[MS-RDPESC]:
Remote Desktop Protocol:
Smart Card Virtual Channel Extension

Intellectual Property Rights Notice for Open Specifications Documentation

= Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

= Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

= No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

= Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft's Open Specification Promise (available here:
http://www.microsoft.com/interop/osp) or the Community Promise (available here:
http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if
the technologies described in the Open Specifications are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

= Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights.

= Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

1/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

Revision Summary

Revision Revision
Date History Class Comments
06/01/2007 1.0 Major Updated and revised the technical content.
07/03/2007 1.0.1 Editorial Revised and edited the technical content.
07/20/2007 1.0.2 Editorial Revised and edited the technical content.
08/10/2007 1.0.3 Editorial Revised and edited the technical content.
09/28/2007 1.0.4 Editorial Revised and edited the technical content.
10/23/2007 1.0.5 Editorial Revised and edited the technical content.
11/30/2007 2.0 Major Normative reference.
01/25/2008 2.0.1 Editorial Revised and edited the technical content.
03/14/2008 2.0.2 Editorial Revised and edited the technical content.
05/16/2008 | 2.0.3 Editorial Revised and edited the technical content.
06/20/2008 | 2.0.4 Editorial Revised and edited the technical content.
07/25/2008 | 2.0.5 Editorial Revised and edited the technical content.
08/29/2008 | 2.0.6 Editorial Revised and edited the technical content.
10/24/2008 | 2.0.7 Editorial Revised and edited the technical content.
12/05/2008 3.0 Major Updated and revised the technical content.
01/16/2009 3.0.1 Editorial Revised and edited the technical content.
02/27/2009 3.0.2 Editorial Revised and edited the technical content.
04/10/2009 3.0.3 Editorial Revised and edited the technical content.
05/22/2009 4.0 Major Updated and revised the technical content.
07/02/2009 4.0.1 Editorial Revised and edited the technical content.
08/14/2009 4.0.2 Editorial Revised and edited the technical content.
09/25/2009 | 4.1 Minor Updated the technical content.
11/06/2009 | 4.1.1 Editorial Revised and edited the technical content.
12/18/2009 5.0 Major Updated and revised the technical content.
01/29/2010 5.1 Minor Updated the technical content.
03/12/2010 | 6.0 Major Updated and revised the technical content.

[MS-RDPESC] — v20110204

Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

2/93

Revision Revision

Date History Class Comments

04/23/2010 7.0 Major Updated and revised the technical content.
06/04/2010 8.0 Major Updated and revised the technical content.
07/16/2010 | 8.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/27/2010 | 8.0 No change No changes to the meaning, language, or formatting of
the technical content.

10/08/2010 | 8.0 No change No changes to the meaning, language, or formatting of
the technical content.

11/19/2010 | 8.0 No change No changes to the meaning, language, or formatting of
the technical content.

01/07/2011 8.0 No change No changes to the meaning, language, or formatting of
the technical content.

02/11/2011 | 8.0 No change No changes to the meaning, language, or formatting of
the technical content.

3/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

Contents

IS 3 1 o X [T o o oY 3 R 10
3 A €] [0 111 oV PP 10
A 2= <Y /=) Lol I 11

1.2.1 NOIrMaAtivVe RE EIENCES . vttt it ittt e e e e e raa e raeeraaernes 11

1.2.2 INformative REfEIENCES . vttt it a e e e st saa e e s e raeranes 12
B T 1 =T YT T 12
1.4 Relationship to Other ProtoCoIS. ...t e e 15
1.5 Prerequisites/Preconditionsiiiiiiiiiii i 15
1.6 Applicability Statement....c.oiiii i 15
1.7 Versioning and Capability Negotiation..........ciiiiiiiiii e 15
R & T Y4 <Y o T o] =g =Y 1= | o LS =] o 1= 16
1.9 Standards ASSIGNMENTES ...t e 16

7 =TT T 1T 17
200 R I 4= 1= oo T 17
A ©e] 2] n aTe] T B E= Y= T NV o =T PP 17

2.2.1 COMMON SErUCEUINES . ittt i e s r e s s e e e s e s e e s rrareraaseeerarareras 17
2.2.1.1 REDIR _SCARD CONTEXT tuutttutttitttintetettintsieeriseratesanesensssanrsineernseraermieennns 17
2.2.1.2 REDIR_SCARDHANDLE ... ittt i ii i st it it a e satsaatssaeeiaseraresaraeanseas 17
2.2.1.3 CONNECE _COMIMION tittttiiiiiiiiratateteeesssesassssasssssesesssstesassnsssssseressssresssnnnsasnnes 18
B R W o Yor= | (=1 0T o [N I N = 1] 18
2.2.1.5 ReaderState_Common_Call....coiiiiiiii i e 18
B R S T 2 == T 1T] o= | A 19
A TR N (=Y T =]) =1 =L 19
2.2.1.8 SCardIO _REGUESTE c.itiitiiii i e 20
2000 WS B = U=T- T [Tl o V=T ©(o Y 5.9 o JPUP 20
2.2.1.10 WriteCathe CoOMIMION utttiirttttiittetsanssessanseesranssessassseranssessssssssrassssesssnsrerns 20
B T B R S =Y Yo [T o = L ST 21001 o I 21

2.2.2 TS Server-Generated StrUuCTUMES ...o.iiiiiiiii i e i aee s 21
2.2.2.1 EstablishConteXt Call....uiiiiieiiiiiiii i i e e saas e raseessanereras 21
2.2.2.2 CoNtEXE _Call cuiiiii i i e 22
2.2.2.3 ListReaderGroups_Callcciiiiiiiiiiii i 22
2.2.2.4 LiStREAAErS _Call.coieiiiiiii it i i e e 23
2.2.2.5 ContextAndStringA_Call ...o.oiiiiii i 23
2.2.2.6 ContextANdStringW _Call.....cceiriiiiiii i 24
2.2.2.7 ContextAndTwWOSERNGA_Call... ..o e 24
2.2.2.8 ContextAndTwoSERNGW_Callo e e e 25
2.2.2.9 LoCateCardsA _Call ...ciieiiiii i e 26
2.2.2.10 LOCAtECArdSW _Call tiiiriiiiiieiiiiiiii it e et s et e rasr e s sase e e rasaeessararerns 26
2.2.2.11 GetStatusChangeA_Call ..o 27
2.2.2.12 GetStatusChangeW _Call ... e e 27
A G T @ Y o 1= f N 7= | | 28
2.2.2.14 ConNECEW _Call ittt 28
B N N (=Yoo Y | 1=V ol r- | 28
2.2.2.16 HCardAndDisposition_Callcieiiiiiiiii e 29
B A N A) - o =Y - || S 29
2.2.2.18 StAtUS_Call ttiiriitiii it i e 30
2.2.2.19 Transmit_Call .cuueiiei i it e et aaea 31
2.2.2.20 CoNtrol _Call ittt it i e e reaaea 32
2.2.2.21 GetALErID _Call e e 32

