

1 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

[MS-SIP]:
Session Initiation Protocol Extensions

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft's Open Specification Promise (available here:
http://www.microsoft.com/interop/osp) or the Community Promise (available here:
http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if
the technologies described in the Open Specifications are not covered by the Open Specifications

Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the

aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

2 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Revision Summary

Date

Revision

History

Revision

Class Comments

05/11/2007 0.1 MCPP Milestone 4 Initial Availability

08/10/2007 0.2 Minor Updated the technical content.

09/28/2007 0.3 Minor Updated the technical content.

10/23/2007 0.4 Minor Updated the technical content.

11/30/2007 1.0 Major Updated and revised the technical content.

01/25/2008 1.0.1 Editorial Revised and edited the technical content.

03/14/2008 1.0.2 Editorial Revised and edited the technical content.

05/16/2008 1.0.3 Editorial Revised and edited the technical content.

06/20/2008 2.0 Major Updated and revised the technical content.

07/25/2008 2.0.1 Editorial Revised and edited the technical content.

08/29/2008 2.0.2 Editorial Revised and edited the technical content.

10/24/2008 2.1 Minor Updated the technical content.

12/05/2008 3.0 Major Updated and revised the technical content.

01/16/2009 4.0 Major Updated and revised the technical content.

02/27/2009 5.0 Major Updated and revised the technical content.

04/10/2009 5.0.1 Editorial Revised and edited the technical content.

05/22/2009 5.0.2 Editorial Revised and edited the technical content.

07/02/2009 5.0.3 Editorial Revised and edited the technical content.

08/14/2009 5.0.4 Editorial Revised and edited the technical content.

09/25/2009 5.1 Minor Updated the technical content.

11/06/2009 5.1.1 Editorial Revised and edited the technical content.

12/18/2009 5.1.2 Editorial Revised and edited the technical content.

01/29/2010 6.0 Major Updated and revised the technical content.

03/12/2010 6.0.1 Editorial Revised and edited the technical content.

04/23/2010 6.0.2 Editorial Revised and edited the technical content.

06/04/2010 6.0.3 Editorial Revised and edited the technical content.

3 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Date

Revision

History

Revision

Class Comments

07/16/2010 6.0.3 No change No changes to the meaning, language, or formatting of

the technical content.

08/27/2010 6.0.3 No change No changes to the meaning, language, or formatting of

the technical content.

10/08/2010 6.0.3 No change No changes to the meaning, language, or formatting of

the technical content.

11/19/2010 6.0.3 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 6.0.3 No change No changes to the meaning, language, or formatting of

the technical content.

02/11/2011 6.0.3 No change No changes to the meaning, language, or formatting of

the technical content.

4 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Contents

1 Introduction ... 7
1.1 Glossary ... 7
1.2 References .. 9

1.2.1 Normative References ... 9
1.2.2 Informative References ... 10

1.3 Overview .. 11
1.4 Relationship to Other Protocols .. 12
1.5 Prerequisites/Preconditions ... 12
1.6 Applicability Statement ... 12
1.7 Versioning and Capability Negotiation ... 12
1.8 Vendor-Extensible Fields ... 12
1.9 Standards Assignments .. 12

2 Messages.. 13
2.1 Transport .. 13
2.2 Message Syntax .. 13

2.2.1 text/xml+msrtc.pidf Presence Document Format .. 13
2.2.2 SIP Extensions to XPIDF Presence Document Format .. 15
2.2.3 application/vnd-microsoft-roaming-acls+xml Document Format 16
2.2.4 Contacts/Groups Document Formats ... 17

2.2.4.1 application/vnd-microsoft-roaming-contacts+xml Document Format 17
2.2.4.2 Contacts/Groups Management Document Formats .. 18

2.3 Directory Service Schema Elements ... 19

3 Protocol Details .. 20
3.1 NTLM/Kerberos Authentication Extensions Details .. 20

3.1.1 Abstract Data Model ... 21
3.1.2 Timers .. 21
3.1.3 Initialization .. 21
3.1.4 Higher-Layer Triggered Events ... 21

3.1.4.1 Initiating the Login Sequence ... 21
3.1.4.2 Sending a SIP Message ... 21

3.1.5 Message Processing Events and Sequencing Rules .. 23
3.1.5.1 Overview of Authentication Protocol Elements .. 23
3.1.5.2 Verifying Message Signature for Incoming Messages 26
3.1.5.3 proxy=replace Extension for Firewall Traversal ... 26

3.1.6 Timer Events ... 26
3.1.7 Other Local Events ... 26

3.2 Presence Extensions Details .. 26
3.2.1 Abstract Data Model ... 27
3.2.2 Timers .. 27
3.2.3 Initialization .. 28
3.2.4 Higher-Layer Triggered Events ... 28

3.2.4.1 Indicating Support for Presence Extensions .. 28
3.2.4.2 Setting Presence for Self User (setPresence SERVICE Request) 28
3.2.4.3 Subscribing to a User's Presence Information ... 29
3.2.4.4 Getting Presence Information of Another User (getPresence SERVICE

Request) .. 29
3.2.5 Message Processing Events and Sequencing Rules .. 30

3.2.5.1 Processing Response to a getPresence SERVICE Request 30

5 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.2.6 Timer Events ... 30
3.2.7 Other Local Events ... 31

3.3 Batched SUBSCRIBE and NOTIFY Extension Details .. 31
3.3.1 Abstract Data Model ... 31
3.3.2 Timers .. 31
3.3.3 Initialization .. 31
3.3.4 Higher-Layer Triggered Events ... 31

3.3.4.1 Sending a Batched SUBSCRIBE Request .. 31
3.3.5 Message Processing Events and Sequencing Rules .. 34

3.3.5.1 Receiving a NOTIFY Response to a Batched SUBSCRIBE Request 34
3.3.5.2 Receiving a Failure Response to a Batched SUBSCRIBE Request 37

3.3.6 Timer Events ... 37
3.3.7 Other Local Events ... 37

3.4 Piggyback Notification in 200 OK Response Details ... 37
3.4.1 Abstract Data Model ... 38
3.4.2 Timers .. 38
3.4.3 Initialization .. 38
3.4.4 Higher-Layer Triggered Events ... 38

3.4.4.1 Indicating Support for Piggyback Notification ... 38
3.4.5 Message Processing Events and Sequencing Rules .. 38

3.4.5.1 Receiving a Piggyback Notification in a 200 OK ... 38
3.4.6 Timer Events ... 39
3.4.7 Other Local Events ... 39

3.5 Best Effort NOTIFY (BENOTIFY) Extension Details .. 39
3.5.1 Abstract Data Model ... 39

3.5.1.1 Indicating Support for BENOTIFY .. 40
3.5.2 Timers .. 40
3.5.3 Initialization .. 40
3.5.4 Higher-Layer Triggered Events ... 40
3.5.5 Message Processing Events and Sequencing Rules .. 40

3.5.5.1 Receiving a Failure Response to SUBSCRIBE .. 40
3.5.5.2 Receiving a Success Response to SUBSCRIBE .. 40
3.5.5.3 Receiving a BENOTIFY Request ... 41

3.5.6 Timer Events ... 41
3.5.7 Other Local Events ... 41

3.6 Auto-Extension of Subscriptions Details .. 41
3.6.1 Abstract Data Model ... 41
3.6.2 Timers .. 41
3.6.3 Initialization .. 42
3.6.4 Higher-Layer Triggered Events ... 42

3.6.4.1 Indicating Support for Auto-Extension of Subscriptions 42
3.6.5 Message Processing Events and Sequencing Rules .. 42

3.6.5.1 Receiving a 200 OK Response to SUBSCRIBE ... 42
3.6.5.2 Receiving a NOTIFY Request .. 43

3.6.6 Timer Events ... 43
3.6.7 Other Local Events ... 43

3.7 Contact Management Extensions Details ... 43
3.7.1 Abstract Data Model ... 44
3.7.2 Timers .. 45
3.7.3 Initialization .. 45
3.7.4 Higher-Layer Triggered Events ... 45

3.7.4.1 Subscribing to the Contact/Group List ... 45
3.7.4.2 Subscribing for the ACL ... 46

6 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.7.4.3 Add/Modify/Delete Contact .. 46
3.7.4.4 Add/Modify/Delete Group .. 46

3.7.5 Message Processing Events and Sequencing Rules .. 46
3.7.5.1 Setting ACEs for a Contact ... 46
3.7.5.2 Receiving the Contact List from the Server .. 47
3.7.5.3 Receiving the ACL from the Server .. 47

3.7.6 Timer Events ... 47
3.7.7 Other Local Events ... 47

4 Protocol Examples .. 48
4.1 Registration with Kerberos .. 48
4.2 Registration with NTLM ... 52
4.3 Batched SUBSCRIBE and Piggybacked NOTIFY Example .. 58
4.4 Best Effort NOTIFY Example .. 60
4.5 setPresence Example ... 62
4.6 AddContact Example .. 64
4.7 DeleteContact Example... 65
4.8 AddGroup Example .. 66
4.9 DeleteGroup Example ... 68
4.10 setACE Example ... 69
4.11 P2P Subscription and XPIDF Presence Format Example ... 71

5 Security .. 73
5.1 Security Considerations for Implementers ... 73
5.2 Index of Security Parameters .. 73

6 Appendix A: Product Behavior .. 74

7 Appendix B: Full text/xml+msrtc.pidf Presence Document Format 75

8 Appendix C: XPIDF Presence Document Format ... 81

9 Appendix D: ACL XML Schema .. 85

10 Appendix E: Contact Management Schema ... 88
10.1 Contact Schema .. 88
10.2 SetContact Schema .. 92
10.3 ModifyGroup Schema.. 93
10.4 DeleteContact Schema.. 94
10.5 DeleteGroup Schema .. 95

11 Appendix F : common.xsd .. 96

12 Change Tracking ... 99

13 Index ... 100

7 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1 Introduction

This document describes Microsoft extensions to the Session Initiation Protocol (SIP). SIP is
used by terminals to establish, modify, and terminate multimedia sessions or calls. SIP is specified
in [RFC3261], [RFC3262], [RFC3263], and [RFC3863].

Microsoft has added extensions for NTLM/Kerberos Authentication, for presence, for optimization of
subscriptions, and for notifications and contact management. These extensions are used by
Microsoft Windows® Messenger and the Real-Time Communications (RTC) Client API.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

access control entry (ACE)
access control list (ACL)

Active Directory
client

directory service (DS)
domain
endpoint
fully qualified domain name (FQDN)
ISO/OSI reference model
Kerberos

Key Distribution Center (KDC)
NT LAN Manager (NTLM) Authentication Protocol
proxy
security association (SA)
server
service principal name (SPN)
Transport Layer Security (TLS)

user agent

The following terms are specific to this document:

200 OK: A response to indicate that the request has succeeded.

403 Forbidden: A response to indicate that the server understood the request but is refusing
to fulfill it. Authorization will not help, and the request SHOULD NOT be repeated.

Best Effort NOTIFY (BENOTIFY): A SIP method defined by Session Initiation Protocol
Extensions that is used to send notifications to a subscriber. BENOTIFY is similar to

NOTIFY but does not require the recipient of the request to send a SIP response.

dialog: A peer-to-peer SIP relationship between two user agents that persists for some time. A
dialog is established by SIP messages (for example, a 2xx response to an INVITE
request). A dialog is identified by a call identifier, a local tag, and a remote tag.

event package: An additional specification that defines a set of state information to be reported
by a notifier to a subscriber. Event packages also define further syntax and semantics based

on the framework (defined by this document) that is required to convey such state
information.

http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90411
http://go.microsoft.com/fwlink/?LinkId=90412
http://go.microsoft.com/fwlink/?LinkId=90446
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

8 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

final response: A SIP response that terminates a SIP transaction as opposed to a provisional
response that does not. All 2xx, 3xx, 4xx, 5xx, and 6xx responses are final.

INVITE: A SIP method used to invite a user or a service to participate in a session.

notification: The act of a notifier sending a NOTIFY message to a subscriber to inform the

subscriber of the state of a resource.

NOTIFY: The NOTIFY method is used to notify a SIP element that an event that has been
requested by an earlier SUBSCRIBE method has occurred. It may also provide further details
about the event.

peer to peer (P2P): An Internet-based networking option in which two or more computers
connect directly to each other to communicate and share files without use of a central server.

presence entity (presentity): An entity that provides presence information to a presence

service.

Presence Information Data Format (PIDF): A common data format defined in [RFC3863] to

exchange presence information.

presence user agent (PUA): A presence user agent (PUA) manipulates presence
information for a presence entity (presentity).

REGISTER: A SIP method used by the SIP client to register its address with a SIP server.

SERVICE: A SIP method defined by Session Initiation Protocol Extensions used by the client to
request a service from the server.

Session Initiation Protocol (SIP): An application-layer control (signaling) protocol for
creating, modifying, and terminating sessions with one or more participants. SIP is defined in
[RFC3261].

Simple Object Access Protocol (SOAP): Lightweight XML-based protocol for exchange of
information in a decentralized, distributed environment.

SIP client (client): Any network client that sends SIP requests and receives SIP responses.
Clients may or may not interact directly with a human user. User agent clients (UACs) and
proxies are clients.

SIP element: Any entity that understands SIP.

SIP header (header): A component of a SIP message that conveys information about the SIP
message. It is structured as a sequence of header fields.

SIP message: Data sent between SIP elements as part of the protocol. SIP messages are

either requests or responses.

SIP method: The method is the primary function that a SIP request is meant to invoke on a
UAS. The method is carried in the request message itself. Example methods are INVITE and
BYE.

SIP registrar (registrar): A server that accepts REGISTER requests and places the
information it receives from those requests into the location service for the domain it

handles.

SIP request (request): A SIP message sent from a UAC to a UAS for the purpose of invoking
a particular operation.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90446
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90410
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

9 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

SIP response (response): A SIP message sent from a UAS to a UAC, indicating the status of
a request sent from the UAC to the UAS.

SIP transaction: A SIP transaction occurs between a UAC and a UAS. The SIP transaction
comprises all messages from the first request sent from the UAC to the UAS up to a final

response (non-1xx) sent from the UAS to the UAC. If the request is INVITE, and the final
response is a non-2xx, the SIP transaction also includes an ACK to the response. The ACK
for a 2xx response to an INVITE request is a separate SIP transaction.

SOAP envelope: The outermost element item of a SOAP message.

SOAP message: The basic unit of communication between SOAP nodes.

SUBSCRIBE: A SIP method that is used to request asynchronous notification of an event (or
a set of events) at a later time.

subscription: The end result of an act of a SIP element sending a SUBSCRIBE request.

Transmission Control Protocol (TCP): A connection-oriented protocol within TCP/IP that

corresponds to the transport layer in the ISO/OSI reference model and offers reliable
delivery of data. See also ISO/OSI reference model.

user agent client (UAC): A user agent client (UAC) is a logical entity that creates a new
request, and then uses the client transaction state machinery to send it. The role of UAC

lasts only for the duration of that transaction. In other words, if a piece of software initiates a
request, it acts as a UAC for the duration of that transaction. If it receives a request later, it
assumes the role of a user agent server for the processing of that transaction.

user agent server (UAS): A user agent server (UAS) is a logical entity that generates a
response to a SIP request. The response accepts, rejects, or redirects the request. This
role lasts only for the duration of that transaction. In other words, if a piece of software
responds to a request, it acts as a UAS for the duration of that transaction. If it generates a

request later, it assumes the role of a user agent client (UAC) for the processing of that
transaction.

User Datagram Protocol (UDP): The connectionless protocol within TCP/IP that corresponds to
the transport layer in the ISO/OSI reference model and does not offer reliable delivery of
data. See also ISO/OSI reference model.

Uniform Resource Identifier (URI): A compact string of characters for identifying an abstract
or physical resource.

watcher: An entity that requests presence information on a presentity from the presence
service.

XPIDF: A data format for presence using XML (for more information, see [DATAFORMATXML]).

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
specified in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89843
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com

10 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an

additional source.

[MS-ADA1] Microsoft Corporation, "Active Directory Schema Attributes A-L", June 2007.

[MS-ADA2] Microsoft Corporation, "Active Directory Schema Attributes M", June 2007.

[MS-ADA3] Microsoft Corporation, "Active Directory Schema Attributes N-Z", June 2007.

[MS-ADSC] Microsoft Corporation, "Active Directory Schema Classes", June 2007.

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions", January 2007.

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol Specification",
June 2007.

[RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism", RFC 1964, June 1996,

http://www.ietf.org/rfc/rfc1964.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

[RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R.,
Handley, M., and Schooler, E., "SIP: Session Initiation Protocol", RFC 3261, June 2002,
http://www.ietf.org/rfc/rfc3261.txt

[RFC3262] Rosenberg, J., and Schulzrinne, H., "Reliability of Provisional Responses in the Session
Initiation Protocol (SIP)", RFC 3262, June 2002, http://www.ietf.org/rfc/rfc3262.txt

[RFC3263] Rosenberg, J., and Schulzrinne, H., "Session Initiation Protocol (SIP): Locating SIP
Servers", RFC 3263, June 2002, http://www.ietf.org/rfc/rfc3263.txt

[RFC3265] Roach, A. B., "Session Initiation Protocol (SIP)-Specific Event Notification", RFC 3265,
June 2002, http://www.ietf.org/rfc/rfc3265.txt

[RFC3863] Sugano, H., Fujimoto, S., Klyne, G., et al., "Presence Information Data Format (PIDF)",

RFC 3863, August 2004, http://www.ietf.org/rfc/rfc3863.txt

[XML10] World Wide Web Consortium, "Extensible Markup Language (XML) 1.0 (Third Edition)",
February 2004, http://www.w3.org/TR/REC-xml

[XMLNS-2ED] World Wide Web Consortium, "Namespaces in XML 1.0 (Second Edition)", August
2006, http://www.w3.org/TR/2006/REC-xml-names-20060816/

[XMLSCHEMA] World Wide Web Consortium, "XML Schema", September 2005,
http://www.w3.org/2001/XMLSchema

1.2.2 Informative References

[DATAFORMATXML] Rosenberg, J., Wallis, D., Sparks, R., et al., "A Data Format for Presence Using

XML", June 2000, http://www.jdrosen.net/papers/draft-rosenberg-impp-pidf-00.txt

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary", March 2007.

[RFC1341] Borenstein, N., and Freed, N., "MIME (Multipurpose Internet Mail Extensions):

Mechanisms for Specifying and Describing the Format of Internet Message Bodies", RFC 1341, June
1992, http://www.ietf.org/rfc/rfc1341.txt

http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-KILE%5d.pdf
%5bMS-NLMP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90304
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90411
http://go.microsoft.com/fwlink/?LinkId=90412
http://go.microsoft.com/fwlink/?LinkId=90413
http://go.microsoft.com/fwlink/?LinkId=90446
http://go.microsoft.com/fwlink/?LinkId=90600
http://go.microsoft.com/fwlink/?LinkId=90602
http://go.microsoft.com/fwlink/?LinkId=90603
http://go.microsoft.com/fwlink/?LinkId=89843
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90277

11 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

[SOAP1.1] Box, D., Ehnebuske, D., Kakivaya, G., et al., "Simple Object Access Protocol (SOAP)
1.1", May 2000, http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[SOAP1.2-1/2007] Gudgin, M., Hadley, M., Mendelsohn, N., et al., "SOAP Version 1.2 Part 1:
Messaging Framework (Second Edition) ", W3C Recommendation 27, April 2007,

http://www.w3.org/TR/2007/REC-soap12-part1-20070427/

[SOAP1.2-2/2007] Gudgin, M., Hadley, M., Mendelsohn, N., et al., "SOAP Version 1.2 Part 2:
Adjuncts (Second Edition)", W3C Recommendation, April 2007, http://www.w3.org/TR/2007/REC-
soap12-part2-20070427

1.3 Overview

Session Initiation Protocol Extensions is an extension of the original Session Initiation Protocol (SIP),

as specified in [RFC3261].

Session Initiation Protocol Extensions defines NTLM/Kerberos authentication extensions to support
client/server authentication and message signatures. These extensions are described in detail in

section 3.1.

Session Initiation Protocol Extensions also adds a number of extensions to SIMPLE-based presence,
as specified in [RFC3261], [RFC3265], and [RFC3863]. These extensions are briefly described below

and are defined further in section 3.

Many of the extensions have been designed to reduce the number of subscription and notification
messages exchanged between the client and the server. One such extension is the capability to
subscribe for the presence of a number of contacts in a single subscription. The client can send a
batched SUBSCRIBE request to create such a subscription. The server sends the presence
information of all the contacts in the batched subscription in a single NOTIFY request. This is
useful when a client needs to subscribe for presence of all the contacts in the user's contact list.

Another extension that helps reduce the number of messages between the server and client is the
piggyback notification. The server can send the presence information immediately in the final
response to the SUBSCRIBE request, thus obviating the need to send a separate NOTIFY. Any

further changes are conveyed using a NOTIFY.

A BENOTIFY request is similar to a NOTIFY request and is used by the server to send updates
about any changes to the presence state. The only difference is that the client does not need to
send a SIP response to a BENOTIFY request. Because the server does not need to wait for a

response, the load on the server can be reduced.

Auto-Extension of subscriptions is an extension defined to reduce the frequency of the client
refreshing a subscription. The client refreshes a subscription after an interval negotiated with the
server. With this extension, any notification sent by the server to the client resets the subscription
refresh timer. After a notification, the client needs to wait for the negotiated interval before it can
refresh the subscription. Another notification during this time can again reset the timer. This

extension reduces the number of SUBSCRIBE requests sent by the client to refresh a subscription.

Microsoft also has made extensions to the Presence Information Data Format (PIDF). The
enhanced format is called msrtc.pidf and is documented in section 2.2.1. The msrtc.pidf format is

used only in the client/server mode. The client uses a setPresence SOAP request carried in the body
of a SERVICE request to set or update its own presence information. For more information on the
SOAP protocol, see [SOAP1.1], [SOAP1.2-1/2007], and [SOAP1.2-2/2007]. The counterpart to the
setPresence SOAP request is a getPresence SOAP request. This acts as a means to poll for presence

rather than subscribing to presence. It is meant as a lightweight alternative to a presence

http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=94664
http://go.microsoft.com/fwlink/?LinkId=119124
http://go.microsoft.com/fwlink/?LinkId=119124
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90413
http://go.microsoft.com/fwlink/?LinkId=90446
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=94664
http://go.microsoft.com/fwlink/?LinkId=119124

12 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

SUBSCRIBE request when only presence for a single entity is needed and only that presence
information for a one-time immediate purpose is needed.

Session Initiation Protocol Extensions uses the XPIDF format to exchange presence information
when the endpoints are acting in peer-to-peer (P2P) mode. The XPIDF format was introduced in

an IETF draft but was never standardized as an RFC. The details of the format and the schema are
included in appendix C. Session Initiation Protocol Extensions also has made some extensions to the
XPIDF format (see section 2).

Finally, Session Initiation Protocol Extensions includes protocol enhancements for contact
management operations such as adding or deleting a contact or a group, and setting access
control lists (ACLs) for viewing and establishing communication with a presence. All of these
operations can be done by sending SOAP requests carried within the body of a SERVICE request.

1.4 Relationship to Other Protocols

SIP extensions depend on the Session Initiation Protocol (SIP). The Session Initiation Protocol
Extensions defines additional SIP primitives and XML schema to support various extensions specified

in this document. In addition, the Session Initiation Protocol Extensions defines some authentication
extensions that make use of [MS-NLMP] and Kerberos protocols. For more information on XML, see

[XML10], [XMLNS], and [XMLSCHEMA].

The Session Initiation Protocol Extensions is invoked as an extension of the Session Initiation
Protocol (SIP). The Session Initiation Protocol Extensions depends on all the protocols on which the
SIP specification depends.

