

1 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

[MS-SQP2]:
MSSearch Query
Version 2 Protocol Specification

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft's Open Specification Promise (available here:

http://www.microsoft.com/interop/osp) or the Community Promise (available here:

http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if
the technologies described in the Open Specifications are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

2 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Revision Summary

Date

Revision

History

Revision

Class Comments

07/13/2009 0.1 Major Initial Availability

08/28/2009 0.2 Editorial Revised and edited the technical content

11/06/2009 0.3 Editorial Revised and edited the technical content

02/19/2010 1.0 Major Updated and revised the technical content

03/31/2010 1.01 Editorial Revised and edited the technical content

04/30/2010 1.02 Editorial Revised and edited the technical content

06/07/2010 1.03 Editorial Revised and edited the technical content

06/29/2010 1.04 Editorial Changed language and formatting in the technical
content.

07/23/2010 1.05 Minor Clarified the meaning of the technical content.

09/27/2010 1.05 No change No changes to the meaning, language, or formatting of
the technical content.

11/15/2010 1.06 Editorial Changed language and formatting in the technical
content.

12/17/2010 1.06 No change No changes to the meaning, language, or formatting of
the technical content.

3 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Table of Contents

1 Introduction ... 6
1.1 Glossary ... 6
1.2 References .. 7

1.2.1 Normative References ... 7
1.2.2 Informative References ... 7

1.3 Protocol Overview (Synopsis) .. 8
1.3.1 Remote Querying ... 8

1.4 Relationship to Other Protocols .. 8
1.5 Prerequisites/Preconditions ... 9
1.6 Applicability Statement ... 9
1.7 Versioning and Capability Negotiation ... 9
1.8 Vendor-Extensible Fields ... 9
1.9 Standards Assignments .. 9

2 Messages.. 10
2.1 Transport .. 10
2.2 Message Syntax .. 10

2.2.1 Structures ... 10
2.2.1.1 CBaseStorageVariant .. 11

2.2.1.1.1 CBaseStorageVariant Structures ... 15
2.2.1.1.1.1 VT_VECTOR .. 15

2.2.1.2 CFullPropSpec .. 16
2.2.1.3 CContentRestriction .. 16
2.2.1.4 CNatLanguageRestriction ... 18
2.2.1.5 CNodeRestriction .. 19
2.2.1.6 CPropertyRestriction ... 20
2.2.1.7 CPropertyRangeRestriction ... 21
2.2.1.8 CSort .. 22
2.2.1.9 CRestriction ... 22
2.2.1.10 CColumnSet ... 25
2.2.1.11 CDbColId ... 25
2.2.1.12 CDbProp .. 26

2.2.1.12.1 Database Properties ... 26
2.2.1.13 CDbPropSet ... 27
2.2.1.14 CPidMapper .. 28
2.2.1.15 CRowsetProperties .. 28
2.2.1.16 CRowVariant .. 31
2.2.1.17 CSortSet .. 31
2.2.1.18 CTableColumn .. 31
2.2.1.19 QUERYMETADATA ... 33
2.2.1.20 CKey ... 34
2.2.1.21 CSynKey .. 35
2.2.1.22 CDocSetRestriction ... 35
2.2.1.23 CInternalPropertyRestriction... 35
2.2.1.24 COccRestriction .. 36
2.2.1.25 CExactPositionWordRestriction .. 37
2.2.1.26 CSynRestriction .. 37
2.2.1.27 CRangeRestriction ... 38
2.2.1.28 CScopeRestriction ... 38
2.2.1.29 CPhraseRestriction .. 39

4 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

2.2.1.30 CNotRestriction ... 39
2.2.1.31 CWordRestriction .. 40
2.2.1.32 CProbRestriction ... 40
2.2.1.33 CScopeRangeRestriction .. 41
2.2.1.34 CRestrictionChildren .. 42

2.2.2 Message Headers ... 42
2.2.3 Messages .. 44

2.2.3.1 CPMConnectIn .. 44
2.2.3.2 CPMConnectOut .. 46
2.2.3.3 CPMCreateQueryIn ... 46
2.2.3.4 CPMCreateQueryOut ... 48
2.2.3.5 CPMSetBindingsIn ... 49
2.2.3.6 CPMGetRowsIn ... 50
2.2.3.7 CPMGetRowsOut ... 52
2.2.3.8 CPMFetchValueIn .. 53
2.2.3.9 CPMFetchValueOut .. 54
2.2.3.10 CPMFreeCursorIn .. 55
2.2.3.11 CPMFreeCursorOut .. 55
2.2.3.12 CPMGetNotifyIn .. 55
2.2.3.13 CPMGetNotifyOut .. 55
2.2.3.14 CPMSendNotifyOut .. 55
2.2.3.15 CPMDisconnect ... 56

2.2.4 Errors ... 56

3 Protocol Details .. 57
3.1 Server Details ... 57

3.1.1 Abstract Data Model ... 57
3.1.2 Timers .. 58
3.1.3 Initialization .. 58
3.1.4 Higher-Layer Triggered Events ... 58
3.1.5 Message Processing Events and Sequencing Rules .. 58

3.1.5.1 Receiving a CPMConnectIn Request .. 60
3.1.5.2 Receiving a CPMCreateQueryIn Request .. 60
3.1.5.3 Receiving a CPMSetBindingsIn Request ... 61
3.1.5.4 Receiving a CPMGetNotifyIn Request ... 61
3.1.5.5 Receiving a CPMFetchValueIn Request... 61
3.1.5.6 Receiving a CPMGetRowsIn Request .. 62
3.1.5.7 Receiving a CPMFreeCursorIn Request... 63
3.1.5.8 Receiving a CPMDisconnect Request .. 63

3.1.6 Timer Events ... 63
3.1.7 Other Local Events ... 63

3.2 Client Details ... 63
3.2.1 Abstract Data Model ... 63
3.2.2 Timers .. 64
3.2.3 Initialization .. 64
3.2.4 Higher-Layer Triggered Events ... 64

3.2.4.1 Query Server Query Messages.. 64
3.2.4.1.1 Sending a CPMConnectIn Request ... 64
3.2.4.1.2 Sending a CPMCreateQueryIn Request ... 65
3.2.4.1.3 Sending a CPMSetBindingsIn Request .. 65
3.2.4.1.4 Sending a CPMGetNotifyIn Request ... 66
3.2.4.1.5 Sending a CPMGetRowsIn Request .. 66
3.2.4.1.6 Sending a CPMFetchValueIn Request ... 67

5 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

3.2.4.1.7 Sending a CPMFreeCursorIn Request ... 67
3.2.4.1.8 Sending a CPMDisconnect Message.. 67

3.2.5 Message Processing Events and Sequencing Rules .. 67
3.2.5.1 Receiving a CPMCreateQueryOut Response .. 67
3.2.5.2 Receiving a CPMGetNotifyOut Response... 68
3.2.5.3 Receiving a CPMSendNotifyOut Response .. 68
3.2.5.4 Receiving a CPMFetchValueOut Response .. 68
3.2.5.5 Receiving a CPMGetRowsOut Response ... 68
3.2.5.6 Receiving a CPMFreeCursorOut Response .. 69

3.2.6 Timer Events ... 69
3.2.7 Other Local Events ... 69

4 Protocol Examples .. 70
4.1 Obtaining Document Identifiers Based on Query Text ... 70

5 Security .. 78
5.1 Security Considerations for Implementers ... 78
5.2 Index of Security Parameters .. 78

6 Appendix A: Product Behavior .. 79

7 Change Tracking... 80

8 Index ... 81

6 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

1 Introduction

This document specifies the MSSearch Query Version 2 Protocol that enables a protocol client to
communicate with a server to issue search queries.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

Coordinated Universal Time (UTC)
globally unique identifier (GUID)

handle
HRESULT
language code identifier (LCID)
little-endian
named pipe
Unicode

The following terms are defined in [MS-OFCGLOS]:

basic scope index key
binary large object (BLOB)
bind
BLOB
column
command tree

crawl
document identifier
full-text index catalog
index key
index key string
inflectional form
item

natural language query
noise word
property identifier
query expansion
query result
query server
rank

ranking
ranking model
restriction
row
scope index key
search query

sort order
stemming

token
user profile

The following terms are specific to this document:

%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

7 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or

SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an

additional source.

[IEEE754] Institute of Electrical and Electronics Engineers, "Standard for Binary Floating-Point
Arithmetic", IEEE 754-1985, October 1985, http://ieeexplore.ieee.org/servlet/opac?punumber=2355

[MS-CIFO] Microsoft Corporation, "Content Index Format Structure Specification", June 2008.

[MS-ERREF] Microsoft Corporation, "Windows Error Codes", January 2007.

[MS-LCID] Microsoft Corporation, "Windows Language Code Identifier (LCID) Reference", July 2007.

[MS-SEARCH] Microsoft Corporation, "Search Protocol Specification", June 2008.

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Version 2 Protocol Specification",
July 2007.

[MS-SQLPADM2] Microsoft Corporation, "SQL Administration Version 2 Protocol Specification", July
2009.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

[UNICODE] The Unicode Consortium, "Unicode Home Page", 2006, http://www.unicode.org/

1.2.2 Informative References

[MSDN-FULLPROPSPEC] Microsoft Corporation, "FULLPROPSPEC", http://msdn.microsoft.com/en-
us/library/ms690996.aspx

[MSDN-OLEDBP-OI] Microsoft Corporation, "OLE DB Programming", http://msdn.microsoft.com/en-
us/library/502e07a7(VS.80).aspx

[MSDN-PROPSET] Microsoft Corporation, "Property Sets", http://msdn.microsoft.com/en-
us/library/ms691041.aspx

[MSDN-QUERYERR] Microsoft Corporation, "Query-Execution Values",
http://msdn.microsoft.com/en-us/library/ms690617.aspx

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary", March 2007.

[MS-OFCGLOS] Microsoft Corporation, "Microsoft Office Master Glossary", June 2008.

[MS-SQP] Microsoft Corporation, "MSSearch Query Protocol Specification", June 2008.

http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89903
%5bMS-CIFO%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-LCID%5d.pdf
%5bMS-SEARCH%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SQLPADM2%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90550
http://go.microsoft.com/fwlink/?LinkId=103235
http://go.microsoft.com/fwlink/?LinkId=103235
http://go.microsoft.com/fwlink/?LinkId=119666
http://go.microsoft.com/fwlink/?LinkId=119666
http://go.microsoft.com/fwlink/?LinkId=101368
http://go.microsoft.com/fwlink/?LinkId=101368
http://go.microsoft.com/fwlink/?LinkId=90070
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-SQP%5d.pdf

8 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

1.3 Protocol Overview (Synopsis)

The MSSearch Query Protocol facilitates for a protocol client that issues search queries to
communicate with a protocol server hosting a search service. Specifically the activity carried out via

this protocol is to provide the search results that match the client’s search requests from the search
catalog. The search service application running on a query server helps by efficiently organizing
the extracted features of a collection of items.

Conceptually, a search catalog consists of a logical table of properties with the text or value and
corresponding language code identifier (LCID) stored in columns(1) of the table. Each row of
the table corresponds to a separate item in the scope of the search catalog, and each column of the
table corresponds to a property. The values stored in these tables eventually manifest themselves

as search results to the end users.

1.3.1 Remote Querying

The MSSearch Query Protocol initiates a search query with the following steps:

1. The protocol client requests a connection to a protocol server hosting a search service.

2. The protocol client sends the following parameters for the search query:

Rowset properties, including the search catalog name and configuration information.

The restriction to specify what items are to be included and what items are to be excluded

from the query results.

The order in which the query results are to be returned.

The columns to be returned in the result set.

The maximum number of rows(1) that are to be returned for the search query.

The maximum time for query execution.

3. After the protocol server has acknowledged the protocol client's request to initiate the search
query, the protocol client can request status information about the search query.

4. The protocol client requests a result set from the protocol server, and the protocol server
responds by sending the property values for the items that were included in the protocol client's

query. After the protocol client is finished with the search query, or no longer requires additional
query results, the protocol client contacts the protocol server to release the search query.

5. After the protocol server has released the search query, the protocol client sends a request to
disconnect from the protocol server. The protocol client might also disconnect from the protocol
server without issuing a disconnect request. The connection is then closed. Alternatively, the
protocol client issues another search query and repeats the sequence from step 2.

1.4 Relationship to Other Protocols

The MSSearch Query Protocol relies on the SMB2 protocol, as described in [MS-SMB2], for message
transport. No other protocol depends directly on the MSSearch Protocol.<1>

This protocol is similar to, and shares a number of structures with, the previous version of the
protocol described in [MS-SQP]. The two versions are incompatible and do not rely on each other.

%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SQP%5d.pdf

9 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

1.5 Prerequisites/Preconditions

It is assumed that the protocol client has obtained the name of the protocol server and a search
catalog name before this protocol is invoked. How a protocol client does this is not addressed in this

specification.

It is also assumed that the protocol client and protocol server have a security association that is
usable with named pipes, as described in [MS-SMB2].

1.6 Applicability Statement

The MSSearch Query protocol is designed for querying search catalogs on a remote server from a
client. Typical size of the rowset is expected in the range of zero to 5000, with up to 4 columns.

1.7 Versioning and Capability Negotiation

None.

1.8 Vendor-Extensible Fields

This protocol uses HRESULT values that are vendor extensible. Vendors are free to choose their
own values for this field as long as the C bit (0x20000000) is set as specified in [MS-ERREF] section

2, indicating that the value is a customer code.

This protocol also uses NTSTATUS values taken from the NTSTATUS number space specified in [MS-
ERREF]. Vendors SHOULD reuse those values with their indicated meaning<2> Choosing any other
value runs the risk of a collision in the future.

Property Specification

Properties are represented by property specifications, which consist of a globally unique

identifier (GUID) representing a collection of properties called a property set, plus a 32-bit
property identifier to identify the property within the set. The property identifier value MUST NOT
be "0x00000000", "0xFFFFFFFF", or "0xFFFFFFFE". Vendors can guarantee that their properties are

uniquely defined by placing them in a property set defined by their own GUIDs.<3>

1.9 Standards Assignments

This protocol has no standards assignments, only private assignments that are made by using the

allocation procedures described in other protocols.

A named pipe has been allocated to this protocol as described in [MS-SMB2]; the assignments are
shown in the following table.

Parameter Value Reference

Pipe name \pipe\OSearch14 [MS-SMB2]

Pipe name \pipe\SPSearch4 [MS-SMB2]

%5bMS-GLOS%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-SMB2%5d.pdf

10 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

2 Messages

The following sections specify how MSSearch Query Protocol messages are transported and common
MSSearch Query Protocol data types.

Note All 2-byte, 4-byte, and 8-byte signed and unsigned integers in the following structures and
messages MUST be transferred in little-endian byte order.

2.1 Transport

All messages MUST be transported using a named pipe, as specified in [MS-SMB2]. The following

pipe names are used:

\pipe\OSearch14

\pipe\SPSearch4

This protocol uses the underlying SMB2 named pipe protocol to retrieve the identity of the caller
that made the connection, as specified in [MS-SMB2]. The protocol client MUST set
SECURITY_IDENTIFICATION as the ImpersonationLevel in the request, specified in [MS-SMB2], to

open the named pipe.

2.2 Message Syntax

2.2.1 Structures

This section details data structures that are defined and used by the MSSearch Query Protocol. The
following table summarizes the data structures defined in this section.

Structure Description

CBaseStorageVariant Contains the value on which to perform a match operation for a property
that is specified in a CPropertyRestriction structure.

CFullPropSpec Contains a property specification.

CContentRestriction Contains a string for full-text match for a property.

CNatLanguageRestriction Contains a natural language query match for a property.

CNodeRestriction Contains an array of command tree nodes specifying the restrictions for
a search query.

CPropertyRestriction Contains a string for exact match for a property.

CPropertyRangeRestriction Contains two property values to compare for a property.

CSort Identifies a column to sort.

CRestriction Stores a restriction structure with its type and other generic information.

CColumnSet Describes the columns to return.

CDbColId Contains a column identifier.

CDbProp Contains a rowset property.

%5bMS-GLOS%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

11 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Structure Description

CDbPropSet Contains a set of rowset properties.

CPidMapper Contains an array of property specifications and serves to map from a
property offset (sequential number) to CFullPropSpecs.

CRowsetProperties Contains the configuration information for a search query.

CRowVariant Contains the fixed-size portion of a variable-length data type stored in
the CPMGetRowsOut message.

CSortSet Contains the sort orders(1) for a search query.

CTableColumn Contains a column for the CPMSetBindingsIn message.

QUERYMETADATA Contains information about a search query.

CKey Contains information about a single index key.

CSynKey Contains a confidence value to apply to a single index key.

CDocSetRestriction Contains a list of document identifiers to restrict the result set to.

CInternalPropertyRestriction Contains a property identifier to match with an operation.

COccRestriction A restriction that carries a position and another restriction that defined
how this position is interpreted.

CExactPositionWordRestriction A restriction that matches an index key in a specified position.

CSynRestriction A restriction that matches several keys or sub-restrictions.

CRangeRestriction A restriction that matches a range of keys.

CScopeRestriction A restriction that matches a scope index key.