4/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

2.2.2.22 SetALEriD_Call. ettt e
2.2.2.23 LocateCardsBYATRA_Call ...ocviiiiiiii i e
2.2.2.24 LocateCardsByATRW_Callccoiiiiiiiii s
2.2.2.25 ReadCacheA _Call ..iiiiiiiiiiiiiiiiiiiii i i s i e e ssarreeranaes
2.2.2.26 ReadCacheW _Call .iiiiiiiiiiiiiiiiiiiiiiitesiiistisiiiasessinssssrarssessanssssranans
2.2.2.27 WriteCacheA _Call ..o e
2.2.2.28 WriteCacheW _Call...civriiiiiiiiiiiii it i sii s i e s saas e e ranas
2.2.2.29 GetTransmitCount_Call......ccoiiiiiiiiiiiiii i i e
2.2.2.30 ScardAccessStartedEvent _Call.....c.ovviiiiiiiiiiiiiiiie e,
2.2.3 TS Client-Generated StrUuCtUrESiv i it i it i rir e rnaareranaes
2.2.3.1 ReadCache REEUIMN tiiiiiiii i i i e siae e e e s saaseeraraes
2.2.3.2 EstablishConteXt_ ReUIM ..iivviiiiiiiii i i e s e ranas
2.2.3.3 LONG_REEUMN «. .t e
2.2.3.4 ListReaderGroups_Return and ListReaders_Return............ccocevvivinennen.
2.2.3.5 LocateCards_Return and GetStatusChange_Return...........ccoevivvinennen.

B G TR < T O 1 o o H (=1 o1 |
2.2.3.7 RECONNECE_REEUIMN L et i e e e e aes
2.2.3.8 CoNNECE _ REIUIMN Lottt i i et e et
B RS T Y = | =Y (= L1 1 o
2.2.3.10 Status_RETUM .o i s
B T O R I =Y = 1 1 o U= (U
2.2.3.12 GetAttrib_RetUM ..o e
2.2.3.13 GetTransmitCount RetUIM .. i it e e e e ras
2.2.4 Card/Reader Statl....ciiiiiii i e
A S o] /o e YoleY I e [T o) 1=
2.2.6 ACCESS MOAE Flags .. uuviuiiitiiiiiii ittt et e e e e e e e aereas
A A £ =T T 1= gl =) o=
B < T 2 U= o 1 o T o T [
3 Protocol DetailS....iccuiiiiiiirrnnssurs s srsns s sr s r s a s r s nraranrnaannnnnn

I I N = o) e Yol o] IS Y= V=Tl 5 o= 1
3.1.1 Abstract Data MoOdel ..oviiiiiiiiiii i i i

0 I 0 =T =

3.1.3 INitialization ..o e

3.1.4 Message Processing Events and Sequencing Rules............cveviviiiiinnnnnnn.
3.1.4.1 SCARD_IOCTL_ESTABLISHCONTEXT (IOCTL 0x00090014)ccuevnns
3.1.4.2 SCARD_IOCTL_RELEASECONTEXT (IOCTL 0x00090018).......vvvvvvrnnnnnns
3.1.4.3 SCARD_IOCTL_ISVALIDCONTEXT (IOCTL 0x0009001C)ccvvvuvrninennnns
3.1.4.4 SCARD_IOCTL_ACCESSSTARTEDEVENT (IOCTL 0x000900EOQ).............
3.1.4.5 SCARD_IOCTL_LISTREADERGROUPSA (IOCTL 0x00090020)...............
3.1.4.6 SCARD_IOCTL_LISTREADERGROUPSW (IOCTL 0x00090024)
3.1.4.7 SCARD_IOCTL_LISTREADERSA (IOCTL 0x00090028)cccvvvvvrarnrnnnnnns
3.1.4.8 SCARD_IOCTL_LISTREADERSW (IOCTL 0xX0009002C)ccvuvvvineininennnns
3.1.4.9 SCARD_IOCTL_INTRODUCEREADERGROUPA (IOCTL 0x00090050)
3.1.4.10 SCARD_IOCTL_INTRODUCEREADERGROUPW (IOCTL 0x00090054)
3.1.4.11 SCARD_IOCTL_FORGETREADERGROUPA (IOCTL 0x00090058)
3.1.4.12 SCARD_IOCTL_FORGETREADERGROUPW (IOCTL 0x0009005C)
3.1.4.13 SCARD_IOCTL_INTRODUCEREADERA (IOCTL 0x00090060)
3.1.4.14 SCARD_IOCTL_INTRODUCEREADERW (IOCTL 0x00090064)..............
3.1.4.15 SCARD_IOCTL_FORGETREADERA (IOCTL 0x00090068)ccevuvuennnns
3.1.4.16 SCARD_IOCTL_FORGETREADERW (IOCTL 0x0009006C)cuvuunvnn.
3.1.4.17 SCARD_IOCTL_ADDREADERTOGROUPA (IOCTL 0x00090070)
3.1.4.18 SCARD_IOCTL_ADDREADERTOGROUPW (IOCTL 0x00090074)