1.5 Prerequisites/Preconditions

The Session Initiation Protocol Extensions assumes that both the SIP clients and the server support

the Session Initiation Protocol (SIP). The prerequisites for the Session Initiation Protocol Extensions
are the same as the prerequisites for SIP.

1.6 Applicability Statement

The Session Initiation Protocol Extensions is applicable when both the SIP clients and the server
support the Session Initiation Protocol (SIP) and want to utilize one or more of the enhancements
offered by SIP extensions.

1.7 Versioning and Capability Negotiation

Session Initiation Protocol (SIP) extensions do not have protocol versioning. Instead, explicit
capability negotiation is done as specified in this section by using the Supported header to indicate
support of various features. Using the Supported header is the standard SIP mechanism of doing
capability negotiation.

1.8 Vendor-Extensible Fields

There are no vendor-extensible fields specific to the Session Initiation Protocol Extensions. Standard
extension mechanisms of the Session Initiation Protocol (SIP) may be used by vendors as needed.

1.9 Standards Assignments

None.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-NLMP%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90600
http://go.microsoft.com/fwlink/?LinkId=90602
http://go.microsoft.com/fwlink/?LinkId=90603

13 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2 Messages

The following sections specify how Session Initiation Protocol Extensions messages are transported
and Session Initiation Protocol Extensions message syntax.

2.1 Transport

Microsoft extensions to the Session Initiation Protocol (SIP) do not introduce a new transport to
exchange messages but these extensions can be used with any transport that is used by SIP. SIP
messages can be transported over UDP, TCP, or TLS.

2.2 Message Syntax

Microsoft extensions to the Session Initiation Protocol (SIP) do not introduce a new message format.
They rely on the SIP message format, as specified in [RFC3261] section 7. The Session Initiation
Protocol Extensions does define a new format for the Presence Document (see section 2.2.1).

2.2.1 text/xml+msrtc.pidf Presence Document Format

These extensions support a nonstandard Presence Document Format that has a number of
enhancements, such as the capability to carry device capabilities and the capability to support
multiple devices for a single user. A user can log on by using multiple devices. Each device presents
its presence information to the server. The XML instance containing presence information submitted
to the server is called the Presence Document. When retrieving presence information for a user, the
server not only returns the Presence Document from every device, but it also determines the overall
presence of the user. This XML instance returned by the server is called the Aggregated Presence

Document.

Some of the key elements and attributes are defined as follows:

presentity

The element contains the overall aggregated availability and activity of a user, as well as the

availability and activity of all endpoints of the user. The uri attribute specifies the sip entity that
this element is describing.

epid

This attribute can appear in the availability element, the activity element, or a devicePresence
element. When used in the availability and activity elements inside the presentity element, the
epid identifies the availability and activity for the most active endpoint. When used in the
devicePresence element, the epid advertises the availability and identifies the activity for a
specific endpoint. This value is a hexadecimal string no longer than 16 bytes in length. This epid

value is the same endpoint identifier value used to identify a specific SIP endpoint.

ageOfPresence

The ageOfPresence attribute appears in a devicePresence element. This is the number of seconds
since the device last updated its presence information.

availability

The purpose of availability is to indicate if the user can receive a call. The availability element has

an aggregate attribute that represents the availability of a user on a device. The aggregate
attribute is processed by the server as being within a range that has a span of 100 (the class

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90410

14 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

code). Note that within the XML sent by the client, the client does not specify the class code, but
rather, the actual value. The server interprets the values as being within the following classes.

Class

code Server interpretation

000-099 The user cannot receive calls.

100-199 The user may be online; however, availability is unknown until a call is attempted. A cell

phone gateway typically uses this setting.

200-299 The user has a device that is currently connected and it can receive calls.

300-399 The user is in proximity of a device that can receive calls.

Rather than a hard-coded enumeration, a numeric value is used. This makes it easy to compare

the availability that is sent by two different user agents. For example, the higher the
availability, the more available the user.

activity

The purpose of activity is not to indicate if a user can receive a call, but rather, to indicate to
watchers how likely the user is to want to be disturbed. The activity element has an attribute
aggregate that contains a numeric value that defines the activity of the user.

Activity code Server interpretation

000-099 There is no information about the activity of the user.

100-149 The user is away.

150-199 The user is out to lunch.

200-299 The user is idle.

300-399 The user will be right back.

400-499 The user is active.

500-599 The user is already participating in a communications session.

600-699 The user is busy.

700-799 The user is away.

800-999 The user is active.

Rather than a hard-coded enumeration, a numeric value is used. This makes it easy to compare
the availability sent by two different user agents.

note

This attribute in the activity element can be used by the client to store a string that indicates the
user's status on the device.

userInfo

%5bMS-GLOS%5d.pdf

15 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

This element is used for storing persisted presence information for a user. This information is
stored by the server and is available regardless of the device to which a user is logged on or

even whether the user is logged on at all. Any valid XML can be stored on the server. The server
enforces a limit of 1,024 characters on the size of the element body, where the entire element

body is treated as a single string.

The Presence Document is described by the XML schema in Appendix B.

Note that the schema defines two different versions of the Presence Document:

A version that is published by the client using a setPresence request.

A version that is generated by the server and sent in a NOTIFY or BENOTIFY request to the

watcher containing the aggregation of the various presence information published by the 1+

devices of the user.

The aggregated Presence Document describes a user's availability on all its devices as well as an
overall aggregated presence. This is the document published by the server to anyone obtaining the
presence of a particular user. The availability and activity elements in the aggregated Presence

Document indicate the availability and activity information from the most available device of the
user. The server MAY also include the displayName, email, and phoneNumber of the user in the

aggregated Presence Document.

2.2.2 SIP Extensions to XPIDF Presence Document Format

The Session Initiation Protocol (SIP) allows the SIP endpoints to communicate in a P2P mode
without requiring an SIP server. The endpoints can also subscribe for presence information and send
notifications carrying such information in a P2P manner. Session Initiation Protocol (SIP) extensions
use the XPIDF format to exchange presence information when the endpoints are acting in P2P mode.

The XPIDF format was introduced in an IETF draft but was never standardized as an RFC. The
details of the format and the schema are included in Appendix C.

The Session Initiation Protocol Extensions introduces some extensions to the XPIDF format that are

described as follows:

1. The Session Initiation Protocol Extensions defines a new element "display" as a subelement of a
presence element. The "display" element has the attribute "name" that is a suggested name to
identify a contact from other contacts in the client's contact list.

2. The Session Initiation Protocol Extensions defines a new element, "msnsubstatus", as a
subelement of address element. This element indicates the availability of the user. The
"msnsubstatus" element has the attribute "substatus" that can have the following values:
unknown, away, online, idle, busy, berightback, onthephone, or outtolunch. The interpretation of
these values is as follows:

msnsubstatus Server interpretation

unknown There is no information about the activity of the user.

away User is away.

online User is active and available for communication.

idle User is idle.

busy User is busy.

16 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

msnsubstatus Server interpretation

berightback User will be right back.

onthephone User is on the phone.

outtolunch User is out to lunch.

2.2.3 application/vnd-microsoft-roaming-acls+xml Document Format

Session Initiation Protocol Extensions support retrieving the ACL list from the server in the form of
an XML document. The ACL document contains a list of access control entries (ACEs). An ACE is
a set of three attributes:

1. Type

Type defines what the access control entry (ACE) applies to. A type value of ALL indicates that
the ACE applies to all users. A type value of DOMAIN indicates that the ACE applies to all users

on a domain. The domain is specified by the mask field. For example, if type is DOMAIN, and
mask is "contoso.com", the ACE applies to "sip:user1@sip.contoso.com" and
"sip:user@contoso.com" but not to "sip:user3@example.com". A type value of USER implies that
the ACE applies to a specific user specified by the mask field.

2. Mask

A user URI or DNS domain to which the ACE applies.

3. Rights

The rights associated with this ACE. This is represented as a list of characters. Each position in
the list represents a right. The character in that position represents the value of that right. Four
values are defined.

Value Right

A Allow

D Deny

P Prompt

B Block (Polite blocking)

Session Initiation Protocol Extensions uses two characters for the Rights field. The first one specifies
the right to view the presence of a user, and the second one defines the right to communicate with
a user. The client MUST enforce the right to communicate. The server MUST enforce the right to
view presence information.

An example NOTIFY message for the roaming ACL data follows.

<ACLlist deltaNum="282" >

 <userACL>

 <ace type="USER" mask="sip:user2@machine2.example.com" rights="AA"/>

 <ace type="USER" mask="sip:user3@machine2.example.com" rights="BA"/>

 <ace type="USER" mask="sip:user4@machine2.example.com" rights="PA"/>

 <ace type="USER" mask="sip:user5@machine2.example.com" rights="AA"/>

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

17 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 <ace type="USER" mask="sip:user6@machine2.example.com" rights="AA"/>

 </userACL>

</ACLlist>

Note The deltaNum attribute in the ACLlist element. This is a monotonically increasing sequence
number provided by the server that the client uses to ensure that its local copy is in sync with the

server. The initial value should be nonzero and is generally one.

2.2.4 Contacts/Groups Document Formats

2.2.4.1 application/vnd-microsoft-roaming-contacts+xml Document Format

Session Initiation Protocol Extensions support retrieving the contact list from the server in the form
of an XML document. The server can return the full contact list, or a partial contact list. Both lists

use basic building blocks of contact and group elements.

1. group

The group element contains three attributes:

id: A nonnegative integer that uniquely identifies the group.

name: The name of the group.

externalURI: A URI pointing to auxiliary resources for the group. For example, the externalURI

can point to an LDAP URI that contains the list of contacts.

2. contact

The contact element contains the following attributes:

uri: SIP URI of the contact.

name: Name of the contact.

groups: A space-separated string of IDs for the groups to which this contact belongs.

subscribed: A Boolean indicating whether this contact is merely stored as an offline contact, or

whether the client should subscribe to its presence.

externalURI: A URI pointing to auxiliary resources for the group. For example, the externalURI

can point to an LDAP URI that contains the list of contacts.

The contact element can also contain an optional contactExtension element. The
contactExtension element can be any generic XML.

3. contactDelta

The contactDelta element represents a partial contact list containing only the changes in contacts
and groups information from the last contact list notification. The contactDelta element contains

a choice of 6 elements:

addedGroup: Takes the same form as the group element. This element shows the group that

was added.

18 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

modifiedGroup: Takes the same form as the group element. This element shows the group

that was modified.

deletedGroup: Contains only a required id attribute. The id attribute identifies the group that

was deleted.

addedContact: Takes the same form as the contact element. This element shows the contact

that was added.

modifiedContact: Takes the same form as the contact element. This element shows the

contact that was modified.

deletedContact: Contains only a required uri attribute. The uri attribute identifies the contact

that was deleted.

The contactDelta element also contains two required attributes. The deltaNum nonnegative
integer attribute is the updated sequence number for the contact list after the changes take
place. The prevDeltaNum nonnegative integer attribute is the previous sequence number for the
contact list before the changes take place.

2.2.4.2 Contacts/Groups Management Document Formats

Session Initiation Protocol Extensions support modification to the contact list. These primitives are
defined as SOAP elements and are sent to the server by using a SERVICE request. Session Initiation
Protocol Extensions support the following primitives:

1. setContact

The setContact primitive is used for adding a new contact or modifying an existing contact. It
contains the following elements:

uri: The sip URI of the contact.

displayName: The name of the contact.

groups: A space-separated string of IDs for the groups to which this contact belongs.

subscribed: A Boolean that indicates whether this contact is merely stored as an offline

contact or whether the client should subscribe to its presence.

externalURI: A URI that points to auxiliary information for this contact. For example, the

externalURI can point to an LDAP URI that contains the information for this contact. This
element is optional.

contactExtension: This element can be any generic XML. This element can be used to store

any additional application extension information about a contact. This element is optional.

2. deleteContact

The deleteContact primitive is used for deleting an existing contact. It contains the URI element,
which identifies the sip URI of the contact to be deleted.

3. addGroup/modifyGroup

The addGroup primitive is used to add a new group. The modifyGroup primitive is used to modify
an existing group. These primitives contain the following elements:

groupID: A nonnegative integer that is used as the identifier of the group.

19 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

name: The name of the group.

externalURI: A URI that points to auxiliary information about the group. This element is

optional.

4. deleteGroup

The deleteGroup primitive is used for deleting an existing group. It contains the groupID of the
group to be deleted.

Each primitive must also include the deltaNum element. This nonnegative integer element is used as
a sequence number for the contact/group management view, and each primitive must include the
deltaNum equal to the current sequence number.

2.3 Directory Service Schema Elements

This protocol MAY access the directory service schema class and attributes listed in the following
table and include them in the presence document. For the syntactic specifications of the following

class or class/attribute pairs, refer to Active Directory Domain Services (AD DS) in [MS-ADA1], [MS-
ADA2], [MS-ADA3], and [MS-ADSC].

Class Attribute

User displayName

email

%5bMS-GLOS%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf

20 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3 Protocol Details

The following sections specify details of Session Initiation Protocol Extensions, including abstract
data models, message processing rules, and the SIP client and server roles.

3.1 NTLM/Kerberos Authentication Extensions Details

Session Initiation Protocol Extensions implements a proprietary Kerberos and NT LAN Manager
(NTLM) Authentication Protocol authentication mechanism that is used by the client for client-
to-server authentication and signing of messages. For more information on Kerberos, see [MS-

KILE]. Encryption (privacy) is provided by Transport Layer Security (TLS) and is not explicitly
covered by this authentication mechanism.

Authentication is broken down into two phases. In the first phase, a security association (SA) is
established between the client and the server. In the second phase, the client and server use the
existing SA to sign messages that they send and to verify the messages they receive.
Unauthenticated messages from a client SHOULD NOT be accepted by the server. The exact

message exchange in the first phase differs depending on whether NTLM or Kerberos authentication

is used.

During the NTLM SA establishment phase, a three-way handshake occurs between the client and the
server:

1. The client sends a request with no credential or authentication information. The server responds
to that request with a 401 or 407, indicating that it supports NTLM and Kerberos and requires
authentication.

2. The client reissues the request, indicating its preference for NTLM authentication. The server
responds with an appropriate challenge in a 401 or 407.

3. The client reissues the request with a response to the server's challenge. The server processes
the request and responds (including its signature for the response).

4. The SA is now established on both the client and server, and subsequent messages between the
client and server are signed.

During the Kerberos SA establishment phase, a two-way handshake occurs between the client and

the server:

1. The client sends a request with no credential or authentication information. The server responds
to that request with a 401 or 407, indicating that it supports NTLM and Kerberos and requires
authentication.

2. The client requests a Kerberos ticket for the server, and reissues the request with this encoded
Kerberos ticket information.

3. The server processes the request and responds (including its signature for the response).

4. The SA is now established on both the client and server, and subsequent messages between the

client and server are signed.

The primary distinction between NTLM and Kerberos is the need for connectivity to the domain
controller. In Kerberos, the client must request a Kerberos ticket from the Key Distribution Center
(KDC), which is a process that resides on the domain controller. In NTLM, the server verifies the
client's NTLM credentials by contacting the domain controller. This difference allows clients that do

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-KILE%5d.pdf
%5bMS-KILE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

21 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

not have connectivity to the domain controller to authenticate with the server using NTLM
authentication, and it is the main reason for supporting NTLM in addition to the more secure and

standard Kerberos authentication.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations
adhere to this model as long as their external behavior is consistent with what is described in this
specification.

The client can use a LastSnumReceived integer parameter for each SA to store the value of the last

snum received from the server. This is used to provide replay protection.

The client can also use two integer parameters, SnumWindowLow and SnumWindowHigh, to mark
the upper and lower values for the sliding window used by the client to allow pipelining of requests
while providing replay protection. SnumWindowLow and SnumWindowHigh can be initialized to 1

and 256, respectively, for a 256-size sliding window.

Note The preceding conceptual data can be implemented by using a variety of techniques. An

implementation is at liberty to implement such data in any way convenient.

3.1.2 Timers

No timers are required other than the timers specified in [RFC3261].

3.1.3 Initialization

No initialization is required beyond the initialization that is specified in [RFC3261].

3.1.4 Higher-Layer Triggered Events

Except as specified in the following sections, the rules for message processing are as specified in
[RFC3261].

3.1.4.1 Initiating the Login Sequence

The client initiates the login sequence by sending a REGISTER request without any credentials, as

suggested in [RFC3261]. If the REGISTER request is challenged by a server request for NTLM
Authentication Protocol or Kerberos authentication, the client then resends the REGISTER request
with credentials. This step also establishes an SA between the client and the server that is used to
sign any future messages.

3.1.4.2 Sending a SIP Message

Before sending a message, the sender MUST generate a message signature or checksum that it will

send with the message so that the receiver can authenticate the message. The client and the server
SHOULD use the same algorithm to generate message signatures. The Microsoft implementation

uses the GSS_GetMIC() and GSS_VerifyMIC() implementations of the NTLM or Kerberos security
service provider interface to compute and verify a signature. For more information on NTLM
GSS_GetMIC() and GSS_VerifyMIC(), see [MS-NLMP] section 3.1.4. For more information on
Kerberos GSS_GetMIC() and GSS_VerifyMIC implementation, see [RFC1964] section 1.2.

http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90410
%5bMS-NLMP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90304

22 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The client MUST use the following values in order and enclosed by angle brackets to construct a
secure buffer that is then used to compute the message signature:

1. Authentication method (for example, "NTLM" or "Kerberos")

2. Crand for client or srand for server

3. Cnum for client or srand for server

4. Realm

5. Targetname

6. Call ID

7. CSeq#

8. CSeq method

9. From URL

10.From Tag

11.To Tag

12.Expires (optional)

13.Response code (responses only)

The only difference from the client signature is the use of a server-generated SALT (srand) and
sequence number (snum) rather than the client-generated SALT (crand) and sequence number

(cnum).

Note Even though some parameter values are case-insensitive, these values must be used as they
appear in the message when performing the signature computation.

For optional fields, such as Expires, an empty set of angle brackets (<>) is included in the buffer to
sign when those headers do not exist in the SIP message.

The response code is only part of the signature computation for responses and is not part of the
signature for requests. An empty set of angle brackets (<>) is not included in the buffer to sign for

requests.

The client places the message signature in the response parameter of the Proxy-Authorization:
header. The server places the signature in the rspauth parameter of the Proxy-Authentication-Info:
header.

As an example, the following message,

SUBSCRIBE sip:samtest1@pstntest.rtmp.selfhost.corp.microsoft.com SIP/2.0

Via: SIP/2.0/TCP 172.24.34.1:16577

Max-Forwards: 70

From: <sip:samtest1@pstntest.rtmp.selfhost.corp.microsoft.com>;

 tag=82249b57436d4aa39ec38afa968fa994;

 epid=bd0238d966

To: <sip:samtest1@pstntest.rtmp.selfhost.corp.microsoft.com>

Call-ID: 72558074992e4f2cafb48c6e44b90a0c

CSeq: 1 SUBSCRIBE

23 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Contact:

 <sip:samtest1@pstntest.rtmp.selfhost.corp.microsoft.com:16577;

 maddr=172.24.34.1;transport=tcp>;

 proxy=replace

User-Agent: RTC/1.3

Event: vnd-microsoft-roaming-contacts

Accept: application/vnd-microsoft-roaming-contacts+xml

Supported: com.microsoft.autoextend

Supported: ms-benotify

Proxy-Require: ms-benotify

Supported: ms-piggyback-first-notify

Proxy-Authorization:

 NTLM qop="auth",

 realm="SIP Communications Service",

 opaque="9C55D687",

 crand="009139df",

 cnum="1",

 targetname="pstn.pstntest.rtmp.selfhost.corp.microsoft.com",

 response="0100000039623537c854b2e8ca6a203e"

Content-Length: 0

would result in the following signature buffer (line breaks not included).

<NTLM>

<009139df >

<1>

< SIP Communications Service>

< pstn.pstntest.rtmp.selfhost.corp.microsoft.com >

<72558074992e4f2cafb48c6e44b90a0c >

<1>

<SUBSCRIBE>

< sip:samtest1@pstntest.rtmp.selfhost.corp.microsoft.com >

<82249b57436d4aa39ec38afa968fa994>

Note The signature computed for the preceding example is

"0100000039623537c854b2e8ca6a203e", which is included in the response parameter of the Proxy-
Authorization header.

For Kerberos, the buffer for signature computation is formed in a manner similar to what is shown in

the preceding NTLM example. The only differences are that the first element in the signature buffer
is <Kerberos> instead of <NTLM> and that Kerberos GSS-GetMIC() is used to compute the
signature.

3.1.5 Message Processing Events and Sequencing Rules

Except as specified in the following section, the rules for message processing are as specified in
[RFC3261] and [RFC3265].

3.1.5.1 Overview of Authentication Protocol Elements

The server issues an authentication challenge by using either a 401 or 407 response to a SIP
request. The client SHOULD be capable of processing either response. The server uses the following
SIP headers as part of this authentication scheme.

http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90413

24 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

SIP header Purpose Where used

Date Indicates current server time. Used by the client to detect clock

skew, which can cause authentication to fail. Client and server

clocks must be synchronized to within 15 minutes for the NTLM

Authentication Protocol and to within 5 minutes for Kerberos.

401 or 407

response

Proxy-

Authenticate

Carries the challenge issued by a proxy. One for each

authentication scheme (NTLM and Kerberos) that the proxy

supports.

407 response

Proxy-

Authentication-

Info

Carries the proxy signature for a message. Authenticated

SIP message

Proxy-

Authorization

Allows the client to identify itself (or its user) to a proxy that

requires authentication. Carries the client response to challenge

as well as the signature for the message.

SIP message

WWW-

Authenticate

Carries the challenge issued by a server. One for each

authentication scheme (NTLM and Kerberos) that the server

supports.

401 response

Authentication-

Info

Carries the server signature for a message. Authenticated

SIP message

Authorization Allows the client to identify itself (or its user) to a server that

requires authentication. Carries the client response to challenge

as well as the signature for the message. One for each SA that

the client has established with the server.

SIP message

The protocol information that is used during the SA establishment phase differs from the information

that is used after an SA is established. During the establishment phase, the gssapi-data parameter
carries the bulk of the credential information. The realm parameter provides additional context
information.

After an SA is established, the srand, crand, cnum, snum, and opaque parameters are used in the
signing of requests and responses. Those signatures are carried in the response and rspauth
parameters. Parameter values are never escaped, and parameter names are case-insensitive. The

order of parameters in a header is not significant.

The following table gives an overview of the parameters used in Proxy-Authenticate, Proxy-
Authorization, and Proxy-Authentication-Info headers in the SIP messages. The "When" column
indicates the phase in which the parameter is used: Establishment or Signing.

Parameter Where Creator When Used for

Realm Authenticate

Authorization

Auth Info

Server ES Identifies which set of credentials the user should

supply. Also used by the client to determine which

SA is used to sign a message. The Realm value is

case-sensitive. The default value is "SIP

Communications Service".

Epid From Client ES Identifies a unique endpoint for the user. Used by

the server to determine the correct SA to use for

signing an outgoing response. An epid MUST be

present.

%5bMS-GLOS%5d.pdf

25 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Parameter Where Creator When Used for

Epid To Server ES Identifies a unique endpoint for the user. Used by

the server to determine the correct SA to use for

signing an outgoing request. An epid MUST be

present.

Targetname Authenticate

Authorization

Auth Info

Server ES Identifies the server for this SA. Contains the

FQDN of the server for NTLM and the SPN of the

server for Kerberos.

Opaque Authenticate

Authorization

Auth Info

Server ES Identifies the SA on the server.

Qop Authenticate

Authorization

Auth Info

Client

Server

ES Quality of Protection (auth only, no integrity

protection).

Crand Authorization Client S Identifies the SALT that is used in the signature.

An 8-character hexadecimal digit string.

Crum Authorization Client S Identifies the sequence number that is used in the

signature for replay protection. A 32-bit unsigned

value that starts at 1.

Srand Auth Info Server S Identifies the SALT that is used in the signature.

