2.1: On machines running Windows, this is the machine name that is returned by
the gethostname function.

<44> Section 3.2.1: Note that the size of the buffer is 513 bytes, even though the contents are 16-
bit Unicode characters. This reflects the actual Windows implementation.

<45> Section 3.2.1: On machines running Windows, the Client Machine name refers to the
computer name only as returned by the gethostname function.

<46> Section 3.2.4: Windows uses the INapEnforcementClientConnection::GetSoHRequest
method to obtain the SoH, which is retrieved in the out parameter as specified in [MSDN-NAPAPI].

http://go.microsoft.com/fwlink/?LinkId=92766
http://go.microsoft.com/fwlink/?LinkId=199018

110 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

8 Change Tracking

This section identifies changes that were made to the [MS-TSGU] protocol document between the
January 2011 and February 2011 releases. Changes are classified as New, Major, Minor, Editorial, or
No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A document revision that incorporates changes to interoperability requirements or functionality.

An extensive rewrite, addition, or deletion of major portions of content.

The removal of a document from the documentation set.

Changes made for template compliance.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are

updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the language and formatting in the technical content was
changed. Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical or language changes were introduced.
The technical content of the document is identical to the last released version, but minor editorial
and formatting changes, as well as updates to the header and footer information, and to the revision

summary, may have been made.

Major and minor changes can be described further using the following change types:

New content added.

Content updated.

Content removed.

New product behavior note added.

Product behavior note updated.

Product behavior note removed.

New protocol syntax added.

Protocol syntax updated.

Protocol syntax removed.

New content added due to protocol revision.

Content updated due to protocol revision.

Content removed due to protocol revision.

New protocol syntax added due to protocol revision.

111 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Protocol syntax updated due to protocol revision.

Protocol syntax removed due to protocol revision.

New content added for template compliance.

Content updated for template compliance.

Content removed for template compliance.

Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please

contact protocol@microsoft.com.

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

1.1

Glossary

58585

Added the terms "statement of health (SoH)"

and "statement of health response (SoHR)".

Y Content

updated.

1.1

Glossary

58583

Added "Triple Data Encryption Standard" to the

list of terms defined in [MS-GLOS].

Y Content

updated.

1.1

Glossary

58586

Added "SHA-1 hash" to the list of terms defined

in [MS-GLOS].

Y Content

updated.

1.2.1

Normative References

58582

Added reference to [MS-NAPSO].

Y Content

updated.

1.2.2

Informative References

58582

Added reference [MSDN-NAPAPI].

Y Content

updated.

2.2.3.2.1.5

TSG_PACKET_RESPONSE

58588

Changed "encrypted" to "signed and encoded"

and "decrypts" to "verifies and decodes" in the

product behavior note that describes that the

servermay send the SoHR) and idle timeout

values.

Y Content

updated.

3.1.4.1.2

TsProxyAuthorizeTunnel

(Opnum 2)

58585

Added processing rules describing the decoding

of the SoH request by the server and specified

that the TSG server MUST verify the signature of

Y Content

updated.

mailto:protocol@microsoft.com

112 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

the SoHR.

3.1.4.1.2

TsProxyAuthorizeTunnel

(Opnum 2)

58580

Added processing rules regarding the [MS-

NAPSO] Proxy SoH Task.

Y Content

updated.

3.1.4.1.2

TsProxyAuthorizeTunnel

(Opnum 2)

58586

Added processing rules regarding the SoHR

encoding, and specified that the TSG server

MUST sign the SoHR using an SHA1 hash.

Y Content

updated.

3.1.6

Other Local Events

58645

Added an abstract interface for sending an SoHR

packet.

Y Content

updated.

3.2.4

Message Processing Events

and Sequencing Rules

58584

Added processing rules regarding the transport

details of the SoH request.

Y Content

updated.

3.2.4

Message Processing Events

and Sequencing Rules

58583

Added processing rules regarding the SoH

encryption, and specified that the TSG client

MUST use the Triple Data Encryption Standard to

encrypt the SoH.

Y Content

updated.

3.2.4

Message Processing Events

and Sequencing Rules

58582

Added processing rules regarding getting the

SoH and encrypting it with the TSG server

certificate context. Added a reference to [MS-

SOH] detailing the format of the SoH, and added

a product behavior note.

Y Content

updated.

3.2.4

Message Processing Events

and Sequencing Rules

58588

Added processing rules regarding the

initialization of the Statement of health response

variable. Changed the term "decrypt" to

"decode" and added the explicit requirement that

the TSG server verify the signature of the SoHR.