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

3.1.4.19 SCARD_IOCTL_REMOVEREADERFROMGROUPA (IOCTL 0x00090078) 59
3.1.4.20 SCARD_IOCTL_REMOVEREADERFROMGROUPW (IOCTL 0x0009007C) 59
3.1.4.21 SCARD_IOCTL_LOCATECARDSA (IOCTL 0X00090098)vivieieininiineeeenanens 59
3.1.4.22 SCARD_IOCTL_LOCATECARDSW (IOCTL 0X0009009C)ivvuivininininininenenanans 59
3.1.4.23 SCARD_IOCTL_GETSTATUSCHANGEA (IOCTL 0X000900A0)ivvuininininenenanans 60
3.1.4.24 SCARD_IOCTL_GETSTATUSCHANGEW (IOCTL OX000900A4)cvivninenenenannns 60
3.1.4.25 SCARD_IOCTL_LOCATECARDSBYATRA (IOCTL OX000900E8)......cccvvvuineneannns 60
3.1.4.26 SCARD_IOCTL_LOCATECARDSBYATRW (IOCTL OX000900EC).......ccvvieuenenannns 60
3.1.4.27 SCARD_IOCTL_CANCEL (IOCTL OX000900A8) ...uiuiuinineieinrarnininiinininenenaraans 60
3.1.4.28 SCARD_IOCTL_CONNECTA (IOCTL OXO00900AC) ...ucucueeieierninaneneeeeeaenannns 61
3.1.4.29 SCARD_IOCTL_CONNECTW (IOCTL OX000900B0) ...cuvueeierernrnininiiinenenerannns 61
3.1.4.30 SCARD_IOCTL_DISCONNECT (IOCTL OX000900B8).....citverereinininiiiinenenanns 61
3.1.4.31 SCARD_IOCTL_BEGINTRANSACTION (IOCTL OX000900BC).....cuvuvuinenenenenannns 61
3.1.4.32 SCARD_IOCTL_ENDTRANSACTION (IOCTL OX000900C0) ..uvuvvvnininininenenenanans 61
3.1.4.33 SCARD_IOCTL_STATUSA (IOCTL OXO00900C8) ..euvurueueeeerernaneneraeeneaeannns 62
3.1.4.34 SCARD_IOCTL_STATUSW (IOCTL OXO00900CC) ..uvuiuinererernrnrnrniniininenenarannns 62
3.1.4.35 SCARD_IOCTL_TRANSMIT (IOCTL OX000900D0).....cieeeierernrnrnenerenenerernnnns 62
3.1.4.36 SCARD_IOCTL_RECONNECT (IOCTL OX000900B4)ceieeiereinaneneieenenennnns 62
3.1.4.37 SCARD_IOCTL_CONTROL (IOCTL OX000900D4)......ciiieieiererninininiiinenenanaans 62
3.1.4.38 SCARD_IOCTL_GETATTRIB (IOCTL OX000900D8) ...cuvueeeiernrnnnenreneaenenennnnns 63
3.1.4.39 SCARD_IOCTL_SETATTRIB (IOCTL OX000900DC) ...cuvueieieierainininiiiinenaaans 63
3.1.4.40 SCARD_IOCTL_STATE (IOCTL OX000900CA). . uiuiuiueneeiererernrnaneneneenenenennnnns 63
3.1.4.41 SCARD_IOCTL_GETTRANSMITCOUNT (IOCTL 0X00090100) ...evvvuininininenenanans 63
3.1.4.42 SCARD_IOCTL_READCACHEA (IOCTL OXO00900F0) .. cicitieiereinanenreenenenenenans 63
3.1.4.43 SCARD_IOCTL_READCACHEW (IOCTL OX000900F4)....cicivieieieiiiieenenenenans 64
3.1.4.44 SCARD_IOCTL_WRITECACHEA (IOCTL OX000900F8)cvvvvieinininiiininenenanans 64
3.1.4.45 SCARD_IOCTL_WRITECACHEW (IOCTL OX000900FC) ..cvivieieieinieieeenenenans 64
3.1.4.46 SCARD_IOCTL_RELEASETARTEDEVENTciviviiiiiiiiniieinieniniseiiieenenanans 64
0 T I 0 1=l =T o P 64
3.1.6 Other Local EVENES ..uiuiiiiiiiiii e 64
3.2 Protocol Client Detailsouieieiiii i 65
3.2.1 Abstract Data Modelc.oeoiiiiiii s 65
07200 1 0 =T = 65
3.2.3 INAliZation ..o 65
3.2.4 Higher-Layer Triggered EVENESviuiiiiiiii i e e e e eaaens 65
3.2.5 Message Processing Events and Sequencing RUlES.........cocoiiiiiiiiiiiiiiiineieeens 65
3.2.5.1 Sending OUutgoiNg MESSag@S . uuiuiiiiiitititiitatet ettt re e e e e reaeaenees 65
3.2.5.2 Processing INCOMING REPIES ...viuiiiiiiiiiiiiiii i e e 65
T TG T =17 =T T 1= 66
3.2.5.3.1 Sending EstablishContext MeSSagec.cvvviiiiiiiiiiiiiii i e ens 66
3.2.5.3.2 Processing EstablishContext Replycccovviiiiiiiiiii s 66
3.2.5.3.3 Sending ReleaseContext MeSSage....c.uuviiriiiiriieiiiiiaiiieiiiraaiereaeaanereanens 66
3.2.5.3.4 Processing ReleaseConteXt ReplYcccuiiiiiiiiiiiiiiiii s 66
3.2.5.3.5 Sending IntroduceReader (ASCII) ME@SSAQEcevvvuiiriniiniiinriieineneananernaens 66
3.2.5.3.6 Processing IntroduceReader (ASCII) Reply ...ccvveiiiiiiiiiiiiiiiii i 66
3.2.5.3.7 Sending IntroduceReader (Unicode) Messageccoovieieiiiiniiiniiinnneinnnns 66
3.2.5.3.8 Processing IntroduceReader (Unicode) Reply ...ccvvvviiiiiiiiiiiiiiiiiieiiiiaeens 66
3.2.5.3.9 Sending ForgetReader (ASCII) MESSAgEocvuriueieiiitieieiiea et iaeaeeaeaaenens 66
3.2.5.3.10 Processing ForgetReader (ASCII) REPIY ...ouivininiiiiiiiiiiie e 66
3.2.5.3.11 Sending ForgetReader (Unicode) Messagecccevvviiieiiiiiiiiiniiiiiieinanens 67
3.2.5.3.12 Processing ForgetReader (Unicode) Replyccooviiiiiiiiiiiiiiiiiiiiiiiieeene 67
3.2.5.3.13 Sending IntroduceReaderGroup (ASCII) MeSSageccvvvvrernrrininininenenens. 67
3.2.5.3.14 Processing IntroduceReaderGroup (ASCII) Replycccviiiiiiiiiiiiniieinnnns 67
6/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