CPhraseRestriction A restriction that matches a sequence of keys.

CNotRestriction A restriction that inverts the matching of all restrictions it contains.

CWordRestriction A restriction that matches a single index key.

CProbRestriction A restriction that performs ranking on the items that match its sub-
restrictions.

CScopeRangeRestriction A restriction that matches a range of scope index keys.

CRestrictionChildren Contains a group of CRestriction structures.

2.2.1.1 CBaseStorageVariant

The CBaseStorageVariant structure contains the value on which to perform a match operation for

a property specified in the CPropertyRestriction structure.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Padding1 (variable)

%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

12 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

...

vType vData1 vData2

vValue (variable)

...

Padding1 (variable): This field MUST be zero to 3 bytes in length. The length of this field MUST
be such that the following field begins at an offset that is a multiple of 4 bytes from the
beginning of the message that contains this structure. If the length of this field is nonzero, the

value it contains is arbitrary. The content of this field MUST be ignored by the receiver.

vType (2 bytes): A type indicator that indicates the type of vValue. It MUST be one of the
values specified in the following table.

Value Meaning

VT_EMPTY

0x0000

vValue is not present.

VT_NULL

0x0001

vValue is not present.

VT_I1

0x0010

A 1-byte signed integer.

VT_UI1

0x0011

A 1-byte unsigned integer.

VT_I2

0x0002

A 2-byte signed integer.

VT_UI2

0x0012

A 2-byte unsigned integer.

VT_BOOL

0x000B

A Boolean value; a 2-byte integer.

Note that this value contains either "0x0000" (FALSE) or "0xFFFF" (TRUE).

VT_I4

0x0003

A 4-byte signed integer.

VT_UI4

0x0013

A 4-byte unsigned integer.

VT_R4

0x0004

An IEEE 32-bit floating point number, as specified in [IEEE754].

VT_INT

0x0016

A 4-byte signed integer.

VT_UINT

0x0017

A 4-byte unsigned integer.

Note that this is identical to VT_UI4 except that VT_UINT cannot be used with

http://go.microsoft.com/fwlink/?LinkId=89903

13 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Value Meaning

VT_VECTOR, which is defined in the following table; the value chosen is a
choice made by the higher layer that provides it to the MSSearch Query
Protocol, but the MSSearch Query Protocol treats VT_UINT and VT_UI4 as
identical, with the preceding exception.

VT_ERROR

0x000A

A 4-byte unsigned integer containing an HRESULT, as specified in [MS-ERREF]
section 2.

VT_I8

0x0014

An 8-byte signed integer.

VT_UI8

0x0015

An 8-byte unsigned integer.

VT_R8

0x0005

An IEEE 64-bit floating point number, as specified in [IEEE754].

VT_CY

0x0006

An 8-byte two's complement integer, scaled by 10,000.

VT_DATE

0x0007

A 64-bit floating point number, as specified in [IEEE754], representing the
number of days after 00:00:00 on December 31, 1899, Coordinated
Universal Time (UTC).

VT_FILETIME

0x0040

A 64-bit integer representing the number of 100-nanosecond intervals after
00:00:00 on January 1, 1601, UTC.

VT_CLSID

0x0048

A 16-byte binary value containing a GUID.

VT_BLOB

0x0041

A 4-byte unsigned integer count of bytes in the binary large object (BLOB)
followed by that many bytes of data.

VT_BLOB_OBJECT

0x0046

A 4-byte unsigned integer count of bytes in the BLOB followed by that many
bytes of data.

VT_BSTR

0x0008

A 4-byte unsigned integer count of bytes in the string followed by a string, as
specified in the following table under vValue.

VT_LPSTR

0x001E

A null-terminated ANSI string.

VT_LPWSTR

0x001F

A null-terminated Unicode,as specified in [UNICODE], string.

VT_VARIANT

0x000C

When used in a CTableColumn description, vValue is a CRowVariant structure.
Otherwise, it is a CBaseStorageVariant structure. MUST be combined with a
type modifier of VT_VECTOR.

The following table specifies the type modifiers for vType. Type modifiers can be combined
with vType using the bitwise OR operation to change the meaning of vValue to indicate it is
one of the possible array types.

%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89903
http://go.microsoft.com/fwlink/?LinkId=89903
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90550

14 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Value Meaning

VT_VECTOR

0x1000

If the type indicator is combined with VT_VECTOR by using an OR operator, vValue
is a counted array of values of the indicated type. For more information, see section
2.2.1.1.1.1.

This type modifier MUST NOT be combined with the following types: VT_INT,
VT_UINT, VT_BLOB, and VT_BLOB_OBJECT.

When the VT_VARIANT vType is used in a CBaseStorageVariant structure, it MUST be
combined with a type modifier of VT_VECTOR. There is no such limitation when the

VT_VARIANT vType is used in a CTableColumn structure, which specifies individual binding.

vData1 (1 byte): The value of this field MUST be set to "0x00".

vData2 (1 byte): The value of this field MUST be set to "0x00".

vValue (variable): The value for the match operation. The syntax MUST be as indicated in the
vType field. The following table summarizes sizes for the vValue field, dependent on the

vType field for fixed-length data types. The size is in bytes.

vType Size

VT_I1, VT_UI1 1

VT_I2, VT_UI2, VT_BOOL 2

VT_I4, VT_UI4, VT_R4, VT_INT, VT_UINT, VT_ERROR 4

VT_I8, VT_UI8, VT_R8, VT_CY, VT_DATE, VT_FILETIME 8

VT_CLSID 16

If vType is set to VT_BLOB or VT_BSTR, the structure of vValue is specified in the following
diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

cbSize

blobData (variable)

...

cbSize (4 bytes): A 32-bit unsigned integer. Indicates the size of the blobData field in bytes. If
vType is set to VT_BSTR, cbSize MUST be set to "0x00000000" when the string represented
is an empty string.

blobData (variable): MUST be of length cbSize in bytes. For a vType set to VT_BLOB, this
field is opaque binary BLOB data. For a vType set to VT_BSTR, this field is a set of characters.

The protocol client and protocol server MUST be configured to have interoperable character
sets which is not addressed in this protocol. There is no requirement that it be null-
terminated.

%5bMS-OFCGLOS%5d.pdf

15 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

For a vType set to either VT_LPSTR or VT_LPWSTR, the structure of vValue is shown in the
following diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

cLen

string (variable)

cLen: A 32-bit unsigned integer, indicating the size of the string field including the terminating
null. A value of "0x00000000" indicates that no such string is present. If vType is set to

VT_LPSTR, cLen indicates the size of the string in ANSI characters, and string is a null-
terminated ANSI string. If vType is set to VT_LPWSTR, cLen indicates the size of the string in
Unicode characters, and string is a null-terminated Unicode string.

string: Null-terminated string. This field MUST be absent if cLen is set to "0x00000000".

2.2.1.1.1 CBaseStorageVariant Structures

The VT_VECTOR structure is used in the CBaseStorageVariant structure.

2.2.1.1.1.1 VT_VECTOR

The VT_VECTOR structure is used to pass one-dimensional arrays.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

vVectorElements

vVectorData (variable)

...

vVectorElements (4 bytes): Unsigned 32-bit integer, indicating the number of elements in the
vVectorData field.

vVectorData (variable): An array of items that have a type indicated by vType with the
0x1000 bit cleared. The size of an individual fixed-length item can be obtained from the fixed-
length data type table, as specified in section 2.2.1.1. The length of this field in bytes can be
calculated by multiplying vVectorElements by the size of an individual item.

For variable-length data types, vVectorData contains a sequence of consecutively marshaled

simple types in which the type is indicated by vType with the 0x1000 bit cleared.

The elements in the vVectorData field MUST be separated by zero to 3 padding bytes such
that each element begins at an offset that is a multiple of 4 bytes from the beginning of the
message that contains this array. If padding bytes are present, the value they contain is
arbitrary. The contents of the padding bytes MUST be ignored by the receiver.

16 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

2.2.1.2 CFullPropSpec

The CFullPropSpec structure contains a property set GUID and a property identifier to uniquely
identify a property. For properties to match, the CFullPropSpec structure MUST match the column

identifier in the full-text index catalog.

For more information, see the Indexing Service definition of FULLPROPSPEC in [MSDN-
FULLPROPSPEC].

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

paddingPropSet (variable)

...

_guidPropSet (16 bytes)

...

ulKind

PrSpec

paddingPropSet (variable): This field MUST be zero to 7 bytes in length. The length of this
field MUST be such that the following field begins at an offset that is a multiple of 8 bytes from
the beginning of the message that contains this structure. If the length of this field is nonzero,
the value it contains is arbitrary. The content of this field MUST be ignored by the receiver.

_guidPropSet (16 bytes): The GUID of the property set to which the property belongs.

ulKind (4 bytes): A 32-bit unsigned integer that MUST be set to "0x00000001".

PrSpec (4 bytes): A 32-bit unsigned integer which contains the property identifier.

2.2.1.3 CContentRestriction

The CContentRestriction structure contains a word or phrase to match in the search catalog for a

specific property.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_Property (variable)

...

Padding1 (variable)

...

%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113923
http://go.microsoft.com/fwlink/?LinkId=113923

17 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Cc

_pwcsPhrase (variable)

...

Padding2 (variable)

...

Lcid

_ulGenerateMethod

_Property (variable): A CFullPropSpec structure. This field indicates the property on which to
perform a match operation.

Padding1 (variable): This field MUST be zero to 3 bytes in length. The length of this field MUST
be such that the following field begins at an offset that is a multiple of 4 bytes from the
beginning of the message that contains this structure. If the length of this field is nonzero, the
value it contains is arbitrary. The content of this field MUST be ignored by the receiver.

Cc (4 bytes): A 32-bit unsigned integer, specifying the number of characters in the
_pwcsPhrase field.

_pwcsPhrase (variable): A non-null-terminated Unicode string representing the word or
phrase to match for the property. This field MUST NOT be empty. The Cc field contains the
length of the string.

Padding2 (variable): This field MUST be zero to 3 bytes in length. The length of this field MUST

be such that the following field begins at an offset that is a multiple of 4 bytes from the

beginning of the message that contains this structure. If the length of this field is nonzero, the
value it contains is arbitrary. The content of this field MUST be ignored by the receiver.

Lcid (4 bytes): A 32-bit unsigned integer, indicating the LCID of _pwcsPhrase, as specified in
[MS-LCID].

_ulGenerateMethod (4 bytes): A 32-bit unsigned integer, specifying the method to use when
generating alternate word forms. The following table specifies the possible values for this field

along with their meanings.

Value Meaning

GENERATE_METHOD_EXACT
0x00000000

Exact match. Each word in the phrase MUST match exactly
in the search catalog.

GENERATE_METHOD_PREFIX
0x00000001

Prefix match. Each word in the phrase is considered a match
if the word is a prefix of a crawled string. For example, if
the word "barking" is crawled, "bar" would match when
performing a prefix match.

GENERATE_METHOD_INFLECT
0x00000002

Matches inflectional forms of a word. An inflectional form
of a word is a variant of the root word in the same part of
speech that has been modified, according to linguistic rules

%5bMS-LCID%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

18 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Value Meaning

of a given language. For example, inflectional forms of the
verb "swim" in English include "swim", "swims", "swimming",
and "swam".

GENERATE_METHOD_THESAURUS

0x00000004

Matches synonyms of a word using a user-defined thesaurus.

For example, if the words "glad" and "happy" were defined
as synonyms in the thesaurus and the word "glad" was
crawled, "happy" would match when performing a thesaurus
match.

2.2.1.4 CNatLanguageRestriction

The CNatLanguageRestriction structure contains a natural language query match for a property.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_Property (variable

...

_padding_cc (variable)

...

Cc

_pwcsPhrase (variable)

...

_padding_lcid (variable)

...

Lcid

_Property (variable): A CFullPropSpec structure. This field indicates the property on which to
perform the match operation.

_padding_cc (variable): This field MUST be zero to 3 bytes in length. The length of this field

MUST be such that the following field begins at an offset that is a multiple of 4 bytes from the
beginning of the message that contains this structure. If the length of this field is nonzero, the

value it contains is arbitrary. The contents of this field MUST be ignored by the receiver.

Cc (4 bytes): A 32-bit unsigned integer, specifying the number of characters in the
_pwcsPhrase field.

19 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

_pwcsPhrase (variable): A non-null-terminated Unicode string with the text to be searched for
within the specific property. This string MUST NOT be empty. The Cc field contains the length

of the string. The protocol server MUST interpret the string as specified in [MS-SEARCH]
section 2.2.10.8, treating the whole string as text-expression.

_padding_lcid (variable): This field MUST be zero to 3 bytes in length. The length of this field
MUST be such that the following field begins at an offset that is a multiple of 4 bytes from the
beginning of the message that contains this structure. If the length of this field is nonzero, the
value it contains is arbitrary. The content of this field MUST be ignored by the receiver.

Lcid (4 bytes): A 32-bit unsigned integer indicating the LCID of _pwcsPhrase, as specified in
[MS-LCID].

2.2.1.5 CNodeRestriction

The CNodeRestriction structure contains an array of command tree restriction nodes for
constraining the results of a search query.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Count

Restrictions (variable)

...

Restriction (variable)

...

Count (4 bytes): A 32-bit unsigned integer specifying the number of CRestriction structures
contained in the Restrictions field.

Restrictions (variable): An array of CRestriction structures. Structures in the array MUST be
separated by zero to 3 padding bytes such that each structure begins at an offset that is a
multiple of 4 bytes from the beginning of the message that contains this array. If padding
bytes are present, the value they contain is arbitrary. The content of the padding bytes MUST
be ignored by the receiver.

Restriction (variable): The format of this field depends on the value of the Type field of the
enclosing CRestriction structure:

Value of the

Type field Meaning

RTAnd

0x00000001

The field MUST be empty.

RTOr

0x00000002

The field MUST be empty.

RTProximity The field MUST be empty.

%5bMS-SEARCH%5d.pdf
%5bMS-LCID%5d.pdf

20 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Value of the

Type field Meaning

0x00000006

RTPhrase

0x00000013

The field contains a CPhraseRestriction. All the CRestriction structures in the
Restrictions field MUST have a type of RTWord or RTSynonym.

RTProb

0x0000000D

The field contains a CProbRestriction. All the CRestriction structures in the
Restrictions field MUST have a type of RTWord, RTSynonym or RTPhrase.

2.2.1.6 CPropertyRestriction

The CPropertyRestriction structure contains a property to get from each row, a comparison
operator, and a constant. For each row, the value returned by the specific property in the row is
compared against the constant to see if it has the relationship specified by the _relop field. For the
comparison to be true, the data types of the values MUST match.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_relop

_Property (variable)

...

_prval (variable)

...

_relop (4 bytes): A 32-bit unsigned integer specifying the relation to perform on the property.
_relop MUST be one of the following values with an optional bitwise-OR mask applied to the
value.

Value Meaning

PREQ

0x00000004

An equality comparison.

PRNE

0x00000005

A not-equal comparison.

The possible values for the optional mask are:

Value Meaning

PRAny

0x00000200

The restriction is true if any element in the property value has the relationship with
some element in the _prval field.

_Property (variable): A CFullPropSpec structure indicating the property on which to perform a
match operation.

21 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

_prval (variable): A CBaseStorageVariant structure containing the value to relate to the
property.

2.2.1.7 CPropertyRangeRestriction

The CPropertyRangeRestriction structure contains a property to get from each row, two
comparison operators, and two constants. For each row, the value returned by the specific property
in the row is compared against the constants to see if it belongs to the range specified by the
constants. Comparison operators specify whether the constants themselves are included in the
range. The property MUST have VT_FILETIME type.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_Property (variable)

...

_relopLowerBound

_relopUpperBound

_prvalLowerBound (variable)

...

_prvalUpperBound (variable)

...

_Property (variable): A CFullPropSpec structure indicating the property on which to perform
comparisons.

_relopLowerBound (4 bytes): A 32-bit unsigned integer specifying whether
_prvalLowerBound is considered a part of range. The lower 8 bits of _relopLowerBound
MUST be one of the following values.

Value Meaning

PRGT

0x02

The operator is "greater", _prvalLowerBound is excluded from the range.

PRGE

0x03

The operator is "greater or equal", _prvalLowerBound is included in the range.

The higher 24 bits MUST have the value "0x000000", "0x000001", "0x000002", or
"0x000004", and MUST be ignored.

_relopUpperBound (4 bytes): A 32-bit unsigned integer specifying whether
_prvalUpperBound is considered a part of range. The lower 8 bits of _relopUpperBound
MUST be one of the following values.

22 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Value Meaning

PRLT

0x00

The operator is "less", _prvalUpperBound is excluded from the range.

PRLE

0x01

The operator is "less or equal", _prvalUpperBound is included in the range.

The higher 24 bits MUST have the value "0x000000", "0x000001", "0x000002", or
"0x000004", and MUST be ignored.

_prvalLowerBound (variable): A CBaseStorageVariant structure containing the lower bound of
the range. The vType field value MUST be set to "0x0040".

_prvalUpperBound (variable): A CBaseStorageVariant structure containing the upper bound of
the range. The vType field value MUST be set to "0x0040".