Y Content

updated.

3.2.4

Message Processing Events

and Sequencing Rules

58581

Added processing rules regarding the decryption

of the SoHR response.

Y Content

updated.

3.2.6

Other Local Events

58644

Specified when NAPSO informs the TSG client

about changes in the TSG client computer's

health and clarified that such notification does

not result in an exchange of data between the

TSG client and the TSG server.

Y Content

updated.

113 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

9 Index

A

Abstract data model
client 75
server 44

Applicability 15

C

Capability negotiation 15
Change tracking 110
Client

abstract data model 75
initialization 77
local events 80
message processing 77
overview 75
sequencing rules 77
timer events 80
timers 77

Common data types (section 2.2 17, section 2.2.1
17)

Connection setup phase (section 1.3.1.1 10, section
3.1.4.1 49)

Connection Timer 48
Constants 19

D

Data model - abstract
client 75
server 44

Data transfer phase (section 1.3.1.2 11, section
3.1.4.2 62)

Data types
common 17
constants 19
structures 27
unions 27

E

Examples 84

F

Fields - vendor-extensible 15
Full IDL 99

G

Generic_Send_Data_Message_Packet packet 41
Glossary 7

I

IDL 99
Implementer - security considerations 98

Index of security parameters 98
Informative references 9
Initialization

client 77
server 48

Introduction 7

L

Local events
client 80
server 75

M

MAX_RESOURCE_NAMES 19
Message processing

client 77
server 48

Messages
constants 19
data types (section 2.2 17, section 2.2.1 17)
overview 17
structures 27
transport 17
unions 27

N

Normative references 8

O

Overview (synopsis) 9

P

Parameters - security index 98
Preconditions 14
Prerequisites 14
Product behavior 105
PTSENDPOINTINFO 27
PTSG_CAPABILITY_NAP 31
PTSG_PACKET 28
PTSG_PACKET_AUTH 39
PTSG_PACKET_CAPABILITIES 30
PTSG_PACKET_CAPS_RESPONSE 36
PTSG_PACKET_HEADER 29
PTSG_PACKET_MSG_REQUEST 37
PTSG_PACKET_MSG_RESPONSE 37
PTSG_PACKET_QUARCONFIGREQUEST 32
PTSG_PACKET_QUARENC_RESPONSE 36
PTSG_PACKET_QUARREQUEST 32
PTSG_PACKET_REAUTH 40
PTSG_PACKET_REAUTH_MESSAGE 39
PTSG_PACKET_RESPONSE 33
PTSG_PACKET_STRING_MESSAGE 38
PTSG_PACKET_VERSIONCAPS 30

114 / 114

[MS-TSGU] — v20110204
 Terminal Services Gateway Server Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

PTSG_REDIRECTION_FLAGS 34

R

References
informative 9
normative 8

Relationship to other protocols 14
responseData Format packet 33
RPC call phases 10

S

Security
implementer considerations 98
overview 98

parameter index 98
Sequencing rules

client 77
server 48

Server
abstract data model 44
initialization 48
local events 75
message processing 48
overview 44
sequencing rules 48
timer events 73
timers 47

Shutdown phase (section 1.3.1.3 13, section
3.1.4.3 70)

Standards assignments 15
Structures 27

T

Timer events
client 80
server 73

Timers
client 77
Connection Timer 48
server 47

Tracking changes 110
Transport 17
TSENDPOINTINFO structure 27
TSG Client to TSG Server packet packet 42
TSG Server to TSG Client Packet Format for Final

Response packet 43
TSG Server to TSG Client Packet Format for

Intermediate Responses packet 43
TSG_ASYNC_MESSAGE_CONSENT_MESSAGE 21
TSG_ASYNC_MESSAGE_REAUTH 22
TSG_ASYNC_MESSAGE_SERVICE_MESSAGE 21
TSG_CAPABILITY_NAP structure 31
TSG_CAPABILITY_TYPE_NAP 20
TSG_MESSAGING_CAP_CONSENT_SIGN 23

TSG_MESSAGING_CAP_REAUTH 23
TSG_MESSAGING_CAP_SERVICE_MSG 23
TSG_NAP_CAPABILITY_IDLE_TIMEOUT 22
TSG_NAP_CAPABILITY_QUAR_SOH 22
TSG_PACKET structure 28