3.2.5.3.15 Sending IntroduceReaderGroup (Unicode) MesSsagec.cvvvvvvninrnenenene. 67
3.2.5.3.16 Processing IntroduceReaderGroup (Unicode) Replyccvvvviiiiiiiiiiiinnnnnnn. 67
3.2.5.3.17 Sending ForgetReaderGroup (ASCII) MESSage......ccvuviuiniiiiniiniiniieinnnens 67
3.2.5.3.18 Processing ForgetReaderGroup (ASCII) Reply ..cciveiiiiiiiiiiiiiiiieicieecea 67
3.2.5.3.19 Sending ForgetReaderGroup (ASCII) MESSage.....ccvvviiriiriireiniiieiieiieninnnss 67
3.2.5.3.20 Processing ForgetReaderGroup (Unicode) Replycocevvviiiiiiiiiiiiniiiiinnnns 67
3.2.5.3.21 Sending AddReaderToGroup (ASCII) MESSAgEctiitiiiiiiiiiiiiiieiieiieeannss 68
3.2.5.3.22 Processing AddReaderToGroup (ASCII) Reply......covviiiiiiiiiiiiiiiiiieens 68
3.2.5.3.23 Sending AddReaderToGroup (Unicode) Message........ccvvvviiiiiiiiiiiinnnnnnns. 68
3.2.5.3.24 Processing AddReaderToGroup (Unicode) Reply......cccevviiiiiiiiiiiiiiiiiiinnnns 68
3.2.5.3.25 Sending RemoveReaderFromGroup (ASCII) MeSSagecvvvvvvreiniinnnnnnns. 68
3.2.5.3.26 Processing RemoveReaderFromGroup (ASCII) Reply ..ccovvvviiiiiiiiiiiinnnnnn. 68
3.2.5.3.27 Sending RemoveReaderFromGroup (Unicode) Messagecevvvneinnnens 68
3.2.5.3.28 Processing RemoveReaderFromGroup (Unicode) Reply......covvvvviiiinnnnnnn. 68
3.2.5.3.29 Sending ListReaderGroups (ASCII) ME@SSAQgEccevriuiiniiiiiniiniiiaiieiaaaens 68
3.2.5.3.30 Processing ListReaderGroups (ASCII) RePIY ...iiviiiiiiiiiiiiiii i 68
3.2.5.3.31 Sending ListReaderGroups (Unicode) Messageccvviiirieinininnneinnnns 69
3.2.5.3.32 Processing ListReaderGroups (Unicode) Replyccooviviiiiiiiiiiiiiiiiieens 69
3.2.5.3.33 Sending ListReaders (ASCII) MESSAGEicvvrieiriiirieiniiraraneinanrananeinanens 69
3.2.5.3.34 Processing ListReadersReply (ASCII) Replyccoviiiiiiiiiiiiiiiiiiiiiieiaeens 69
3.2.5.3.35 Sending ListReaders (Unicode) MeSSagecevviiiriiiniiinriieineneinineinanens 69
3.2.5.3.36 Processing ListReadersReply (Unicode) Replyccoovieiiiiiiiiiiiiiiniiiininens 69
3.2.5.3.37 Sending LocateCards (ASCII) MESSAgEiuvvriueirriarieiniirarsnerseneananesnanens 69
3.2.5.3.38 Processing LocateCards (ASCII) Reply.....cooiiriiiiiiiiiii e 69
3.2.5.3.39 Sending LocateCards (Unicode) MeSsageccvvviiiiiiiiiiiiiieiniienineinanns 69
3.2.5.3.40 Processing LocateCards (Unicode) ReplY.....cccvveiiiiiiiiiiiiiiiiiiiiiieeneiaaens 69
3.2.5.3.41 Sending GetStatusChange (ASCII) MeSSage.......iviiriuiieiiiiieiiiiennineiaanens 70
3.2.5.3.42 Processing GetStatusChange (ASCII) Reply ...cciviiiiiiiiiiiiiiiiiieiieiaeens 70
3.2.5.3.43 Sending GetStatusChange (Unicode) Message........cvcvvvviiiiiiiiininnnneinnnens 70
3.2.5.3.44 Processing GetStatusChange (Unicode) Replycovvviiiiiiiiiiiiiiiiiiiiieens 70
3.2.5.3.45 Sending Cancel MESSAgEcuuiuiieiiiiiie it e 70
3.2.5.3.46 Processing Cancel REPIY ..ot 70
3.2.5.3.47 Sending Connect (ASCII) MESSAGE . ..uuiutiritirieitiiiatiieiaeiraaneraenrasanereanens 70
3.2.5.3.48 Processing Connect (ASCII) RePIY ..oouiiiiiiiiiiiiiiei e 70
3.2.5.3.49 Sending Connect (UNIicode) MeSSage.....uviiirieiiiiiiiieiiiiiaseieiaeneananereanens 70
3.2.5.3.50 Processing Connect (Unicode) Replycoiiiiiiiiiiiii e 70
3.2.5.3.51 Sending ReCONNECt MESSAGE ... uvviuiiiiieiiietiieieiia et ee e e araereanens 70
3.2.5.3.52 Processing RecONNECt REPIY ..viuiiiiiiiiiiiiie i e e enae e 71
3.2.5.3.53 Sending DiSCONNECE MESSAGEcuviuiniiniiiiiieiiei et ae e raenens 71
3.2.5.3.54 Processing DisconnNect REPIY ..vviiiiiiiiiiiiiiii e e e e 71
3.2.5.3.55 Sending Status (ASCII) MESSAGEcuuiuiiiiiiiiiiiiiiiiie e aaeraeaens 71
3.2.5.3.56 Processing Status (ASCII) RePIY . cuiiitiiiiiiiiiiiiiiei e enaeens 71
3.2.5.3.57 Sending Status (Unicode) MeSSagecouiiiiiiiiiiiiiiiii i reeneeeeneeaens 71
3.2.5.3.58 Processing Status (Unicode) RePIY ...cieiiiiiiiiiiiiiiii i naaens 71
3.2.5.3.59 Sending State MeSSagE ...oviuiiriiiiiiiiiiiii i 71
3.2.5.3.60 Processing State Message Replyccooeiiiiiiiiiiiii s 71
3.2.5.3.61 Sending BeginTransaction MeSSage.....ccvuviiiriieiiiiiiiiiiiieeiereneeanereenens 71
3.2.5.3.62 Processing BeginTransaction RePlYcocviiiiiieiiiiiiiiiii e 72
3.2.5.3.63 Sending EndTransaction MeSSagevuiuiuininiiiiiiiiiie e e 72
3.2.5.3.64 Processing EndTransaction Replycoviiiiiiiiiiii e 72
3.2.5.3.65 Sending TransSmit MESSAGEcuiuiuiiiiiiie e 72
3.2.5.3.66 Processing Transmit Replycoiiiiiiiiiiii e 72
3.2.5.3.67 Sending Control MESSAGEouiuiiiiiiiiiii i 72
7/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