2.2.1.8 CSort

The CSort structure identifies a column, direction and LCID to sort by.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

pidColumn

dwOrder

Locale

pidColumn (4 bytes): A 32-bit unsigned integer. This is the index in CPidMapper for the

property to sort by.

dwOrder (4 bytes): A 32-bit unsigned integer. MUST be one of the following values, specifying
how to sort based on the column.

Value Meaning

QUERY_SORTASCEND

0x00000000

The rows are sorted in ascending order based on the values in the
column specified.

QUERY_SORTDESCEND

0x00000001

The rows are sorted in descending order based on the values in the
column specified.

Locale (4 bytes): A 32-bit unsigned integer indicating the LCID of the column. The LCID
determines the sorting rules to use when sorting textual values.

2.2.1.9 CRestriction

The CRestriction structure stores a restriction with its type and other generic information.

23 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

SubType

Weight

Restriction (variable)

...

Type (4 bytes): A 32-bit unsigned integer indicating the restriction type used for the command
tree node. The type determines the format and interpretation of the Restriction field of the

structure, as specified in the following table. This field MUST be set to one of the following
values:

Value Meaning

RTAnd

0x00000001

The node contains a CNodeRestriction on which a logical AND operation is to be
performed.

RTOr

0x00000002

The node contains a CNodeRestriction on which a logical OR operation is to be
performed.

RTContent

0x00000004

The node contains a CContentRestriction.

RTProperty

0x00000005

The node contains a CPropertyRestriction.

RTProximity

0x00000006

The node contains a CNodeRestriction with an array of CContentRestriction
structures. Any other kind of restriction is undefined. The restriction requires
the words or phrases found in the CContentRestriction structures to be
within a query server defined range to be a match. The query server can also
compute a rank based on how far apart the words or phrases are.

RTNatLanguage

0x00000008

The node contains a CNatLanguageRestriction.

RTPropertyRange

0x0000001C

The node contains a CPropertyRangeRestriction.

RTDocSet

0x00000019

The node contains a CDocSetRestriction.

RTInternalProp

0x00000016

The node contains a CInternalPropertyRestriction.

RTExactWord

0x00000018

The node contains a COccRestriction.

%5bMS-OFCGLOS%5d.pdf

24 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Value Meaning

RTSynonym

0x00000012

The node contains a COccRestriction.

RTRange

0x00000014

The node contains a CRangeRestriction.

RTScope

0x0000001A

The node contains a CScopeRestriction.

RTPhrase

0x00000013

The node contains a CNodeRestriction.

RTNot

0x00000003

The node contains a CNotRestriction.

RTWord

0x00000011

The node contains a COccRestriction.

RTProb

0x0000000D

The node contains a CNodeRestriction

RTScopeRange

0x0000001D

The node contains a CScopeRangeRestriction.

SubType (4 bytes): A 32-bit unsigned integer that specifies the inclusion behavior for child
restrictions of a CProbRestriction. Child restrictions are restrictions stored in the Restrictions
array of a CNodeRestriction whose Type field value is RTProb. This value of the field MUST be
set to "0" and MUST be ignored for all other restrictions. The value MUST be one of the values
listed in the following table.

Value Meaning

rstUndefined

0x00000000

The inclusion behavior does not apply to this type of restriction.

rstInclude

0x10000000

Documents that match this restriction MUST be returned unless they do not
match one of the restrictions with SubType rstMustInclude or match any of the
restrictions with SubType rstExclude among the child restrictions of the
restriction’s parent CProbRestriction.

rstMustInclude

0x20000000

Documents that do not match this restriction MUST NOT be returned.

rstExclude

0x30000000

Documents that match this restriction MUST NOT be returned.

Weight (4 bytes): A 32-bit unsigned integer representing the weight of the node. Weight

indicates the node's importance relative to other nodes in the query command tree. Higher
weight values are more important.

Restriction (variable): The restriction type for the command tree node. The format MUST be as

indicated by the Type field.

25 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

2.2.1.10 CColumnSet

The CColumnSet structure specifies the column numbers to be returned. This structure is always
used in reference to a specific CPidMapper structure.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

count

indexes (variable)

...

count (4 bytes): A 32-bit unsigned integer specifying the number of elements in the indexes
array.

indexes (variable): An array of 4-byte unsigned integers representing zero-based indexes into

the aPropSpec array in the corresponding CPidMapper structure. The corresponding
property values are returned as columns in the result set.

2.2.1.11 CDbColId

The CDbColId structure contains a column identifier.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

eKind

padding (variable)

...

GUID (16 bytes)

...

ulId

eKind (4 bytes): MUST be set to "0x00000001".

padding (variable): This field MUST be zero to 7 bytes in length. The length of this field MUST

be such that the following field begins at an offset that is a multiple of 8 bytes from the

beginning of the message that contains this structure. If the length of this field is nonzero, the
value it contains is arbitrary. The contents of this field MUST be ignored by the receiver.

GUID (16 bytes): The property GUID.

ulId (4 bytes): This field contains an unsigned 32-bit integer specifying the property identifier.

26 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

2.2.1.12 CDbProp

The CDbProp structure contains a database property.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

DBPROPID

DBPROPOPTIONS

DBPROPSTATUS

colid (variable)

...

_padding (variable)

...

vValue (variable)

...

DBPROPID (4 bytes): A 32-bit unsigned integer indicating the property identifier. The value
MUST be a part of the DBPROPSET_FSCIFRMWRK_EXT property set, as specified in section
2.2.1.12.1.

DBPROPOPTIONS (4 bytes): Property options. This field MUST be set to "0x00000000".

DBPROPSTATUS (bytes): Property status. This field MUST be set to "0x00000000".

colid (variable): A CDbColId structure that defines the database property being passed.

_padding (variable): This field MUST be zero to 3 bytes in length. The length of this field MUST
be such that the following field begins at an offset that is a multiple of 4 bytes from the
beginning of the message that contains this structure. If the length of this field is nonzero, the
value it contains is arbitrary. The contents of this field MUST be ignored by the receiver.

vValue (variable): A CBaseStorageVariant containing the property value.

2.2.1.12.1 Database Properties

This protocol supports the following database properties to control the behavior of the query server.
These properties are grouped into three property sets identified in the guidPropertySet field of the

CDbPropSet structure.

The following table lists the properties that are part of the DBPROPSET_FSCIFRMWRK_EXT
property set.

27 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Value Meaning

DBPROP_CI_CATALOG_NAME

0x00000002

Specifies the name of the search catalog or search catalogs to query. The
value MUST be a VT_LPWSTR or a VT_BSTR. The structure MUST be set
so that the eKind field contains "0x00000001" and the GUID and ulID
fields are filled with zeros.

DBPROP_CI_QUERY_TYPE

0x00000007

Specifies the type of query using a CDbColId structure. The structure
MUST be set so that the eKind field contains "0x00000001" and the
GUID and ulID fields are filled with zeros. When this property is
specified, the vValue field MUST contain "0x00000000", indicating a
regular search query.

2.2.1.13 CDbPropSet

The CDbPropSet structure contains a set of properties. The first field, guidPropertySet, is not
padded and starts where the previous structure in the message ended, as indicated by the "previous
structure" entry in the following diagram. The 1-byte length of "previous structure" is arbitrary, and

is not meant to suggest guidPropertySet begins on any particular boundary. However, the

cProperties field MUST be aligned to begin at a multiple of 4 bytes from the beginning of the
message. The format is depicted as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

"previous structure"

... guidPropertySet (16 bytes)

...

_padding (variable)

...

cProperties

aProps (variable)

...

guidPropertySet (16 bytes): A GUID identifying the property set. MUST be set to the binary
form of the value DBPROPSET_FSCIFRMWRK_EXT ("A9BD1526-6A80-11D0-8C9D-
0020AF1D740E"), identifying the property set of the properties contained in the aProps field.

_padding (variable): This field MUST be zero to 3 bytes in length. The length of this field MUST

be such that the following field begins at an offset that is a multiple of 4 bytes from the

beginning of the message that contains this structure. If the length of this field is nonzero, the
value it contains is arbitrary. The contents of this field MUST be ignored by the receiver.

cProperties (4 bytes): A 32-bit unsigned integer containing the number of elements in the
aProps array.

28 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

aProps (variable): An array of CDbProp structures containing properties. Structures in the
array MUST be separated by zero to 3 padding bytes so that each structure begins at an offset

that is a multiple of 4 bytes from the beginning of the message that contains this array. If
padding bytes are present, the value they contain is arbitrary. The content of the padding

bytes MUST be ignored by the receiver.

2.2.1.14 CPidMapper

The CPidMapper structure contains an array of property specifications and serves to map from a
property offset to a CFullPropSpec. The more compact property offsets are used to name properties
in other parts of the protocol. Because offsets are more compact, they allow shorter property
references in other parts of the protocol.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

paddingCount (variable)

...

count

aPropSpec (variable)

...

paddingCount (variable): This field MUST be zero to 3 bytes in length. The length of this field
MUST be such that the byte offset from the beginning of the message to the count field is a
multiple of 4. The value of the bytes can be any arbitrary value, and MUST be ignored by the

receiver.

count (4 bytes): A 32-bit unsigned integer containing the number of elements in the
aPropSpec array.

aPropSpec (variable): An array of CFullPropSpec structures.

2.2.1.15 CRowsetProperties

The CRowsetProperties structure contains configuration information for a search query.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_uBooleanOptions

_ulMaxOpenRows

_ulMemoryUsage

_cMaxResults

29 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

cCmdTimeout

_padding (variable)

...

_guidRankingModelId (16 bytes)

...

_guidUserid (16 bytes)

...

_guidCorrelationId (16 bytes)

...

_uBooleanOptions (4 bytes): This field specifies various query Boolean options.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

A

A

B

A

C

A

D

A

E

A

F

A - U0 (1 bit): MUST be set to "1" and MUST be ignored.

B through C - U1, U2 (1 bit each): MUST be set to "0" and MUST be ignored.

D - A1 (1 bit): Indicates whether the query is executed in an asynchronous way. Its value MUST
be "0" if the query is executed in a synchronous way and "1" otherwise. If the value is "1", the

protocol client MUST receive the CPMSendNotify response from the protocol server before
sending CPMFetchValueIn and CPMGetRowsIn messages, as specified in section 3.1.5.

E - A2 (1 bit): MUST be equal to A1.

F through O - U3, U4, U5, U6, U7, U8, U9, U10, U11, U12 (1 bit each): MUST be set to "0"
and MUST be ignored.

P - IN (1 bit): Specifies the desired noise word behavior. Its value MUST be "1" if the noise
words are ignored and "0" otherwise.

Q through U - U13, U14, U15, U16, U17 (1 bit each): MUST be set to "0" and MUST be

ignored.

V - AT (1 bit): Specifies the desired token inclusion behavior that MUST be used by the server
unless the inclusion behavior is specified explicitly by keyword syntax, as specified in [MS-
SEARCH] section 2.2.10.8. If the value is "0", the server MUST return only the search results

%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-SEARCH%5d.pdf
%5bMS-SEARCH%5d.pdf

30 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

containing all of the tokens in the query. Otherwise, the server MUST return search results
that contain any of the tokens.

W - ES (1 bit): Specifies the desired stemming query expansion behavior. If the value is "1",
the server MUST use stemming query expansion. If the value is "0", the server MUST NOT use

stemming query expansion.

X - EP (1 bit): Specifies the desired phonetics query expansion behavior. If the value is "1", the
server MUST use phonetic query expansion, which means that phonetically similar tokens
MUST be used for query expansion. If the value is "0", the server MUST NOT use phonetic
query expansion. The logic used to identify phonetic similarity of tokens depends on server
implementation.

Y - EN (1 bit): Specifies the desired nicknames query expansion behavior. If the value is "1",

the server MUST use nicknames query expansion. If the value is "0", the server MUST NOT
use nicknames query expansion.

Z - IT (1 bit): Indicates whether all server-side query execution time limits are ignored. The

value MUST be "1" if the query is allowed to be executed indefinitely and "0" otherwise.

AA through AF - U18, U19, U20, U21, U22, U23 (1 bit each): MUST be set to "0" and MUST
be ignored.

_ulMaxOpenRows (4 bytes): A 32-bit unsigned integer. MUST be set to "0x00000000". Not
used, and MUST be ignored.

_ulMemoryUsage (4 bytes): A 32-bit unsigned integer. MUST be set to "0x00000000". Not
used, and MUST be ignored.

_cMaxResults (4 bytes): A 32-bit unsigned integer, specifying the maximum number of rows
that are to be returned for the query. If _cMaxResults is set to "0x00000000", the server
assumes all rows are requested and behaves as if "0xFFFFFFFF" was specified in

_cMaxResults.

_cCmdTimeout (4 bytes): A 32-bit unsigned integer, specifying the number of seconds at

which a query is to time out, counting from the time the query starts executing on the server.
On a timeout, the query is interrupted and terminated, and the server continues to
communicate with the client using the regular sequence of messages. A value of
"0x00000000" means that the query will not time out.

_padding (variable): This field MUST be zero to 7 bytes in length. The length of this field MUST

be such that the following field begins at an offset that is a multiple of 8 bytes from the
beginning of the message that contains this structure. If the length of this field is nonzero, the
value it contains is arbitrary. The contents of this field MUST be ignored by the receiver.

_guidRankingModelId (16 bytes): A 16-byte GUID value, specifying the identifier of the
ranking model to be used for query execution. The GUID value "00000000-0000-0000-0000-
000000000000" specifies the default ranking model. For details, see [MS-SQLPADM2] section

3.1.1.5.1.

_guidUserId (16 bytes): A 16-byte GUID value, specifying the user profile ID of the user to
be used for personalized ranking features.

_guidCorrelationId (16 bytes): A 16-byte GUID value that identifies the query for debugging
purposes. There are no constraints on this value.

%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-SQLPADM2%5d.pdf
%5bMS-OFCGLOS%5d.pdf

31 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

2.2.1.16 CRowVariant

The CRowVariant structure contains the fixed-size portion of a variable-length data type stored in
the CPMGetRowsOut message.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

vType reserved1

reserved2

Offset (variable)

...

vType (2 bytes): A type indicator, indicating the type of vValue. It MUST be set to VT_I4 or
VT_LPWSTR, as specified in section 2.2.1.1.

reserved1 (2 bytes): Not used. MUST be ignored on receipt.

reserved2 (4 bytes): Not used. MUST be ignored on receipt.

Offset (variable): An offset to variable-length data such as a string. This MUST be a 32-bit
value, or4-bytes long, if 32-bit offsets are being used, as specified in section 2.2.3.7, or a 64-
bit value, or8-bytes long, if 64-bit offsets are being used.

2.2.1.17 CSortSet

The CSortSet structure contains the sort order of the search query.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

count

sortArray (variable)

...

count (4 bytes): A 32-bit unsigned integer specifying the number of elements in sortArray.

sortArray (variable): An array of CSort structures describing the order in which to sort the
results of the search query. Structures in the array MUST be separated by zero to 3 padding
bytes such that each structure has a 4-byte alignment from the beginning of a message. Such

padding bytes can be any arbitrary value, and MUST be ignored on receipt.

2.2.1.18 CTableColumn

The CTableColumn structure contains a column of a CPMSetBindingsIn message.

32 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

PropSpec (variable)

...

vType

ValueUsed _padding1 ValueOffset

ValueSize StatusUsed _padding2

StatusOffset LengthUsed _padding3

LengthOffset

PropSpec (variable): A CFullPropSpec structure.

vType (4 bytes): A 32-bit reserved field. This field MUST be set to "0x0000000C".

ValueUsed (1 byte): A 1-byte reserved field. This field MUST be set to "0x01".

_padding1 (1 byte): A 1-byte field that MUST be inserted before the ValueOffset field if,
without that byte, ValueOffset would not begin at an even offset from the beginning of the
message. The value of this byte is arbitrary and MUST be ignored.

ValueOffset (2 bytes): An unsigned 2-byte integer specifying the offset of the column value in

the row.

ValueSize (2 bytes): An unsigned 2-byte integer specifying the size of the column value in

bytes.

StatusUsed (1 byte): A 1-byte reserved field. This field MUST be set to "0x01".

_padding2 (1 byte): A 1-byte field that MUST be inserted before the StatusOffset field if,
without that byte, StatusOffset would not begin at an even offset from the beginning of the
message. The value of this byte is arbitrary and MUST be ignored.

StatusOffset (2 bytes): An unsigned 2-byte integer. Specifies the offset of the column status in
the row.

Status is represented as one byte in the response at the offset specified in the StatusOffset
request field. The status byte MUST be set to "0x00".

LengthUsed (1 byte): A reserved 1-byte field. MUST be set to "0x01".

_padding3 (1 byte): A 1-byte field that MUST be inserted before the LengthOffset field if,
without that byte, LengthOffset would not begin at an even offset from the beginning of a

message. The value of this byte is arbitrary and MUST be ignored.

LengthOffset (2 bytes): An unsigned 2-byte integer specifying the offset of the column length
in the row. In CPMGetRowsOut, length is represented by a 32-bit unsigned integer at the
offset specified in LengthOffset.

33 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

2.2.1.19 QUERYMETADATA

The QUERYMETADATA structure contains a serialized representation of the metadata about a
search query. This structure is returned in the vValue field of the CPMFetchValueOut message.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

vType Reserved0

vLen

NoiseWords (variable)

...