An 8-character hexadecimal digit string.

Snum Auth Info Server S Identifies the sequence number that is used in the

signature for replay protection. A 32-bit unsigned

number that starts at 1.

gssapi-data Authenticate

Authorization

Client

Server

E Exchanges credential information for establishing

an SA.

Response Authorization Client S Carries the client signature.

Rspauth Auth Info Server S Carries the server signature.

For each SA, the client MUST keep track of the snum values that are used by the server when

signing messages with this SA. The client also tracks the last snum value that is received for this
SA. The client MUST maintain a sliding window to track the snum values that are used by the server
for this SA. The initial range of this window is 1 to 256, and is adjusted as messages are received.
(The size of this window is 256.) This means that the server can issue as many as 256 simultaneous
requests before waiting for a response from the client. The purpose of maintaining this sliding
window is to provide replay protection while allowing pipelining of requests for performance reasons.

When a signed message arrives at the client, the client MUST validate the signature and extract the
snum value:

If the snum value is higher than the last snum received, the client shifts the window up so that the
window now spans from [snum – 256 to snum]. The client also marks this snum as having been
used.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

26 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

If the snum value is lower than the last snum received and is within the active window, the client
checks whether this value has been seen before. Previously seen values are rejected as a replay.

Replayed requests and responses are dropped. New values are marked as having been used.

If the snum value is lower than the last snum received and is outside the active window, the client

MUST drop the message.

3.1.5.2 Verifying Message Signature for Incoming Messages

After receiving a SIP message, the receiver MUST verify the message signature by using
GSS_VerifyMIC(). If the signature verification fails, the message MUST be discarded.

3.1.5.3 proxy=replace Extension for Firewall Traversal

Session Initiation Protocol Extensions introduces a new header parameter, proxy=replace, to enable
firewall traversal for the Session Initiation Protocol (SIP) channel. This parameter tells the outbound
proxy to replace the contact information in the contact header with its own, enabling other
clients/servers to reach the client using the proxy's IP address, even if the client is behind a firewall.

The client SHOULD include a header parameter proxy=replace in the "Contact" header if it wants to
enable this extension. The client SHOULD also include a maddr URI parameter containing its IP

address. The outbound proxy SHOULD replace the IP address in the maddr parameter with its own
IP address if the proxy=replace header parameter is present. Any entity receiving this contact
header SHOULD send any new requests to the new IP address in the maddr parameter, which is the
IP address of the proxy. The proxy SHOULD then route this request to the client.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

3.2 Presence Extensions Details

The Session Initiation Protocol Extensions introduces several extensions to enhance presence. These
include the new Presence Document Format, msrtc.pidf (see section 2.2.1), extensions to XPIDF

format (see section 2.2.2), a new SIP method, SERVICE, to set and get presence information, and
the setPresence and getPresence SOAP requests.

The Session Initiation Protocol (SIP) allows SIP endpoints to communicate in a P2P mode without
requiring a SIP server. The endpoints can also subscribe for presence information and send
notifications carrying such information in a P2P manner. Session Initiation Protocol (SIP) extensions
use the XPIDF format to exchange presence information when the endpoints are acting in P2P mode.
The msrtc.pidf format is used in the client/server mode.

The client can publish its presence to the server by sending a setPresence SOAP request inside the
body of a SERVICE method. The client can use the setPresence request only to set the logged in
user's presence. A user cannot publish presence on behalf of another user. The server sends a 200

OK SIP response to indicate that the setPresence request was successful.

There are two ways for the client to obtain another user's presence information. If the client just
needs a one-time snapshot of the presence information, it SHOULD send a getPresence SOAP
request to the server to do so. This can be useful for Web pages that need to show the presence

27 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

state of a user on a transient basis. The advantage of using a getPresence request is that it does not
consume a lot of resources on the server.

If the client wants to continue getting updates when the presence information changes, it SHOULD
subscribe for it by sending a SUBSCRIBE request to the server. The SUBSCRIBE request creates a

dialog, and as long as the dialog is kept alive, the server MUST send presence updates in NOTIFY or
BENOTIFY requests. This mode of operation can be useful for getting presence information of the
users in the client's contact list.

In the P2P mode, no server is used to exchange presence information, and clients can directly
create subscriptions between themselves. The setPresence and getPresence requests are not valid in
P2P mode. The client can send a SUBSCRIBE request to the user it wants to subscribe to create a
subscription. The other client can send NOTIFY with Presence Documents in XPIDF format to send

initial presence information and any updates.

SIP Proxies and Registrars should send an immediate 200 response status code to any SUBSCRIBE
messages before forwarding the message, and should not forward responses to any SUBSCRIBE
messages. The 200 status code MUST only indicate successful receipt of the request, instead of

acceptance of the subscription. The response MUST be sent immediately to ensure that no state
information about a SIP client can be derived from any delays in the process. A SUBSCRIBE request

SHOULD then be sent to the requested client for processing.

If a SIP client is offline, the SIP Proxy or Registrar MUST immediately send a 200 status code in
response and queue the SUBSCRIBE request for a suitable time-out period. A recommended value of
this time-out is 180 seconds. Further SUBSCRIBE requests SHOULD update the time-out value. If
the end node comes online before the time-out period expires, then the SUBSCRIBE request should
be forwarded to it.

A SIP Proxy or Registrar must never send a 600 status code in response to a SUBSCRIBE request.

When a SIP client receives a SUBSCRIBE request, it MUST immediately respond with a 200 status
code that only indicates successful receipt of the request, not any presence information. If the
request is accepted, then a NOTIFY transaction should be created and sent. Otherwise, no message
should be sent in response.

These extensions are optional. An implementation may support them.

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations
adhere to this model as long as their external behavior is consistent with what is described in this
specification.

The server MAY use a BOOLEAN flag, MSRTCPresenceSupported, for each registering client to track

whether the client supports the presence extensions described in this section.

Note The preceding conceptual data can be implemented using a variety of techniques. An
implementation is at liberty to implement such data in any way convenient.

3.2.2 Timers

No timers are required other than the timers specified in [RFC3261] and [RFC3265].

http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90413

28 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.2.3 Initialization

The client SHOULD be registered with the server before publishing or subscribing to presence
information. This is done by sending a REGISTER request to the server, as specified in [RFC3261].

3.2.4 Higher-Layer Triggered Events

Except as specified in the following sections, the rules for message processing are as specified in
[RFC3261] and [RFC3265]. When the user logs in, the client subscribes to the presence information
of the contacts using a batched SUBSCRIBE request.

3.2.4.1 Indicating Support for Presence Extensions

The Session Initiation Protocol Extensions defines a new header to indicate support for Session
Initiation Protocol (SIP) extensions for presence. The client SHOULD insert the following header in
its REGISTER requests as part of the login sequence.

Supported: com.microsoft.msrtc.presence

This header indicates to the server that the client understands the Session Initiation Protocol (SIP)

extensions for presence, notably its support for the setPresence SOAP request and
text/xml+msrtc.pidf presence document format (see section 2.2.1). The server assumes that a
client that inserts this header in its first REGISTER request will subsequently send a setPresence
request to set its presence state. Failure to do so will cause the server to show the client as offline
after a short period of time. The exact interval SHOULD be a configurable parameter on the server
and may be set to a suitable value between 3 minutes and 15 minutes.

3.2.4.2 Setting Presence for Self User (setPresence SERVICE Request)

The client uses a SOAP request, carried in the body of a SERVICE request, to set or update its own
presence information. This is done at least once (during login) and whenever the presence state of
the user changes. The setPresence SOAP request is the trigger for the server to generate NOTIFY

requests to the watchers of this user. An example setPresence request looks like the following.

SERVICE sip:user@tradewind.com

SIP/2.0 Via: SIP/2.0/TLS 157.56.65.142:3485 Max-Forwards: 70

From: "Bob" <sip:user@tradewind.com >;

 tag=263b894bb94d444b801fc070cd8c403a;

 epid=a892397901

To: < sip:user@tradewind.com >

Call-ID: 157892a29f7e44199693e2a1e48fdd98

CSeq: 3 SERVICE

Contact:

 < sip:user@tradewind.com:3485;

 maddr=157.56.65.142;

 transport=tls>;

 proxy=replace

User-Agent:

 RTC/1.3.5315 (Messenger 5.1.0530)

Proxy-Authorization:

 NTLM qop="auth",

 realm="SIP Communications Service",

 opaque="bfaf9a7c",

 crand="84e2891d",

 cnum="8",

http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90413

29 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 targetname="tradewind.com",

 response="0100000038393462892479edd2994f63"

Content-Type: application/SOAP+xml

Content-Length:

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <m:setPresence xmlns:m="http://schemas.microsoft.com/winrtc/2002/11/sip">

 <m:presentity m:uri="sip:sip:user@tradewind.com">

 <m:availability m:aggregate="300" m:description="online"/>

 <m:activity m:aggregate="400" m:description="Active"/>

 <deviceName

 xmlns="http://schemas.microsoft.com/2002/09/sip/client/presence"

 name="USER-DESKTOP"/>

 <rtc:devicedata

 xmlns:rtc="http://schemas.microsoft.com/2002/09/sip/client/presence"

 namespace="rtcService">

 <![CDATA[

 <caps>

 <renders_gif/>

 <renders_isf/>

 </caps>]]>

 </rtc:devicedata>

 </m:presentity>

 </m:setPresence>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The SERVICE method is used to carry a variety of SOAP requests between the client and the server.

The body of the request identifies the specific SOAP method that is being invoked. In this case, the
"m:setPresence" string indicates that this is a setPresence request. The uri attribute on the
presentity element indicates the user whose presence is being set and MUST match the To and
From header URIs. The remaining content of the setPresence body is a text/xml+msrtc.pidf

Presence Document. Note the namespace of the XML document that must match exactly for the
server to recognize this SOAP request.

3.2.4.3 Subscribing to a User's Presence Information

The client can subscribe to a user's presence information by sending a SUBSCRIBE request with the
request URI set to that user's SIP URI. In the client/server mode, this request creates a subscription
on the client and the server. In the P2P mode, the subscription is created on both clients. The
presence information is sent back in the 200 OK to the SUBSCRIBE if piggyback notification

extension is enabled. Otherwise, it is sent in a NOTIFY or BENOTIFY request. Any further updates to
presence are sent using NOTIFY or BENOTIFY requests.

3.2.4.4 Getting Presence Information of Another User (getPresence SERVICE

Request)

The counterpart to the setPresence SOAP request is a getPresence SOAP request. This acts as a

means to poll for presence rather than subscribing to presence. It is meant as a lightweight
alternative to a presence SUBSCRIBE request when only presence for a single entity is needed and
only that presence information for a one-time immediate purpose is needed.

SERVICE sip:target@tradewind.com SIP/2.0

30 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Via: SIP/2.0/TLS 157.56.65.142:3485

Max-Forwards: 70

From: "Bob" <sip:user@tradewind.com>;

 tag=9aa9609ba6684c40bc8ec2917979c586;epid=a892397901

To: <sip:target@tradewind.com>

Call-ID: 875bb758890e436492cb83d300c33564

CSeq: 1 SERVICE

Contact: <sip:user@tradewind.com:3485;

 maddr=157.56.65.142;transport=tls>;proxy=replace

User-Agent: RTC/1.3.5315 (Messenger 5.1.0530)

Proxy-Authorization: NTLM qop="auth",

 realm="SIP Communications Service",

 opaque="bfaf9a7c", crand="ffaf4afc",

 cnum="42", targetname="tradewind.com",

 response="01000000363039624edf6834d2994f63"

Content-Type: application/SOAP+xml

Content-Length:

 <SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <m:getPresence

 xmlns:m=

 "http://schemas.microsoft.com/winrtc/2002/11/sip">

 <presentity uri="sip:target@tradewind.com"/>

 </m:getPresence>

 </SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

Note The m:getPresence element indicates that this is a getPresence SOAP request. Also note the

XML namespace that is used; it must be matched exactly. The Request-URI, the To header URI, and
the uri attribute of the getPresence element indicate the user from which presence information is
wanted. Note that presence ACLs are enforced for getPresence requests as well; if the user is
blocked from seeing the target user's presence, the getPresence request may return a 403
Forbidden SIP response.

3.2.5 Message Processing Events and Sequencing Rules

Except as specified in the following section, the rules for message processing are as specified in
[RFC3261] and [RFC3265].

The following event is specified in this section:

Processing Response to a getPresence SERVICE Request

3.2.5.1 Processing Response to a getPresence SERVICE Request

The client SHOULD receive the Presence Document in the body of the 200 OK response to the
SERVICE request. The client SHOULD parse the Presence Document as if it was received inside a
NOTIFY method.

3.2.6 Timer Events

None.

http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90413

31 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.2.7 Other Local Events

None.

3.3 Batched SUBSCRIBE and NOTIFY Extension Details

Session Initiation Protocol Extensions uses the SUBSCRIBE and NOTIFY mechanism, as specified in
[RFC3265], to accept subscriptions for and send presence updates on members of the user's contact
list.

Session Initiation Protocol Extensions defines additional optimizations of that basic SUBSCRIBE and
NOTIFY mechanism to reduce message overhead associated with presence. The first such extension
is the batched SUBSCRIBE mechanism. This mechanism allows the client to subscribe to a list of

contacts at once rather than send an individual SUBSCRIBE for each contact.

This extension is optional. An implementation may support it.

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations

adhere to this model as long as their external behavior is consistent with what is described in this
specification.

The client MAY use a Boolean flag, BatchSubscribeEnabled, for each subscription to track whether
batched SUBSCRIBE/NOTIFY requests are supported.

The server MAY also use a similar Boolean flag, BatchSubscribeEnabled, for each subscription to
track whether batched SUBSCRIBE/NOTIFY requests are supported.

The server MAY also have a configurable parameter, MaxNumberOfContacts, per user to keep track
of the limit on how many contacts that user may have.

Note that the preceding conceptual data can be implemented by using a variety of techniques. An
implementation is at liberty to implement such data in any way convenient.

3.3.2 Timers

No timers are required other than the timers specified in [RFC3261] and [RFC3265].

3.3.3 Initialization

The client SHOULD be registered with the server before sending a batched SUBSCRIBE request. This
is done by sending a REGISTER request to the server, as specified in [RFC3261].

3.3.4 Higher-Layer Triggered Events

Except as specified in the following sections, the rules for message processing are as specified in

[RFC3261] and [RFC3265].

3.3.4.1 Sending a Batched SUBSCRIBE Request

The client can subscribe to presence information of a list of contacts by sending a batched
SUBSCRIBE request to the server. This is typically done after the client has logged in to the server
by sending a REGISTER request. The batched SUBSCRIBE request is a SUBSCRIBE request with the

http://go.microsoft.com/fwlink/?LinkId=90413
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90413
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90413

32 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

body of the request containing the contact URIs of interest. A typical batched SUBSCRIBE is
constructed similar to the following example.

SUBSCRIBE

sip:watcher@tradewind.com SIP/2.0

Via: SIP/2.0/TLS 157.56.65.142:3485

Max-Forwards: 70

From: "Bob" <sip:watcher@tradewind.com>;

 tag=4dcbf313b0ee4d;epid=a892397901

To: <sip:watcher@tradewind.com>

 Call-ID: dba8c92428b241ccb233e5d1a59135e2

 CSeq: 1 SUBSCRIBE

 Contact:

 <sip:watcher@tradewind.com:3485;

 maddr=157.56.65.142;

 transport="tls">;

 proxy=replace

 User-Agent: RTC/1.3

 Event: presence

 Accept:

 application/rlmi+xml,

 text/xml+msrtc.pidf,

 multipart/related

 Supported: com.microsoft.autoextend

 Supported: ms-benotify

 Proxy-Require: ms-benotify

 Supported: ms-piggyback-first-notify

 Require: adhoclist

 Supported: eventlist

 Proxy-Authorization:

 NTLM qop="auth",

 realm="SIP Communications Service",

 opaque="bfaf9a7c",

 crand="8c93c137",

 cnum="5",

 targetname="tradewind.com",

 response="0100000066333133cfcfdde1d2994f63"

 Content-Type: application/adrl+xml

 Content-Length: …

 <adhoclist uri="sip:watcher@tradewind.com"

 name="sip:watcher@tradewind.com">

 <create>

 <resource uri="sip:contact1@tradwind.com"/>

 <resource uri="sip:contact2@tradwind.com"/>

 <resource uri="sip:contact3@tradwind.com"/>

 <resource uri="sip:contact4@tradwind.com"/>

 <resource

 </create>

 </adhoclist>

Refer to the adhoclist node in the preceding example. The Supported, Require, and Proxy-Require

headers indicate support for a variety of presence extensions that are described in the following

sections. The Accept header indicates that the client is capable of receiving (in response to the
SUBSCRIBE) a multipart MIME (for more information, see [RFC1341]) specification that contains a
list of users (application/rlmi+xml) and their associated Presence Documents (text/xml+msrtc.pidf).

The Require: adhoclist and Supported: eventlist headers indicate support specifically for the batched
SUBSCRIBE mechanism (both are needed to enable this feature).

http://go.microsoft.com/fwlink/?LinkId=90277

33 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The Content-Type (application/adrl+xml) indicates that this SUBSCRIBE request carries an XML
body that contains the list of contacts of interest.

Note that the Request-URI as well as the To and From headers all carry the SIP URI of the watcher.

The content of the SUBSCRIBE request itself is straightforward. It is described by the following XML

schema. The schema allows the client to define a list as well as modify an existing list established by
a previous SUBSCRIBE request in the same SIP dialog. The list is flat, containing one entry per
contact that the watcher receives presence updates for. The size of the list SHOULD be bounded by
the maximum number of contacts per user setting on the server. The server may limit the maximum
number of contacts that a user can have. The implementation SHOULD permit an administrator to
configure this limit based on the needs of the users in a deployment, by some means outside of this
specification. A reasonable value for this limit may be between 100 and 250. The server SHOULD

reject any batched SUBSCRIBE request that contains more contacts than this limit.

<?xml version="1.0" ?>

<xs:schema id="batch subscribe" version="2.0"

 elementFormDefault="qualified"

 targetNamespace="urn:ietf:params:xml:ns:adrl"

 xmlns:tns="urn:ietf:params:xml:ns:adrl"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:ct="http://schemas.microsoft.com/sip/types">

 <xs:annotation>

 <xs:documentation>

 Live Communications Server 2005 supports an extension to the

 SIP SUBSCRIBE request to allow subscribing to the presence

 of multiple users at the same time. This is called the Batch

 Subscribe request. The body of the Batch Subscribe request

 conforms to the schema specified here. Note that this schema

 is different from the adhoclist schema specified in the

 internet draft.

 </xs:documentation>

 </xs:annotation>

 <xs:import namespace="http://schemas.microsoft.com/sip/types"

 schemaLocation="common.xsd" />

 <xs:complexType name="resource">

 <xs:attribute name="uri" type="ct:sipURI" use="required" />

 <xs:anyAttribute namespace="##any" processContents="lax" />

 </xs:complexType>

 <xs:complexType name="roster">

 <xs:sequence>

 <xs:element name="resource" type="tns:resource" minOccurs="0"

 maxOccurs="unbounded" />

 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="lax" />

 </xs:complexType>

 <xs:complexType name="adhoclist">

 <xs:sequence>

 <xs:choice>

 <xs:annotation>

 <xs:documentation>

34 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 A Batch Subscribe request can specify one of

 three operations: create, add or delete.

 - A create operation creates a new batch

 subscription on the server

 - An add operation adds entries to an existing

 batch subscription

 - A delete operation deletes entries from a

 batch subsription

 Entries in a batch subscription consist of SIP URIs

 of users to whom presence subscriptions are created.

 </xs:documentation>

 </xs:annotation>

 <xs:element name="create" type="tns:roster" />

 <xs:element name="add" type="tns:roster" />

 <xs:element name="delete" type="tns:roster" />

 </xs:choice>

 <xs:any namespace="##any" processContents="lax"

 minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>

 <xs:attribute name="uri" type="ct:sipURI" use="required" />

 <xs:anyAttribute namespace="##any" processContents="lax" />

 </xs:complexType>

 <xs:element name="adhoclist" type="tns:adhoclist" />

</xs:schema>

3.3.5 Message Processing Events and Sequencing Rules

Except as specified in the following section, the rules for message processing are as specified in
[RFC3261] and [RFC3265].

The following events are specified in this section:

Receiving a NOTIFY Response to a Batched SUBSCRIBE Request

Receiving a Failure Response to a Batched SUBSCRIBE Request

3.3.5.1 Receiving a NOTIFY Response to a Batched SUBSCRIBE Request

On receiving a NOTIFY SIP response to a batched SUBSCRIBE request, the client parses the
response and retrieves the presence information for all contacts.

A typical NOTIFY SIP response to a batched subscription appears in the following example. Note that
it is a multipart MIME body containing both a list of contacts and the presence state for each of
those contacts.

From: "Bob" <sip:watcher@tradewind.com>;

 tag=4dcbf313b0ee4dd68fdfae2d851facf2;

 epid=a892397901

 To: <sip:watcher@tradewind.com>;

 tag=ee697d7f2d8dc2b899014154efb57a4c;

 Call-ID: dba8c92428b241ccb233e5d1a59135e2

http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90413

35 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 CSeq: 1 SUBSCRIBE

 Expires: 23903

 Content-Type:

 multipart/related;

 type="application/rlmi+xml";start=resourceList;

 boundary=50UBfW7LSCVLtggUPe5z Content-Length:

 Require: eventlist

 Event: presence subscription-state: active;expires=23903

 Supported: com.microsoft.autoextend,

 ms-piggyback-first-notify,

 ms-benotify

 --50UBfW7LSCVLtggUPe5z

 Content-Transfer-Encoding: binary

 Content-ID: resourceList

 Content-Type: application/rlmi+xml

 <list xmlns="urn:ietf:params:xml:ns:rlmi"

 uri="sip:watcher@tradewind.com"

 version="1" fullState="true" >

 <resource uri="sip:contact1@tradewind.com" >

 <instance id="0" state="active"

 cid="contact1@tradewind.com" />

 </resource>

 <resource uri="sip:contact2@tradewind.com" >

 <instance id="0" state="active"

 cid="contact2@tradewind.com" />

 </resource>

 <resource uri="sip:contact3@tradewind.com" >

 <instance id="0" state="active"

 cid="contact3@tradewind.com" />

 </resource>

 </list>

 --50UBfW7LSCVLtggUPe5z

 Content-Transfer-Encoding: binary

 Content-ID: contact1@tradewind.com

 Content-Type: text/xml+msrtc.pidf

 <presentity uri="contact1@tradewind.com" >

 <availability aggregate="300" description="" epid="8bfb9f3f24" />

 <activity aggregate="500" description="" epid="8bfb9f3f24" />

 <displayName displayName="Dave" />

 <email email="contact1@tradewind.com" />

 <phoneNumber label="" number="555-5555" />

 <devices>

 <devicePresence epid="8bfb9f3f24" ageOfPresence="315" >

 <availability aggregate="300" description="online" />

 <activity aggregate="500" description="In Call" />

 <deviceName name="DESKTOP"

 xmlns="http://schemas.microsoft.com/2002/09/sip/client/presence">

 </deviceName>

 <rtc:devicedata namespace="rtcService"

 xmlns:rtc="http://schemas.microsoft.com/2002/09/sip/client/presence">

 <![CDATA[

 <caps><renders_gif/><renders_isf/></caps>

]]>

 </rtc:devicedata>

 </devicePresence>

 </devices>

36 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 </presentity>

 --50UBfW7LSCVLtggUPe5z

 Content-Transfer-Encoding: binary

 Content-ID: contact2@tradewind.com

 Content-Type: text/xml+msrtc.pidf

 <presentity uri="contact2@tradewind.com" >

 <availability aggregate="300" description=""epid="43a34cb1f7"/>

 <activity aggregate="200" description="" epid="43a34cb1f7" />

 <displayName displayName="Joe" />"

 <email email="contact2@tradewind.com" />

 <phoneNumber label="" number="666-6666" />

 <devices>

 <devicePresence epid="43a34cb1f7" ageOfPresence="3301" >

 <availability aggregate="300" description="online" />

 <activity aggregate="200" description="Idle" />

 <deviceName name="DESKTOP"

 xmlns=http://schemas.microsoft.com/2002/09/sip/client/presence">

 </deviceName>

 <rtc:devicedata namespace="rtcService"

 xmlns:rtc=

 http://schemas.microsoft.com/2002/09/sip/client/presence" >

 <![CDATA[

 <caps><renders_gif/><renders_isf/></caps>

]]>

 </rtc:devicedata>

 </devicePresence>

 </devices>

 </presentity>

 --50UBfW7LSCVLtggUPe5z

 Content-Transfer-Encoding: binary

 Content-ID: contact3@tradewind.com

 Content-Type: text/xml+msrtc.pidf

 <presentity uri="contact3@tradewind.com" >

 <availability aggregate="300"

 description="" epid="0e7e556112"/>

 <activity aggregate="400"

 description="" epid="0e7e556112" />

 <displayName displayName="Tim" />"

 <email email="contact3@tradewind.com" />

 <phoneNumber label="" number="777-7777" />

 <devices>

 <devicePresence epid="0e7e556112"

 ageOfPresence="3617" >

 <availability aggregate="300"

 description="online" />

 <activity aggregate="400"

 description="Active" />

 <deviceName name="DESKTOP"

 xmlns=

 "http://schemas.microsoft.com/2002/09/sip/client/presence">

 </deviceName>

 <rtc:devicedata

 namespace="rtcService"

 xmlns:rtc=

 "http://schemas.microsoft.com/2002/09/sip/client/presence">

 <![CDATA[

 <caps><renders_gif/><renders_isf/></caps>

37 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

]]>

 </rtc:devicedata>

 </devicePresence>

 </devices>

 </presentity>

--50UBfW7LSCVLtggUPe5z--

The boundary string (--50UBfW7LSCVLtggUPe5z) is used to delimit the parts of the multipart body.