3.2.5.3.68
3.2.5.3.69 Sending GetReaderCapabilities Message
3.2.5.3.70 Processing GetReaderCapabilities Reply
3.2.5.3.71 Sending SetReaderCapabilities Message
3.2.5.3.72 Processing SetReaderCapabilities Reply.........cccvveinnnnnn.
3.2.5.3.73 Sending WaitForResourceManager Message
3.2.5.3.74 Processing WaitForResourceManager Reply
3.2.5.3.75 Sending LocateCardsByATR (ASCII) Message
3.2.5.3.76 Processing LocateCardsByATR (Unicode) Reply
3.2.5.3.77 Processing LocateCardsByATR (ASCII) Reply
3.2.5.3.78 Sending LocateCardsByATR (Unicode) Message
3.2.5.3.79 Sending ReadCache (ASCII) Message.........cocevivvnennnnnnnn
3.2.5.3.80 Processing ReadCache (ASCII) Reply ...cocvvvvviiiniinnnnnnn.
3.2.5.3.81 Sending ReadCache (Unicode) Message
3.2.5.3.82 Processing ReadCache (Unicode) Replycocevvvninnnnnnn.
3.2.5.3.83 Sending WriteCache (ASCII) Messagecocevvvnvvnnnnnnn
3.2.5.3.84 Processing WriteCache (ASCII) Reply.....cccvviiiniienninnnn.
3.2.5.3.85 Sending WriteCache (Unicode) Message
3.2.5.3.86 Processing WriteCache (Unicode) Reply.......cocevvveinnnnnn.
3.2.5.3.87 Sending GetTransmitCount Messagec.cocevvvennnnn.
3.2.5.3.88 Processing GetTransmitCount Reply.......covvvvviiiiiiennnnnnn.
3.2.6 TimMer EVENES «ivviiiiiii s
3.2.7 Other Local EVENTS ..viiiiiiiiiiii it e e
4 Protocol EXamplesS....cccuiciiiiiiiieiamssmsmssi s smsssasssssssssassansassnnsnnsnns
4.1 Establish Context Call.....ccciiiiii e
4.2 Establish Context RELUMM ...oiviiiiiiiii i r e e
4.3 List Readers Call...iciiiiiiiiiiii s e e e
4.4 List Readers RetUMN . .cciieiiii i e e re e e e
4.5 Get Status Change Call.....cciiiiiiiiiiii e
4.6 Get Status Change Returncoviiiiiiiii e
4.7 CoNNECE Call.iriiieiiiii i e
4.8 ConNeCt REEUIMN v e e e
4.9 Begin Transaction Callccvieiiiiiii e
4.10 Begin Transaction REEUIMNoiiiiiiiiii e
4,11 SEatus Call oo e
4.12 Status REEUMN . e e e e
4.13 End Transaction Call......ccooeiiiiiiiiii e e e e
4.14 End Transaction RetUMN.....ccciiiiiiiii e e e e
4.15 DisconneCt Call ...o.eiriiieiiiii i e
4.16 DisCONNECE REEUM .ttt e e re e aeas
4.17 Release Context Call......ccoeiriiiiiiir e
4.18 Release Context RetUrn ..o e
LI =V ol T o
5.1 Security Considerations for Implementers........ccccoiviiiiiiiiiiiiiciiniennn,
5.2 Index of Security Parametersc.coiiiiiiiiiiii i e
6 Appendix A: Full IDL.....c.c.cciiiiieimimiersesa s s s s s snnnnsananass
7 Appendix B: Product Behavior.......c.ciciciiiiiimieimimiisc s sasasaens
8 Change TracCKing...cccirerimrrimrersnrersnsarsasassassssssassassssnsassnssssnsassnsssnnsas

Processing Control RePlYoviiiiiiiiiiiiiiiiieeeeeeees

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

8/93

9/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

1 Introduction

This document specifies an extension (including virtual channels) to the Remote Desktop Protocol:
File System Virtual Channel Extension for supporting smart card reader-like devices.

1.1 Glossary
The following terms are defined in [MS-GLOS]:

ASCII

device

device driver

HRESULT

Interface Definition Language (IDL)
remote procedure call (RPC)

smart card

Unicode

Unicode string

universally unique identifier (UUID)

The following terms are specific to this document:

Answer To Reset (ATR): The transmission sent by an ISO-7816-compliant Integrated Circuit
Card (as specified in [ISO/IEC-7816-3] section 8) to a smart card reader in response to an
ISO-7816-3-based RESET condition.

build number: A unique number identifying the version of an application, in this case the
Terminal Services (TS) client.

call packet: A combination of I/0 control (IOCTL) and a data structure request from a
protocol client that corresponds to that IOCTL.

card type: A string that specifies a specific type of smart card that is recognized by Smart
Cards for Windows.

device I/0: Device input/output.
device name: The friendly, human-readable name of a device.