SpellingSuggestion (variable)

...

QueryTerms (variable)

...

TermIds (variable)

...

EstimatedCount

RestrictionCount

Restrictions (variable)

...

vType (2 bytes): A 16-bit reserved field describing the type of the property. vType MUST be
set to VT_BLOB, as specified in section 2.2.1.1.

Reserved0 (2 bytes): A reserved 16-bit field. This field MUST be set to "0x00".

vLen (4 bytes): A 32-bit field specifying the total length in bytes of the NoiseWords,
SpellingSuggestion, QueryTerms, TermIds and EstimatedCount fields.

NoiseWords (variable): A CBaseStorageVariant containing terms which were treated as
ignored words during query execution. The vType field of this structure MUST be set to

VT_VECTOR | VT_LPWSTR ("0x101F"). The vValue field MUST contain an array of zero or
more query terms which were treated as ignored words by the query. For information about
serialization for vValue, see section 2.2.1.1.

34 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

SpellingSuggestion (variable): A CBaseStorageVariant containing terms that have been
determined by the server to be alternate spelling of terms specified in the query<4>. The

vType field of this structure MUST be set to VT_LPWSTR ("0x001F"). The vValue field MUST
contain space-delimited spelling suggestions. If all spelling suggestions are the same as the

original terms, the vValue MUST contain a null-terminated empty VT_LPWSTR. For
information about serialization for vValue, see section 2.2.1.1.

QueryTerms (variable): A CBaseStorageVariant containing terms from the query. The
vType field of this structure MUST be set to VT_VECTOR | VT_LPWSTR ("0x101F"). The
vValue field MUST contain an array of zero or more query terms. For information about
serialization for vValue, see section 2.2.1.1.

TermIds (variable): A CBaseStorageVariant containing term identifiers from the search

query. The vType field of the TermIds field MUST be set to VECTOR | VT_UI4 ("0x1013"),
and the vVectorElements field of the TermIds structure MUST be set to the same value as
the vVectorElements field of the QueryTerms structure. The vVectorData field SHOULD
contain term identifier values that are specific to the protocol server implementation. The
protocol client MUST ignore the values in vVectorData. For information about serialization for

vValue, see section 2.2.1.1.

EstimatedCount (4 bytes): A 32-bit field containing the estimated number of total results,
regardless of the number of rows requested by the protocol client.

RestrictionCount (4 bytes): A 32-bit field containing the number of restrictions that follow in
the Restrictions field. This value MUST be set to "1".

Restrictions (variable): A sequence of serializations of CRestrictions, as specified in section
2.2.1.9. There MUST be as many serializations of CRestriction as indicated in the
RestrictionCount field. These MUST be the restrictions that the protocol server used to

generate the row set containing the results of the query. This set of restrictions can be the
same as the restrictions specified in the CPMCreateQueryIn message, as specified in section
2.2.3.3, but it can also be different if the protocol server modified the restriction before
executing the query.

2.2.1.20 CKey

The CKey structure stores an index key used in restrictions.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

pid

cb

buf

...

pid (4 bytes): The property identifier of a property referenced by the index key.

cb (4 bytes): The size of the buf field in bytes.

buf (variable): The index key string of the index key.

%5bMS-OFCGLOS%5d.pdf

35 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

2.2.1.21 CSynKey

The CSynKey structure pairs a CKey structure with a confidence value.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

key (variable)

...

confidence

key (variable): The CKey structure.

confidence (4 bytes): The confidence applied to this index key. The confidence is a 32-bit

floating point value. The value MAY be used during ranking of search results to put a higher
weight on some keys, and a lower weight on others. It MAY also be ignored.

2.2.1.22 CDocSetRestriction

The CDocSetRestriction structure contains the number of document identifiers used for matching.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Count

Count (4 bytes): A 32-bit unsigned integer indicating how many document identifiers are

following.

2.2.1.23 CInternalPropertyRestriction

The CInternalPropertyRestriction structure contains: a property to get from each row, a
comparison operator, and a constant. For each row, the value returned by the specific property in
the row is compared against the constant to see if it matches the relationship specified by the Relop
field.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Relop

Pid

PrVal

...

Reserved

%5bMS-OFCGLOS%5d.pdf

36 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Relop (4 bytes): A 32-bit unsigned integer specifying the relation to perform on the property.
Relop MUST be one of the following values.

Value Meaning

PREQ

0x00000004

An equality comparison.

PRNE

0x00000005

A not-equal comparison.

Pid (4 bytes): A 32-bit unsigned integer indicating the property identifier of the property.

PrVal (variable): A CBaseStorageVariant structure containing the value to relate to the
property. The type of data stored in PrVal MUST match the data type of the property specified
by the Pid field.

Reserved (4 bytes): A reserved 32-bit unsigned integer that MUST be set to "0".

2.2.1.24 COccRestriction

The COccRestriction structure contains a restriction that carries occurrence information.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Occurrence

PrevNoiseWordCount

PostNoiseWordCount

OccRestriction (variable)

...

Occurrence (4 bytes): A 32-bit unsigned integer indicating the occurrence of the restriction.

PrevNoiseWordCount (4 bytes): A 32-bit unsigned integer indicating how many noise words
occur before the position indicated in the Occurrence field.

PostNoiseWordCount (4 bytes): A 32-bit unsigned integer indicating how many noise words
occur after the position indicated in the Occurrence field.

OccRestriction (variable): The format of this field is dependent on the value of the Type field
of the enclosing CRestriction structure:

Value of the Type field Meaning

RTExactWord

0x00000018

The field contains a CExactPositionWordRestriction.

RTSynonym The field contains a CSynRestriction.

37 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Value of the Type field Meaning

0x00000012

RTWord

0x00000011

The field contains a CWordRestriction.

Whether this restriction matches or not is determined by the contents of the OccRestriction
field.

2.2.1.25 CExactPositionWordRestriction

The CExactPositionWordRestriction imposes stricter rules for matching a CWordRestriction.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

OccWindow

OccWindow (4 bytes): A 32-bit unsigned integer. The restriction MUST only match if the
enclosing CWordRestriction matches, and if the position of any of the matching index keys in
the document modulo this value is equal to the value of the Occurrence field of the enclosing
COccRestriction structure.

2.2.1.26 CSynRestriction

The CSynRestriction structure contains several CSynKey structures and other CRestriction
structures to match.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Children (variable)

...

Keycount

Keys (variable)

...

Is Range Reserved1 Reserved2 Reserved3

Reserved4

Reserved5

Children (variable): A CRestrictionChildren structure. This restriction MUST match if any of the
restrictions in this field match.

38 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

KeyCount (4 bytes): A 32-bit unsigned integer storing the number of CSynKey structures in
the Keys field.

Keys (variable): An array of CSynKey structures. Structures in the array MUST be separated
by zero to 3 padding bytes so that each structure begins at an offset that is a multiple of 4

bytes from the beginning of the message that contains this array. If padding bytes are
present, the value they contain is arbitrary. The content of the padding bytes MUST be
ignored by the receiver. This restriction MUST match an item if the item contains any of the
index keys that are contained in this structure.

IsRange (1 byte): An 8-bit unsigned integer. If this value is "0", a document MUST match the
restriction if it contains an index key that is equal to any of the keys in the Keys field.
Otherwise, a document MUST match the restriction if it contains an index key of which any of

the keys in the Keys field is a prefix.

Reserved1 (1 byte): An 8-bit unsigned integer. This value is reserved and MUST be ignored.

Reserved2 (1 byte): An 8-bit unsigned integer. This value is reserved and MUST be ignored.

Reserved3 (1 byte): An 8-bit unsigned integer. This value is reserved and MUST be ignored.

Reserved4 (4 bytes): A 32-bit unsigned integer. This value is reserved. It MUST be set to "0".

Reserved5 (4 bytes): A 32-bit unsigned integer. This value is reserved. It MUST be set to "1".

2.2.1.27 CRangeRestriction

The CRangeRestriction matches a range of index keys.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

StartKey (variable)

...

EndKey (variable)

...

StartKey (variable): A CKey structure representing the first index key to match on.

EndKey (variable): A CKey structure representing the first index key to not match on.

The CRangeRestriction matches if a document contains an index key that is greater than or
equal to the key in the StartKey field, and smaller than the key in the EndKey field.

2.2.1.28 CScopeRestriction

The CScopeRestriction contains a basic scope index key and a property identifier. For each row,
the basic scope index key created from the value returned by the specific property in the row is
compared against this value.

%5bMS-OFCGLOS%5d.pdf

39 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

ScopeKey (variable)

...

Pid

ScopeKey (variable): A CKey structure that contains the basic scope index key against which
the properties are compared.

Pid (4 bytes): A 32-bit unsigned integer, specifying the property identifier of the property to be
compared.

2.2.1.29 CPhraseRestriction

The CPhraseRestriction structure defines the behavior of the CNodeRestriction that contains it.

The restrictions in the enclosing CNodeRestriction have to match in the right order for the
CPhraseRestriction to match.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Reserved1

Reserved2

MaxInexactDistance

Reserved1 (4 bytes): A 32-bit unsigned integer. This value is reserved. It MUST be set to "0".

Reserved2 (4 bytes): A 32-bit unsigned integer. This value is reserved. It MUST be set to "1".

MaxInexactDistance (4 bytes): A 32-bit unsigned integer. This value determines the tolerance
for inexact matching.

This restriction MUST only match if all of the child restrictions in the enclosing
CNodeRestriction match, and if the difference between the Occurrence field of the child
restriction and the position of the corresponding index key is smaller than or equal to the
value of the MaxInexactDistance field.

2.2.1.30 CNotRestriction

The CNotRestriction reverses the matching of the restriction it contains.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Restriction (variable)

40 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

...

Restriction (variable): A CRestriction structure. If this restriction matches, the CNotRestriction
MUST NOT match. If this restriction does not match, the CNotRestriction MUST match.

2.2.1.31 CWordRestriction

The CWordRestriction structure contains a key to match.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Key (variable)

...

IsRange Padding (variable)

Reserved4

Reserved5

Key (variable): A CKey structure, as specified in section 2.2.1.20, describing the index key to
match.

IsRange (1 byte): An 8-bit unsigned integer. If this value is "0", a document MUST only match
the restriction if it contains an index key that is equal to the key in the Key field. Otherwise, a
document MUST only match the restriction if it contains an index key of which the key in the

Key field is a prefix.

Padding (variable): This field MUST be zero to 3 bytes in length. The length of this field MUST
be such that the following field begins at an offset that is a multiple of 4 bytes from the
beginning of the message that contains this structure. If the length of this field is nonzero, the
value it contains is arbitrary. The content of this field MUST be ignored by the receiver.

Reserved4 (4 bytes): A 32-bit unsigned integer. This value is reserved. It MUST be set to "0".

Reserved5 (4 bytes): A 32-bit unsigned integer. This value is reserved. It MUST be set to "1".

2.2.1.32 CProbRestriction

The CProbRestriction advises the server to perform probabilistic ranking on the restrictions it
contains.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Property (variable)

...

41 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Padding1 (variable)

...

Reserved1

Reserved2

Reserved3

Reserved4

Reserved5

Reserved6

Property (variable): A CFullPropSpec structure. This field indicates the property on which to
perform the match operation.

Padding1 (variable): This field MUST be zero to 3 bytes in length. The length of this field MUST

be such that the following field begins at an offset that is a multiple of 4 bytes from the
beginning of the message that contains this structure. If the length of this field is nonzero, the
value it contains is arbitrary. The content of this field MUST be ignored by the receiver.

Reserved1 (4 bytes): A 32-bit unsigned integer. This value is reserved and MUST be ignored.

Reserved2 (4 bytes): A 32-bit unsigned integer. This value is reserved and MUST be ignored.

Reserved3 (4 bytes): A 32-bit unsigned integer. This value is reserved and MUST be ignored.

Reserved4 (4 bytes): A 32-bit unsigned integer. This value is reserved and MUST be ignored.

Reserved5 (4 bytes): A 32-bit unsigned integer. This value is reserved and MUST be ignored.

Reserved6 (4 bytes): A 32-bit unsigned integer. This value is reserved and MUST be ignored.

2.2.1.33 CScopeRangeRestriction

The CScopeRangeRestriction structure contains two basic scope index keys and a property
identifier. The row matches the restriction if the basic scope index key created from the value

returned by the specific property is greater than or equal to the lower bound basic scope index key
and less than or equal to the upper bound basic scope index key. Ordering of index keys is specified
in [MS-CIFO] section 2.2.3.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_keyStart (variable)

...

%5bMS-CIFO%5d.pdf

42 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

_keyEnd (variable)

...

_nestedPid

_keyStart (variable): A CKey structure that contains the lower bound basic scope index key.

_keyEnd (variable): A CKey structure that contains the upper bound basic scope index key.

_nestedPid (4 bytes): A 32-bit unsigned integer, specifying the property identifier of the
property to be compared.

2.2.1.34 CRestrictionChildren

The CRestrictionChildren structure holds a group of CRestriction structures.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Count

Restrictions (variable)

...

Count (4 bytes): A 32-bit unsigned integer storing the number of CRestriction structures in the
Restrictions field.

Restrictions (variable): An array of CRestriction structures. Structures in the array MUST be

separated by zero to 3 padding bytes such that each structure begins at an offset that is a
multiple of 4 bytes from the beginning of the message that contains this array. If padding
bytes are present, the value they contain is arbitrary. The content of the padding bytes MUST
be ignored by the receiver.

2.2.2 Message Headers

All MSSearch Query Protocol messages have a 16-byte header.

The following diagram shows the MSSearch Query Protocol message header format.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_msg

_status

_ulChecksum

43 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

_ulReserved2

_msg (4 bytes): A 32-bit integer that identifies the type of message following the header.

The following table lists the MSSearch Query Protocol messages and the integer values
specified for each message. As shown in the table, some values identify two messages. In
those instances, the message following the header can be identified by the direction of the
message flow. If the direction is protocol client to protocol server, the message with "In"
appended to the message name is indicated. If the direction is protocol server to protocol

client, the message with "Out" appended to the message name is indicated. The value of
_msg MUST be set to one of the following values.

Value Meaning

0x000000C8 CPMConnectIn or CPMConnectOut

0x000000C9 CPMDisconnect

0x000000CA CPMCreateQueryIn or CPMCreateQueryOut

0x000000CB CPMFreeCursorIn or CPMFreeCursorOut

0x000000CC CPMGetRowsIn or CPMGetRowsOut

0x000000D0 CPMSetBindingsIn

0x000000D1 CPMGetNotifyIn or CPMGetNotifyOut

0x000000D2 CPMSendNotifyOut

0x000000E4 CPMFetchValueIn or CPMFetchValueOut

_status (4 bytes): An HRESULT or NTSTATUS value, indicating the status of the requested
operation. When sent by the protocol client, this field MUST be set to "0" and the protocol

server MUST ignore the value<5>.

_ulChecksum (4 bytes): A 32-bit integer field. The _ulChecksum MUST be calculated as
specified in section 3.2.4 for the following messages:

CPMConnectIn

CPMCreateQueryIn

CPMSetBindingsIn

CPMGetRowsIn

CPMFetchValueIn

For all other messages from the protocol client, _ulChecksum MUST be ignored by the

receiver. A protocol client MUST ignore the _ulChecksum field.

_ulReserved2 (4 bytes): A 32-bit integer field. If the message type is CPMGetRowsIn and 64-
bit offsets are used, as specified in section 2.2.3.7, this field MUST contain the upper 32 bits
of the base value to use for pointer calculations in the row buffer Otherwise the value MUST

be set to "0x00000000". The _ulClientBase field of the CPMGetRowsIn message contains the
lower 32 bits of the base value.

44 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

2.2.3 Messages

The following sections specify the MSSearch Query Protocol messages.

2.2.3.1 CPMConnectIn

The CPMConnectIn message begins a session between the protocol client and protocol server.

The format of the CPMConnectIn message that follows the header is shown in the following
diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_iClientVersion

_fClientIsRemote

_cbBlob1

_paddingcbdBlob2

_cbBlob2

_padding (12 bytes)

...

MachineName (variable)

...

UserName (variable)

...

_paddingcPropSets (variable)

...

cPropSets

PropertySets

...

_paddingExtPropset (variable)

45 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

...

cExtPropSet

ExtPropertySets (variable)

...

_iClientVersion (4 bytes): A 32-bit integer indicating whether the protocol client is assumed
capable of handling 64-bit offsets in CPMGetRowsOut messages<6>. The value for this field
MUST be set to one of the following values.

Value Meaning

0x00000102 The protocol client is not capable of handling 64-bit offsets in CPMGetRowsOut
messages.

0x00010102 The protocol client is capable of handling 64-bit offsets in CPMGetRowsOut
messages.

_fClientIsRemote (4 bytes): A Boolean value indicating whether the protocol client is running
on a different computer than the protocol server.

_cbBlob1 (4 bytes): A 32-bit unsigned integer indicating the size in bytes of the cPropSets
and PropertySets fields, combined.

_paddingcbdBlob2 (4 bytes): 4 bytes of padding that MUST be ignored.