The first part is a list expressed in XML format that contains one entry for every Presence Document
(contact) carried in the remainder of the body. Each entry of the list has a SIP URI of the contact as
well as a content-id (the cid attribute) that corresponds to the Content-ID header of the subsequent
MIME part that contains the Presence Document for that contact. The list acts as an index to the

remaining content of the notification.

The remaining parts are Presence Documents in text/xml+msrtc.pidf format, as specified in section
2.2.1.

The batched SUBSCRIBE/NOTIFY supports versioning and partial notifications. The version number
and a flag—indicating whether this notification contains information for the complete contact list or
just a subset—are defined in the list portion of the body. The client SHOULD ignore out-of-order
CSeq for NOTIFY/BENOTIFY requests for batched subscriptions and rely on the version number

instead.

3.3.5.2 Receiving a Failure Response to a Batched SUBSCRIBE Request

If the server does not support batched SUBSCRIBE and NOTIFY requests, it will send a failure
response to the batched SUBSCRIBE request. The client MAY set the BatchSubscribeEnabled flag to
false and fall back to sending individual SUBSCRIBE requests for each of the contacts.

3.3.6 Timer Events

None.

3.3.7 Other Local Events

None.

3.4 Piggyback Notification in 200 OK Response Details

As a performance optimization, Session Initiation Protocol Extensions introduces a mechanism
whereby the content of the first NOTIFY request that is normally sent in the SIP response to a
SUBSCRIBE request may actually be carried in the SUBSCRIBE 200 OK response itself. This is
referred to as piggybacking.

The benefit of this extension is in saving the traffic of the first NOTIFY request and its subsequent
200 OK response on the wire, reducing the total number of messages that must be processed as

part of the usual login sequence for the client.

Note This extension may be used independently or in conjunction with the batched SUBSCRIBE
mechanism defined previously.

This extension is optional. An implementation may support it.

38 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.4.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This specification does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
specification.

The client MAY use a Boolean flag, PiggybackNotifyEnabled, for each subscription to track whether
piggyback NOTIFY is supported for that subscription.

The server MAY also use a similar Boolean flag, PiggybackNotifyEnabled, for each subscription to
track whether piggyback NOTIFY is supported for that subscription.

Note that the preceding conceptual data can be implemented by using a variety of techniques. An
implementation is at liberty to implement such data in any way convenient.

3.4.2 Timers

No additional timers are required other than the timers specified in [RFC3261] and [RFC3265].

3.4.3 Initialization

The client SHOULD be registered with the server before indicating support for piggyback NOTIFY in a
SUBSCRIBE request. This is done by sending a REGISTER request to the server, as specified in
[RFC3261].

3.4.4 Higher-Layer Triggered Events

Except as specified in the following sections, the rules for message processing are as specified in

[RFC3261] and [RFC3265].

3.4.4.1 Indicating Support for Piggyback Notification

The client can indicate support for this extension to the server by including the following header in
the SUBSCRIBE request.

Supported: ms-piggyback-first-notify

3.4.5 Message Processing Events and Sequencing Rules

Except as specified in the following section, the rules for message processing are as specified in
[RFC3261] and [RFC3265].

The following event is specified in this section:

Receiving a Piggyback Notification in 200 OK

3.4.5.1 Receiving a Piggyback Notification in a 200 OK

If the server supports piggyback NOTIFY requests, it sends the content that is typically placed in the
first NOTIFY request within the 200 OK SIP response to the SUBSCRIBE request. The content of the
200 OK response to the SUBSCRIBE request matches the content type that the client specified in the

http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90413
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90413
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90413

39 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Accept header of the SUBSCRIBE. The server signals support for the piggyback extension in a
similar header in the 200 OK response to the SUBSCRIBE.

Supported: ms-piggyback-first-notify

When the client receives the 200 OK SIP response to the SUBSCRIBE request, it SHOULD check

whether the preceding header is included in the 200 OK. If it is, the client MAY set the
PiggybackNotifyEnabled flag to true, handle this 200 OK response as though it had received a
separate NOTIFY request, and parse the content to obtain the presence information.

The first NOTIFY request that the server sends is then delayed until an actual change in presence

occurs.

3.4.6 Timer Events

None.

3.4.7 Other Local Events

None.

3.5 Best Effort NOTIFY (BENOTIFY) Extension Details

Session Initiation Protocol Extensions introduces a variant of the regular NOTIFY request that is
known as Best Effort NOTIFY (BENOTIFY). The only difference between a BENOTIFY request and a
NOTIFY request is that a BENOTIFY request is never responded to: the client never sends a SIP
response to a BENOTIFY request, and the server ignores any response to a BENOTIFY request. The
advantage of this approach is that it removes unneeded responses from the wire. The disadvantage

is that information about the client request is subsequently unavailable.

Note This extension can be enabled independently or together with the batched SUBSCRIBE
mechanism.

This extension is optional. An implementation may support it.

3.5.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations
adhere to this model as long as their external behavior is consistent with what is described in this
specification.

The client MAY use a Boolean flag, BENOTIFYEnabled, for each subscription to track whether
BENOTIFY is enabled for that subscription.

The server MAY also use a similar Boolean flag, BENOTIFYEnabled, for each subscription to track
whether BENOTIFY is enabled for that subscription.

Note The preceding conceptual data can be implemented by using a variety of techniques. An
implementation is at liberty to implement such data in any way convenient.

40 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.5.1.1 Indicating Support for BENOTIFY

The client signals support for the BENOTIFY mechanism by inserting two headers in the SUBSCRIBE
request.

Supported: ms-benotify

Proxy-Require: ms-benotify

The Proxy-Require header ensures that any intermediate SIP proxy that does not understand this

extension and that expects a SIP response to every SIP request to maintain proper SIP
transaction state will reject the initial subscription at which time the client can resend the
SUBSCRIBE minus these headers and disable the BENOTIFY mechanism for this subscription.

3.5.2 Timers

No additional timers are required other than the timers specified in [RFC3261] and [RFC3265].

3.5.3 Initialization

The client SHOULD be registered with the server before sending a SUBSCRIBE request indicating
support for BENOTIFY. This is done by sending a REGISTER request to the server, as specified in

[RFC3261].

3.5.4 Higher-Layer Triggered Events

Except as specified in the following sections, the rules for message processing are as specified in
[RFC3261] and [RFC3265].

3.5.5 Message Processing Events and Sequencing Rules

Except as specified in the following sections, the rules for message processing are as specified in
[RFC3261] and [RFC3265].

The following events are specified in this section:

Receiving a Failure Response to SUBSCRIBE

Receiving a Success Response to SUBSCRIBE

Receiving a BENOTIFY

3.5.5.1 Receiving a Failure Response to SUBSCRIBE

If the client receives a failure response to the SUBSCRIBE request because an intermediate proxy
did not support the BENOTIFY extension, it MAY set the BENOTIFYEnabled flag to false and resend
the SUBSCRIBE request without the supported:ms-benotify and proxy-require:ms-benotify headers.
In this case, the BENOTIFY extension is disabled.

3.5.5.2 Receiving a Success Response to SUBSCRIBE

When a client receives a success response (that is, a 200 OK to the SUBSCRIBE request), it MAY
determine whether the server supports BENOTIFY. In a 200 OK response to a SUBSCRIBE request,
the server indicates whether it supports BENOTIFY for this client by including the following header:

http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90413
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90413
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90413

41 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Supported: ms-benotify

If the preceding header is present in 200 OK, the client MAY set the BENOTIFYEnabled flag to true.

The server MAY choose not to enable BENOTIFY for clients that are known to have unreliable
network connectivity. The client SHOULD also be prepared to handle regular NOTIFY requests.

3.5.5.3 Receiving a BENOTIFY Request

On receiving a BENOTIFY request, the client MUST NOT send back a SIP response. The server MUST
ignore responses it receives to a BENOTIFY request. The client SHOULD process the content of a

BENOTIFY request in a manner identical to the way in which it processes a NOTIFY request.

3.5.6 Timer Events

None.

3.5.7 Other Local Events

None.

3.6 Auto-Extension of Subscriptions Details

As another performance optimization, Session Initiation Protocol Extensions introduce auto-
extension of the expiration time of a subscription. Normally with [RFC3265], the client must resend
the SUBSCRIBE periodically to refresh the presence subscription. With the auto-extension
mechanism, this subscription is automatically refreshed (using the expires value from the initial
SUBSCRIBE) whenever a NOTIFY request is sent for this subscription. The client may still need to

re-SUBSCRIBE if no NOTIFY traffic is received for the subscription; but this is typically not the case.

This extension is optional. An implementation may support it.

3.6.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
specification.

The client MAY use a Boolean flag, AutoExtendSubscriptionExpireTimerEnabled, for each subscription
to indicate whether or not auto-extension of that subscription is enabled.

The server MAY also use a similar Boolean flag, AutoExtendSubscriptionExpireTimerEnabled, for
each subscription to indicate whether or not auto-extension of that subscription is enabled.

Note The preceding conceptual data can be implemented using a variety of techniques. An
implementation is at liberty to implement such data in any way convenient.

3.6.2 Timers

Beyond what is specified in [RFC3261] and [RFC3265], the following timer is required.

SubscriptionExpireTimer

http://go.microsoft.com/fwlink/?LinkId=90413
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90413

42 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Timer to track when a subscription expires. The client SHOULD refresh the subscription before
the timer expires. A subscription can be refreshed by sending a SUBSCRIBE request on the dialog

established by the first SUBSCRIBE request that resulted in creation of the subscription.

3.6.3 Initialization

The client SHOULD be registered with the server before sending a SUBSCRIBE request with auto-
extension support. This is done by sending a REGISTER request to the server, as specified in
[RFC3261].

3.6.4 Higher-Layer Triggered Events

Except as specified in the following sections, the rules for message processing are as specified in

[RFC3261] and [RFC3265].

3.6.4.1 Indicating Support for Auto-Extension of Subscriptions

Support for the auto-extension mechanism is signaled in a header inserted in the SUBSCRIBE

request by the client.

Supported: com.microsoft.autoextend

This header indicates to the server that the client supports the auto-extension mechanism.

3.6.5 Message Processing Events and Sequencing Rules

Except as specified in the following sections, the rules for message processing are as specified in
[RFC3261] and [RFC3265].

The following events are specified in this section:

Receiving a 200 OK Response to SUBSCRIBE

Receiving a NOTIFY

3.6.5.1 Receiving a 200 OK Response to SUBSCRIBE

When a client receives a 200 OK success response to the SUBSCRIBE request, it SHOULD determine

whether the server supports auto-extension by looking for the Supported: com.microsoft.autoextend
header in the response that is sent by the server. If the server supports the extension, it SHOULD
indicate this in the 200 OK response by using the following header.

Supported: com.microsoft.autoextend

The client MAY set the AutoExtendSubscriptionExpireTimerEnabled flag to True if the preceding

header is present in the SIP response; otherwise, the client sets the flag to False. If the flag is set to
True, the client and the server are ready to auto-extend the subscriptions after they receive a

notification. The client operation is explained in section 3.6.5.2.

http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90413
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90413

43 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.6.5.2 Receiving a NOTIFY Request

If the client and server have successfully negotiated the auto-extension for this subscription and the
AutoExtendSubscriptionExpireTimerEnabled flag is set to true, the client SHOULD reset the

SUBSCRIBE expiry timer when it receives a NOTIFY request.

The client SHOULD also reset this timer in a similar manner after it receives any subsequent NOTIFY
requests.

3.6.6 Timer Events

None.

3.6.7 Other Local Events

None.

3.7 Contact Management Extensions Details

These extensions support contact management. A client can store on the server a list of contacts
with which the client frequently communicates, and can retrieve and subsequently manage this list.
The client can also organize the contacts into self-defined groups, storing the list of groups and their

membership on the server, and can retrieve and manage the list. This section defines the Session
Initiation Protocol (SIP) extensions for adding, deleting, or modifying a contact or a group.

The server can return two types of contact and group lists (see the following). These lists are
returned by the server in NOTIFY and BENOTIFY requests, which are generated by the server, or are
returned in the body of a 200 OK response (also called a piggyback notify).

1. Full List

A complete list of all contacts and their associated groups. This list is returned from the server in
a SIP response to a SUBSCRIBE for the event vnd-microsoft-roaming-contact.

The Full List is a list of groups that is followed by a list of contacts. Groups are uniquely
numbered. The particular numbering sequence is not persisted and may vary from one
transmission to the next. Contacts are cross-referenced against groups by using group ID
numbers. Contacts must be in at least one group.

2. Delta List

A list that contains a subset of contacts and associated groups that were either added, modified,
or deleted from the Full List. This list is returned from the server in response to any of the
following: SetContact, DeleteContact, DeleteGroup, or ModifyGroup SERVICE operations.

A Delta List is a list of groups that were added or modified, followed by a list of contacts that
were added or modified, followed by a list of groups that were deleted, and finally, followed by a
list of contacts that were deleted.

The server maintains a single nonnegative integer version number for the contact/group list of every

user. Any time the user performs an operation that modifies the user contact/group list, the version
number is incremented.

The version number is returned to the client in the contact list, allowing the client to determine
whether it has the most up-to-date information, and to refresh the contact/group list if its state (as
seen by the server) needs synchronization. If the client delta number requires synchronization with

44 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

the server, it can obtain the current value by subscribing to the vnd-microsoft-roaming-contact
event and by looking at the deltaNum attribute of the contactList element in the body of the

notification data. The notification data is received in the 200 OK SIP response; or in a separate
NOTIFY or BENOTIFY request from the server.

The client can update the contact/group list by sending setContact, deleteContact, modifyGroup, and
deleteGroup SOAP requests that are carried in the body of SIP SERVICE requests to the server. The
server indicates completion of these requests by sending a SIP response to the SERVICE request.

The contact management extensions are optional. An implementation may support them.

3.7.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations
adhere to this model as long as their external behavior is consistent with what is described in this
specification.

The client uses the following suggested data structures to facilitate implementation of the contact
management extensions:

Contact: A data structure to represent a contact for the user. A contact is uniquely identified by a

URI and may have other properties, such as its display name and the groups to which it belongs.

Contact List: A list data structure to store all contacts of the user.

Group: A data structure to represent a group of contacts for the user. A group is uniquely

identified by its name. The data structure should include references to the set of contacts that
belong to this group.

Group List: A list data structure to store all the groups for the user.

Access Control List (ACL): A list data structure to store the access control entries for the user.

The server can use the preceding suggested data structures to store this data for each user who is
assigned to this server.

The server can also have a configurable parameter MaxNumberOfContacts for each user to keep

track of the limit for how many contacts a specific user has.

In addition, both the client and the server should maintain a single nonnegative integer version
number for the contact/group list. The client should maintain this version number for the user and
the server should have the version number as an attribute for each user who subscribes to the
server for the contact/group list. Anytime the user performs an operation that modifies his
contact/group list, the version number is incremented by 1. The server should return this version
number to the client in the contact list. The version number allows the client to determine if it has

the most up-to-date information and to refresh the contact/group list if its state, as seen by the
server, is out-of-sync.

The client and the server should also maintain a separate nonnegative integer version number for
the ACL list. The client should maintain this version number for the user and the server should have
the version number as an attribute for each user who subscribes to the server for the ACL list.
Anytime the user performs an operation that modifies their ACL list, the version number is
incremented by 1. The server should return this version number to the client along with the ACL list.

The version number allows the client to determine if it has the most up-to-date information and to
refresh the ACL list if its state, as seen by the server, is out-of-sync.

45 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Note The preceding conceptual data can be implemented by using a variety of techniques. An
implementation can implement this data in any way that is convenient.

3.7.2 Timers

There are no additional timers required beyond what is specified in [RFC3261] and [RFC3265].

3.7.3 Initialization

The client SHOULD be registered with the server before retrieving the contact list or performing any
contact management operations. Registration is done by sending a REGISTER request to the server,
as specified in [RFC3261].

3.7.4 Higher-Layer Triggered Events

Except as specified in the following sections, the rules for message processing are as specified in
[RFC3261] and [RFC3265].

3.7.4.1 Subscribing to the Contact/Group List

A client retrieves its contact list and learns of changes to the contact list (made by other clients for
this user) through a subscription. The client subscribes to the roaming contact list by sending a

SUBSCRIBE request for the vnd-microsoft-roaming-contact event. An example SUBSCRIBE request
is as follows.

SUBSCRIBE sip:user@tradewind.com SIP/2.0

Via: SIP/2.0/TLS 157.56.65.142:3485

Max-Forwards: 70

From: <sip:user@tradewind.com >;

 tag=51a7d2afbea6420a98d9c7629dacb811;epid=a892397901

To: <sip:user@tradewind.com >

Call-ID: f1c446dc3df340edb144a6e6471abf7b

CSeq: 1 SUBSCRIBE

Contact: <sip:user@tradewind.com:3485;

 maddr=157.56.65.142;transport=tls>;proxy=replace

User-Agent: RTC/1.3

Event: vnd-microsoft-roaming-contacts

Accept: application/vnd-microsoft-roaming-contacts+xml

Supported: com.microsoft.autoextend

Supported: ms-benotify

Proxy-Require: ms-benotify

Supported: ms-piggyback-first-notify

Proxy-Authorization: NTLM qop="auth",

 realm="SIP Communications Service",

 opaque="bfaf9a7c", crand="67b72300",

 cnum="1", targetname="tradewind.com",

 response="0100000064326166c2bdf103d2994f63"

Content-Length: 0

Note The Request-URI, To URI, and From URI are all the SIP URIs of the user that is requesting a

contact list. The "Event: vnd-microsoft-roaming-contacts" header identifies that this is a roaming
contact list subscription. The Accept header contains the only supported content-type for this
roaming contact list. The remaining supported and proxy-require headers are described in more

detail in the Presence Document.

http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90413
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90413

46 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The full or delta contact/group list is returned by the server in NOTIFY and BENOTIFY requests, or in
the body of a 200 OK response (also called a "piggyback notify"). See section 3.7.5.2.

3.7.4.2 Subscribing for the ACL

The access control list (ACL) is stored at the server and the client can obtain the ACL after it is
registered with the server by using a SUBSCRIBE request. The client sends a SUBSCRIBE with an
Event: type of vnd-microsoft-roaming-ACL and an Accept: header with application/vnd-microsoft-
roaming-acls+xml. Each device on which the user logs in SHOULD subscribe to this event. The
notifications for this event package contain the ACL for the user. The initial notification carries the
complete ACL, and any changes are conveyed in subsequent notifications. This allows changes made
by one device for a user to be communicated to all other devices for the user maintaining a

consistent ACL across all devices. The server SHOULD maintain a database to hold the master copy
of this ACL list, which all devices sync to at login time.

3.7.4.3 Add/Modify/Delete Contact

Adding, modifying, or deleting a contact is done through setContact and deleteContact SOAP

requests carried within a SIP SERVICE verb from the client to the server. Note that in all of these

SERVICE requests, the To URI, From URI, and Request-URI are the SIP URI of the user (not the
contact). The associated XML schema for these common operations is specified in appendix E.

The server indicates that a setContact or a deleteContact request was successful by sending a 200
OK response to the SERVICE request.

3.7.4.4 Add/Modify/Delete Group

Similarly to managing contacts, managing groups within the contact list is done through

modifyGroup, and deleteGroup SOAP requests carried in a SIP SERVICE request from the client to
the server. Groups are identified in these requests by an integer (1-63). A contact may belong to
one or more groups. Every contact belongs to group #1 by default. This is the default group created
automatically by the server, and MUST NOT be created or deleted by the user.

Before a group can be deleted, all contacts must be removed from the group by using DeleteContact
operations. The associated XML schema for these operations is specified in section 10.

The server indicates that a modifyGroup request or a deleteGroup request was successful by

sending a 200 OK response to the SERVICE request.

3.7.5 Message Processing Events and Sequencing Rules

Except as specified in the following sections, the rules for message processing are as specified in
[RFC3261] and [RFC3265].

3.7.5.1 Setting ACEs for a Contact

Adding a contact is usually accompanied by a setACE operation to allow that contact to view user
presence and communicate with the user.

This is done by using an ACL that is associated with each user object stored in the server database.
The ACL is composed of access control entries (ACEs), which are two character strings that encode
the permissions attributed to a certain URI relative to a given user. The From URI for an SIP
INVITE request or a SIP SUBSCRIBE request is compared against the ACL for the user in the To
header to determine whether or not the request is to be allowed. This comparison occurs in two

different places. The server MUST enforce the presence (SUBSCRIBE) portion of the ACE. The client

http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90413

47 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

MUST enforce the session initiation (INVITE) portion of the ACE. Finally, note that the ACE
comparison can take one of three forms: it can apply to all URIs, it can apply to a specific SIP URI,

or it can apply to a specific SIP domain.

3.7.5.2 Receiving the Contact List from the Server

The server responds by sending the contact list in a notification. The initial notification is the full
contact list. Subsequent notifications are partial notifications containing only the delta from the last
notification. The version number ("deltaNum") allows the client to keep in sync with the version
stored on the server. In the following example, the contact list is piggybacked on the 200 OK to the
SUBSCRIBE. For piggybacking information, see section 3.4.