I/0 control code (IOCTL and IOControlCode): The 32-bit number that specifies the function
to execute on the protocol server.

Microsoft Terminal Services (TS): A component that allows a user to access applications or
data stored on a remote computer over a network connection.

Multistring: A series of null-terminated character strings terminated by a final null character
stored in a contiguous block of memory.

operating system version: A uniquely identifiable numbered string that is used to identify a
particular operating system.

protocol client: An endpoint that initiates a protocol.

protocol server: An endpoint that processes the call packet from a protocol client.

10/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89918
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

reader group name: The friendly, human-readable name for a reader group.

Remote Desktop Protocol (RDP): A multi-channel protocol that allows a user to connect to a
computer running Microsoft Terminal Services (TS).

return packet: An encoded structure containing the result of a call packet operation executed
on the protocol client.

smart card reader: A device used as a communication medium between the smart card and a
Host; for example, a computer. Also referred to as a Reader.

smart card reader name: The friendly, human-readable name of the smart card reader. Also
referred to as a Reader Name.

Smart Cards for Windows: An implementation of the ICC Resource Manager according to

PCSC5].

static virtual channel: The virtual channel advertised at session establishment, as part of the
RNS_UD_CS_NET data, a part of the Conference Create Request User Data.

TS client: A Microsoft Terminal Services program that initiates a connection.

TS server: A Microsoft Terminal Services program that responds to a request from a TS
client.

virtual channel: A communication channel available in a Terminal server session between an
application running at the server and extension module running in the Terminal Server client.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
http://www.opengroup.org/public/pubs/catalog/c706.htm

[ISO/IEC-7816-3] International Organization for Standardization, "Identification Cards -- Integrated
Circuit Cards -- Part 3: Cards with Contacts -- Electrical Interface and Transmission Protocols",
ISO/IEC 7816-3, October 2006,
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38770

Note There is a charge to download the specification.

[ISO/IEC-7816-4] International Organization for Standardization, "Identification Cards -- Integrated
Circuit Cards -- Part 4: Organization, Security, and Commands for Interchange", ISO/IEC 7816-4,
January 2005, http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=36134

Note There is a charge to download the specification.

11/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90245
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89918
http://go.microsoft.com/fwlink/?LinkId=89919

[MS-DTYP] Microsoft Corporation, "Windows Data Types", January 2007.

[MS-DCOM] Microsoft Corporation, "Distributed Component Object Model (DCOM) Remote Protocol
Specification", March 2007.

[MS-ERREF] Microsoft Corporation, "Windows Error Codes", January 2007.

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions", January 2007.

[MS-RDPEFS] Microsoft Corporation, "Remote Desktop Protocol: File System Virtual Channel
Extension", September 2007.

[PCSC3] PC/SC Workgroup, "Interoperability Specification for ICCs and Personal Computer Systems
- Part 3: Requirements for PC-Connected Interface Devices", December 1997,
http://www.pcscworkgroup.com/specifications/files/p3v10doc.zip

[PCSC5] PC/SC Workgroup, "Interoperability Specification for ICCs and Personal Computer Systems
- Part 5: ICC Resource Manager Definition", December 1997,
http://www.pcscworkgroup.com/specifications/files/p5vi0doc.zip

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary", March 2007.

1.3 Overview

The following figure illustrates a baseline for terminology related to clients and servers.

E & - Wi Xp {Example Windows Server 2008,
(R 'S;f;g ‘ Windows Server 2003)

Terminal Services Client
(TS Client)
Protocol Server

Terminal Services Server
Protocal Client

Figure 1: TS and protocol client-server definition

Remote Desktop Protocol (RDP) Device Redirection enables client devices (for example,
printers, smart card readers, drives, audio, serial ports, and parallel ports) to be available to
server-side applications, within the context of a single RDP session. This protocol is specified in [MS-

RDPEFS].

Smart Card Redirection is an asynchronous client/server protocol, an extension (specified in [MS-
RDPEFS]) that is designed to remotely execute requests on a client's Smart Cards for Windows.

12 /93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-DTYP%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RDPEFS%5d.pdf
%5bMS-RDPEFS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90244
http://go.microsoft.com/fwlink/?LinkId=90245
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RDPEFS%5d.pdf
%5bMS-RDPEFS%5d.pdf

These requests would have otherwise been executed on the server. Each request is composed of

two packets: a call packet and return packet. The protocol client (Microsoft Terminal

Services (TS) server) sends a call packet after an initial announcement by the protocol server
(TS client), and will receive a return packet after the request has been completed or an error has
occurred. Remote Desktop Protocol (RDP) Device Redirection uses a static virtual channel as its

transport.

Smart Card Redirection redirects the TS client-side Smart Cards for Windows. When Smart Card

Redirection is in effect, TS server application smart card subsystem calls (for example,

EstablishContext) are automatically remapped to the TS client-side Smart Cards for Windows, which
will then receive the corresponding request. Smart Card Redirection devices are only required to

understand one type of device I/0 request.

The following figure shows a high-level sequence diagram of the protocol for redirected calls. Device

Announce and Device Disconnect are handled via the lower-layer protocols.

Protocol
Server (TS
Client)

g-_-_-_-_-_-_-_'_'_DE‘-’iCE Announce

i ———Redirecteg Call

Figure 2: High-level protocol sequence

Protocol
Client (TS
Server)

The following figure specifies how the messages are encoded and routed from a TS client to a TS
server. The following numbered list details corresponding actions related to the pictured protocol

flow.

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

13/93

RPC Decoding RPC Encoding

[MS-RPCE] [MS-RPCE]
T T
! -
& 5 2 1
i 1 |
Smart --7— Smart Card |-—d—— Pgnt Virtual lg—3—— Smart Card +F'EICEII':I —
Card & Redirection 11 Ex?::;ﬁln - Redirection " ': .
= - —— 12 - - Return-
APT = [MS-RDPESC) L [MS-RDPEFS] = [MS-RDPESC) Pechot -
| |
Q IIEI 13 1:’-1
v v
| |
RPC Encoding RPC Decoding
[MS-RPCE] [MS-RPCE]
Terminal Services Client Terminal Services
(TS Client) Server (TS Server)
Pratocol Server Protocol Client

Figure 3: Protocol flow

The input for this protocol (call packet) is a combination of an I/0 control (IOCTL) and the
corresponding structure as specified in section 3.2.5.