_cbBlob2 (4 bytes): A 32-bit unsigned integer indicating the size in bytes of the cExtPropSet
and ExtPropertySets fields, combined.

_padding (12 bytes): 12 bytes of padding that MUST be ignored.

MachineName (variable): The computer name of the protocol client. The name string MUST be

a null-terminated array of less than 512 Unicode characters, including the NULL terminator.

UserName (variable): A string that represents the name of the account running the application
that called this protocol. The name string MUST be a null-terminated array of fewer than 512
Unicode characters when concatenated with MachineName.

_paddingcPropSets (variable): This field MUST be zero to 7 bytes in length. The number of
bytes MUST be the number required to make the byte offset of the cPropSets field a multiple
of 8 from the beginning of the message that contains this structure. The value of the bytes

can be any arbitrary value, and MUST be ignored by the receiver.

cPropSets (4 bytes): A 32-bit unsigned integer indicating the number of CDbPropSet
structures following this field. This field MUST be set to "0x00000001".

PropertySets (variable): An array of CDbPropSet structures. The number of elements in this
array MUST be equal to cPropSets.

_paddingExtPropset (variable): This field MUST be zero to 7 bytes in length. The number of

bytes MUST be the number required to make the byte offset of the cExtPropSets field from

46 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

the beginning of the message that contains this structure equal to a multiple of 8. The value
of the bytes can be any arbitrary value, and MUST be ignored by the receiver.

cExtPropSet (4 bytes): A 32-bit reserved field. MUST be set to "0x00000001".

ExtPropertySets (variable): An array of CDbPropSet structures. The number of elements in

this array MUST be equal to cExtPropSet. The aProps field of the first element of the array
MUST contain a CDbProp structure with DBPROPID set to "0x00000002"
(DBPROP_CI_CATALOG_NAME).

2.2.3.2 CPMConnectOut

The CPMConnectOut message contains a response to a CPMConnectIn message. The format of the
CPMConnectOut message that follows the header is shown in the following diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_serverVersion

_reserved (20 bytes)

...

_serverVersion (4 bytes): A 32-bit integer, indicating whether the server can support 64-bit
offsets, as specified in section 2.2.3.7.

Value Meaning

0x00000102 The protocol server can only send 32-bit offsets.

0x00010102 The protocol server can send 32-bit or 64-bit offsets.

_reserved (20 bytes): A 20 byte reserved field. The protocol client MUST ignore these values.

2.2.3.3 CPMCreateQueryIn

The CPMCreateQueryIn message creates a new search query. The format of the

CPMCreateQueryIn message that follows the header is shown in the following diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Size

CColumnSetPresent Align0 (variable)

...

ColumnSet (variable)

47 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

...

CRestrictionPresent Reserved2 Align1 (variable)

...

Restriction (variable)

...

CSortSetPresent Align2 (variable)

...

SortSet

...

Reserved0 Align3 (variable)

...

RowSetProperties (variable)

...

PidMapper (variable)

...

Reserved1

LCID

Size (4 bytes): A 32-bit unsigned integer indicating the number of bytes from the beginning of
this field to the end of the message.

CColumnSetPresent (1 byte): A byte field indicating if the ColumnSet field is present. This
field MUST be set to one of the following values.

Value Meaning

0x00 The ColumnSet field MUST be absent.

0x01 The ColumnSet field MUST be present.

Align0 (variable): A field structure of zero, 1, 2 or 3 bytes that is used to align the next field to
a 4-byte boundary. MUST be ignored by the protocol server.

48 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

ColumnSet (variable): A CColumnSet structure containing the property offsets for properties in
CPidMapper that are returned as a column.

CRestrictionPresent (1 byte): A byte field indicating if the Restriction field is present.

If this field is set to any nonzero value, the Restriction field MUST be present. If this field is

set to "0x00", the Restriction field MUST NOT be present.

Reserved2 (2 bytes): A 16-bit reserved field. MUST contain the value "0x0101".

Align1 (variable): A field structure of zero, 1, 2 or 3 bytes that is used to align the next field to
a 4-byte boundary. This field MUST be ignored by the protocol server.

Restriction (variable): A CRestriction structure containing the command tree of the search
query. The tree MUST only contain CRestriction structures with Type equal to RTAnd, RTOr,
RTNot, RTContent, RTProperty, RTProximity, RTNatLanguage, RTPropertyRange or RTPhrase.

CSortSetPresent (1 byte): A byte field indicating if the SortSet field is present.

If this field is set to any nonzero value, the SortSet field MUST be present. If set to "0x00",
the SortSet field MUST NOT be present.

Align2 (variable): A field structure of zero, 1, 2 or 3 bytes that is used to align the next field to
a 4-byte boundary. This field MUST be ignored by the protocol server.

SortSet (variable): A CSortSet structure indicating the sort order of the search query.

Reserved0 (1 byte): An 8-bit field reserved for future use. This field MUST be ignored by the
protocol server.

Align3 (variable): A field structure of zero, 1, 2 or 3 bytes that is used to align the next field to
a 4-byte boundary. This field MUST be ignored by the protocol server.

RowSetProperties (variable): A CRowsetProperties structure providing configuration
information for the search query.

PidMapper (variable): A CPidMapper structure that maps from property offsets to full

property descriptions.

Reserved1 (4 bytes): A 32-bit reserved field. This field MUST be set to "0x00000000".

LCID (4 bytes): A 32-bit unsigned integer, indicating the LCID of the search query, as specified
in [MS-LCID].

2.2.3.4 CPMCreateQueryOut

The CPMCreateQueryOut message contains a response to a CPMCreateQueryIn message.

The format of the CPMCreateQueryOut message that follows the header is shown in the following
diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

fTrueSequential

%5bMS-LCID%5d.pdf

49 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

_fWorkIdUnique

Cursor

fTrueSequential (4 bytes): A 32-bit unsigned integer that indicates whether the protocol
server can use optimizations for the search query. This field MUST be set to one of the values
in the following table.

Value Meaning

0x00000000 For the search query provided in CPMCreateQueryIn, the protocol server is unable
to use optimizations and there is larger latency in delivering query results.

0x00000001 For the search query provided in CPMCreateQueryIn, the protocol server is able to
use optimizations and the query results can be expected to be delivered faster.

_fWorkIdUnique (4 bytes): A Boolean value indicating if the document identifiers pointed to
by the cursors are unique throughout query results. This field MUST be set to one of the

following values.

Value Meaning

0x00000000 The document identifiers are unique only throughout the rowset.

0x00000001 The document identifiers are unique across multiple query results.

Cursor (4 bytes): A 32-bit unsigned integer representing the handle to the cursor that
identifies the query being executed.

2.2.3.5 CPMSetBindingsIn

The CPMSetBindingsIn message requests the binding of columns to a rowset. The protocol server

replies to the CPMSetBindingsIn request message using the header section of the
CPMSetBindingsIn message with the results of the request contained in the _status field. The
format of the CPMSetBindingsIn message that follows the header is shown in the following
diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_hCursor (optional)

_cbRow (optional)

_cbBindingDesc (optional)

_dummy (optional)

cColumns (optional)

aColumns (variable)

%5bMS-GLOS%5d.pdf

50 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

...

padding (cariable)

...

_hCursor (4 bytes, optional): A 32-bit value representing the handle from the
CPMCreateQueryOut message that identifies the search query for which to set bindings. This
field MUST be present when the message is sent by the protocol client, and MUST NOT be
present when the message is sent by the protocol server.

_cbRow (4 bytes, optional): A 32-bit unsigned integer indicating the size in bytes of a row.
This field MUST be present when the message is sent by the protocol client, and MUST NOT be

present when the message is sent by the protocol server.

_cbBindingDesc (4 bytes, optional): A 32-bit unsigned integer indicating the length in bytes

of the fields following the _dummy field. This field MUST be present when the message is sent
by the protocol client, and MUST NOT be present when the message is sent by the protocol
server.

_dummy (4 bytes, optional): This field is unused, and MUST be ignored. It can be set to any
arbitrary value. This field MUST be present when the message is sent by the protocol client,

and MUST NOT be present when the message is sent by the protocol server.

cColumns (4 bytes, optional): A 32-bit unsigned integer indicating the number of elements in
the aColumns array. This field MUST be present when the message is sent by the protocol
client, and MUST NOT be present when the message is sent by the protocol server.

aColumns (variable): An array of the CTableColumn structures describing the columns of a row
in the rowset. This field MUST be present when the message is sent by the protocol client, and

MUST NOT be present when the message is sent by the protocol server. Structures in the
array MUST be separated by zero to 3 padding bytes such that each structure has a 4-byte

alignment from the beginning of a message. Padding bytes can be any arbitrary value, and
MUST be ignored on receipt.

padding (variable): This field MUST be zero to 3 bytes long to pad the message to a multiple of
4 bytes in length. The value of the padding bytes can be any arbitrary value. This field MUST
be ignored by the receiver. This field MUST be present when the message is sent by the

protocol client, and MUST NOT be present when the message is sent by the protocol server.

2.2.3.6 CPMGetRowsIn

The CPMGetRowsIn message requests rows from a search query. The format of the
CPMGetRowsIn message that follows the header is shown in the following diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_hCursor

_cRowsToTransfer

51 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

_cbRowWidth

_cbSeek

_cbReserved

_cbReadBuffer

_ulClientBase

Reserved1

Reserved2

Reserved3

Reserved4

_hCursor (4 bytes): A 32-bit value representing the handle from the CPMCreateQueryOut
message identifying the search query for which to retrieve rows.

_cRowsToTransfer (4 bytes): A 32-bit unsigned integer indicating the maximum number of
rows the protocol client expects to receive in response to this message.

_cbRowWidth (4 bytes): A 32-bit unsigned integer indicating the length of a row in bytes.

_cbSeek (4 bytes): A 32-bit reserved field. This field MUST be set to "0x0000000C".

_cbReserved (4 bytes): A 32-bit unsigned integer indicating the offset, in bytes, of the Rows
field in the CPMGetRowsOut response message. This offset begins from the first byte of the

message header and MUST be set so that the Rows field follows the Reserved1 field.

_cbReadBuffer (4 bytes): A 32-bit unsigned integer that MUST be set to the maximum of the
value of _cbRowWidth, or 1,000 times the value of _cRowsToTransfer, rounded up to the
nearest 512-byte multiple. The value MUST NOT exceed 0x00004000.

_ulClientBase (4 bytes): A 32-bit unsigned integer indicating the base value to use for pointer

calculations in the row buffer. If 64-bit offsets are being used, the _ulReserved2 field of the
message header is used as the upper 32 bits, and the _ulClientBase field is used as the
lower 32 bits of a 64-bit value. For more information, see section 2.2.3.7.

Reserved1 (4 bytes): A 32-bit reserved field. This field MUST be set to 0x00000000.

Reserved2 (4 bytes): A 32-bit reserved field. This field MUST be set to 0x00000001.

Reserved3 (4 bytes): A 32-bit reserved field. This field MUST be set to 0x00000000.

Reserved4 (4 bytes): A 32-bit reserved filed. This field MUST be set to 0x00000000.

52 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

2.2.3.7 CPMGetRowsOut

The CPMGetRowsOut message replies to a CPMGetRowsIn message with the rows of a search
query. Protocol servers MUST format offsets to variable-length data types in the row field as follows.

The protocol client indicated it was a 32-bit system by putting "0x00000102" in the

_iClientVersion field of CPMConnectIn. Offsets are 32-bit integers.

The protocol client indicated it was a 64-bit system by setting_iClientVersion to "0x00010102"

in CPMConnectIn, and the protocol server indicated that it was a 32-bit system because
_serverVersion is set to 0x00010102 in CPMConnectOut. Offsets are 32-bit integers.

The protocol client indicated it was a 64-bit system because_iClientVersion is set to

"0x00010102" in CPMConnectIn, and the protocol server indicated that it was a 64-bit system
because _serverVersion is set to 0x00010102 in CPMConnectOut. Offsets are 64-bit integers.

The format of the CPMGetRowsOut message that follows the header is depicted in the following
diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_cRowsReturned

Reserved1

Reserved2

Reserved3

paddingRows (variable)

...

Rows (variable)

...

_cRowsReturned (4 bytes): A 32-bit unsigned integer indicating the number of rows returned
in the Rows field.

Reserved1 (4 bytes): A 32-bit reserved field. This field MUST be set to 0x000000.

Reserved2 (4 bytes): A 32-bit reserved field. This field MUST be ignored by the receiver.

Reserved3 (4 bytes): A 32-bit reserved field. This field MUST be ignored by the receiver.

paddingRows (variable): This field MUST be of sufficient length, from zero to _cbReserved-1
bytes, to pad the Rows field to _cbReserved offset from the beginning of a message where
_cbReserved is the value in the CPMGetRowsIn message. Padding bytes used in this field
can be any arbitrary value. This field MUST be ignored by the receiver.

53 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Rows (variable): Row data is formatted as prescribed by column information in the most recent
CPMSetBindingsIn message. Rows MUST be stored in forward order. For example, row 1 must

be stored before row 2. Fixed-sized columns MUST be stored at the offsets specified by the
most recent CPMSetBindingsIn message.

Columns MUST be stored as CRowVariants with vType set to VT_I4 or VT_LPWSTR. Because
the total size of the Rows field is specified by the _cbReadBuffer field of the CPMGetRowsIn
message, if row data does not fit exactly into the Rows field of the CPMGetRowsOut
message, there will be unused padding within the Rows field.

2.2.3.8 CPMFetchValueIn

The CPMFetchValueIn message requests metadata about the most recent search query initiated

with a CPMCreateQueryIn message.

The format of the CPMFetchValueIn message that follows the header is shown in the following
diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_wid

_cbSoFar

_cbPropSpec

_cbChung

PropSpec (variable)

...

_padding (variable)

...

_wid (4 bytes): A 32-bit reserved field. MUST be set to "0xFFFFFFFF".

_cbSoFar (4 bytes): A 32-bit unsigned integer containing the number of bytes previously
transferred for this property. This field MUST be set to "0x00000000" in the first message.

_cbPropSpec (4 bytes): A 32-bit unsigned integer containing the size of the PropSpec field in
bytes.

_cbChunk (4 bytes): A 32-bit unsigned integer containing the maximum number of bytes that

the sender can accept in a CPMFetchValueOut message. The value of this field MUST be
greater than 0x0000001C.

PropSpec (variable): A CFullPropSpec structure specifying the property to retrieve. If
_cbPropSpec is not "0", the following field values MUST be set on this structure. Otherwise,

this structure MUST be omitted:

54 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Field Value

_guidPropSet E83758B4-0C6E-435B-BCC6-268021EFAD6C

ulKind PRSPEC_PROPID (0x00000001)

PrSpec 0x00000000

_padding (variable): This field MUST be zero to 3 bytes long to pad the message to a multiple
of 4 bytes in length. The value of the padding bytes can be any arbitrary value. This field
MUST be ignored by the receiver.

2.2.3.9 CPMFetchValueOut

The CPMFetchValueOut message replies to a CPMFetchValueIn message with a metadata about
the most recent previously issued query. As specified in section 3.1.5.5, this message is sent after
each CPMFetchValueIn message until all bytes of the metadata are transferred. The message
length, including the header, MUST be less than or equal to the value of _cbChunk specified in the

CPMFetchValueIn message.

The format of the CPMFetchValueOut message that follows the header is shown in the following

diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_cbValue

_fMoreexists

_fValueExists

vValue (variable)

...

_cbValue (4 bytes): A 32-bit unsigned integer containing the size in bytes of the vValue field.

_fMoreExists (4 bytes): A Boolean value indicating whether there are additional
CPMFetchValueOut messages available. If this value is set to "0x00000001", the total size

of the CPMFetchValueOut message MUST be equal to the value of the _cbChunk field in
CPMFetchValueIn.

Value Meaning

0x00000000 There is no additional data available.

0x00000001 There is additional data available.

_fValueExists (4 bytes): A reserved 32-bit unsigned integer. MUST be set to 0x00000001.

vValue (variable): A portion of a byte array containing a QUERYMETADATA where the offset of
the beginning of the portion is the value of _cbSoFar in CPMFetchValueIn.

55 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

2.2.3.10 CPMFreeCursorIn

The CPMFreeCursorIn message requests the release of a cursor. The format of the
CPMFreeCursorIn message that follows the header is shown in the following diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_hCursor

_hCursor (4 bytes): A 32-bit value representing the handle of the cursor from the
CPMCreateQueryOut message to release.

2.2.3.11 CPMFreeCursorOut

The CPMFreeCursorOut message replies to a CPMFreeCursorIn message with the results of freeing
a cursor. The format of the CPMFreeCursorOut message that follows the header is shown in the

following diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_cCursorsRemaining

_cCursorsRemaining (4 bytes): A 32-bit unsigned integer indicating the number of cursors
still in use for the search query.

2.2.3.12 CPMGetNotifyIn

The CPMGetNotifyIn message requests a notification about query execution completion.

The message MUST NOT include a body; only the message header, as specified in section 2.2.2, is
sent.

2.2.3.13 CPMGetNotifyOut

The CPMGetNotifyOut message replies to a CPMGetNotifyIn message indicating that the query
execution is not complete yet. Once the query execution completes, the protocol server replies with
an additional CPMSendNotifyOut message.