TSG_PACKET_AUTH structure 39
TSG_PACKET_CAPABILITIES structure 30
TSG_PACKET_CAPS_RESPONSE structure 36
TSG_PACKET_HEADER structure 29
TSG_PACKET_MSG_REQUEST structure 37
TSG_PACKET_MSG_RESPONSE structure 37
TSG_PACKET_QUARCONFIGREQUEST structure 32
TSG_PACKET_QUARENC_RESPONSE structure 36
TSG_PACKET_QUARREQUEST structure 32
TSG_PACKET_REAUTH structure 40
TSG_PACKET_REAUTH_MESSAGE structure 39
TSG_PACKET_RESPONSE structure 33
TSG_PACKET_STRING_MESSAGE structure 38
TSG_PACKET_TYPE_AUTH 21
TSG_PACKET_TYPE_CAPS_RESPONSE 20
TSG_PACKET_TYPE_HEADER 19
TSG_PACKET_TYPE_MESSAGE_PACKET 21
TSG_PACKET_TYPE_MSGREQUEST_PACKET 20
TSG_PACKET_TYPE_QUARCONFIGREQUEST 19
TSG_PACKET_TYPE_QUARENC_RESPONSE 20
TSG_PACKET_TYPE_QUARREQUEST 20
TSG_PACKET_TYPE_REAUTH 21
TSG_PACKET_TYPE_RESPONSE 20

TSG_PACKET_TYPE_VERSIONCAPS 19
TSG_PACKET_VERSIONCAPS structure 30
TSG_REDIRECTION_FLAGS structure 34
TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST 22
TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST 22
TsProxyAuthorizeTunnel method 53
TsProxyCloseChannel method 70
TsProxyCloseTunnel method 72
TsProxyCreateChannel method 60
TsProxyCreateTunnel method 49
TsProxyMakeTunnelCall method 56
TsProxySendToServer method 62
TsProxySendToServer_request packet 81
TsProxySendToServer_response packet 82
TsProxySetupReceivePipe method 64
TsProxySetupReceivePipe_final_response packet 83
TsProxySetupReceivePipe_request packet 83
TsProxySetupReceivePipe_response packet 83

U

Unions 27

V

Vendor-extensible fields 15
Versioning 15

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 RPC Call Phases
	1.3.1.1 Connection Setup Phase
	1.3.1.2 Data Transfer Phase
	1.3.1.3 Shutdown Phase

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 Data Types
	2.2.1.1 RESOURCENAME
	2.2.1.2 PTUNNEL_CONTEXT_HANDLE_NOSERIALIZE
	2.2.1.3 PCHANNEL_CONTEXT_HANDLE_NOSERIALIZE
	2.2.1.4 PTUNNEL_CONTEXT_HANDLE_SERIALIZE
	2.2.1.5 PCHANNEL_CONTEXT_HANDLE_SERIALIZE

	2.2.2 Constants
	2.2.2.1 MAX_RESOURCE_NAMES
	2.2.2.2 TSG_PACKET_TYPE_HEADER
	2.2.2.3 TSG_PACKET_TYPE_VERSIONCAPS
	2.2.2.4 TSG_PACKET_TYPE_QUARCONFIGREQUEST
	2.2.2.5 TSG_PACKET_TYPE_QUARREQUEST
	2.2.2.6 TSG_PACKET_TYPE_RESPONSE
	2.2.2.7 TSG_PACKET_TYPE_QUARENC_RESPONSE
	2.2.2.8 TSG_CAPABILITY_TYPE_NAP
	2.2.2.9 TSG_PACKET_TYPE_CAPS_RESPONSE
	2.2.2.10 TSG_PACKET_TYPE_MSGREQUEST_PACKET
	2.2.2.11 TSG_PACKET_TYPE_MESSAGE_PACKET
	2.2.2.12 TSG_PACKET_TYPE_AUTH
	2.2.2.13 TSG_PACKET_TYPE_REAUTH
	2.2.2.14 TSG_ASYNC_MESSAGE_CONSENT_MESSAGE
	2.2.2.15 TSG_ASYNC_MESSAGE_SERVICE_MESSAGE
	2.2.2.16 TSG_ASYNC_MESSAGE_REAUTH
	2.2.2.17 TSG_TUNNEL_CALL_ASYNC_MSG_REQUEST
	2.2.2.18 TSG_TUNNEL_CANCEL_ASYNC_MSG_REQUEST
	2.2.2.19 TSG_NAP_CAPABILITY_QUAR_SOH
	2.2.2.20 TSG_NAP_CAPABILITY_IDLE_TIMEOUT
	2.2.2.21 TSG_MESSAGING_CAP_CONSENT_SIGN
	2.2.2.22 TSG_MESSAGING_CAP_SERVICE_MSG
	2.2.2.23 TSG_MESSAGING_CAP_REAUTH
	2.2.2.24 Return Codes