1.
2.

9.

The call packet structure is encoded as specified in [MS-RPCE] section 2.2.6.

The packet, as specified in [MS-RPCE], is returned as a response to 1.

. The encoded value from 2 is combined with the IOCTL and transported over RDP Device

Redirection, as specified in [MS-RDPEFS] section 2.

. On the TS client, Remote Desktop Protocol: File System Virtual Channel Extension will route the

packet from 3 to protocol server for the Smart Card Redirection, as specified in [MS-RDPEFS
section 2.

. After Smart Card Redirection receives the message, the encoded structure is decoded, as

specified in [MS-RPCE] section 2.2.6.

. The packet, decoded as specified in [MS-RPCE], is a response to 5.

. Based on the IOCTL, the structure members are used as input parameters to the Smart Cards for

Windows, as specified in [PCSC5] section 3.

. The output parameters including the return code are packaged into the return packet structure

for this IOCTL.

The return packet structure is encoded as specified in [MS-RPCE] section 2.2.6.

10.Return data, encoded as specified in [MS-RPCE], is a response to 9.

11.The encoded value from 10 is sent to RDP Device Redirection (as specified in [MS-RDPEFS]) as a

reply to the call packet from 4.

14 /93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-RPCE%5d.pdf
%5bMS-RDPEFS%5d.pdf
%5bMS-RDPEFS%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90245
%5bMS-RPCE%5d.pdf

12.RDP Device Redirection (as specified in [MS-RDPEFS]) routes the reply back to the protocol
client.

13.0n receipt of packet from 12, the encoded structure is decoded as specified by to [MS-RPCE
section 2.2.6.

14.In response to 13, return data is decoded as specified by [MS-RPCE].

The output from the Smart Card Redirection is the return packet. This data will then be processed
by higher layers.

1.4 Relationship to Other Protocols

This protocol extension expands Remote Desktop Protocol: File System Virtual Channel Extension
MS-RDPEFS] functionality to provide support for Smart Cards for Windows.

This protocol relies on the Distributed Component Object Model (DCOM) Remote Protocol [MS-
DCOM], which uses remote procedure call (RPC) as its transport.

This protocol uses the Remote Procedure Call Protocol Extensions ([MS-RPCE] section 2) to encode
packet structures carried within an RDP session.

1.5 Prerequisites/Preconditions

RDP Device Redirection transport (as specified in [MS-RDPEFS] section 2.2.2.7.5) must be
configured to redirect smart card devices.

1.6 Applicability Statement

This specification applies to redirecting Smart Cards for Windows API-based calls for a Terminal
Services client, as specified in [PCSC5] section 3.

1.7 Versioning and Capability Negotiation
This document covers versioning issues in the following areas:

= Protocol Versions: Smart Card Redirection supports the explicit dialects "SCREDIR_VERSION_XP"
and "SCREDIR_VERSION_LONGHORN".

Multiple versions of the Smart Card Redirection Protocol exist. It was introduced in Remote
Desktop Protocol version 5.1 and extended by adding additional calls in Remote Desktop Protocol
version 6.0. The version of the protocol is determined on the server by querying the value of the
TS client build number.

= Capability Negotiation: The Smart Card Redirection protocol does not support negotiation of the
dialect to use. Instead, an implementation must be configured with the dialect to use.

The dialect used is determined by the TS client's build number. The TS server determines the
dialect to use by analyzing the client build number on device announce.<1> If the build number
is at least 4,034, SCREDIR_VERSION_LONGHORN is assumed; otherwise,
SCREDIR_VERSION_XP is to be used.

15/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-RPCE%5d.pdf
%5bMS-RDPEFS%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RDPEFS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90245

1.8 Vendor-Extensible Fields

This protocol uses HRESULTSs as defined in [MS-ERREF] section 2.1. Vendors can define their own
HRESULT values, provided that they set the C bit (0x20000000) for each vendor-defined value,

indicating that the value is a customer code.

This protocol uses Win32 error codes. These values are taken from the Windows error number
space, as specified in [MS-ERREF] section 2.2. Vendors SHOULD reuse those values with their
indicated meaning. Choosing any other value runs the risk of a collision in the future.

This protocol uses NTSTATUS values as specified in [MS-ERREF] section 2.3. Vendors are free to

choose their own values for this field, provided that they set the C bit (0x20000000) for each

vendor-defined value, indicating it is a that customer code.

IOCTL fields used in this specification are extensible. Vendors MUST implement the corresponding

functions.

1.9 Standards Assignments

Parameter Value Reference
Remote procedure call (RPC) interface A35AF600-9CF4-11CD-A076- C706] Appendix
universally unique identifier (UUID) 08002B2BD711 A25

[MS-RDPESC] — v20110204

Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

16 /93

%5bMS-GLOS%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824

2 Messages

The following sections specify how Remote Desktop Protocol: Smart Card Virtual Channel Extension
messages are transported, and common data types.

2.1 Transport

All messages MUST be transported over established RDP Device Extensions (as specified in [MS-
RDPEFS] section 2.1). This protocol uses the device enumerate and announcement messages, as
specified in [MS-RDPEFS] section 3.

Remote Desktop Protocol: File System Virtual Channel Extension is responsible for providing a
unique Device ID as defined in [MS-RDPEFS] section 3.1.1.

2.2 Common Data Types

All structures in this section MUST be encoded as specified in [MS-RPCE] section 2. Unless otherwise
stated, the structure MUST be initialized to zero before use.

2.2.1 Common Structures

The structures defined in the following sections are common among both TS server-generated
structures (for more information, see section 2.2.2) and TS client-generated structures (for more
information, see section 2.2.3).