The message MUST NOT include a body; only the message header, as specified in section 2.2.2, is

sent.

2.2.3.14 CPMSendNotifyOut

The CPMSendNotifyOut message replies to a CPMGetNotifyIn message indicating that the query
execution has finished. The format of the CPMSendNotifyOut message that follows the header is

shown in the following diagram.

56 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_watchNotify

_watchNotify (4 bytes): A 32-bit field. The value of the field can be any arbitrary value and
MUST be ignored.

2.2.3.15 CPMDisconnect

The CPMDisconnect message ends the connection with the server.

The message MUST NOT include a body; only the message header, as specified in section 2.2.2, is
sent.

2.2.4 Errors

All MSSearch Query Protocol messages MUST return a successful HRESULT code on success;
otherwise, they return a 32-bit nonzero error code that can be either an HRESULT or an NTSTATUS
value, as described in section 1.8.

All error values MUST be treated the same; the error MUST be considered fatal and reported to the
higher-layer caller. Future messages MAY be sent over the same pipe as if no error had

occurred<7>.

57 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

3 Protocol Details

MSSearch Query Protocol message requests require only minimal sequencing. All messages MUST
be preceded by an initial CPMConnectIn message. For example, a message is preceded by at least
one CPMConnectIn for each named pipe connection. Beyond the initial connection, there is no
other sequencing required by the protocol. However, it is advised that the higher layer adhere to a
meaningful message sequence, and for messages that are received out of this sequence or with
invalid data, the protocol server responds with an error. Note that some messages are also
dependent on the higher layer providing valid data that was received in messages earlier in the

sequence.

A typical message sequence for a simple search query from a protocol client to a remote computer
is illustrated in the following diagram.

Figure 1: Typical message sequence for a simple query from protocol client to remote
computer

The messages represented in the preceding diagram represent a subset of all of the MSSearch
Query Protocol messages used for querying a remote query server search catalog.

3.1 Server Details

3.1.1 Abstract Data Model

The following section specifies data and state maintained by the MSSearch Query Protocol server.
The data provided in this document explains how the protocol behaves. This section does not
mandate that implementations adhere to this model as long as their external behavior is consistent
with that described in this document.

58 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

A query server implementing the MSSearch Query Protocol maintains the following abstract data
elements:

The list of protocol clients connected to the protocol server.

Information about each protocol client, which includes:

The protocol client's version, as specified in the CPMConnectIn message.

The search catalog associated with the protocol client by a CPMConnectIn message.

Additional client properties as specified in the database properties.

The protocol client's search query.

A list of cursor handles for the search query and the position in the result set for each handle.

The current set of bindings.

The current status of the search query, which includes for each cursor:

The number of rows in the query result.

The numerator and denominator of the query completion.

The current state of the query server, which is "not initialized", "running", or "shutting down".

Note that most of the time the protocol server is in "running" state. The following is the state
machine diagram for the protocol server.

Figure 2: State machine diagram for the protocol server

3.1.2 Timers

None.

3.1.3 Initialization

Upon initialization, the protocol server MUST set its state to "not initialized" and start listening for
messages on the named pipe described in section 1.9. After doing any other internal initialization, it
MUST transition to the "running" state.

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Message Processing Events and Sequencing Rules

Whenever an error occurs during the processing of a message sent by a protocol client, the protocol
server MUST report an error back to the protocol client as follows:

59 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

1. Stop processing the message sent by the protocol client.

2. Respond with the message header only of the message sent by the protocol client, keeping _msg

field intact.

3. Set the _status field to the error code value.

When a message arrives, the protocol server MUST check the field value to see if it is a known type,
as specified in section 2.2.2. If the type is not known, it MUST report a
STATUS_INVALID_PARAMETER (0xC000000D) error. The protocol server MUST then validate the
_ulChecksum field value if the message type is one of the following:

CPMConnectIn (0x000000C8)

CPMCreateQueryIn (0x000000CA)

CPMSetBindingsIn (0x000000D0)

CPMGetRowsIn (0x000000CC)

CPMFetchValueIn (0x000000E4)

The protocol server MUST validate that the _ulChecksum field was calculated as specified in
section 3.2.4. If the _ulChecksum value is invalid, the protocol server MUST report a

STATUS_INVALID_PARAMETER (0xC000000D) error.

Next, the protocol server checks which state it is in. If its state is "not initialized", the protocol
server MUST report a CI_E_NOT_INITIALIZED (0x8004180B) error. If the state is "shutting down",
the protocol server MUST report a CI_E_SHUTDOWN (0x80041812) error.

After a header has been determined to be valid and the protocol server is determined to be in
"running" state, further message-specific processing MUST be done as specified in the following

subsections.

Some messages are only valid after a previous message has been sent. An identifier or handle from

the earlier message may be required as input to the later message. These requirements are detailed
in the following sections. The following table summarizes the relationship between messages. An "X"
in a column means that the protocol client MUST NOT send the message specified in the row before
it receives the response specified in the column.

 CPMConnectOu
t

CPMCreateQueryOu
t

CPMSetBindingsI
n

CPMSendNotifyOu
t

CPMConnectIn

CPMCreateQueryI
n

X

CPMSetBindingsIn X X

CPMGetNotifyIn X X

CPMFetchValueIn X X X X

CPMGetRowsIn X X X X

CPMFreeCursorIn X X

60 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

 CPMConnectOu
t

CPMCreateQueryOu
t

CPMSetBindingsI
n

CPMSendNotifyOu
t

CPMDisconnect X

CPMSendNotifyOut is not required if the query was created as synchronous, as specified in
_uBooleanOptions field of CRowsetProperties.

3.1.5.1 Receiving a CPMConnectIn Request

When the protocol server receives a CPMConnectIn request from a protocol client, the protocol

server MUST do the following:

1. Check if the protocol client is in the list of connected clients. If this is the case, the protocol
server MUST report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Check if the specified search catalog exists and is not in the stopped state. If this is not the case,
the protocol server MUST report a MSS_E_CATALOGNOTFOUND (0x80042103) error.

3. Add the protocol client to the list of connected clients.

4. Associate the search catalog with the protocol client.

5. Store the information passed in the CPMConnectIn message, such as search catalog name or
protocol client version, in the protocol client state.

6. Respond to the protocol client with a CPMConnectOut message.

3.1.5.2 Receiving a CPMCreateQueryIn Request

When the protocol server receives a CPMCreateQueryIn message request from a protocol client, the

protocol server MUST do the following:

1. Check if the protocol client is in the list of connected clients. If this is not the case, the protocol

server MUST report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Check if the protocol client already has a search query associated with it. If this is the case, the
protocol server MUST report a STATUS_INVALID_PARAMETER (0xC000000D) error.

3. Parse the restriction set, sort orders, and groupings that are specified in the search query. If the
protocol server encounters an error, it MUST report an appropriate error. If this step fails for any

other reason, the protocol server MUST report the error encountered. For information about
query server query errors, see [MSDN-QUERYERR].

4. Save the search query in the state for the protocol client.

5. Make any preparations required to serve rows to a protocol client and associate the search query
with new cursor handles. The cursor handles MUST be returned to the protocol client in a
CPMCreateQueryOut response.

6. Initialize the number of rows to the currently calculated number of rows. This number can be
zero if the search query did not start to execute, or some number if the search query is in a
process of execution.Initialize the numerator and denominator of the search query completion.

7. Respond to the protocol client with a CPMCreateQueryOut message.

http://go.microsoft.com/fwlink/?LinkId=90070

61 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

3.1.5.3 Receiving a CPMSetBindingsIn Request

When the protocol server receives a CPMSetBindingsIn message request from a protocol client, the
protocol server MUST do the following:

1. Check if the protocol client has a query associated with it. If this is not the case, the protocol
server MUST report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Check if the cursor handle passed is in the list of the protocol client's cursor handles. If this is not
the case, the protocol server MUST report an E_INVALIDARG (0x80070057) error.

3. Verify that the binding information is valid. In order for it to be valid, the column at least
specifies the value, length, or status to be returned, there is no overlap in bindings for value,
length, or status, and value, length, and status fit in the row size specified. If not, report a

DB_E_BADBINDINFO (0x80040E08) error.

4. Save the binding information associated with the columns specified in the aColumns field. If this
step fails, the protocol server MUST report that an error was encountered.

5. Respond to the protocol client with a message header only, with _msg set to CPMSetBindingsIn
and _status set to the results of the specified binding.

3.1.5.4 Receiving a CPMGetNotifyIn Request

When the protocol server receives a CPMGetNotifyIn message request from a protocol client, the
protocol server MUST do the following:

1. Check if the protocol client has a query associated with it. If this is not the case, the protocol
server MUST report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. If the query execution has not finished yet, prepare a CPMGetNotifyOut message and respond to
the client with the message.

3. When query execution completes, prepare a CPMSendNotifyOut message and respond to the

client with the message.

3.1.5.5 Receiving a CPMFetchValueIn Request

When the protocol server receives a CPMFetchValueIn message request from a protocol client, the
protocol server MUST do the following:

1. Check if the protocol client has a query associated with it. If this is not the case, the protocol

server MUST report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Prepare a CPMFetchValueOut message. If this step fails for, the protocol server MUST report the
error encountered as an HRESULT or an NTSTATUS value, as described in section 1.8.

3. Set _fValueExists to 0x00000001.

4. Set vType to 0x41 (VT_BLOB).

The protocol server MUST store the ignored terms of the search query in a CBaseStorageVariant
with vType VT_VECTOR | VT_LPWSTR. The server MUST use VT_VECTOR | VT_LPWSTR with zero

elements if there were no ignored terms.

The protocol server MUST store any spelling suggestions of the query terms into a
CBaseStorageVariant with vType VT_LPWSTR. The string MUST contain space-delimited spelling

62 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

suggestions. If all spelling suggestions are the same as the original terms, vValue MUST contain a
null terminated empty VT_LPWSTR.

The protocol server MUST store the query terms in a CBaseStorageVariant with vType
VT_VECTOR | VT_LPWSTR. If there were no query terms, the protocol server MUST use VT_VECTOR

| VT_LPWSTR with zero elements.

For each query term the protocol server MUST determine a term identifier or 0x0000000. The
protocol server MUST store the term identifiers in a CBaseStorageVariant with vType VT_VECTOR
| VT_UI4.

The protocol server MUST serialize the estimated total number of results for the search query into a
32-bit value. The protocol server MUST then:

1. Serialize the values of the CBaseStorageVariants and the 32-bit value from steps 0-0 to a

QUERYMETADATA structure and copy, starting from the _cbSoFar offset, at most _cbChunk
bytes to the vValue field. Do not copy past the end of the serialized property. If this step fails,
the protocol server MUST report an error.

2. Set _cbValue to the size of the sent data.

3. If the length of the serialized property is greater than _cbSoFar added to _cbValue, set
_fMoreExists to 0x00000001; otherwise, set it to 0x00000000.

4. Respond to the protocol client with the CPMFetchValueOut message.

3.1.5.6 Receiving a CPMGetRowsIn Request

When the protocol server receives a CPMGetRowsIn message request from a protocol client, the
protocol server MUST do the following:

1. Check if the protocol client has a query associated with it. If this is not the case, the protocol
server MUST report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Check if the cursor handle passed is in the list of the protocol client's cursor handles. If this is not

the case, the protocol server MUST report an E_INVALIDARG (0x80070057) error.

3. Check if the protocol client has a current set of bindings. If this is not the case, the protocol
server MUST report an E_UNEXPECTED (0x8000FFFF) error.

4. Prepare a CPMGetRowsOut message. The protocol server MUST position the cursor at the start of
the query results. If this step fails, the protocol server MUST report the error encountered, which
is an HRESULT or an NTSTATUS value, as described in section 1.8.

5. Fetch as many rows as will fit in a buffer, the size of which is indicated by _cbReadBuffer, but
not more than indicated by _cRowsToTransfer. When fetching rows, the protocol server MUST
compare each selected column's property value type to the type that is specified in the protocol
client's current set of bindings, as specified in section 3.1.1. Store the actual number of rows
fetched in _cRowsReturned.

6. Store fetched rows in the Rows field. For information about the structure of the Rows field, see

section 2.2.3.7.

7. Respond to the protocol client with the CPMGetRowsOut message.

63 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

3.1.5.7 Receiving a CPMFreeCursorIn Request

When the protocol server receives a CPMFreeCursorIn message request from the protocol client, the
protocol server MUST do the following:

1. Check if the protocol client has a query associated with it. If this is not the case, the protocol
server MUST report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Check if the cursor handle passed is in the list of the protocol client's cursor handles. If this is not
the case, the protocol server MUST report an E_INVALIDARG (0x80070057) error.

3. Release the cursor and the associated resources for this cursor handle. For a complete list of
resources, see section 3.1.1.

4. Remove the cursor from the list of cursors for that protocol client.

5. Respond with a CPMFreeCursorOut message, setting the _cCursorsRemaining field to the
number of cursors remaining in this protocol client's list.

If there are no more cursors for this protocol client, the protocol server MUST release the query and
the associated resources, as specified in section 3.1.1.

3.1.5.8 Receiving a CPMDisconnect Request

When the protocol server receives a CPMDisconnect message request from the protocol client, the
protocol server MUST remove the protocol client from the list of connected protocol clients and
release all resources associated with the protocol client.

3.1.6 Timer Events

When the protocol server receives a CPMCreateQueryIn request with a nonzero value in the
cCmdTimeout field of CRowsetProperties, the protocol server MUST use a timer event to interrupt

a search query that runs longer than the value specified by cCmdTimeout.

The protocol server MAY use other timer events to interrupt execution of too expensive queries.
When the protocol server receives a CPMCreateQueryIn request with the flag IT set in the
_uBooleanOptions field of CRowsetProperties, these timer events MUST be ignored.

3.1.7 Other Local Events

When the protocol server is stopped, it MUST first transition to the "shutting down" state. It MUST

then stop listening to the pipe, perform any other implementation-specific shutdown tasks, and then
transition into the "stopped" state.

3.2 Client Details

3.2.1 Abstract Data Model

The following section describes data and state maintained by the MSSearch Query Protocol client.

The data is provided to help explain how the protocol behaves. This section does not mandate that
implementations adhere to this model as long as their external behavior is consistent with what is
described in this document.

A protocol client has the following abstract state:

Last Message Sent: A copy of the last message sent to the protocol server.

64 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Current Property Value: A partial value of a deferred property, which is in the process of being

retrieved.

Current Bytes Received: The number of bytes received for Current Property Value so far.

Named Pipe Connection State: A connection to the protocol server.

3.2.2 Timers

None.

3.2.3 Initialization

No actions are taken until a higher-layer request is received.

3.2.4 Higher-Layer Triggered Events

When a request is received from a higher layer, the protocol client MUST create a named pipe

connection to the protocol server, using the details specified in section 2.1. If it is unable to do so,
the higher-layer request MUST be failed. In other words, in the case of a failure to connect, it is the
responsibility of the higher layer to retry.

A header MUST be prepended with fields set as specified in section 2.2.2.

For messages that are specified as requiring a nonzero checksum, the _ulChecksum value MUST
be calculated as follows:

1. The content of the message after the _ulReserved2 field in the message header MUST be
interpreted as a sequence of 32-bit integers. The protocol client MUST calculate the sum of the
numeric values given by these integers.

2. Calculate the bitwise XOR of this value with 0x59533959.

3. Subtract the value given by _msg from the value that results from the bitwise XOR.

3.2.4.1 Query Server Query Messages

With the exception of CPMGetRowsIn/CPMGetRowsOut and CPMFetchValueIn/CPMFetchValueOut,
there is a one-to-one relationship between MSSearch Query Protocol messages and higher-layer
requests. For the two exceptions previously mentioned, there can be multiple messages generated
by the protocol client to either satisfy size requirements or to retrieve a complete property. The

higher layer SHOULD keep track of all query-specific information, such as cursor handles opened
and _wid values for deferred property values, and also track if the protocol client is in a connected
state. This is not enforced in any way by the protocol client.

The client portion of the diagram in section 3 illustrates this sequence for a simple query.

3.2.4.1.1 Sending a CPMConnectIn Request

This message SHOULD be the very first request from the higher layer. If the protocol client is not

connected, the protocol server fails most of the messages. The higher layer provides the protocol
client with information necessary to connect. To serve the higher layer, the protocol client MUST do
the following:

1. Fill in the message, using information that the higher layer client provided. as specified in section
2.2.3.1, in _iClientVersion, MachineName, UserName, PropertySets and ExtPropertySets.

65 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

2. Set _fClientIsRemote, _cbBlob1, _cbBlob2, cPropSets, and cExtPropSet, as specified in
section 2.2.3.1.

3. Set the checksum in the _ulChecksum field.

4. Send the CPMConnectIn message to the protocol server.

5. Wait to receive a CPMConnectOut message back from the protocol server, silently discarding all
other messages.

6. Report the value of the _status field of the response and, if it was successful, the
_serverVersion back to the higher layer.

The higher layers SHOULD do the following on successful connection. This is not enforced by the
protocol client.

Use a CPMCreateQueryIn request to create a search query with the purpose of retrieving results

from the search catalog.