SIP/2.0 200 OK

 Contact: <sip:tradewind.com:5061;transport=tls;ms-fe="fe.tradewind.com">

 Content-Length: 4558

 Via: SIP/2.0/TLS 157.56.65.142:3485;

 received=10.10.10.6; ms-received-port=29047;

 ms-received-cid=6c41700

 From: <sip:user@tradewind.com>;

 tag=51a7d2afbea6420a98d9c7629dacb811;epid=a892397901

 To: <sip:user@tradewind.com="" tag=ee697d7f2d8dc2b899014154efb57a4c

 Call-ID: f1c446dc3df340edb144a6e6471abf7b

 CSeq: 1 SUBSCRIBE

 Expires: 39743

 Content-Type: application/vnd-microsoft-roaming-contacts+xml

 Event: vnd-microsoft-roaming-contacts

 subscription-state: active;expires=39743

 Supported: com.microsoft.autoextend, ms-piggyback-first-notify, ms-benotify

 <contactList deltaNum="685" >

 <group id="1" name="~" externalURI="" />

 <group id="2" name="Team" externalURI="" />

 <group id="3" name="External" externalURI="" />

 <contact uri="contact1@tradewind.com" name=""

 groups="1 3 " subscribed="true" externalURI="" />

 <contact uri="contact2@tradewind.com " name=""

 groups="1 2 " subscribed="true" externalURI="" />

 <contact uri="contact3@tradewind.com " name=""

 groups="1 " subscribed="true" externalURI="" />

 <contact uri="contact4@tradewind.com " name=""

 groups="1 " subscribed="true" externalURI="" />

 </contactList>

3.7.5.3 Receiving the ACL from the Server

On receiving the ACL from the server in NOTIFY and BENOTIFY requests or in a piggybacked
notification, the client SHOULD process it and store all ACEs locally. On receiving any subsequent
notifications containing changes to the ACL, the client SHOULD update its local copy.

3.7.6 Timer Events

None.

3.7.7 Other Local Events

None.

48 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4 Protocol Examples

The following sections describe several operations as used in common scenarios to illustrate the
function of Session Initiation Protocol Extensions.

4.1 Registration with Kerberos

The following flow outlines how the Kerberos authentication mechanism works during the
registration process. At this point in time, the client discovers its outbound proxy and initializes an
SA (or context) with it.

Figure 1: Kerberos registration flow

The fundamental difference between the NTLM Authentication Protocol and Kerberos is the way in
which the client answers a challenge from the server. With Kerberos, the client first acquires a
Kerberos ticket from the KDC (Active Directory) for the specific server that is issuing the
challenge. The server is identified by an SPN containing a fully qualified domain name (FQDN). The

SPN must be of the form sip/<FQDN>. The SPN for a challenge is carried in the targetname

parameter in the Proxy-Authenticate: header of the challenge.

1. Alice's client sends a REGISTER request with no credentials (no Proxy-Authorization: header) to
the outbound server it selected.

REGISTER sip:registrar.contoso.com SIP/2.0

%5bMS-GLOS%5d.pdf

49 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bK7

From: "Alice" <sip:Alice@contoso.com>;tag=354354535;epid=6534555

To: "Alice" sip:Alice@contoso.com

Call-ID: 123213@Alice1.contoso.com

CSeq: 12345 REGISTER

Max-Forwards: 70

User-Agent: Windows RTC/1.1.2600

Contact: "Alice" sip:Alice@Alice1.contoso.com

Content-Length: 0

The epid parameter on the From: header uniquely identifies this particular endpoint for the user.

The server uses this value in subsequent messages to determine the SA with which to sign the
message.

2. Authentication is enabled at the outbound server, and it challenges Alice's client. The server
indicates support for NTLM and Kerberos in the challenge.

SIP/2.0 407 Proxy Authentication Required

Via: SIP/2.0/TLS Alice1.contoso.com;branch=z9hG4bK7

From: "Alice" <sip:Alice@contoso.com>;tag=354354535;epid=6534555

To: "Alice" <sip:Alice@contoso.com>;tag=5564566

Call-ID: 123213@Alice1.contoso.com

CSeq: 12345 REGISTER

Date: Sat, 13 Nov 2010 23:29:00 GMT

Proxy-Authenticate: Kerberos realm="Contoso RTC Service Provider",

 targetname="sip/hs1.contoso.com", qop="auth"

Proxy-Authenticate: NTLM realm="Contoso RTC Service Provider",

 targetname="hs1.contoso.com", qop="auth"

Content-Length: 0

The targetname parameter carries the SPN for this proxy for Kerberos and the FQDN of the proxy

for NTLM. The actual contents of this parameter must be meaningful for this proxy but are
opaque to other proxies and the client. It is merely a unique string for correlation of the message

header to an SA. Two Proxy-Authenticate: headers are present, indicating the server's capability

to do one of Kerberos or NTLM.

The proxy inserts a Date: header in the 407 challenge to allow the client to detect clock skew
between the client and server. Both NTLM 2.0 and Kerberos 5.0 require synchronization of the
client and server clocks. Clock skew can cause authentication to fail even with valid credentials.
The presence of the Date: header allows the client to log this condition and the administrator to
correct the deviation.

3. The client acquires a Kerberos ticket for the server indicated in the targetname parameter of the
Kerberos Proxy-Authenticate: header. The client reissues the request with a Proxy-Authorization:
header containing the encoded Kerberos ticket.

REGISTER sip:registrar.contoso.com SIP/2.0

Via: SIP/2.0/TLS Alice1.contoso.com;branch=z9hG4bK9

From: "Alice" <sip:Alice@contoso.com>;tag=354354535;epid=6534555

To: "Alice" sip:Alice@contoso.com

Call-ID: 123213@Alice1.contoso.com

CSeq: 12346 REGISTER

Max-Forwards: 70

User-Agent: Windows RTC/1.1.2600

Proxy-Authorization: Kerberos realm="Contoso RTC Service Provider",

50 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 targetname="sip/hs1.contoso.com",qop="auth",gssapi-data="34fcdf9345345"

Contact: "Alice" sip:alice@alice1.contoso.com

Content-Length: 0

The Cseq number has been incremented. The Call-ID and epid remain the same.

The targetname parameter echoes the value of the targetname parameter in the previous Proxy-

Authenticate: header. The gssapi-data parameter contains the Kerberos ticket information. The
choice of Kerberos authentication is indicated by the scheme (Kerberos) as the first token in the
header.

4. On reception of the REGISTER request, the outbound server authenticates the user with the
information in the Proxy-Authorization: header. Authentication succeeds, and an SA is created in
the outbound server for Alice's client.

The Director then redirects the REGISTER request to point the client at the appropriate home

server for this user. The redirect response is signed, using the newly established SA between the

client and this proxy.

SIP/2.0 301 Moved Permanently

Via: SIP/2.0/TLS Alice1.contoso.com;branch=z9hG4bK9

From: "Alice" <sip:Alice@contoso.com>;tag=354354535;epid=6534555

To: "Alice" sip:Alice@contoso.com

Call-ID: 123213@Alice1.contoso.com

CSeq: 12346 REGISTER

Proxy-Authentication-Info:

 Kerberos realm="Contoso RTC Service Provider",

 targetname="sip/hs1.contoso.com", qop="auth", opaque="ACDC123",

 srand="3453453", snum=1, rspauth="23423acfdee2"

Contact: sip:hs2.contoso.com

Content-Length: 0

The Proxy-Authentication-Info: header carries the signature for this SIP message. The snum is

set to 1 as this is the first message signed with the newly established SA. The srand parameter
contains the (random) SALT value used by the server to generate the signature. The opaque
parameter contains a unique token for this newly established SA.

5. The client receives the redirect response, verifies the signature using the now complete SA for

the outbound proxy, and reissues the REGISTER request to its proper home server.

REGISTER sip:hs2.contoso.com SIP/2.0

Via: SIP/2.0/TLS Alice1.contoso.com;branch=z9hG4bKa

From: "Alice" <sip:Alice@contoso.com>;tag=354354535;epid=6534555

To: "Alice" sip:Alice@contoso.com

Call-ID: 123213@Alice1.contoso.com

CSeq: 12347 REGISTER

Max-Forwards: 70

User-Agent: Windows RTC/1.1.2600

Contact: "Alice" sip:Alice@Alice1.contoso.com

Content-Length: 0

The client will replace its current outbound proxy with the proxy indicated in the Contact: header

of the 301 response. The REGISTER request is sent to this new outbound proxy (the user's true

51 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

home server). Because no SA exists yet with this new outbound proxy, no Proxy-Authorization:
header is present in the request.

6. Alice's home server receives the REGISTER request and issues a challenge, indicating support for
NTLM and Kerberos.

SIP/2.0 407 Proxy Authentication Required

Via: SIP/2.0/TLS Alice1.contoso.com;branch=z9hG4bKa

From: "Alice" <sip:Alice@contoso.com>;tag=354354535;epid=6534555

To: "Alice" <sip:Alice@contoso.com>;tag=8823488

Call-ID: 123213@Alice1.contoso.com

CSeq: 12347 REGISTER

Date: Sat, 13 Nov 2010 23:29:00 GMT

Proxy-Authenticate: Kerberos realm="Contoso RTC Service Provider",

 targetname="sip/hs2.contoso.com", qop="auth"

Proxy-Authenticate: NTLM realm="Contoso RTC Service Provider",

 targetname="hs2.contoso.com", qop="auth"

Content-Length: 0

The targetname parameter for Kerberos contains the SPN for Alice's home server. The two Proxy-

Authenticate: headers indicate support for Kerberos and NTLM, respectively. The Realm is the
same as for HS1 because they fall under the same protection space. This means the client will
use the same credentials in responding to HS2's challenge.

7. Alice's client receives the challenge, selects Kerberos authentication, and reissues the REGISTER
request to her home server. The client will acquire a Kerberos ticket for HS2 and include this
information in the gssapi-data parameter of the Proxy-Authorization: header.

REGISTER sip:hs2.contoso.com SIP/2.0

Via: SIP/2.0/TLS Alice1.contoso.com;branch=z9hG4bKc

From: Alice <sip:Alice@contoso.com>;

 tag=354354535;

 epid=6534555

To: Alice sip:Alice@contoso.com

Call-ID: 123213@Alice1.contoso.com

CSeq: 12348 REGISTER

Max-Forwards: 70

User-Agent: Windows RTC/1.1.2600

Proxy-Authorization: Kerberos realm=Contoso RTC Service Provider,

 targetname=sip/hs2.contoso.com,

 qop=auth, gssapi-data=8234934234,

 opaque=CDEF1245

Contact: Alice sip:alice@alice1.contoso.com

Content-Length: 0

The Cseq: number is incremented. The Call-ID and epid remain the same. The Proxy-

Authorization: header indicates support for Kerberos authentication.

8. Alice's home server receives the REGISTER request, verifies the Kerberos ticket, and processes

the REGISTER request. The SA between Alice's home server and Alice's client is now complete.
The server responds to the REGISTER request and signs the response using the newly completed

SA. The epid parameter from the From: header is saved as part of the registration information
for Alice. This value will be inserted in the To: header of subsequent requests that are forwarded
to Alice via her home server (registrar).

52 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

SIP/2.0 200 OK

Via: SIP/2.0/TLS Alice1.contoso.com;branch=z9hG4bKc

From: "Alice" <sip:Alice@contoso.com>;tag=354354535;epid=6534555

To: "Alice" <sip:Alice@contoso.com>;tag=8823488

Call-ID: 123213@Alice1.contoso.com

CSeq: 12348 REGISTER

Expires: 3600

Proxy-Authentication-Info:

 Kerberos realm="Contoso RTC Service Provider",

 targetname="sip/hs2.contoso.com", qop="auth",

 opaque="CDEF1245", rspauth="fefeacdd", srand=98984345, snum=1

Contact: "Alice" sip:Alice@Alice1.contoso.com

Content-Length: 0

The epid parameter on the From: header is used by the server to determine how to sign this

response (find the SA). The signature for this response is carried in the rspauth parameter of the
Proxy-Authentication-Info: header. The opaque parameter indicates the newly established SA.
Because this is the first signed message from HS2 to the client, the snum parameter is set to 1.

4.2 Registration with NTLM

The following call flow outlines how the NTLM Authentication Protocol authentication mechanism
works.

53 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Figure 2: NTLM registration flow

1. Alice's client sends a REGISTER request with no credentials (no Proxy-Authorization: header) to

the server.

REGISTER sip:registrar.contoso.com SIP/2.0

Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bK7

From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555

To: "Alice" sip:alice@contoso.com

Call-ID: 123213@alice1.contoso.com

CSeq: 12345 REGISTER

54 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Max-Forwards: 70

User-Agent: Windows RTC/1.1.2600

Contact: "Alice" sip:alice@alice1.contoso.com

Content-Length: 0

The epid parameter on the From: header uniquely identifies this particular endpoint for the user.

The server will use this value in subsequent messages to determine the SA with which to sign the
message.

2. Authentication is enabled at the outbound server, and it challenges Alice's client. The server
indicates support for NTLM and Kerberos in the challenge.

SIP/2.0 407 Proxy Authentication Required

Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bK7

From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555

To: "Alice" <sip:alice@contoso.com>;tag=5564566

Call-ID: 123213@alice1.contoso.com

CSeq: 12345 REGISTER

Date: Sat, 13 Nov 2010 23:29:00 GMT

Proxy-Authenticate: Kerberos realm="Contoso RTC Service Provider",

 targetname="sip/hs1.contoso.com", qop="auth"

Proxy-Authenticate: NTLM realm="Contoso RTC Service Provider",

 targetname="hs1.contoso.com', qop="auth"

Content-Length: 0

The targetname parameter carries the FQDN for this proxy for NTLM and the SPN of the proxy for

Kerberos. The actual content of this parameter must be meaningful for this proxy but is opaque
to other proxies and the client. It is merely a unique string for correlation of the message header
to an SA. Three Proxy-Authenticate: headers are present, indicating the server's capability to do
one of Kerberos or NTLM.

The proxy inserts a Date: header in the 407 challenge to allow the client to detect clock skew

between the client and server. Both NTLM 2.0 and Kerberos 5.0 require synchronization of the

client and server clocks. Clock skew can cause authentication to fail even with valid credentials.
The presence of the Date: header allows the client to log this condition and the administrator to
correct the deviation.

3. The client reissues the REGISTER request, indicating support for NTLM authentication.

REGISTER sip:registrar.contoso.com SIP/2.0

Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bK8

From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555

To: "Alice" sip:alice@contoso.com

Call-ID: 123213@alice1.contoso.com

CSeq: 12346 REGISTER

Max-Forwards: 70

User-Agent: Windows RTC/1.1.2600

Proxy-Authorization: NTLM realm="Contoso RTC Service Provider",

 targetname="hs1.contoso.com",qop="auth",gssapi-data=""

 Contact: "Alice" sip:alice@alice1.contoso.com

Content-Length: 0

The Cseq number has been incremented. The Call-ID and epid remain the same.

55 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The targetname parameter echoes the value of the targetname parameter in the previous Proxy-
Authenticate: header. The empty gssapi-data parameter indicates that no credentials (password)

are being sent in this header. The choice of NTLM authentication is indicated by the scheme
(NTLM) as the first token in the header.

4. The outbound server responds with a 407 containing a Proxy-Authenticate: header, which
includes the NTLM challenge.

SIP/2.0 407 Proxy Authentication Required

Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bK8

From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555

To: "Alice" <sip:alice@contoso.com>;tag=5564566

Call-ID: 123213@alice1.contoso.com

CSeq: 12346 REGISTER

Date: Sat, 13 Nov 2010 23:29:00 GMT

Proxy-Authenticate: NTLM realm="Contoso RTC Service Provider",

 targetname="hs1.contoso.com", qop="auth",

 gssapi-data ="345435acdecbba",opaque="ACDC123"

 Content-Length: 0

The gssapi-data parameter carries the challenge. The opaque parameter serves as an index to

the (incomplete) SA state on the proxy.

5. Alice's client reissues the REGISTER request with a response to the outbound server's challenge.

REGISTER sip:registrar.contoso.com SIP/2.0

Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bK9

From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555

To: "Alice" sip:alice@contoso.com

Call-ID: 123213@alice1.contoso.com

CSeq: 12347 REGISTER

Max-Forwards: 70

User-Agent: Windows RTC/1.1.2600

Proxy-Authorization: NTLM realm="Contoso RTC Service Provider",

 targetname="hs1.contoso.com",qop="auth",

 gssapi-data="34fcdf9345345",opaque="ACDC123"

Contact: "Alice" sip:alice@alice1.contoso.com

Content-Length: 0

The Cseq number has been incremented. The Call-ID and epid remain the same. The gssapi-data
parameter carries the client's response to the challenge. The opaque parameter is echoed from
the previous challenge.

6. On reception of the REGISTER request, the outbound server authenticates the user with the
information in the Proxy-Authorization: header. Authentication succeeds, and a SA is created in
the outbound server for Alice's client.

The outbound server then redirects the REGISTER request to point the client at the appropriate
home server for this user. The redirect response is signed, using the newly established SA

between the client and this proxy.

SIP/2.0 301 Moved Permanently

Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bK9

From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555

To: "Alice" sip:alice@contoso.com

56 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Call-ID: 123213@alice1.contoso.com

CSeq: 12347 REGISTER

Proxy-Authentication-Info: NTLM realm="Contoso RTC Service Provider",

 targetname="hs1.contoso.com", qop="auth", opaque="ACDC123",

 srand="3453453", snum=1, rspauth="23423acfdee2"

Contact: sip:hs2.contoso.com

Content-Length: 0

The Proxy-Authentication-Info: header carries the signature for this SIP message. The snum is

set to 1 because this is the first message signed with the newly established SA. The srand
parameter contains the (random) SALT value used by the server to generate the signature.

7. The client receives the redirect response, verifies the signature using the now complete SA for
the outbound proxy, and reissues the REGISTER request to its proper home server.

REGISTER sip:hs2.contoso.com SIP/2.0

Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bKa

From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555

To: "Alice" sip:alice@contoso.com

Call-ID: 123213@alice1.contoso.com

CSeq: 12348 REGISTER

Max-Forwards: 70

User-Agent: Windows RTC/1.1.2600

Contact: "Alice" sip:alice@alice1.contoso.com

Content-Length: 0

The client will replace its current outbound proxy with the proxy indicated in the Contact: header

of the 301 response. The REGISTER request is sent to this new outbound proxy (the user's true
home server). Since no SA exists yet with this new outbound proxy, no Proxy-Authenticate:
header is present in the request.

8. Alice's home server receives the REGISTER request and issues a challenge, indicating support for
NTLM and Kerberos authentication.

SIP/2.0 407 Proxy Authentication Required

Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bKa

From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555

To: "Alice" <sip:alice@contoso.com>;tag=8823488

Call-ID: 123213@alice1.contoso.com

CSeq: 12348 REGISTER

Date: Sat, 13 Nov 2010 23:29:00 GMT

Proxy-Authenticate: Kerberos realm="Contoso RTC Service Provider",

 targetname="hs2.contoso.com", qop="auth"

Proxy-Authenticate: NTLM realm="Contoso RTC Service Provider",

 targetname="hs2.contoso.com", qop="auth"

Content-Length: 0

The targetname parameter contains the FQDN for Alice's home server. The two Proxy-

Authenticate: headers indicate support for Kerberos and NTLM, respectively. The Realm is the
same as for HS1 because they fall under the same protection space. This means the client will
use the same credentials in responding to HS2's challenge.

9. Alice's client receives the challenge, selects NTLM authentication, and reissues the REGISTER
request to her home server.

57 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

REGISTER sip:hs2.contoso.com SIP/2.0

Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bKb

From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555

To: "Alice" sip:alice@contoso.com

Call-ID: 123213@alice1.contoso.com

CSeq: 12349 REGISTER

Max-Forwards: 70

User-Agent: Windows RTC/1.1.2600

Proxy-Authorization: NTLM realm="Contoso RTC Service Provider",

 targetname="hs2.contoso.com",qop="auth",gssapi-data=""

Contact: "Alice" sip:alice@alice1.contoso.com

Content-Length: 0

The Cseq: number is incremented. The Call-ID and epid remain the same. The Proxy-

Authorization: header indicates support for NTLM authentication.

10.Alice's home server receives the REGISTER request and issues an appropriate NTLM challenge.

SIP/2.0 407 Proxy Authentication Required

Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bKb

From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555

To: "Alice" <sip:alice@contoso.com>;tag=8823488

Call-ID: 123213@alice1.contoso.com

CSeq: 12349 REGISTER

Date: Sat, 13 Nov 2010 23:29:00 GMT

Proxy-Authenticate: NTLM realm="Contoso RTC Service Provider",

 targetname="hs2.contoso.com", qop="auth",

 opaque="CDEF1245", gssapi-data="dfd345435d"

Content-Length: 0

The gssapi-data parameter contains the NTLM challenge. The opaque parameter identifies the

(incomplete) SA on Alice's home server.

11.Alice's client responds to the challenge from Alice's home server by reissuing the REGISTER
request.

REGISTER sip:hs2.contoso.com SIP/2.0

Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bKc

From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555

To: "Alice" sip:alice@contoso.com

Call-ID: 123213@alice1.contoso.com

CSeq: 12350 REGISTER

Max-Forwards: 70

User-Agent: Windows RTC/1.1.2600

Proxy-Authorization: NTLM realm="Contoso RTC Service Provider",

 targetname="hs2.contoso.com",qop="auth",

 gssapi-data="8234934234", opaque="CDEF1245"

Contact: "Alice" sip:alice@alice1.contoso.com

Content-Length: 0

The CSeq number is incremented. The Call-ID remains the same. The opaque parameter is

echoed from the server's challenge. The gssapi-data parameter carries the response to the
server's challenge.

58 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

12.Alice's home server receives the REGISTER request, verifies the response to its challenge, and
processes the REGISTER request. The SA between Alice's home server and Alice's client is now

complete. The server responds to the REGISTER request and signs the response using the newly
completed SA. The epid parameter from the From: header is saved as part of the registration

information for Alice. This value will be inserted in the To: header of subsequent requests that
are forwarded to Alice via her home server (registrar).

SIP/2.0 200 OK

Via: SIP/2.0/TLS alice1.contoso.com;branch=z9hG4bKc

From: "Alice" <sip:alice@contoso.com>;tag=354354535;epid=6534555

To: "Alice" <sip:alice@contoso.com>;tag=8823488

Call-ID: 123213@alice1.contoso.com

CSeq: 12350 REGISTER

Expires: 3600

Proxy-Authentication-Info: NTLM realm="Contoso RTC Service Provider",

 targetname="hs2.contoso.com", qop="auth", opaque="CDEF1245",

 rspauth="fefeacdd", srand=98984345, snum=1

Contact: "Alice" sip:alice@alice1.contoso.com

Content-Length: 0

The epid parameter on the From: header is used by the server to determine how to sign this

response (find the SA). The signature for this response is carried in the rspauth parameter of the
Proxy-Authentication-Info: header.

4.3 Batched SUBSCRIBE and Piggybacked NOTIFY Example

This example shows the use of a batched SUBSCRIBE request by the client to subscribe for presence
information of multiple contacts with a single subscription. It also shows how the server returns the
presence information as a piggybacked notification within the 200 OK response to the SUBSCRIBE
request.

Figure 3: Batched SUBSCRIBE request and piggybacked NOTIFY example

The client sends a batched SUBSCRIBE request to subscribe for presence information of two other
users: user2 and user3. The content-type of the SUBSCRIBE request is application/adrl+xml, and
the xml body includes user2 and user3 URIs in the list of resources to subscribe to. Note that the
SUBSCRIBE request also includes the Supported: ms-piggyback-first-notify header, indicating that
the client supports piggybacked NOTIFY requests.