	2.2.3 Structures and Unions
	2.2.3.1 TSENDPOINTINFO
	2.2.3.2 TSG_PACKET
	2.2.3.2.1 TSG_PACKET_TYPE_UNION
	2.2.3.2.1.1 TSG_PACKET_HEADER
	2.2.3.2.1.2 TSG_PACKET_VERSIONCAPS
	2.2.3.2.1.2.1 TSG_PACKET_CAPABILITIES
	2.2.3.2.1.2.1.1 TSG_CAPABILITIES_UNION
	2.2.3.2.1.2.1.2 TSG_CAPABILITY_NAP

	2.2.3.2.1.3 TSG_PACKET_QUARCONFIGREQUEST
	2.2.3.2.1.4 TSG_PACKET_QUARREQUEST
	2.2.3.2.1.5 TSG_PACKET_RESPONSE
	2.2.3.2.1.5.1 responseData Format
	2.2.3.2.1.5.2 TSG_REDIRECTION_FLAGS

	2.2.3.2.1.6 TSG_PACKET_QUARENC_RESPONSE
	2.2.3.2.1.7 TSG_PACKET_CAPS_RESPONSE
	2.2.3.2.1.8 TSG_PACKET_MSG_REQUEST
	2.2.3.2.1.9 TSG_PACKET_MSG_RESPONSE
	2.2.3.2.1.9.1 TSG_PACKET_TYPE_MESSAGE_UNION
	2.2.3.2.1.9.1.1 TSG_PACKET_STRING_MESSAGE
	2.2.3.2.1.9.1.2 TSG_PACKET_REAUTH_MESSAGE

	2.2.3.2.1.10 TSG_PACKET_AUTH
	2.2.3.2.1.11 TSG_PACKET_REAUTH
	2.2.3.2.1.11.1 TSG_INITIAL_PACKET_TYPE_UNION

	2.2.3.3 Generic Send Data Message Packet
	2.2.3.4 Generic Receive Pipe Message Packet
	2.2.3.4.1 TSG Client to TSG Server Packet Format
	2.2.3.4.2 TSG Server to TSG Client Packet Format for Intermediate Responses
	2.2.3.4.3 TSG Server to TSG Client Packet Format for Final Response

	3 Protocol Details
	3.1 TsProxyRpcInterface Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 TSG Server States

	3.1.2 Timers
	3.1.2.1 Session Timeout Timer
	3.1.2.2 Re-authentication Timer
	3.1.2.3 Connection Timer

	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 Connection Setup Phase
	3.1.4.1.1 TsProxyCreateTunnel (Opnum 1)
	3.1.4.1.2 TsProxyAuthorizeTunnel (Opnum 2)
	3.1.4.1.3 TsProxyMakeTunnelCall (Opnum 3)
	3.1.4.1.4 TsProxyCreateChannel (Opnum 4)

	3.1.4.2 Data Transfer Phase
	3.1.4.2.1 TsProxySendToServer (Opnum 9)
	3.1.4.2.2 TsProxySetupReceivePipe (Opnum 8)

	3.1.4.3 Shutdown Phase
	3.1.4.3.1 TsProxyCloseChannel (Opnum 6)
	3.1.4.3.2 TsProxyMakeTunnelCall (Opnum 3)
	3.1.4.3.3 TsProxyCloseTunnel (Opnum 7)
	3.1.4.3.4 Server Initiated Shutdown

	3.1.5 Timer Events
	3.1.5.1 Session Timeout Timer
	3.1.5.2 Re-authentication Timer
	3.1.5.3 Connection Timer

	3.1.6 Other Local Events
	3.1.6.1 Data Arrival from Target Server

	3.2 TsProxyRpcInterface Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.2.1 Idle Timeout Timer
	3.2.2.1.1 Idle Time Processing

	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.5 Timer Events
	3.2.5.1 Idle Timeout Timer

	3.2.6 Other Local Events

	3.3 Data Representation forTsProxySetupReceivePipe and TsProxySendToServer
	3.3.1 TsProxySendToServer Request
	3.3.2 TsProxySendToServer Response
	3.3.3 TsProxySetupReceivePipe Request
	3.3.4 TsProxySetupReceivePipe Response
	3.3.5 TsProxySetupReceivePipe Final Response

	4 Protocol Examples
	4.1 Normal Scenario
	4.2 Pluggable Authentication Scenario with Consent Message Returned
	4.3 Reauthentication

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