3.2.4.1.2 Sending a CPMCreateQueryIn Request

The higher layer SHOULD provide information for the query creation after the protocol client is
connected. The higher layer provides the protocol client with a restrictions set, columns set, an
optional sort order, rowset properties, and property identifier mapper structure. When this request

is received from a higher layer, the protocol client MUST do the following:

1. Prepare a CPMCreateQueryIn as follows:

If a columns set is present, set CColumnSetPresent to "0x01" and fill the ColumnsSet field.

If restrictions are present, set CRestrictionPresent to "0x01" and fill the Restriction field.

If a sort set is present, set CSortSetPresent to "0x01" and fill the SortSet field.

Set the rest of the fields as specified in section 2.2.3.3.

Calculate the _ulCheckSum field in the header.

2. Send the CPMCreateQueryIn message to the protocol server.

3. Wait to receive the CPMCreateQueryOut message, as specified in section 3.2.5.1, silently
discarding all other messages.

4. Report the value of the _status field of the response and, if it was successful, the array of cursor

handles and informative Boolean values, as specified in section 2.2.3.3, back to the higher layer.

3.2.4.1.3 Sending a CPMSetBindingsIn Request

The higher layer SHOULD set bindings for each column to be returned in the rows when it already
has a valid cursor handle after successfully receiving CPMCreateQueryOut, as specified in section
3.2.5.1. The higher layer is expected to provide an array of CTableColumn structures for the

aColumns field and a valid cursor handle. When this request is received from the higher layer, the

protocol client MUST do the following:

1. Calculate the number of CTableColumn structures in the aColumns array and set the
cColumns field to this value.

66 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

2. Calculate the total size in bytes of the cColumns and aColumns fields and set the
_cbBindingDesc field to this value.

3. Set specified fields in the CPMSetBindingsIn message to the values provided by the higher
application layer. Set the ulChecksum field to the value calculated as specified in section 3.2.5.

4. Send the CPMSetBindingsIn message to the protocol server.

5. Wait to receive a CPMSetBindingsIn message from the protocol server, discarding other
messages.

6. Indicate the status from the _status field of the response to the higher layer.

The higher layers SHOULD then request a protocol client to send a CPMGetRowsIn message. This is
not enforced by this protocol.

3.2.4.1.4 Sending a CPMGetNotifyIn Request

The client MAY request notification of query execution completion using a CPMGetNotifyIn message

when it already has a valid cursor handle after successfully receiving CPMCreateQueryOut, as
specified in section 3.2.5.1. If the _uBooleanOptions field of CRowsetProperties used in the
CPMCreateQueryIn message indicates an asynchronous query, the client MUST request this
notification before sending CPMFetchValueIn or CPMSetBindingsIn messages.

1. Prepare a CPMGetNotifyIn message and send it to the protocol server.

2. Wait to receive a CPMSendNotifyOut message from the protocol server, discarding other
messages.

3. If the _status field of the response indicates an error, handle errors as specified in section 2.2.4.

The higher layers SHOULD then request a protocol client to send a CPMGetRowsIn message. This is
not enforced by this protocol.

3.2.4.1.5 Sending a CPMGetRowsIn Request

When the higher layer is about to receive rows data, it provides the protocol client with a valid
cursor. The higher layer SHOULD do so when it has a valid cursor, and the bindings had been set
with a CPMSetBindingsIn message.

When this request is received from the higher layer, the protocol client MUST do the following:

1. Determine what unsigned integer value to specify for the _cbReadBuffer field. To determine
this value, the client SHOULD take the maximum value from the following:

One thousand times the value of the _cRowsToTransfer field, rounded up to the nearest 512-

byte multiple.

The value of _cbRowWidth, rounded up to the nearest 512-byte multiple.

Take the higher of these two values, up to the 16-kilobytes limit.

In cases where a single row is larger than 16 kilobytes, the protocol server cannot return results

to this query.

2. Specify a client base for variable-sized row data in the client address space in the _ulClientBase
field<8>.

67 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

3. Set the value of _cbSeek, which acts as an offset for Rows start, to "0x0000000C".

4. Send a CPMGetRowsIn message to the protocol server.

3.2.4.1.6 Sending a CPMFetchValueIn Request

If this is the first CPMFetchValueIn message the protocol client has sent to request the specified
property, the protocol client MUST do the following:

1. Set all the fields in a message, as specified in section 2.2.3.8.

2. Set _cbSoFar to "0x00000000".

3. Set Current Bytes Received to "0".

4. Send the CPMFetchValueIn message to the server.

3.2.4.1.7 Sending a CPMFreeCursorIn Request

After the higher layer is no longer using the search query, it can release the resources on the
protocol server by asking the protocol client to send a CPMFreeCursorIn message.

When this request is received, the protocol client MUST send a CPMFreeCursorIn message to the
protocol server, containing the handle specified by the upper layer.

The protocol client MUST do the following:

1. Send the CPMFreeCursorIn message to the protocol server.

2. Wait to receive a CPMFreeCursorOut message from the protocol server, discarding other
messages.

3.2.4.1.8 Sending a CPMDisconnect Message

If the higher layer has no more queries for the query server, the application can request that the
protocol client send a CPMDisconnect message to the protocol server to make more server resources

available. When the application makes the request, the protocol client MUST send the message as
requested. There is no response to this message from the protocol server.

3.2.5 Message Processing Events and Sequencing Rules

When the protocol client receives a message response from the protocol server, the protocol client
MUST use the Last Sent Message to determine if the message received from the protocol server is
the one expected by the protocol client. All messages with the _msg field different from the one in

the Last Sent Message MUST be ignored.

3.2.5.1 Receiving a CPMCreateQueryOut Response

When the protocol client receives a CPMCreateQueryOut message response from the protocol
server, the protocol client MUST return _status and, if the status is successful, cursor handle values

back to the higher layer. Any further actions are up to the higher layer.

For informative purposes, it is expected that higher layers can do the following actions, but these

are not enforced by the protocol client:

68 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Use CPMSetBindingsIn to set bindings for individual columns and do any subsequent actions on

the query path.

If the query CRowsetProperties indicated an asynchronous query, use a CPMGetNotifyIn message

to wait for query execution completion.

3.2.5.2 Receiving a CPMGetNotifyOut Response

When the protocol client receives a CPMGetNotifyOut message response from the protocol server,
the protocol client MUST do the following:

1. Check if the _status field in the header indicates success or failure. In case of failure, notify the
higher layer. Otherwise, continue to step #2.

2. Keep waiting to receive a CPMSendNotifyOut message from the protocol server, discarding other
messages.

3.2.5.3 Receiving a CPMSendNotifyOut Response

When the protocol client receives a CPMSendNotifyOut message response from the protocol server,
the protocol client MUST return _status back to the higher layer.

3.2.5.4 Receiving a CPMFetchValueOut Response

When the protocol client receives a CPMFetchValueOut message response from the protocol server,
the protocol client MUST do the following:

1. Check if the _status field in the header indicates success or failure. In case of failure, notify the
higher layer. Otherwise, continue to step #2.

2. Check _fValueExist, and, if set to "0x00000000", notify the higher layer that the value was not

found.

3. Otherwise, append _cbValue bytes from vValue to current metadata.

4. If _fMoreExists is set to "0x00000001", increment Current Bytes Received by _cbValue and
send a CPMFetchValueIn message to the server, setting _cbSoFar to the value of Current Bytes
Received, _cbPropSpec to zero, and _cbChunk to the buffer size requested by the higher layer.

5. If _fMoreExists is set to "0x00000000", interpret the value of the QUERYMETADATA structure as
specified in section 2.2.1.19 and report it to the higher layer.

3.2.5.5 Receiving a CPMGetRowsOut Response

When the protocol client receives a CPMGetRowsOut message response from the protocol server,
the protocol client MUST do the following:

1. Check if the _status field in the header indicates success or failure.

2. If the _status value is STATUS_BUFFER_TOO_SMALL ("0xC0000023"), the protocol client MUST

check the Last Message Sent state. If it does not contain a CPMGetRowsIn message, the received

message MUST be silently ignored. Otherwise, the protocol client MUST send to the protocol
server a new CPMGetRowsIn message with all fields identical to the stored one, except that the
_cbReadBuffer MUST be increased by 512, but not greater than 0x4000. If _status is
STATUS_BUFFER_TOO_SMALL ("0xC0000023"), and Last Message Sent already has

69 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

_cbReadBuffer equal to "0x4000", the protocol client MUST report the error up to the higher
layer.

3. If the _status value is any other error value, the protocol client MUST indicate the failure up to
the higher layer.

4. If the _status value indicates success, the results MUST be indicated up to the higher layer
requesting the information, and further actions are up to the higher layer.

The higher layers SHOULD do the following actions, but these are not enforced by the protocol
client:

The higher layer SHOULD store, display, or otherwise use the data from row values.

3.2.5.6 Receiving a CPMFreeCursorOut Response

When the protocol client receives a successful CPMFreeCursorOut message response from the
protocol server, the protocol client MUST return the _cCursorsRemaining value to the higher

layer.

The following information is given for informative purposes only and is not enforced by the
MSSearch Query Protocol client. The higher layer is expected to keep track of cursor handles and
not to use ones that have already been freed. Once the number in _cCursorsRemaining is

"0x00000000", the higher layer can use the connection to specify another query using a
CPMCreateQueryIn message.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

70 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

4 Protocol Examples

4.1 Obtaining Document Identifiers Based on Query Text

In the following example, user JOHN on computer A wants to obtain the document identifiers of files
that contain the word "Microsoft" from the set of items stored on server X in the catalog SYSTEM.
Assume that both computer A and X are running a 64-bit version of the the Windows Server® 2008
operating system operating system.

1. The user launches a Search Query Protocol client application and enters the search query. The

application in turn passes the search query to the protocol client.

2. The protocol client establishes a connection with server X. The protocol client uses the named
pipe \pipe\OSearch14 to connect to server X over SMB2.

3. The protocol client then prepares a CPMConnectIn message with the following values.

1. The header of the message is populated as follows:

_msg is set to "0x000000C8", indicating that this is a CPMConnectIn message.

_status is set to "0x00000000".

_ulChecksum contains the checksum, computed as specified in section 3.2.4.

_ulReserved2 is set to "0x00000000".

2. The body of the message is populated as follows:

_iClientVersion is set to "0x00000102", indicating that the client is not capable of handling

64-bit offsets in CPMGetRowsOut messages.

_fClientIsRemote is set to "0x00000001", indicating that the server is a remote server.

_cbBlob1 is set to the size in bytes of the cPropSets and PropertySets fields combined.

_cbBlob2 is set to the size in bytes of the cExtPropSet and ExtPropertySets fields

combined.

MachineName is set to "A".

UserName is set to "JOHN".

cPropSets is set to "0x00000001".

The PropertySets[0] field is of type CDbPropSet. The CDbPropSet structure comprising

PropertySets[0] field is populated as follows:

The GuidPropSet field is set to "A9BD1526-6A80-11D0-8C9D-0020AF1D740E"

(DBPROPSET_FSCIFRMWRK_EXT).

The cProperties field is set to "0x00000002".

The aProps field is an array of CDbProp structures.

For the aProps[0] element:

DBPROPID is set to "0x00000002" (DBPROP_CI_CATALOG_NAME).

71 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

DBPROPOPTIONS is set to "0x0000000".

DBPROPSTATUS is set to "0x00000000".

For the ColId element:

eKind is set to "0x00000001".

GUID is null (all zeros), meaning the value applies to the query, not just a single

column.

ulID is set to "0x00000000".

For the vValue element:

vType is set to "0x001F" (VT_LPWSTR).

vData1 is set to "0x00".

vData2 is set to "0x00".

vValue is set to "SYSTEM", the name of the search catalog being requested.

For the aProps[1] element:

DBPROPID is set to "0x00000007" (DBPROP_CI_QUERY_TYPE).

DBPROPOPTIONS is set to "0x0000000".

DBPROPSTATUS is set to "0x00000000".

For the ColId element:

eKind is set to "0x00000001".

GUID is null (all zeros), meaning the value applies to the query, not just a single

column.

ulID is set to "0x00000000".

For the vValue element:

vType is set to "0x0003" (VT_I4).

vData1 is set to "0x00".

vData2 is set to "0x00".

vValue is set to "0x00000000", meaning it is a regular query.

The cExtPropSet field is set to "0x00000001".

The ExtPropertySets [0] field is of type CDbPropSet. The CDbPropSet structure

comprising ExtPropertySets [0] field is populated as follows:

The GuidPropSet field is set to "A9BD1526-6A80-11D0-8C9D-0020AF1D740E"

(DBPROPSET_FSCIFRMWRK_EXT).

The cProperties field is set to "0x00000001".

72 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

The aProps field is an array of CDbProp structures.

For the aProps[0] element:

DBPROPID is set to "0x00000002" (DBPROP_CI_CATALOG_NAME)

DBPROPOPTIONS is set to "0x0000000".

DBPROPSTATUS is set to "0x00000000".

For the ColId element:

eKind is set to "0x00000001".

GUID is null (all zeros), meaning the value applies to the query, not just a single

column.

ulID is set to "0x00000000".

For the vValue element:

vType is set to "0x0008" (VT_BSTR).

vData1 is set to "0x00".

vData2 is set to "0x00".

vValue is set to "SYSTEM", the name of the search catalog being requested.

3. Various padding fields are filled in as needed. The message is sent to the protocol server.

4. The protocol server verifies that the _ulChecksum is correct, verifies that the user is authorized

to make this request, and responds with a CPMConnectOut message.

1. The header of the message is populated as follows:

_msg is set to "0x000000C8", indicating that this is a CPMConnectOut message.

_status is set to "0x0000000" indicating SUCCESS.

_ulChecksum is set to "0".

_ulReserved2 is set to "0x00000000".

2. The body of the message is populated as follows:

The _serverVersion field is set to "0x00000102".

The _reserved fields are filled with arbitrary data.

5. The protocol client prepares a CPMCreateQueryIn message.

1. The header of the message is populated as follows:

_msg is set to "0x000000CA", indicating that this is a CPMCreateQueryIn message.

_status is set to "0x00000000".

_ulChecksum contains the checksum, computed according to section 3.2.4.

73 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

_ulReserved2 is set to "0x00000000".

2. The body of the message is populated as follows:

The Size field is set to the size of the rest of the message.

The CColumnSetPresent field is set to "0x01".

The ColumnSet field is of type CColumnSet. The CColumnSet structure comprising this

field is set as follows:

The _count field is set to "0x00000001", indicating one column is returned.

The indexes array contains one element with value "0x00000000", indicating the first

entry in _aPropSpec.

The CRestrictionPresent field is set to "0x01", indicating the Restriction field is present.

The Restriction field is of type CRestriction and is set to:

Type is set to "0x00000004" (RTContent).

SubType is set to "0x00000000".

Weight is set to "0x00000000".

The Restriction field contains a CContentRestriction structure:

_Property is set to GUID "012357BD-1113-171D-1F25-292BB0B0B0B0 /

0x00000001 / 0x00000001", which represents the document body on the particular

protocol server implementation.

_Cc is set to "0x00000009".

_pwcsphrase is set to the string "Microsoft".

_lcid is set to "0x409" (English).

_ulGenerateMethod is set to "0x00000000" (exact match).

CSortSetPresent is set to "0x00".

RowSetProperties is set as follows:

_uBooleanOptions is set to "0x00008019" (asynchronous, ignore noise-only).

_ulMaxOpenRows is set to "0x00000000".

_ulMemoryUsage is set to "0x00000000".

_cMaxResults is set to "0x00000100" (return at most 256 rows).

_cCmdTimeOut is set to "0x00000000" (never time out).

_guidRankingModelId is set to GUID "00000000-0000-0000-0000-000000000000"

(use the default ranking model).

_guidUserId is set to GUID "07C76175-DB7F-4850-AC6C-7C2711661B29" (the user’s

user profile ID).

74 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

_guidCorrelationId is set to GUID "C79B2F66-6B57-4028-8364-966F387DDDA4"

(random GUID to identify the query).

PidMapper is set to:

_count is set to "0x00000001".

_aPropSpec is set to GUID "012357BD-1113-171D-1F25-292BB0B0B0B0 /

0x00000001 / 0x0000002F", which represents the document identifier property on the
particular protocol server implementation.

Reserved1 is set to "0x00000000".

LCID is set to "0x409" (English).

6. The protocol server processes it and responds with a CPMCreateQueryOut message.

1. The header of the message is populated as follows:

_msg is set to "0x000000CA", indicating that this is a CPMCreateQueryOut message.

_status is set to "SUCCESS".

_ulChecksum is set to "0x00000000" or any other arbitrary value.

_ulReserved2 is set to "0x00000000".

2. The body of the message is populated as follows:

_fTrueSequential is set to "0x00000000".

_fWorkIdUnique is set to "0x00000001".

The Cursor field contains a cursor handle to this query. The value depends on the state of

the protocol server.In this example, the returned value is "0xAAAAAAAA".

7. The protocol client issues a CPMSetBindingsIn request message to define the format of a row.

1. The header of the message is populated as follows:

_msg is set to "0x000000D0", indicating that this is a CPMSetBindingsIn message.

_status is set to "SUCCESS".