SUBSCRIBE sip:user1@server.contoso.com SIP/2.0

 Via: SIP/2.0/TCP 11.22.33.44:14383

 Max-Forwards: 70

 From: "User 1" <sip:user1@server.contoso.com>

 ;tag=90ee61ca61c643f9b80c582e3d3e5aae;epid=f540d58d81

59 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 To: sip:user1@server.contoso.com

 Call-ID: fb80bc9af4974421b96cebd16ea599f2

 CSeq: 1 SUBSCRIBE

 Contact:

 <sip:user1@server.contoso.com:14383;

 maddr=11.22.33.44;transport="tcp">

 ;proxy=replace

 User-Agent: RTC/1.3

 Event: presence

 Accept:

 application/rlmi+xml,text/xml+msrtc.pidf,multipart/related

 Supported: com.microsoft.autoextend

 Supported: ms-benotify

 Proxy-Require: ms-benotify

 Supported: ms-piggyback-first-notify

 Require: adhoclist

 Supported: eventlist

 Proxy-Authorization: Kerberos qop="auth", realm="SIP

 Communications Service", opaque="1CF1F9E0", crand="541f0209",

 cnum="5", targetname="sip/server.contoso.com",

 response="602306092a864886f71201020201011100

 ffffffff066ded2537aaae51fb4e69ca00ea6b20"

 Content-Type: application/adrl+xml

 Content-Length: 334

 <adhoclist xmlns="urn:ietf:params:xml:ns:adrl"

 uri="sip:user1@server.contoso.com"

 name="sip:user1@server.contoso.com">

 <create xmlns="">

 <resource uri="sip:user2@server.contoso.com" />

 <resource uri="sip:user3@server.contoso.com" />

 </create>

 </adhoclist>

The server accepts the SUBSCRIBE request by sending a 200 OK. In this example, the server

supports piggybacked NOTIFY and includes the Supported: ms-piggyback-first-notify header in the
200 OK response. The multipart body of the 200 OK contains the batched Presence Documents for
user2 and user3. If the server did not support piggybacked NOTIFY, the same body would have

been sent in a separate NOTIFY instead.

SIP/2.0 200 OK

Authentication-Info:

Kerberos rspauth="602306092A864886F71201020201011100

 FFFFFFFFE6B2C6E2C3D68634CD116221CDDF5C40",

 srand="0AEB0220", snum="7", opaque="1CF1F9E0", qop="auth",

 targetname="sip/server.contoso.com",

 realm="SIP Communications Service"

Contact: sip:server.contoso.com;transport=tcp

Content-Length: 1672

Via: SIP/2.0/TCP 11.22.33.44:14383;

 ms-received-port=1624;ms-received-cid=12c00

From: "User 1" <sip:user1@server.contoso.com>

 ;tag=90ee61ca61c643f9b80c582e3d3e5aae;epid=f540d58d81

To: <sip:user1@server.contoso.com>

 ;tag=A53585F7

Call-ID: fb80bc9af4974421b96cebd16ea599f2

CSeq: 1 SUBSCRIBE

60 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Expires: 24767

Require: eventlist

Content-Type: multipart/related; type="application/rlmi+xml";

 start=resourceList; boundary=e7904a528704417c9a90297d24081f8e

Event: presence

subscription-state: active;expires=24767

ms-piggyback-cseq: 1

Supported: com.microsoft.autoextend, ms-piggyback-first-notify,

 ms-benotify

 --e7904a528704417c9a90297d24081f8e

 Content-Transfer-Encoding: binary

 Content-ID: resourceList

 Content-Type: application/rlmi+xml

 <list xmlns="urn:ietf:params:xml:ns:rlmi"

 uri="sip:user1@server.contoso.com"

 version="0" fullState="true">

 <resource uri="sip:user2@server.contoso.com">

 <instance id="0" state="active"

 cid="user2@server.contoso.com" />

 </resource>

 <resource uri="sip:user3@server.contoso.com">

 <instance id="0" state="active"

 cid="user3@server.contoso.com" />

 </resource>

 </list>

 --e7904a528704417c9a90297d24081f8e

 Content-Transfer-Encoding: binary

 Content-ID: user2@server.contoso.com

 Content-Type: text/xml+msrtc.pidf

 <presentity uri="user2@server.contoso.com"

 xmlns="http://schemas.microsoft.com/2002/09/sip/presence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

 <availability aggregate="0" description="" />

 <activity aggregate="0" description="" />

 <displayName displayName="User 2" />

 </presentity>

 --e7904a528704417c9a90297d24081f8e

 Content-Transfer-Encoding: binary

 Content-ID: user3@server.contoso.com

 Content-Type: text/xml+msrtc.pidf

 <presentity uri="user3@server.contoso.com"

 xmlns="http://schemas.microsoft.com/2002/09/sip/presence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

 <availability aggregate="0" description="" />

 <activity aggregate="0" description="" />

 <displayName displayName="User 3" />

 </presentity>

 --e7904a528704417c9a90297d24081f8e--

4.4 Best Effort NOTIFY Example

This example demonstrates the use of a BENOTIFY request to eliminate the need for the client to
send a response to the notifications sent by the server.

61 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Figure 4: BENOTIFY request example

Notice that in the previous example, the client includes the Supported: ms-benotify and Proxy-

Require: ms-benotify headers in the SUBSCRIBE request. The 200 OK response also includes the

Supported: ms-benotify header, indicating that the server also supports BENOTIFY. The client
SHOULD now be ready to receive BENOTIFY messages from the server.

When the presence information of the user's clients is subscribed to changes, the server sends an
update to the client by using a BENOTIFY message. The BENOTIFY is similar to a NOTIFY except that
the client does not send a response to the BENOTIFY request.

BENOTIFY sip:11.22.33.44:1677;transport=tcp;

 ms-received-cid=13000 SIP/2.0

Authentication-Info: Kerberos

 rspauth="602306092A864886F71201020201011100

 FFFFFFFFDDD5FE865F40D223A53244106E693F3D",

 srand="8C489988", snum="13", opaque="B23769DD",

 qop="auth", targetname="sip/server.contoso.com",

 realm="SIP Communications Service"

Via: SIP/2.0/TCP 10.196.50.15;branch=z9hG4bK50867967.8D409A15;

 branched=FALSE

Max-Forwards: 70

Content-Length: 1127

From: <sip:user2@server.contoso.com>

 ;tag=DD35C0B2

 To: <sip:user2@server.contoso.com>

 ;tag=9c4ef27513d24eb9be781420407b2a87;epid=62ccbeb808

 Call-ID: 91c6c88de3c04d5180d9a2e1434a18dd

 CSeq: 2 BENOTIFY

 Require: eventlist

 Content-Type: text/xml+msrtc.pidf

 Event: presence

 subscription-state: active;expires=28367

 <presentity uri="user1@server.contoso.com"

 xmlns="http://schemas.microsoft.com/2002/09/sip/presence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <availability aggregate="300" description=""

 epid="03640fc59f" />

 <activity aggregate="400" description=""

 epid="03640fc59f" />

 <displayName displayName="User 1" />

 <devices>

 <devicePresence epid="03640fc59f" ageOfPresence="30"

62 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:m="http://schemas.microsoft.com/winrtc/2002/11/sip">

 <availability aggregate="300" description="online" />

 <activity aggregate="400" description="Active"

 note="Note: I am online" />

 <email email="someone@microsoft.com"

 xmlns="http://schemas.microsoft.com/2002/09/sip/client/presence">

 </email>

 <deviceName

 name="HOSTNAME"

 xmlns="http://schemas.microsoft.com/2002/09/sip/client/presence">

 </deviceName>

 <rtc:devicedata

 namespace="rtcsample"

 xmlns:rtc="http://schemas.microsoft.com/2002/09/sip/client/presence">

 <![CDATA[<applicationname>RTC Sample</applicationdata>]]>

 </rtc:devicedata>

 </devicePresence>

 </devices>

 </presentity>

4.5 setPresence Example

This example demonstrates the use of the setPresence request.

Figure 5: Example of a setPresence request

The client sends a SERVICE request to the server to update its presence information stored at the
server. Any other clients subscribing to the presence of this client are then notified of the change by
the server, which uses a NOTIFY or BENOTIFY request.

SERVICE sip:user2@server.contoso.com SIP/2.0

Via: SIP/2.0/TCP 11.22.33.44:14423

Max-Forwards: 70

From: "User 2" <sip:user2@server.contoso.com>

 ;tag=04bc6b4751344d05a8ae1c357e5b7ad1;epid=62ccbeb808

 To: sip:user2@server.contoso.com

 Call-ID: a61392c00bc14f74a1ef3293242e902a

 CSeq: 1 SERVICE

 Contact: <sip:user2@server.contoso.com:14423;maddr=11.22.33.44;

 transport="tcp">

 ;proxy=replace

 User-Agent: RTC/1.3.5369

63 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 Proxy-Authorization: Kerberos qop="auth", realm="SIP

 Communications Service", opaque="B23769DD", crand="134ce932",

 cnum="5", targetname="sip/server.contoso.com",

 response="602306092a864886f71201020201011100

 ffffffff95b096c3a5d25aa1bb814c785aaa4957"

 Content-Type: application/SOAP+xml

 Content-Length: 822

 <SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <m:setPresence

 xmlns:m="http://schemas.microsoft.com/winrtc/2002/11/sip">

 <m:presentity m:uri="sip:user2@server.contoso.com">

 <m:availability m:aggregate="300"

 m:description="online" />

 <m:activity m:aggregate="400" m:description="Active"

 m:note="Note: I am online" />

 <email

 xmlns="http://schemas.microsoft.com/2002/09/sip/client/presence"

 email="someone@microsoft.com" />

 <deviceName

 xmlns="http://schemas.microsoft.com/2002/09/sip/client/presence"

 name="HOSTNAME" />

 <rtc:devicedata

 xmlns:rtc="http://schemas.microsoft.com/2002/09/sip/client/presence"

 namespace="rtcsample">

 <![CDATA[<applicationname>RTC Sample</applicationdata>]]>

 </rtc:devicedata>

 </m:presentity>

 </m:setPresence>

 </SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

The server responds to the SERVICE request with a 200 OK to indicate that the request was

successfully processed by the server.

SIP/2.0 200 OK

Authentication-Info:

Kerberos rspauth="602306092A864886F71201020201011100

 FFFFFFFFE6AD66F99AD4B9143B76C025FE19FC23",

 srand="060568FB", snum="6", opaque="B23769DD", qop="auth",

 targetname="sip/server.contoso.com",

 realm="SIP Communications Service"

Via: SIP/2.0/TCP 11.22.33.44:14423;ms-received-port=1677;

 ms-received-cid=13000

From: "User 2"<sip:user2@server.contoso.com>

 ;tag=04bc6b4751344d05a8ae1c357e5b7ad1;epid=62ccbeb808

To: <sip:user2@server.contoso.com>

 ;tag=07BC9BC862C48C8F4FE7756322318F0A

 Call-ID: a61392c00bc14f74a1ef3293242e902a

 CSeq: 1 SERVICE

 Content-Length: 0

64 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4.6 AddContact Example

This example demonstrates an AddContact request sent by the client to the server to add a contact
to its contact list.

Figure 6: AddContact request example

The client sends a SERVICE request with a SOAP envelope/xml envelope in the body. The
m:setContact element indicates to the server that this request is for adding or modifying a contact.
The xml contains the display name and URI of the contact that is being added along with any groups
of which this contact is a member and whether the client is subscribed for presence information of

this contact.

SERVICE sip:server.contoso.com;transport=tcp SIP/2.0

Via: SIP/2.0/TCP 11.22.33.44:13684

Max-Forwards: 70

From: <sip:user1@server.contoso.com>

 ;tag=e6b525fb274245a0b61ddbe877b7d0b9;epid=df527db094

 To: <sip:user1@server.contoso.com>

 ;tag=01C341BA

 Call-ID: b7c3b37ba4144a39a9bc82c224147f0c

 CSeq: 2 SERVICE

 Contact: <sip:user1@server.contoso.com:13684;maddr=11.22.33.44;

 transport="tcp">

 ;proxy=replace

 User-Agent: RTC/1.3.5369

 Proxy-Authorization: Kerberos qop="auth", realm="SIP

 Communications Service", opaque="C71765D4", crand="d48aaa37",

 cnum="6", targetname="sip/server.contoso.com",

 response="602306092a864886f71201020201011100

 ffffffffe25204ecf3fb4be0326639f5ee6f0f44"

 Content-Type: application/SOAP+xml

 Content-Length: 407

 <SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <m:setContact

 xmlns:m="http://schemas.microsoft.com/winrtc/2002/11/sip">

 <m:displayName>buddy 1</m:displayName>

 <m:groups />

 <m:subscribed>true</m:subscribed>

 <m:URI>sip:user4@server.contoso.com</m:URI>

 <m:externalURI />

 <m:deltaNum>12</m:deltaNum>

 </m:setContact>

 </SOAP-ENV:Body>

65 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 </SOAP-ENV:Envelope>

The server responds to the SERVICE request with a 200 OK to indicate that the AddContact request

was successful. The 200 OK response does not have a body.

SIP/2.0 200 OK

Authentication-Info:

 Kerberos rspauth="602306092A864886F71201020201011100

 FFFFFFFFF545C705C4485BF958371C44ACFE31E3",

 srand="669CF161", snum="7", opaque="C71765D4", qop="auth",

 targetname="sip/server.contoso.com",

 realm="SIP Communications Service"

Via: SIP/2.0/TCP 11.22.33.44:13684;ms-received-port=1558;

 ms-received-cid=12a00

From: <sip:user1@server.contoso.com>;

 tag=e6b525fb274245a0b61ddbe877b7d0b9;epid=df527db094

To: <sip:user1@server.contoso.com>;tag=01C341BA

Call-ID: b7c3b37ba4144a39a9bc82c224147f0c

CSeq: 2 SERVICE

Content-Length: 0

4.7 DeleteContact Example

This example demonstrates a DeleteContact request sent by the client to the server to delete a
contact from its contact list.

Figure 7: DeleteContact request example

The client sends a SERVICE request with a SOAP envelope/xml envelope in the body. The
m:deleteContact element indicates to the server that this request is for deleting a contact. The xml

contains the URI of the contact that is being deleted. There is no need to specify any other
properties of the contact because a contact can be uniquely identified by the URI.

SERVICE sip:server.contoso.com;transport=tcp SIP/2.0

Via: SIP/2.0/TCP 11.22.33.44:13684

Max-Forwards: 70

From: <sip:user1@server.contoso.com>

 ;tag=e6b525fb274245a0b61ddbe877b7d0b9;epid=df527db094

 To: <sip:user1@server.contoso.com>

 ;tag=01C341BA

 Call-ID: b7c3b37ba4144a39a9bc82c224147f0c

 CSeq: 5 SERVICE

 Contact: <sip:user1@server.contoso.com:13684;maddr=11.22.33.44;

66 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 transport="tcp">

 ;proxy=replace

 User-Agent: RTC/1.3.5369

 Proxy-Authorization: Kerberos qop="auth", realm="SIP

 Communications Service", opaque="C71765D4", crand="7435fe84",

 cnum="12", targetname="sip/server.contoso.com",

 response="602306092a864886f71201020201011100

 ffffffff7eba7f0331d6d9673f8bec24c9d4e389"

 Content-Type: application/SOAP+xml

 Content-Length: 315

 <SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <m:deleteContact

 xmlns:m="http://schemas.microsoft.com/winrtc/2002/11/sip">

 <m:URI>sip:user4@server.contoso.com</m:URI>

 <m:deltaNum>15</m:deltaNum>

 </m:deleteContact>

 </SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

The server responds to the SERVICE request with a 200 OK to indicate that the DeleteContact

request was successful. The 200 OK response does not have a body.

SIP/2.0 200 OK

Authentication-Info: Kerberos

 rspauth="602306092A864886F71201020201011100

 FFFFFFFF7C224F0AC87E91DFE9D4A49F974961E9",

 srand="03254599", snum="16", opaque="C71765D4", qop="auth",

 targetname="sip/server.contoso.com",

 realm="SIP Communications Service"

Via: SIP/2.0/TCP 11.22.33.44:13684;

 ms-received-port=1558;ms-received-cid=12a00

From: <sip:user1@server.contoso.com>

 ;tag=e6b525fb274245a0b61ddbe877b7d0b9;epid=df527db094

 To: <sip:user1@server.contoso.com>

 ;tag=01C341BA

 Call-ID: b7c3b37ba4144a39a9bc82c224147f0c

 CSeq: 5 SERVICE

 Content-Length: 0

4.8 AddGroup Example

This example demonstrates an AddGroup request that is sent by the client to the server to add a
group to the list of groups for this client.

67 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Figure 8: AddGroup request example

The client sends a SERVICE request with a SOAP envelope/xml envelope in the body. The

m:addGroup element indicates to the server that this request is for adding a group. The XML
contains the name of the group, which is "Friends" in this case.

SERVICE sip:server.contoso.com;transport=tcp SIP/2.0

Via: SIP/2.0/TCP 11.22.33.44:14383

Max-Forwards: 70

From: <sip:user1@server.contoso.com>

 ;tag=c3c995d890e144b2aa7f2bd38c424a51;epid=f540d58d81

 To: <sip:user1@server.contoso.com>

 ;tag=5FDD7BA7

 Call-ID: f34928e3852c434a85a1f3c0e1e8a449

 CSeq: 2 SERVICE

 Contact: <sip:user1@server.contoso.com:14383;

 maddr=11.22.33.44;transport="tcp">

 ;proxy=replace

 User-Agent: RTC/1.3.5369

 Proxy-Authorization: Kerberos qop="auth",

 realm="SIP Communications Service", opaque="1CF1F9E0",

 crand="2daa2825", cnum="7", targetname="sip/server.contoso.com",

 response="602306092a864886f71201020201011100

 ffffffffb0dd9fa33c820618ea9ff577dcb659b8"

 Content-Type: application/SOAP+xml

 Content-Length: 281

 <SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <m:addGroup

 xmlns:m="http://schemas.microsoft.com/winrtc/2002/11/sip">

 <m:name>Friends</m:name>

 <m:externalURI />

 <m:deltaNum>16</m:deltaNum>

 </m:addGroup>

 </SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

The server responds to the SERVICE request with a 200 OK to indicate that the AddGroup request

was successful. The 200 OK response may or may not have a body.

68 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

SIP/2.0 200 OK

Authentication-Info: Kerberos

 rspauth="602306092A864886F71201020201011100

 FFFFFFFF18134184AFDFDDE2B92BA96B6B8318F9",

 srand="A8D0D0FF", snum="8", opaque="1CF1F9E0", qop="auth",

 targetname="sip/server.contoso.com",

 realm="SIP Communications Service"

Content-Length: 250

Via: SIP/2.0/TCP 11.22.33.44:14383;ms-received-port=1624;

 ms-received-cid=12c00

From: <sip:user1@server.contoso.com>

 ;tag=c3c995d890e144b2aa7f2bd38c424a51;epid=f540d58d81

 To: <sip:user1@server.contoso.com>

 ;tag=5FDD7BA7

 Call-ID: f34928e3852c434a85a1f3c0e1e8a449

 CSeq: 2 SERVICE

 Content-Type: application/SOAP+xml

 <SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <m:addGroup

 xmlns:m="http://schemas.microsoft.com/winrtc/2002/11/sip">

 <m:groupID>1</m:groupID>

 </m:addGroup>

 </SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

4.9 DeleteGroup Example

This example demonstrates a DeleteGroup request sent by the client to the server to delete a group
from the list of groups for this client.

Figure 9: DeleteGroup request example

The client sends a SERVICE request with a SOAP envelope/xml envelope in the body. The
m:deleteGroup element indicates to the server that this request is for deleting a group. The XML
contains the name of the group to be removed, which is "Friends" in this case.

SERVICE sip:server.contoso.com;transport=tcp SIP/2.0

Via: SIP/2.0/TCP 11.22.33.44:14383

Max-Forwards: 70

From: <sip:user1@server.contoso.com>

 ;tag=c3c995d890e144b2aa7f2bd38c424a51;epid=f540d58d81

69 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 To: <sip:user1@server.contoso.com>

 ;tag=5FDD7BA7

 Call-ID: f34928e3852c434a85a1f3c0e1e8a449

 CSeq: 3 SERVICE

 Contact: <sip:user1@server.contoso.com:14383;

 maddr=11.22.33.44;transport="tcp">

 ;proxy=replace

 User-Agent: RTC/1.3.5369

 Proxy-Authorization: Kerberos qop="auth", realm="SIP

 Communications Service", opaque="1CF1F9E0", crand="277c6fef",

 cnum="8", targetname="sip/server.contoso.com",

 response="602306092a864886f71201020201011100

 ffffffff41d25b4ea77c777cc8045e47de492d38"

 Content-Type: application/SOAP+xml

 Content-Length: 271

 <SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <m:deleteGroup

 xmlns:m="http://schemas.microsoft.com/winrtc/2002/11/sip">

 <m:groupID>1</m:groupID>

 <m:deltaNum>17</m:deltaNum>

 </m:deleteGroup>

 </SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

The server responds to the SERVICE request with a 200 OK to indicate that the AddContact request

was successful. The 200 OK response does not have a body.

SIP/2.0 200 OK

Authentication-Info: Kerberos

 rspauth="602306092A864886F71201020201011100

 FFFFFFFFE25AF790F3790A7E416A443414ED5AE8", srand="15FE0D01",

 snum="10", opaque="1CF1F9E0", qop="auth",

 targetname="sip/server.contoso.com",

 realm="SIP Communications Service"

Via: SIP/2.0/TCP 11.22.33.44:14383;ms-received-port=1624;

 ms-received-cid=12c00

From: <sip:user1@server.contoso.com>

 ;tag=c3c995d890e144b2aa7f2bd38c424a51;epid=f540d58d81

 To: <sip:user1@server.contoso.com>

 ;tag=5FDD7BA7

 Call-ID: f34928e3852c434a85a1f3c0e1e8a449

 CSeq: 3 SERVICE

 Content-Length: 0

4.10 setACE Example

This example demonstrates a setACE request sent by the client to the server to add a contact to its

contact list.

70 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Figure 10: setACE request example

The client sends a SERVICE request with a SOAP envelope/XML envelope in the body. The m:setACE

element indicates to the server that this request is for setting an ACE. The XML contains the ACE
type, the URI of the user/domain to which the ACE applies, rights defined by the ACE, and a version
number.

SERVICE sip:server.contoso.com;transport=tcp SIP/2.0

Via: SIP/2.0/TCP 172.24.34.1:15950

Max-Forwards: 70

From: <sip:user1@server.contoso.com>;

 tag=0d71f68a88014f0485a2635cb7c83bc5;epid=bd0238d966

To: <sip:user1@server.contoso.com>;tag=6A6C5447

Call-ID: d934123784404081b0042c4075520f32

CSeq: 40 SERVICE

Contact: sip:user1@server.contoso.com:15950;

 maddr=172.24.34.1;transport=tcp>;proxy=replace

User-Agent: RTC/1.3.5470 (Messenger 5.1.0680)

Proxy-Authorization: NTLM qop="auth", realm="SIP Communications

 Service", opaque="8F8C803E", crand="bac716ec", cnum="12",

 targetname="server.contoso.com",

 response="0100000066363861cf249229af0f9ad1"

Content-Type: application/SOAP+xml

Content-Length: 327

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>

<m:setACE xmlns:m="http://schemas.microsoft.com/winrtc/2002/11/sip">

<m:type>USER</m:type>

<m:mask>sip:user3@server.contoso.com</m:mask>

<m:rights>AA</m:rights>

<m:deltaNum>2</m:deltaNum>

</m:setACE>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The server responds to the SERVICE request with a 200 OK to indicate that the AddContact request

was successful. The 200 OK response does not have a body.

SIP/2.0 200 OK

Authentication-Info: NTLM rspauth="0100000000000000E82E2E0BAF0F9AD1",

 srand="EAA5A52F", snum="14", opaque="8F8C803E", qop="auth",

 targetname="server.contoso.com", realm="SIP Communications Service"

71 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Via: SIP/2.0/TCP 172.24.34.1:15950;ms-received-port=3947;

 ms-received-cid=1400

From: <sip:user1@server.contoso.com>;

 tag=0d71f68a88014f0485a2635cb7c83bc5;epid=bd0238d966

To: <sip:user1@server.contoso.com>;tag=6A6C5447

Call-ID: d934123784404081b0042c4075520f32

CSeq: 40 SERVICE

Content-Length: 0

4.11 P2P Subscription and XPIDF Presence Format Example

This example demonstrates how XPIDF format can be used in a P2P presence subscription.

Figure 11: P2P subscription and XPIDF presence format example

User1 sends a SUBSCRIBE request to user2 to create a subscription for the presence event-package.
This is indicated by the Event: presence header in the SUBSCRIBE request. The Accept header
indicates that user1 accepts the XPIDF Presence Document format.

SUBSCRIBE sip:user2@193.12.62.199 SIP/2.0

Via: SIP/2.0/UDP 193.12.63.150:13695

Max-Forwards: 70

From: "user1" <sip:host1>;tag=12e78ca4-85f7-4094-bbdf-e8e819188ae6

To: <sip:user2@193.12.62.199>

Call-ID: 21824beb-0ee4-4953-ad36-745a0614a0e9@193.12.63.150

CSeq: 1 SUBSCRIBE

Contact: <sip:193.12.63.150:13695>

User-Agent: Windows RTC/1.2

Event: presence

Accept: application/xpidf+xml

Content-Length: 0

User2 sends a 200 OK response to indicate that the SUBSCRIBE request has been accepted. The
200 OK response does not have a body.

SIP/2.0 200 OK

72 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

From: "user1" <sip:host1>;tag=12e78ca4-85f7-4094-bbdf-e8e819188ae6

To: <sip:user2@193.12.62.199>;tag=112040_T193.12.62.199

Call-ID: 21824beb-0ee4-4953-ad36-745a0614a0e9@193.12.63.150

CSeq: 1 SUBSCRIBE

Via: SIP/2.0/UDP 193.12.63.150:13695

Expires: 28800

Content-Length: 0

User2 then sends a NOTIFY request to user1 to communicate its presence state, which is online in

this example. The body of the NOTIFY request is an XML in the XPIDF format. The XML includes the
presentity whose presence information is being communicated, the address element representing a
particular endpoint for the presentity and the presence status for that endpoint.

NOTIFY sip:193.12.63.150:13695 SIP/2.0

From: <sip:user2@193.12.62.199>;tag=112040_T193.12.62.199

To: "user1" <sip:host1>;tag=12e78ca4-85f7-4094-bbdf-e8e819188ae6

Call-ID: 21824beb-0ee4-4953-ad36-745a0614a0e9@193.12.63.150

CSeq: 2 NOTIFY

Via: SIP/2.0/UDP 193.12.62.199

Content-Length: 356

Contact: sip:user2@193.12.62.199

Event: presence

Content-Type: application/xpidf+xml

<?xml version="1.0"?>

<!DOCTYPE presence

 PUBLIC "-//IETF//DTD RFCxxxx XPIDF 1.0//EN" "xpidf.dtd">

<presence>

<presentity uri="sip:user2@193.12.62.199;method=SUBSCIRBE"/>

<atom id="1002">

<address uri="sip:user2@193.12.62.199 priority="0.600000">

 <status status="open"/>

 <msnstatus substatus="online"/>

</address>

</atom>

</presence>

User1 acknowledges the receipt of the notification by sending a 200 OK response. The 200 OK

response does not have a body.

SIP/2.0 200 OK

Via: SIP/2.0/UDP 193.12.62.199

From: <sip:user1@193.12.62.199>;tag=112040_T193.12.62.199

To: "user2" <sip:host2>;tag=12e78ca4-85f7-4094-bbdf-e8e819188ae6

Call-ID: 21824beb-0ee4-4953-ad36-745a0614a0e9@193.12.63.150

CSeq: 2 NOTIFY

User-Agent: Windows RTC/1.2

Content-Length: 0

73 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

5 Security

The following sections specify security considerations for implementers of Session Initiation Protocol
Extensions.

5.1 Security Considerations for Implementers

The Microsoft extensions defined in this specification do not require any special security
considerations beyond what is natively defined for the Session Initiation Protocol (SIP).

5.2 Index of Security Parameters

None.

74 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft Windows® 2000 operating system Service Pack 4 (SP4)

Windows® XP operating system

Windows Server® 2003 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product

does not follow the prescription.

75 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

7 Appendix B: Full text/xml+msrtc.pidf Presence Document Format

<?xml version="1.0" ?>

<xs:schema id="presence" version="2.0"

 targetNamespace="http://schemas.microsoft.com/09/2002/sip/presence"

 xmlns:tns="http://schemas.microsoft.com/09/2002/sip/presence"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:ct="http://schemas.microsoft.com/sip/types">

 <xs:annotation>

 <xs:documentation>

 Live Communications Server 2005 provides Instant Messaging

 and presence capabilities amongst users in an enterprise. A

 user can login using multiple devices. Each device presents

 its presence information to the server. The XML instance

 containing presence submitted to the server is called the

 Presence Document. When retrieving presence information for

 a user, the server not only returns the presence document

 from every device, but it also determines the overall presence

 of the user. This XML instance returned by the server is

 called the Aggregated Presence Document.

 This schema describes the structure of both the Presence

 Document consumed by the server as well as the Aggregated

 Presence Document generated by the server.

 </xs:documentation>

 </xs:annotation>

 <xs:import namespace="http://schemas.microsoft.com/sip/types"

 schemaLocation="common.xsd" />

 <!-- Common Types -->

 <xs:simpleType name="aggregate">

 <xs:restriction base="xs:nonNegativeInteger">

 <xs:minInclusive value="0" />

 <xs:maxInclusive value="999" />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="epid">

 <xs:annotation>

 <xs:documentation>

 Each device of a user is uniquely identified by its epid.

 This value cannot exceed 16 bytes.

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="xs:token" />

 </xs:simpleType>

 <xs:simpleType name="ageOfPresence">

 <xs:annotation>

 <xs:documentation>

 This is the number of seconds since the device last updated

 its presence information

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="xs:nonNegativeInteger" />

76 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 </xs:simpleType>

 <xs:complexType name="availability">

 <xs:annotation>

 <xs:documentation>

 The purpose of availability is to indicate whether the user

 can receive a call.

 </xs:documentation>

 </xs:annotation>

 <xs:attribute

 name="aggregate" type="tns:aggregate" use="required" >

 <xs:annotation>

 <xs:documentation>

 The value of the aggregate attribute defines the

 availability of a user on a device. The aggregate values

 are processed by the server as being within a range that

 has a span of 100 (class code). The server interprets

 the values as falling within the following classes (with

 their corresponding interpretations):

 000-099

 The user cannot receive calls.

 100-199

 The user may be online but availability is unknown

 until a call is attempted. A cell phone gateway would

 typically use this setting.

 200-299

 The user has a device that is currently connected and

 can receive calls.

 300-399

 The user is in the proximity of a device that can

 receive calls.

 Rather than using a hard-coded enumeration a numeric

 value is value. This makes it easy to compare the

 availability sent by two different PUAs.

 </xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="description" type="xs:string" >

 <xs:annotation>

 <xs:documentation>

 The server always returns an empty string in the

 aggregated presence document.

 </xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="epid" type="tns:epid" />

 </xs:complexType>

 <xs:complexType name="activity">

 <xs:annotation>

 <xs:documentation>

 The purpose of activity is to indicate not whether a user

 can receive a call, but rather, to indicate to watchers

 how likely the user is to want to be disturbed.

77 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 </xs:documentation>

 </xs:annotation>

 <xs:attribute name="aggregate"

 type="tns:aggregate" use="required" >

 <xs:annotation>

 <xs:documentation>

 000 - 099 There is no information about the

 activity of the user

 100 - 149 The user is away

 150 - 199 The user is out to lunch

 200 - 299 The user is idle

 300 - 399 The user will be right back

 400 - 499 The user is active

 500 - 599 The user is already participating in a

 communications session

 600 - 699 The user is busy

 700 - 799 The user is away

 800 - 999 The user is active

 Rather than using a hard-coded enumeration a numeric value

 is value. This makes it easy to compare the activity sent

 by two different PUAs.

 </xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="description" type="xs:string" >

 <xs:annotation>

 <xs:documentation>

 The server always returns an empty string in the aggregated

 presence document.

 </xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="epid" type="tns:epid" />

 <xs:attribute name="note" type="xs:string" >

 <xs:annotation>

 <xs:documentation>

 This attribute can be used by the client to store a string

 indicating the user's status on the device.

 </xs:documentation>

 </xs:annotation>

 </xs:attribute>

 </xs:complexType>

 <xs:complexType name="userInfo">

 <xs:annotation>

 <xs:documentation>

 This element is used for storing persisted presence

 information for a user. This information is stored by the

 server and is available regardless of the device a user is

 logged in and / or whether the user is logged in or not. Any

 valid XML can be stored by the client. The server enforces a

 limit of 1024 characters on the size of the element body,

 where the entire element body is treated as a single string.

 </xs:documentation>

78 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 </xs:annotation>

 <xs:sequence>

 <xs:any namespace="##any" processContents="lax"

 minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 <xs:group name="presenceDocInfo">

 <xs:sequence>

 <xs:element name="availability" type="tns:availability" />

 <xs:element name="activity" type="tns:activity" />

 <xs:element name="userInfo" type="tns:userInfo" />

 <xs:any

 namespace="##any"

 processContents="lax"

 minOccurs="0"

 maxOccurs="unbounded" />

 </xs:sequence>

 </xs:group>

 <!-- Presence document consumed by the server -->

 <xs:complexType name="presenceDoc">

 <xs:annotation>

 <xs:documentation>

 The containing element and its contents are collectively

 called the presence document. The document describes a

 user's availability on a particular device. This is the

 document sent from a Presence User Agent that intends to

 publish its presence.

 </xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:group ref="tns:presenceDocInfo" />

 </xs:sequence>

 <xs:attribute name="uri" type="ct:sipURI" use="required" />

 </xs:complexType>

 <!-- Aggregated Presence document generated by the server -->

 <xs:complexType name="aggregatedPresenceDoc">

 <xs:annotation>

 <xs:documentation>

 The containing element and its contents are collectively

 called the aggregated presence document. The document

 describes a user's availability on all its devices as well

 as an overall aggregated presence. This is the document

 published by the server to anyone obtaining the presence of

 a particular user.

 </xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="availability" type="tns:availability" >

 <xs:annotation>

79 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 <xs:documentation>

 This is the availability information from the most

 available device.

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="activity" type="tns:activity" >

 <xs:annotation>

 <xs:documentation>

 This is the activity information from

 the most available device.

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="displayName" >

 <xs:complexType>

 <xs:attribute name="displayName" type="ct:displayName" />

 </xs:complexType>

 </xs:element>

 <xs:element name="email">

 <xs:complexType>

 <xs:attribute name="email" type="ct:email" />

 </xs:complexType>

 </xs:element>

 <xs:element name="phoneNumber">

 <xs:complexType>

 <xs:attribute

 name="label"

 type="xs:string"

 use="required">

 <xs:annotation>

 <xs:documentation>

 This string is always empty.

 </xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute

 name="number"

 type="ct:phone"

 use="required" />

 </xs:complexType>

 </xs:element>

 <xs:element

 name="userInfo"

 type="tns:userInfo" />

 <xs:element name="devices">

 <xs:complexType>

 <xs:sequence>

 <xs:element

 name="devicePresence"

 maxOccurs="unbounded" >

 <xs:complexType>

80 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 <xs:sequence>

 <xs:group ref="tns:presenceDocInfo" />

 </xs:sequence>

 <xs:attribute name="epid" type="tns:epid" />

 <xs:attribute name="ageOfPresence"

 type="tns:ageOfPresence"

 use="required" />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="uri" type="ct:sipURI" use="required"/>

 </xs:complexType>

 <xs:element name="presentity" type="tns:aggregatedPresenceDoc"/>

</xs:schema>

81 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

8 Appendix C: XPIDF Presence Document Format

The XPIDF Presence Document always contains the top-level element "presence", which indicates
that the remainder of the document contains presence information.

<!ELEMENT presence (presentity, atom*, display?)>

The first subelement of the presence element is the "presentity" element, which identifies the

presentity for whom the presence data is being reported.

<!ELEMENT presentity (#PCDATA)>

<!ATTLIST presentity uri CDATA #REQUIRED>

The presentity tag has a single mandatory attribute, uri, which gives the address of the presentity.

The content of the presentity tag is parsed character data giving a human-readable name.

Following the presentity tag within the presence tag is a list of atoms.

Atoms are structured as a collection of addresses. These can either be communications addresses,
represented by URLs, or a postal address.

<!ELEMENT atom (postal?, address*)>

<!ATTLIST atom atomid CDATA #REQUIRED

 expires CDATA #IMPLIED>

The atom element has the mandatory attribute "id", the unique identifier for the group, and the

optional attribute "expires", which indicates the time after which the presence data should be
considered invalid. The expiration time is expressed as an integral number of seconds since January
1, 1970, 00:00 UTC.

A postal address is indicated by the "postal" element, and consists of freeform text:

<!ELEMENT postal (#PCDATA)>

It may contain XML markup from some external namespace, as described previously.

Communications addresses are described by the "address" element.

<!ELEMENT address (status | class | duplex | feature | note |

 mobility | msnsubstatus)*>

 <!ATTLIST address uri CDATA #REQUIRED

 priority CDATA #IMPLIED>

The "address" element has a single mandatory attribute, uri, which gives the URI of the

communications address being described. It also has an optional attribute "priority". The priority tag

contains an integer that indicates the relative preference of this address over other addresses. It is a
floating-point value between 0 and 1, with 1 being the highest preference.

Within the address tag, several subtags are defined to specify characteristics of the communications
address. These tags have the following meanings:

82 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

status

An indicator meant for machine consumption that indicates the status of this communications

address. Valid values are "open", which means communications can be attempted to this

address, "closed", which means communications cannot be attempted, and "inuse", which means
communications is currently being actively used with the entity receiving the Presence
Document. For example, if an instant messaging URL is placed in the uri attribute of the address,
and the status is "inuse", this means that the user sending the updated Presence Document is
currently typing an instant message to the recipient of the Presence Document.

This enables a recent feature on MSN, which allows the user to see when the recipient of the
user's instant message is currently typing a reply to it.

<!ELEMENT status EMPTY>

 <!ATTLIST status status (open|closed|inuse) #REQUIRED>

class

This tag contains either the value "business" or "personal", indicating whether the address is for
business or nonbusiness use. There can be only one class tag per address.

<!ELEMENT class EMPTY>

 <!ATTLIST class class (business|personal) #REQUIRED>

duplex

The duplex tag contains one of the values "full", "half", "send-only", or "receive-only". It
indicates whether the address can be used for communications in one direction, the other
direction, or both. For example, a page would be considered receive-only. There can only be one

duplex tag per address.

 <!ELEMENT duplex EMPTY>

 <!ATTLIST duplex duplex

 (full|half|send-only|receive-only) #REQUIRED>

feature

The feature tag lists features specific to that communications means. For voice addresses,
defined values include "voice-mail" and "attendant". There can be more than one feature tag per
address.

<!ELEMENT feature EMPTY>

 <!ATTLIST feature feature (voicemail|attendant) #REQUIRED>

mobility

The mobility tag indicates whether the terminal with the given communications address is
moving around ("mobile") or fixed ("fixed"). There can be only a single mobility tag per address.

 <!ELEMENT mobility EMPTY>

 <!ATTLIST mobility mobility (fixed|mobile) #REQUIRED>

83 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

note

Contains freeform text meant for display to the user, indicating some kind of information about

the communications address. There can only be one note tag per address. The note tag may

contain XML data from a properly qualified external XML namespace.

<!ELEMENT note (#PCDATA)>

msnsubstatus

Provides supplementary status information. The following values are defined: "unknown",

"away", "online", "idle", "busy", "berightback", "onthephone", "outtolunch".

<!ELEMENT msnsubstatus EMPTY>

 <!ATTLIST msnsubstatus

 (unknown|away|online|idle|busy|berightback|onthephone|outtolunch)

 #REQUIRED>

A PIDF document that appears as a top-level XML document is identified with the formal public

identifier "-//IETF//DTD RFCxxxx XPIDF 1.0//EN". If this document is published as an RFC,

"xxxx" will be replaced by the RFC number. PIDF documents have the MIME type
"application/xpidf+xml".

Note that the URIs specifying XML namespaces are only globally unique names; they do not have to
reference any particular actual object. The URI of a canonical source of this specification meets the
requirement of being globally unique, and is also useful to document the format.

<!ELEMENT display EMPTY>

 <!ATTLIST display name CDATA #REQUIRED>

Following the atom tag within the presence tag, there can be a display tag. The display tag has a

single required attribute to specify the display name.

The DTD of XPIDF is shown below:

 <?xml version="1.0" encoding="UTF-8" ?>

 <!ELEMENT presence (presentity, atom*, display?)>

 <!ELEMENT presentity (#PCDATA)>

 <!ATTLIST presentity uri CDATA #REQUIRED>

 <!ELEMENT atom (postal?, address*)>

 <!ATTLIST atom atomid CDATA #REQUIRED

 expires CDATA #IMPLIED>

 <!ELEMENT postal (#PCDATA)>

 <!ELEMENT address (status | class | duplex | feature | note |

 mobility | msnsubstatus)*>

 <!ATTLIST address uri CDATA #REQUIRED

 priority CDATA #IMPLIED>

 <!ELEMENT status EMPTY>

 <!ATTLIST status status (open|closed|inuse) #REQUIRED>

 <!ELEMENT class EMPTY>

 <!ATTLIST class class (business|personal) #REQUIRED>

84 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 <!ELEMENT duplex EMPTY>

 <!ATTLIST duplex duplex

 (full|half|send-only|receive-only) #REQUIRED>

 <!ELEMENT feature EMPTY>

 <!ATTLIST feature feature (voicemail|attendant) #REQUIRED>

 <!ELEMENT mobility EMPTY>

 <!ATTLIST mobility mobility (fixed|mobile) #REQUIRED>

 <!ELEMENT note (#PCDATA)>

 <!ELEMENT msnsubstatus EMPTY>

 <!ATTLIST msnsubstatus

 (unknown|away|online|idle|busy|berightback|onthephone|outtolunch)

 #REQUIRED>

 <!ELEMENT display EMPTY>

 <!ATTLIST display name CDATA #REQUIRED>

85 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

9 Appendix D: ACL XML Schema

<?xml version="1.0" ?>

<xsd:schema id="acl"

targetNamespace="http://schemas.microsoft.com/sip/acl/"

xmlns="http://schemas.microsoft.com/sip/acl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:annotation>

 <xsd:documentation>

 Type definition for Access Control Lists

 </xsd:documentation>

 </xsd:annotation>

 <!-- - - -

 ACEs

 An ACE is a set of three attributes:

 type scopes what the ACE applies to

 mask a user URI or DNS domain

 rights the rights associated with this ACE

-->

 <xsd:complexType name="ace">

 <xsd:attribute name="type" type="acetype" use="required"/>

 <xsd:attribute name="mask" type="acemask" use="optional"/>

 <xsd:attribute name="rights"

 type="rightsmask"

 use="optional"

 default="AA"/>

 </xsd:complexType>

 <!-- - - - - - -

An ace can be scoped to:

ALL

 Applies to all users.Mask is not used.

DOMAIN

Matches a domain specified in mask.

 For example, if mask is "microsoft.com" then

 "sip:user1@redmond.microsoft.com" and

 "sip:user2@microsoft.com"

 match, but "sip:user3@example.com" doesn't match.

USER

Matches a specific user. For example,mask could be

 "sip:user3@microsoft.com".

-->

 <xsd:simpleType name="acetype">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="ALL" />

 <xsd:enumeration value="USER" />

 <xsd:enumeration value="DOMAIN" />

 </xsd:restriction>

 </xsd:simpleType>

86 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 <!-- - -

An acemask is only used when the acetype is USER or DOMAIN.

-->

 <xsd:simpleType name="acemask">

 <xsd:union memberTypes="domainmask xsd:anyURI" />

 </xsd:simpleType>

 <!-- - - - - - -

A domain is a set of one or more pairs of

 label+. pairs.

For example "redmond.microsoft.com." and "microsoft.com.".

SIP:roberbr@redmond.microsoft.com would match either of these.

SIP:roberbr@southpacific.microsoft.com would

 only match "microsoft.com."

-->

 <xsd:simpleType name="domainmask">

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="[\w+\.]*\w+\.?" />

 <xsd:minLength value="2"/>

 <xsd:maxLength value="255"/>

 </xsd:restriction>

 </xsd:simpleType>

 <!-- - -

The Rights mask.

-->

 <xsd:simpleType name="rightsmask">

 <!--

This is a list of characters. Each position in the list

 represents a Right. The character in that position represents

 the value of that right. Additional rights can be added to the

 end of the string in future versions.

A = Allow

D = Deny

P = Prompt

B = Block (Polite blocking)

 Incoming_

 \

 Presence_ |

 \|

 ||

 AA

 AD

 PA

 PD

 DA

 DD

 BA

 BD

 -->

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="(A|P|D|B)(A|D)"/>

 </xsd:restriction>

87 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 </xsd:simpleType>

 <!-- - - - - -

ACLs

 - - - - - - -->

 <xsd:complexType name="acl">

 <xsd:sequence>

 <xsd:element name="ace" type="ace" minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="aclList">

 <xsd:sequence>

 <xsd:element name="userACL" type="acl" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="ACLlist" type="aclList"/>

</xsd:schema>

88 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

10 Appendix E: Contact Management Schema

10.1 Contact Schema

<?xml version="1.0" ?>

<xs:schema id="contact"

 version="2.0"

 targetNamespace="http://schemas.microsoft.com/sip/types"

 xmlns:tns="http://schemas.microsoft.com/sip/types"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:annotation>

 <xs:documentation>

 Live Communications Server 2005 provides Instant Messaging

 capabilities among users in an enterprise. Users can store

 a list of contacts that they frequently communicate with on

 the server and retrieve / manage this list from any machine

 from which they log on to the service. This schema specifies

 the structure of XML instances containing contact-related

 data returned by the server.

 The server can return two types of contact lists.

 1. Full List - A full list of all contacts and their

 associated groups.

 2. Delta List - A list containing a subset of contacts and

 associated groups that were added, modified, or deleted

 from the Full List.

 List (1) is returned from the server in response to a SUBSCRIBE

 for the event vnd-microsoft-roaming-contact.

 List (2) is returned from the server in response to any of the

 SetContact, DeleteContact, DeleteGroup, or

 ModifyGroup SERVICE operations.

 These lists are returned by the server in NOTIFY / BENOTIFY

 requests generated by the server or in the body of a 200 OK

 response (also called as a "piggy-back notify").

 A Full List is a list of groups followed by a list of

 contacts. Groups are uniquely numbered. The particular

 numbering sequence is not persisted and may vary from one

 transmission to the next. Contacts are cross-referenced

 against groups using group ID numbers. Contacts must be

 in at least one group.

 A Delta List is a list of groups that were added and / or

 modified, followed by a list of contacts that were added

 and / or modified, followed by a list of groups that were

 deleted and finally followed by a list of contacts that

 were deleted.

 </xs:documentation>

 </xs:annotation>

 <xs:include schemaLocation="common.xsd" />

<!-- *************** Common Types *************** -->

89 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 <xs:simpleType name="groupID">

 <xs:annotation>

 <xs:documentation>

 This is a number assigned by a server to identify a group.

 This number can be uniquely used to associate a contact

 with a group.

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="xs:nonNegativeInteger">

 <xs:minInclusive value="0" />

 <xs:maxInclusive value="64" />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="groupList">

 <xs:restriction>

 <xs:list itemType="groupID" />

 <xs:maxLength value="64" />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="groupName">

 <xs:annotation>

 <xs:documentation>

 The length of this string cannot exceed 256 bytes.

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="xs:string" />

 </xs:simpleType>

 <xs:simpleType name="contactName">

 <xs:annotation>

 <xs:documentation>

 The length of this string cannot exceed 256 bytes.

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="xs:string" />

 </xs:simpleType>

 <xs:simpleType name="externalUri">

 <xs:restriction base="xs:string">

 <xs:annotation>

 <xs:documentation>

 Any string that points to an external resource. The

 server enforces that the raw representation of this

 string cannot exceed 1024 bytes.