_ulChecksum contains the checksum, computed according to section 3.2.4.

_ulReserved2 is set to "0x00000000".

2. The body of the message is populated as follows:

_hCursor is set to "0xAAAAAAAA".

_cbRow is set to "0x10", which is big enough to fit the columns.

_cbBindingDesc is set to the size of the _cColumns and _aColumns fields combined.

_dummy is set to "0x00000000" or any other arbitrary value.

_cColumns is set to "0x00000001".

75 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

The _aColumns array is set to contain one CTableColumn structure containing:

_PropSpec is set to GUID "012357BD-1113-171D-1F25-292BB0B0B0B0 / 0x00000001

/ 0x0000002F", which represents the document identifier property on the particular

server implementation.

_vType is set to "0x000C" (VT_VARIANT).

_ValueUsed is set to "0x01", which is the column transferred in the row.

_ValueOffset is set to "0x0008" (at beginning of row).

_ValueSize is set to "0x10", which is the size of a CRowVariant.

_StatusUsed is set to "0x01".

_StatusOffset is set to "0x02".

_LengthUsed is set to "0x01".

_LengthOffset is set to "0x04".

8. The protocol server processes it and responds with a CPMSetBindingsIn message.

The header of the message is populated as follows:

_msg is set to "0x000000D0".

_status is set to "SUCCESS".

_ulChecksum is set to "0x00000000" or any other arbitrary value.

_ulReserved2 is set to "0x00000000".

9. The protocol client issues a CPMGetNotifyIn request message to wait for query execution
completion.

The header of the message is populated as follows:

_msg is set to "0x000000D1", indicating that this is a CPMGetNotifyIn message.

_status is set to "0x00000000".

_ulChecksum contains the checksum, computed as specified in section 3.2.4.

_ulReserved2 is set to "0x00000000".

10.The protocol server processes it and, assuming that the query is still being executed, responds
with a CPMGetNotifyOut message.

The header of the message is populated as follows:

_msg is set to "0x000000D1".

_status is set to "SUCCESS".

_ulChecksum is set to "0x00000000" or any other arbitrary value.

_ulReserved2 is set to "0x00000000".

76 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

11.The client regularly polls the query server for query completion, as described in step 9. After the
query execution completes, the protocol server responds with a CPMSendNotifyOut message.

1. The header of the message is populated as follows:

_msg is set to "0x000000D2".

_status is set to "SUCCESS".

_ulChecksum is set to "0x00000000" or any other arbitrary value.

_ulReserved2 is set to "0x00000000".

2. The body of the message is populated as follows:

_watchNotify is set to "0x00000000" or any other arbitrary value.

12.The protocol client issues a CPMGetRowsIn request message, assuming that the protocol client is
prepared to accept 100 rows in ascending order.

1. The header of the message is populated as follows:

_msg is set to "0x000000CC", indicating that this is a CPMGetRowsIn message.

_status is set to "0x00000000".

_ulChecksum contains the checksum, computed as specified in section 3.2.4.

_ulReserved2 is set to "0x00000000".

2. The body of the message is populated as follows:

_hCursor is set to "0xAAAAAAAA".

_cRowsToTransfer is set to "0x00000064".

_cRowWidth is set to "0x00000030" (from bindings).

_cbSeek is set to "0x0000000C".

_cbReadBuffer is set to "0x4000", which is the maximum value for this field.

_ulClientBase is set to "0x00000000".

Reserved1 is set to "0x00000000".

Reserved2 is set to "0x00000001".

Reserved3 is set to "0x00000000".

Reserved4 is set to "0x00000000".

13.The protocol server processes it and responds with a CPMGetRowsOut message, assuming the

protocol server found 100 items that contain the word "Microsoft".

1. The header of the message is populated as follows:

_msg is set to "0x000000CC", indicating that this is a CPMGetRowsOut message.

_status is set to "SUCCESS".

77 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

_ulChecksum is set to "0x00000000".

_ulReserved2 is set to "0x00000000".

2. The body of the message is populated as follows:

_CRowsReturned is set to "0x00000012". (18 results returned)

Rows contains the 18 items that contain the word "Microsoft". Because this is fixed-size

data, it is structured as a list of 18, 48-byte CRowVariants that contain document
identifiers.

14.The protocol client sends a CPMDisconnect message to end the connection.

The header of the message is populated as follows:

_msg is set to "0x000000C9", indicating that this is a CPMDisconnect message.

_status is set to "0x00000000".

_ulChecksum is set to "0x00000000".

_ulReserved2 is set to "0x00000000".

15.The protocol server processes the message and removes all client states for the protocol client.

78 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

5 Security

5.1 Security Considerations for Implementers

Crawling implementations that crawl secure content use the user context provided by SMB2, as
specified in [MS-SMB2], to enforce permissions on the named pipe used as the transport for this
protocol.

5.2 Index of Security Parameters

Security Parameter Section

Impersonation level 2.1

%5bMS-SMB2%5d.pdf

79 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft® FAST™ Search Server 2010

Microsoft® SharePoint® Foundation 2010

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior

also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product

does not follow the prescription.

<1> Section 1.4: Applications SHOULD interact with an OLE DB interface wrapper such as a protocol

client, and not directly with the protocol. For more information, see [MSDN-OLEDBP-OI].

<2> Section 1.8: Search uses only the values specified in [MS-ERREF].

<3> Section 1.8: See [MSDN-PROPSET] for a list of supported property sets.

<4> Section 2.2.1.19: In SharePoint Foundation 2010 implementation, alternative spellings are not
generated and the SpellingSuggestion field always contains an empty string.

<5> Section 2.2.2: In Search Server 2010, Search Server 2010 Express, SharePoint Foundation

2010 and SharePoint Server 2010 implementations, the protocol client always sets the _status field
to 0x00000000.

<6> Section 2.2.3.1: In Search Server 2010, Search Server 2010 Express, SharePoint Foundation
2010 and SharePoint Server 2010 implementations, the _iClientVersion is always set to
0x00010102.

<7> Section 2.2.4: The same pipe connection is used for the following messages, except when the
error is returned in a CPMConnectOut message. In the latter case, the pipe connection is terminated

by the client by closing the named pipe handle. Whenever the client end of the pipe is closed, the
server releases all resources associated with the connection, including the named pipe instance.

<8> Section 3.2.4.1.5: For a 32-bit protocol client talking to a 32-bit protocol server or a 64-bit
protocol client talking to a 64-bit protocol server, this value is set to a memory address of the
receiving buffer in the application process. This allows for pointers received in the Rows field of
CPMGetRowsOut to be correct memory pointers in a client application process. Otherwise, it is set to
"0x00000000".

http://go.microsoft.com/fwlink/?LinkId=119666
%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113926

80 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

81 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

8 Index

A

Abstract data model
client 63
server 57

Applicability 9

C

Capability negotiation 9
CBaseStorageVariant structure 11
CColumnSet structure 25
CContentRestriction structure 16
CDbColId structure 25
CDbProp structure 26
CDbPropSet structure 27
CDocSetRestriction structure 35
CExactPositionWordRestriction structure 37
CFullPropSpec structure 16
Change tracking 80
CInternalPropertyRestriction structure 35
CKey structure 34
Client

abstract data model 63
higher-layer triggered events 64
initialization 64
message processing (section 3.2.5 67, section

3.2.5 67)
other local events 69
overview 57
receiving a CPMCreateQueryOut response 67
receiving a CPMFetchValueOut response 68
receiving a CPMFreeCursorOut response 69
receiving a CPMGetNotifyOut response 68
receiving a CPMGetRowsOut response 68
receiving a CPMSendNotifyOut response 68

sequencing rules (section 3.2.5 67, section 3.2.5
67)

timer events 69
timers 64

CNatLanguageRestriction structure 18
CNodeRestriction structure 19
CNotRestriction structure 39
COccRestriction structure 36
CPhraseRestriction structure 39
CPidMapper structure 28
CPMConnectIn message 44
CPMConnectOut message 46
CPMCreateQueryIn message 46
CPMCreateQueryOut message 48
CPMDisconnect message 56
CPMFetchValueIn message 53
CPMFetchValueOut message 54
CPMFreeCursorIn message 55
CPMFreeCursorOut message 55
CPMGetNotifyIn message 55
CPMGetNotifyOut message 55
CPMGetRowsIn message 50
CPMGetRowsOut message 52

CPMSendNotifyOut message 55
CPMSetBindingsIn message 49
CProbRestriction structure 40
CPropertyRangeRestriction structure 21
CPropertyRestriction structure 20
CRangeRestriction structure 38
CRestriction structure 22
CRestrictionChildren structure 42
CRowsetProperties structure 28
CRowVariant structure 31
CScopeRangeRestriction structure 41
CScopeRestriction structure 38
CSort structure 22
CSortSet structure 31
CSynKey structure 35
CSynRestriction structure 37
CTableColumn structure 31
CWordRestriction structure 40

D

Data model - abstract
client 63
server 57

E

Errors 56
Errors message 56
Examples

obtaining document identifiers based on query
text 70

F

Fields - vendor-extensible 9

G

Glossary 6

H

Headers
message 42

Higher-layer triggered events
client 64
server 58

I

Implementer - security considerations 78
Index of security parameters 78
Informative references 7
Initialization

client 64
server 58

Introduction 6

82 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

M

Message headers 42
Message Headers message 42
Message processing

client (section 3.2.5 67, section 3.2.5 67)
server (section 3.1.5 58, section 3.1.5 58)

Messages
CPMConnectIn 44
CPMConnectOut 46
CPMCreateQueryIn 46
CPMCreateQueryOut 48
CPMDisconnect 56
CPMFetchValueIn 53
CPMFetchValueOut 54
CPMFreeCursorIn 55
CPMFreeCursorOut 55
CPMGetNotifyIn 55

CPMGetNotifyOut 55
CPMGetRowsIn 50
CPMGetRowsOut 52
CPMSendNotifyOut 55
CPMSetBindingsIn 49
Errors 56
Message Headers 42
Messages 44
overview 44
query server query 64
Structures 10
transport 10

Messages message 44

N

Normative references 7

O

Obtaining document identifiers based on query text
example 70

Other local events
client 69
server 63

Overview (synopsis) 8

P

Parameters - security index 78
Preconditions 9
Prerequisites 9
Product behavior 79

Q

Query server query messages 64
QUERYMETADATA structure 33

R

Receiving a CPMConnectIn request 60
Receiving a CPMCreateQueryIn request 60
Receiving a CPMCreateQueryOut response 67

Receiving a CPMDisconnect request 63
Receiving a CPMFetchValueIn request 61
Receiving a CPMFetchValueOut response 68
Receiving a CPMFreeCursorIn request 63
Receiving a CPMFreeCursorOut response 69
Receiving a CPMGetNotifyIn request 61
Receiving a CPMGetNotifyOut response 68
Receiving a CPMGetRowsIn request 62
Receiving a CPMGetRowsOut response 68
Receiving a CPMSendNotifyOut response 68
Receiving a CPMSetBindingsIn request 61
References

informative 7
normative 7

Relationship to other protocols 8
Remote querying 8

S

Security
implementer considerations 78
parameter index 78

Sequencing rules
client (section 3.2.5 67, section 3.2.5 67)
server (section 3.1.5 58, section 3.1.5 58)

Server
abstract data model 57
higher-layer triggered events 58
initialization 58
message processing (section 3.1.5 58, section

3.1.5 58)
other local events 63
overview 57
receiving a CPMConnectIn request 60
receiving a CPMCreateQueryIn request 60
receiving a CPMDisconnect request 63
receiving a CPMFetchValueIn request 61
receiving a CPMFreeCursorIn request 63
receiving a CPMGetNotifyIn request 61
receiving a CPMGetRowsIn request 62
receiving a CPMSetBindingsIn request 61
sequencing rules (section 3.1.5 58, section 3.1.5

58)
timer events 63
timers 58

Standards assignments 9
Structures

CBaseStorageVariant 11
CColumnSet 25
CContentRestriction 16
CDbColId 25
CDbProp 26
CDbPropSet 27
CDocSetRestriction 35
CExactPositionWordRestriction 37
CFullPropSpec 16
CInternalPropertyRestriction 35
CKey 34
CNatLanguageRestriction 18
CNodeRestriction 19
CNotRestriction 39
COccRestriction 36

83 / 83

[MS-SQP2] — v20101219
 MSSearch Query Version 2 Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

CPhraseRestriction 39
CPidMapper 28
CProbRestriction 40
CPropertyRangeRestriction 21
CPropertyRestriction 20
CRangeRestriction 38
CRestriction 22
CRestrictionChildren 42
CRowsetProperties 28
CRowVariant 31
CScopeRangeRestriction 41
CScopeRestriction 38
CSort 22
CSortSet 31
CSynKey 35
CSynRestriction 37
CTableColumn 31
CWordRestriction 40
QUERYMETADATA 33

Structures message 10

T

Timer events
client 69
server 63

Timers
client 64
server 58

Tracking changes 80
Transport 10
Triggered events - higher-layer

client 64
server 58

V

Vendor-extensible fields 9
Versioning 9

	Table of Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Protocol Overview (Synopsis)
	1.3.1 Remote Querying

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Structures
	2.2.1.1 CBaseStorageVariant
	2.2.1.1.1 CBaseStorageVariant Structures
	2.2.1.1.1.1 VT_VECTOR

	2.2.1.2 CFullPropSpec
	2.2.1.3 CContentRestriction
	2.2.1.4 CNatLanguageRestriction
	2.2.1.5 CNodeRestriction
	2.2.1.6 CPropertyRestriction
	2.2.1.7 CPropertyRangeRestriction
	2.2.1.8 CSort
	2.2.1.9 CRestriction
	2.2.1.10 CColumnSet
	2.2.1.11 CDbColId
	2.2.1.12 CDbProp
	2.2.1.12.1 Database Properties

	2.2.1.13 CDbPropSet
	2.2.1.14 CPidMapper
	2.2.1.15 CRowsetProperties
	2.2.1.16 CRowVariant
	2.2.1.17 CSortSet
	2.2.1.18 CTableColumn
	2.2.1.19 QUERYMETADATA
	2.2.1.20 CKey
	2.2.1.21 CSynKey
	2.2.1.22 CDocSetRestriction
	2.2.1.23 CInternalPropertyRestriction
	2.2.1.24 COccRestriction
	2.2.1.25 CExactPositionWordRestriction
	2.2.1.26 CSynRestriction
	2.2.1.27 CRangeRestriction
	2.2.1.28 CScopeRestriction
	2.2.1.29 CPhraseRestriction
	2.2.1.30 CNotRestriction
	2.2.1.31 CWordRestriction
	2.2.1.32 CProbRestriction
	2.2.1.33 CScopeRangeRestriction
	2.2.1.34 CRestrictionChildren

	2.2.2 Message Headers
	2.2.3 Messages
	2.2.3.1 CPMConnectIn
	2.2.3.2 CPMConnectOut
	2.2.3.3 CPMCreateQueryIn
	2.2.3.4 CPMCreateQueryOut
	2.2.3.5 CPMSetBindingsIn
	2.2.3.6 CPMGetRowsIn
	2.2.3.7 CPMGetRowsOut
	2.2.3.8 CPMFetchValueIn
	2.2.3.9 CPMFetchValueOut
	2.2.3.10 CPMFreeCursorIn
	2.2.3.11 CPMFreeCursorOut
	2.2.3.12 CPMGetNotifyIn
	2.2.3.13 CPMGetNotifyOut
	2.2.3.14 CPMSendNotifyOut
	2.2.3.15 CPMDisconnect

	2.2.4 Errors

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Receiving a CPMConnectIn Request
	3.1.5.2 Receiving a CPMCreateQueryIn Request
	3.1.5.3 Receiving a CPMSetBindingsIn Request
	3.1.5.4 Receiving a CPMGetNotifyIn Request
	3.1.5.5 Receiving a CPMFetchValueIn Request
	3.1.5.6 Receiving a CPMGetRowsIn Request
	3.1.5.7 Receiving a CPMFreeCursorIn Request
	3.1.5.8 Receiving a CPMDisconnect Request

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.4.1 Query Server Query Messages
	3.2.4.1.1 Sending a CPMConnectIn Request
	3.2.4.1.2 Sending a CPMCreateQueryIn Request
	3.2.4.1.3 Sending a CPMSetBindingsIn Request
	3.2.4.1.4 Sending a CPMGetNotifyIn Request
	3.2.4.1.5 Sending a CPMGetRowsIn Request
	3.2.4.1.6 Sending a CPMFetchValueIn Request
	3.2.4.1.7 Sending a CPMFreeCursorIn Request
	3.2.4.1.8 Sending a CPMDisconnect Message

	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Receiving a CPMCreateQueryOut Response
	3.2.5.2 Receiving a CPMGetNotifyOut Response
	3.2.5.3 Receiving a CPMSendNotifyOut Response
	3.2.5.4 Receiving a CPMFetchValueOut Response
	3.2.5.5 Receiving a CPMGetRowsOut Response
	3.2.5.6 Receiving a CPMFreeCursorOut Response

	3.2.6 Timer Events
	3.2.7 Other Local Events

	4 Protocol Examples
	4.1 Obtaining Document Identifiers Based on Query Text

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