 </xs:documentation>

 </xs:annotation>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="contactDeltaNum">

 <xs:annotation>

 <xs:documentation>

 The server maintains a single non-negative integer version

 number for the contact / group list of every user. Anytime

 the user performs an operation that modifies his

90 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 contact / group list, the version number gets incremented.

 The version number is returned to the client in the contact

 list allowing the client to determine if it has the most

 up-to-date information and to refresh the contact / group

 list if its state, as seen by the server, is out-of-sync.

 If the client's delta number is out-of-sync with the server,

 it can obtain the current value by subscribing to the

 vnd-microsoft-roaming-contact event and looking at the

 deltaNum attribute of the contactList element in the body

 of the notification data. The notification data will be

 received in the 200 OK response or in a separate NOTIIFY or

 BENOTIFY request from the server.

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="xs:nonNegativeInteger" />

 </xs:simpleType>

 <xs:complexType name="group">

 <xs:attribute name="id" type="tns:groupID" use="required" />

 <xs:attribute name="name" type="tns:groupName" use="required" />

 <xs:attribute name="externalURI" type="tns:externalUri">

 <xs:annotation>

 <xs:documentation>

 An external URI is a list of contacts that is stored

 elsewhere. For example this may point to a location in an

 LDAP directory.

 </xs:documentation>

 </xs:annotation>

 </xs:attribute>

 </xs:complexType>

 <xs:complexType name="contactExtension">

 <xs:annotation>

 <xs:documentation>

 This element is provided for extensibility. Any valid XML

 can be stored by the client. The server enforces a limit

 of 1024 bytes on the size of the element body, where the

 entire element body is treated as a single string.

 </xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:any namespace="##any"

 processContents="lax"

 minOccurs="0"

 maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="contact">

 <xs:sequence>

 <xs:element name="contactExtension"

 type="tns:contactExtension"

 minOccurs="0" maxOccurs="1" />

 </xs:sequence>

 <xs:attribute name="uri" type="tns:sipURI" use="required" />

 <xs:attribute name="name" type="tns:contactName" />

91 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 <xs:attribute name="groups" type="tns:groupList" default="0" />

 <xs:attribute name="subscribed" type="xs:boolean"

 default="true">

 <xs:annotation>

 <xs:documentation>

 This attribute specifies whether the client subscribes

 to this contact's presence.

 </xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="externalURI" type="tns:externalUri">

 <xs:annotation>

 <xs:documentation>

 Perhaps the contact is from the Outlook address book, an

 LDAP directory, or some other external source. A URL can

 be stored to obtain more information about this contact.

 </xs:documentation>

 </xs:annotation>

 </xs:attribute>

 </xs:complexType>

<!-- ********* Full List ********* -->

 <xs:complexType name="fullContactList">

 <xs:sequence>

 <xs:element name="group" type="tns:group" minOccurs="0"

 maxOccurs="64" />

 <xs:element name="contact" type="tns:contact" minOccurs="0"

 maxOccurs="unbounded" >

 <xs:annotation>

 <xs:documentation>

 Although the schema allows for an unbounded number of

 contacts, the administrator can configure a server to

 disallow more than a certain number of contacts.

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="deltaNum" type="tns:contactDeltaNum"

 use="required" />

 </xs:complexType>

 <xs:element name="contactList" type="tns:fullContactList" />

<!-- *********** Delta List *********** -->

 <xs:complexType name="deltaContactList">

 <xs:choice>

 <xs:element name="addedGroup" type="tns:group" />

 <xs:element name="modifiedGroup" type="tns:group" />

 <xs:element name="addedContact" type="tns:contact" />

 <xs:element name="modifiedContact" type="tns:contact" />

 <xs:element name="deletedGroup">

 <xs:complexType>

92 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 <xs:attribute name="id" type="tns:groupID"

 use="required" />

 </xs:complexType>

 </xs:element>

 <xs:element name="deletedContact">

 <xs:complexType>

 <xs:attribute name="uri" type="tns:sipURI"

 use="required" />

 </xs:complexType>

 </xs:element>

 </xs:choice>

 <xs:attribute name="deltaNum" type="tns:contactDeltaNum"

 use="required" >

 <xs:annotation>

 <xs:documentation>

 The value of this attribute is the new delta number

 after the SERVICE operation was performed.

 </xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="prevDeltaNum" type="tns:contactDeltaNum"

 use="required" >

 <xs:annotation>

 <xs:documentation>

 The value of this attribute equals the value of the

 delta number specified in the SERVICE operation.

 </xs:documentation>

 </xs:annotation>

 </xs:attribute>

 </xs:complexType>

 <xs:element name="contactDelta" type="tns:deltaContactList" />

</xs:schema>

10.2 SetContact Schema

<?xml version="1.0" ?>

<xs:schema id="SetContact" version="2.0"

 elementFormDefault="qualified"

 targetNamespace="http://schemas.microsoft.com/sip/types/setcontact/"

 xmlns:tns="http://schemas.microsoft.com/sip/types/setcontact/"

 xmlns:ct="http://schemas.microsoft.com/sip/types"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import namespace="http://schemas.microsoft.com/sip/types"

 schemaLocation="contact.xsd" />

 <xs:annotation>

 <xs:documentation>

 Users can add contacts to their contact list by sending a

 SIP SERVICE request to their Live Communications Server.

 The content of this SERVICE request is a SOAP request. The

 body of the SOAP request contains an XML instance conforming

93 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 to the structure specified in this schema.

 </xs:documentation>

 </xs:annotation>

 <xs:complexType name="SetContact">

 <xs:sequence>

 <xs:element name="displayName" type="ct:contactName" />

 <xs:element name="groups" type="ct:groupList" />

 <xs:element name="subscribed" type="xs:boolean" />

 <xs:element name="URI" type="ct:sipURI" />

 <xs:element name="externalURI" type="ct:externalUri"

 minOccurs="0" />

 <xs:element name="deltaNum" type="ct:contactDeltaNum" >

 <xs:annotation>

 <xs:documentation>

 This value must match the current delta number

 stored by the server.

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="contactExtension" type="tns:contactExtension"

 minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 <xs:element name="setContact" type="tns:SetContact" />

</xs:schema>

10.3 ModifyGroup Schema

<?xml version="1.0" ?>

<xs:schema id="ModifyGroup" version="2.0"

 elementFormDefault="qualified"

 targetNamespace=

 "http://schemas.microsoft.com/sip/types/modifygroup/"

 xmlns:tns="http://schemas.microsoft.com/sip/types/modifygroup/"

 xmlns:ct="http://schemas.microsoft.com/sip/types"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import namespace="http://schemas.microsoft.com/sip/types"

 schemaLocation="contact.xsd" />

 <xs:annotation>

 <xs:documentation>

 Users can add a new group or modify the name of an existing

 group by sending a SIP SERVICE request to their Live

 Communications Server. The content of this SERVICE request

 is a SOAP request. The body of the SOAP request contains

 an XML instance conforming to the structure specified in

 this schema.

 </xs:documentation>

 </xs:annotation>

 <xs:complexType name="ModifyGroup">

 <xs:sequence>

94 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 <xs:element name="groupID" type="ct:groupID" />

 <xs:element name="name" type="ct:groupName" />

 <xs:element name="externalURI" type="ct:externalUri"

 minOccurs="0" />

 <xs:element name="deltaNum" type="ct:contactDeltaNum" >

 <xs:annotation>

 <xs:documentation>

 This value must match the current delta number

 stored by the server.

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="modifyGroup" type="tns:ModifyGroup" />

 <xs:element name=”addGroup” type=”tns:ModifyGroup” />

</xs:schema>

10.4 DeleteContact Schema

<?xml version="1.0" ?>

<xs:schema id="DeleteContact" version="2.0"

 elementFormDefault="qualified"

 targetNamespace=

 "http://schemas.microsoft.com/sip/types/deletecontact/"

 xmlns:tns=

 "http://schemas.microsoft.com/sip/types/deletecontact/"

 xmlns:ct="http://schemas.microsoft.com/sip/types"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import namespace="http://schemas.microsoft.com/sip/types"

 schemaLocation="contact.xsd" />

 <xs:annotation>

 <xs:documentation>

 Users can delete contacts from their contact list by sending a

 SIP SERVICE request to their Live Communications Server.

 The content of this SERVICE request is a SOAP request. The

 body of the SOAP request contains an XML instance conforming

 to the structure specified in this schema.

 </xs:documentation>

 </xs:annotation>

 <xs:complexType name="DeleteContact">

 <xs:sequence>

 <xs:element name="URI" type="ct:sipURI" />

 </xs:sequence>

 </xs:complexType>

 <xs:element name="deleteContact" type="tns:DeleteContact" />

</xs:schema>

95 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

10.5 DeleteGroup Schema

<?xml version="1.0" ?

<xs:schema id="DeleteGroup" version="2.0"

 elementFormDefault="qualified"

 targetNamespace=

 "http://schemas.microsoft.com/sip/types/deletegroup/"

 xmlns:tns="http://schemas.microsoft.com/sip/types/deletegroup/"

 xmlns:ct="http://schemas.microsoft.com/sip/types"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import namespace="http://schemas.microsoft.com/sip/types"

 schemaLocation="contact.xsd" />

<xs:annotation>

 <xs:documentation>

 Users can delete existing groups by sending a SIP SERVICE

 request to their Live Communications Server. The content of

 this SERVICE request is a SOAP request. The body of the SOAP

 request contains an XML instance conforming to the structure

 specified in this schema.

 NOTE: Before a group can be deleted all contacts must be

 removed from the group using DeleteContact operations.

 </xs:documentation>

 </xs:annotation>

<xs:complexType name="DeleteGroup">

 <xs:sequence>

 <xs:element name="groupID" type="ct:groupID" />

 <xs:element name="deltaNum" type="ct:contactDeltaNum" >

 <xs:annotation>

 <xs:documentation>

 This value must match the current delta number

 stored by the server.

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="deleteGroup" type="tns:DeleteGroup" />

</xs:schema>

96 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

11 Appendix F : common.xsd

<?xml version="1.0" ?>

<xs:schema id="contact" version="2.0"

 targetNamespace="http://schemas.microsoft.com/sip/types"

 xmlns:tns="http://schemas.microsoft.com/sip/types"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="adAttribute">

 <xs:restriction base="xs:token">

 <xs:minLength value="1" />

 <xs:pattern value="\w+" />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="sipURI">

 <xs:annotation>

 <xs:documentation>

 The format of a SIP URI is sip:user@host. The user portion

 of the URI is treated as case-sensitive while the host portion

 is treated as case-insensitive.

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="xs:anyURI">

 <xs:maxLength value="454" />

 <xs:pattern value="sip:\w+@\w+" />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="displayName">

 <xs:annotation>

 <xs:documentation>

 This value is retrieved by the server from the Active Directory

 'displayName' attribute on the user object.

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="tns:adAttribute" />

 </xs:simpleType>

 <xs:simpleType name="email">

 <xs:annotation>

 <xs:documentation>

 This value is retrieved by the server from the Active Directory

 'mail' attribute on the user object.

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="tns:adAttribute" />

 </xs:simpleType>

 <xs:simpleType name="phone">

 <xs:annotation>

 <xs:documentation>

 This value is retrieved by the server from the Active Directory

 'telephoneNumber' attribute on the user object.

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="tns:adAttribute" />

 </xs:simpleType>

97 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 <xs:simpleType name="title">

 <xs:annotation>

 <xs:documentation>

 This value is retrieved by the server from the Active Directory

 'title' attribute on the user object.

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="tns:adAttribute" />

 </xs:simpleType>

 <xs:simpleType name="office">

 <xs:annotation>

 <xs:documentation>

 This value is retrieved by the server from the Active Directory

 'physicalDeliveryOfficeName' attribute on the user object.

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="tns:adAttribute" />

 </xs:simpleType>

 <xs:simpleType name="company">

 <xs:annotation>

 <xs:documentation>

 This value is retrieved by the server from the Active Directory

 'company' attribute on the user object.

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="tns:adAttribute" />

 </xs:simpleType>

 <xs:simpleType name="city">

 <xs:annotation>

 <xs:documentation>

 This value is retrieved by the server from the Active Directory

 'l' attribute on the user object.

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="tns:adAttribute" />

 </xs:simpleType>

 <xs:simpleType name="state">

 <xs:annotation>

 <xs:documentation>

 This value is retrieved by the server from the Active Directory

 'st' attribute on the user object.

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="tns:adAttribute" />

 </xs:simpleType>

 <xs:simpleType name="country">

 <xs:annotation>

 <xs:documentation>

 This value is retrieved by the server from the Active Directory

 'c' attribute on the user object.

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="tns:adAttribute" />

98 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 </xs:simpleType>

</xs:schema>

99 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

12 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

100 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

13 Index

200 OK
piggyback notification in 37
receiving a piggyback notification in 38
response to SUBSCRIBE 42

A

Abstract data model
Auto-extension of Subscriptions 41
Batched SUBSCRIBE and NOTIFY Extensions 31
Best Effort NOTIFY Extension 39
Contact Management Extensions 44
NTLM/Kerberos Authentication Extensions 21
Piggyback Notification in 200 OK Response 38
Presence Extensions 27

Access Control List (ACL)
receiving from server 47
subscribing for 46

ACEs 46
ACL XML schema 85
Add/Modify/Delete Contact 46
Add/Modify/Delete Group 46
AddContact example 64
AddGroup example 66
Applicability 12
Authentication protocol elements 23
Auto-extension of Subscriptions

abstract data model 41
higher-layer triggered events 42
initialization 42
message processing 42
overview 41
sequencing rules 42
timers 41

B

Batched SUBSCRIBE and NOTIFY Extensions
abstract data model 31
higher-layer triggered events 31
initialization (section 3.3.2 31, section 3.3.3 31)
message processing 34
overview 31
sequencing rules 34

BENOTIFY
extension overview 39
receiving 41

Best Effort NOTIFY example 60
Best Effort NOTIFY Extension

abstract data model 39
higher-layer triggered events 40
initialization 40
message processing 40
overview 39
sequencing rules 40
support 40
timers 40

C

Capability negotiation 12
Change tracking 99
Contact List 47
Contact Management Extensions

abstract data model 44
higher-layer triggered events 45
initialization 45
message processing 46
overview 43
sequencing rules 46
timers 45

Contact management schema 88
Contact/Group list 45

D

Data model - abstract
Auto-extension of Subscriptions 41
Batched SUBSCRIBE and NOTIFY Extensions 31
Best Effort NOTIFY Extension 39
Contact Management Extensions 44
NTLM/Kerberos Authentication Extensions 21
Piggyback Notification in 200 OK Response 38
Presence Extensions 27

DeleteContact example 65
DeleteGroup example 68
Directory service schema elements 19

E

Examples
AddContact example 64
AddGroup example 66
Best Effort NOTIFY example 60
DeleteContact example 65
DeleteGroup example 68
Kerberos example 48

NTLM example 52
overview 48
setPresence example 62
SUBSCRIBE and Piggybacked NOTIFY example 58

F

Fields - vendor-extensible 12
Full text/xml+msrtc.pidf Presence Document

Format 75

G

getPresence SERVICE Request 30
Glossary 7

H

Higher-layer triggered events
Auto-extension of Subscriptions 42
Batched SUBSCRIBE and NOTIFY Extensions 31
Best Effort NOTIFY Extension 40

101 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Contact Management Extensions 45
NTLM/Kerberos Authentication Extensions 21
Piggyback Notification in 200 OK Response 38
Presence Extensions 28

I

Implementer - security considerations 73
Index of security parameters 73
Informative references 10
Initialization

Auto-extension of Subscriptions 42
Batched SUBSCRIBE and NOTIFY Extensions 31
Best Effort NOTIFY Extension 40
Contact Management Extensions 45
NTLM/Kerberos Authentication Extensions 21
Piggyback Notification in 200 OK Response 38
Presence Extensions 28

Introduction 7

K

Kerberos example 48

L

Login sequence 21

M

Message processing
Auto-extension of Subscriptions 42
Batched SUBSCRIBE and NOTIFY Extensions 34
Best Effort NOTIFY Extension 40
Contact Management Extensions 46
NTLM/Kerberos Authentication Extensions 23
Piggyback Notification in 200 OK Response 38
Presence Extensions 30

Messages
overview 13
signature 26
syntax 13
transport 13

N

Normative references 9
NOTIFY 43
NOTIFY response 34

NTLM example 52
NTLM/Kerberos Authentication Extensions

abstract data model 21
elements 23
higher-layer triggered events 21
initialization 21
message processing 23
overview 20
proxy=replace 26
sequencing rules 23
timers 21

O

Overview 11

P

Parameters - security index 73
Piggyback Notification - indicating support for 38
Piggyback Notification in 200 OK Response

abstract data model 38
higher-layer triggered events 38
initialization 38
message processing 38
overview 37
sequencing rules 38
timers 38

Piggyback Notification in a 200 OK Response
receiving 38

Preconditions 12
Prerequisites 12
Presence Document Format

described 81
extensions 15
text/xml+msrtc.pidf 13

Presence Extensions
abstract data model 27
higher-layer triggered events 28
initialization 28
message processing 30
overview 26
sequencing rules 30
support 28
timers 27

Presence for Self User (setPresence SERVICE
Request) 28

Presence information
of another user (getPresence SERVICE Request)

29
subscribing to 29

Product behavior 74
proxy=replace 26

R

References
informative 10
normative 9

Relationship to other protocols 12

S

Security
implementer considerations 73
overview 73
parameter index 73

Self User (setPresence SERVICE Request) 28
Sequencing rules

Auto-extension of Subscriptions 42
Batched SUBSCRIBE and NOTIFY Extensions 34

Best Effort NOTIFY Extension 40
Contact Management Extensions 46
NTLM/Kerberos Authentication Extensions 23
Piggyback Notification in 200 OK Response 38
Presence Extensions 30

102 / 102

[MS-SIP] — v20110204
 Session Initiation Protocol Extensions

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

setPresence example 62
Signatures 26
SIP Extensions to XPIDF Presence Document

Format 15
SIP message 21
Standards assignments 12
SUBSCRIBE

200 OK response to 42
receiving a Failure response to 40
receiving a success response to 40

SUBSCRIBE and Piggybacked NOTIFY example 58
SUBSCRIBE request

Failure response 37
sending 31

Subscriptions indicating support for auto-extension
of 42

Support - Best Effort NOTIFY Extension 40
Syntax 13

T

text/xml+msrtc.pidf Presence Document Format 13
Timers

Auto-extension of Subscriptions 41
Batched SUBSCRIBE and NOTIFY Extensions 31
Best Effort NOTIFY Extension 40
Contact Management Extensions 45
NTLM/Kerberos Authentication Extensions 21
Piggyback Notification in 200 OK Response 38
Presence Extensions 27

Tracking changes 99
Transport 13
Triggered events - higher-layer

Auto-extension of Subscriptions 42
Batched SUBSCRIBE and NOTIFY Extensions 31
Best Effort NOTIFY Extension 40
Contact Management Extensions 45
NTLM/Kerberos Authentication Extensions 21
Piggyback Notification in 200 OK Response 38
Presence Extensions 28

V

Vendor-extensible fields 12
Versioning 12

X

XPIDF Presence Document Format 81

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 text/xml+msrtc.pidf Presence Document Format
	2.2.2 SIP Extensions to XPIDF Presence Document Format
	2.2.3 application/vnd-microsoft-roaming-acls+xml Document Format
	2.2.4 Contacts/Groups Document Formats
	2.2.4.1 application/vnd-microsoft-roaming-contacts+xml Document Format
	2.2.4.2 Contacts/Groups Management Document Formats

	2.3 Directory Service Schema Elements

	3 Protocol Details
	3.1 NTLM/Kerberos Authentication Extensions Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Initiating the Login Sequence
	3.1.4.2 Sending a SIP Message

	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Overview of Authentication Protocol Elements
	3.1.5.2 Verifying Message Signature for Incoming Messages
	3.1.5.3 proxy=replace Extension for Firewall Traversal

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Presence Extensions Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.4.1 Indicating Support for Presence Extensions
	3.2.4.2 Setting Presence for Self User (setPresence SERVICE Request)
	3.2.4.3 Subscribing to a User's Presence Information
	3.2.4.4 Getting Presence Information of Another User (getPresence SERVICE Request)

	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Processing Response to a getPresence SERVICE Request

	3.2.6 Timer Events
	3.2.7 Other Local Events

	3.3 Batched SUBSCRIBE and NOTIFY Extension Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.4.1 Sending a Batched SUBSCRIBE Request

	3.3.5 Message Processing Events and Sequencing Rules
	3.3.5.1 Receiving a NOTIFY Response to a Batched SUBSCRIBE Request
	3.3.5.2 Receiving a Failure Response to a Batched SUBSCRIBE Request

	3.3.6 Timer Events
	3.3.7 Other Local Events

	3.4 Piggyback Notification in 200 OK Response Details
	3.4.1 Abstract Data Model
	3.4.2 Timers
	3.4.3 Initialization
	3.4.4 Higher-Layer Triggered Events
	3.4.4.1 Indicating Support for Piggyback Notification

	3.4.5 Message Processing Events and Sequencing Rules
	3.4.5.1 Receiving a Piggyback Notification in a 200 OK

	3.4.6 Timer Events
	3.4.7 Other Local Events

	3.5 Best Effort NOTIFY (BENOTIFY) Extension Details
	3.5.1 Abstract Data Model
	3.5.1.1 Indicating Support for BENOTIFY

	3.5.2 Timers
	3.5.3 Initialization
	3.5.4 Higher-Layer Triggered Events
	3.5.5 Message Processing Events and Sequencing Rules
	3.5.5.1 Receiving a Failure Response to SUBSCRIBE
	3.5.5.2 Receiving a Success Response to SUBSCRIBE
	3.5.5.3 Receiving a BENOTIFY Request

	3.5.6 Timer Events
	3.5.7 Other Local Events

	3.6 Auto-Extension of Subscriptions Details
	3.6.1 Abstract Data Model
	3.6.2 Timers
	3.6.3 Initialization
	3.6.4 Higher-Layer Triggered Events
	3.6.4.1 Indicating Support for Auto-Extension of Subscriptions

	3.6.5 Message Processing Events and Sequencing Rules
	3.6.5.1 Receiving a 200 OK Response to SUBSCRIBE
	3.6.5.2 Receiving a NOTIFY Request

	3.6.6 Timer Events
	3.6.7 Other Local Events

	3.7 Contact Management Extensions Details
	3.7.1 Abstract Data Model
	3.7.2 Timers
	3.7.3 Initialization
	3.7.4 Higher-Layer Triggered Events
	3.7.4.1 Subscribing to the Contact/Group List
	3.7.4.2 Subscribing for the ACL
	3.7.4.3 Add/Modify/Delete Contact
	3.7.4.4 Add/Modify/Delete Group

	3.7.5 Message Processing Events and Sequencing Rules
	3.7.5.1 Setting ACEs for a Contact
	3.7.5.2 Receiving the Contact List from the Server
	3.7.5.3 Receiving the ACL from the Server

	3.7.6 Timer Events
	3.7.7 Other Local Events

	4 Protocol Examples
	4.1 Registration with Kerberos
	4.2 Registration with NTLM
	4.3 Batched SUBSCRIBE and Piggybacked NOTIFY Example
	4.4 Best Effort NOTIFY Example
	4.5 setPresence Example
	4.6 AddContact Example
	4.7 DeleteContact Example
	4.8 AddGroup Example
	4.9 DeleteGroup Example
	4.10 setACE Example
	4.11 P2P Subscription and XPIDF Presence Format Example

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Appendix B: Full text/xml+msrtc.pidf Presence Document Format
	8 Appendix C: XPIDF Presence Document Format
	9 Appendix D: ACL XML Schema
	10 Appendix E: Contact Management Schema
	10.1 Contact Schema
	10.2 SetContact Schema
	10.3 ModifyGroup Schema
	10.4 DeleteContact Schema
	10.5 DeleteGroup Schema

	11 Appendix F : common.xsd
	12 Change Tracking
	13 Index