2.2.1.1 REDIR_SCARDCONTEXT

REDIR_SCARDCONTEXT represents a context to Smart Cards for Windows on the TS client.

typedef struct REDIR SCARDCONTEXT {
[range (0,16)] unsigned long cbContext;
[unique, size is(cbContext)] byte* pbContext;
} REDIR SCARDCONTEXT;

cbContext: The number of bytes in the pbContext field.

pbContext: An array of cbContext bytes that contains Smart Cards for Windows context. The

data is implementation-specific and MUST NOT be interpreted or changed on the Protocol
server.

2.2.1.2 REDIR_SCARDHANDLE

REDIR_SCARDHANDLE represents a smart card reader handle associated with Smart Cards for
Windows context.

typedef struct ~REDIR SCARDHANDLE {
REDIR_SCARDCONTEXT Context;
[range (0,16)] signed long cbHandle;
[size is(cbHandle)] byte* pbHandle;
} REDIR SCARDHANDLE;

17/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-RDPEFS%5d.pdf
%5bMS-RDPEFS%5d.pdf
%5bMS-RDPEFS%5d.pdf
%5bMS-RDPEFS%5d.pdf
%5bMS-RPCE%5d.pdf

Context: A valid context, as specified in REDIR SCARDCONTEXT.

cbHandle: The number of bytes in the pbHandle field.

pbHandle: An array of cbHandle bytes that corresponds to a smart card reader handle on the

TS client. The data is implementation-specific and MUST NOT be interpreted or changed on
the Protocol server.

2.2.1.3 Connect_Common

The Connect_Common structure contains information common to both versions of the Connect
function (for more information, see sections 2.2.2.13 and 2.2.2.14).

typedef struct Connect Common {
REDIR_SCARDCONTEXT Context;
unsigned long dwShareMode;

unsigned long dwPreferredProtocols;
} Connect_ Common;

Context: A valid context, as specified in section 2.2.1.1.

dwShareMode: A flag that indicates whether other applications are allowed to form connections
to the card. Possible values of this field are specified in section 2.2.6.

dwPreferredProtocols: A bitmask of acceptable protocols for the connection, as specified in
section 2.2.5.

2.2.1.4 LocateCards_ATRMask

The LocateCards_ATRMask structure contains the information to identify a card type.

typedef struct LocateCards ATRMask {
[range (0,36)] unsigned long cbAtr;
byte rgbAtr[36];
byte rgbMask[36];

} LocateCards ATRMask;

cbAtr: The number of bytes used in the rgbAtr and rgbMask fields.

rgbAtr: Values for the card's Answer To Reset (ATR) string. This value MUST be formatted as

specified in [ISO/IEC-7816-3] section 8. Unused bytes MUST be set to 0 and MUST be
ignored.

rgbMask: Values for the mask for the card's ATR string. Each bit that cannot vary between

cards of the same type MUST be set to 1. Unused bytes MUST be set to 0 and MUST be
ignored.

2.2.1.5 ReaderState_Common_Call

The ReaderState_ Common_Call structure contains the state of the reader at the time of the call
as seen by the caller.

18/ 93
[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

http://go.microsoft.com/fwlink/?LinkId=89918

typedef struct ReaderState Common Call {
unsigned long dwCurrentState;
unsigned long dwEventState;
[range (0,36)] unsigned long cbAtr;
byte rgbAtr[36];
} ReaderState Common Call;

dwCurrentState: A bitmap that specifies the current reader state according to the TS client.
Possible values are specified in section 2.2.7.

dwEventState: A bitmap that defines the state of the reader after a state change. Possible
values are specified in section 2.2.7.

cbAtr: The number of bytes used in the ATR string.
rgbAtr: The value for the card's ATR string. If cbAtr is NOT zero, this value MUST be formatted

in accordance to [ISO/IEC-7816-3] section 8. Unused bytes MUST be set to 0 and MUST be
ignored.

2.2.1.6 ReaderStateA

The ReaderStateA structure contains information used in calls that only require Smart Cards for
Windows context and an ASCII string.

typedef struct ReaderStateA {
[string] const char* szReader;
ReaderState Common Call Common;
} ReaderStateA;

szReader: An ASCII string specifying the reader name.

Common: A packet that specifies the state of the reader at the time of the call. For information
about this packet, see section 2.2.1.5.

2.2.1.7 ReaderStateW

The ReaderStateW structure is a Unicode representation of the state of a smart card reader.

typedef struct _ReaderStateW {
[string] const wchar t* szReader;
ReaderState Common Call Common;

} ReaderStateW;

szReader: A Unicode string specifying the reader name.

Common: A packet that specifies the state of the reader at the time of the call. For information
about this packet, see section 2.2.1.5.

19/ 93
[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

http://go.microsoft.com/fwlink/?LinkId=89918
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

2.2.1.8 SCardIO_Request

The SCardIO_Request structure represents the data to be prepended to a Transmit command (for
more information, see section 3.1.4.35).

typedef struct SCardIO Request {
unsigned long dwProtocol;
[range (0,1024)] unsigned long cbExtraBytes;
[unique, size is(cbExtraBytes)]
byte* pbExtraBytes;
} SCardIO_Request;

dwProtocol: The protocol in use. Possible values are specified in section 2.2.5.
cbExtraBytes: The number of bytes in the pbExtraBytes field.

pbExtraBytes: Request data.

2.2.1.9 ReadCache_Common

The ReadCache_Common structure contains information common to both the ReadCacheA Call
and ReadCacheW Call structures.

typedef struct ReadCache Common {
REDIR SCARDCONTEXT Context;
UUID* CardIdentifier;
unsigned long FreshnessCounter;
long fPbDataIsNULL;
unsigned long cbDatalen;

} ReadCache Common;

Context: A valid context, as specified in section 2.2.1.1.

CardIdentifier: A UUID that specifies the name of the smart card with which the name-value
pair is associated.

FreshnessCounter: A value specifying the current revision of the data.

fPbDataIsNULL: A Boolean value specifying whether the caller wants to retrieve the length of
the data. It MUST be set to TRUE (0x00000001) if the caller wants only to retrieve the length
of the data; otherwise, it MUST be set to FALSE (0x00000000).

cbDatalLen: The length of the buffer specified on the server side. If cbDataLen is set to
SCARD_AUTOALLOCATE with a value of OXFFFFFFFF, a buffer of any length can be returned.
Otherwise, the returned buffer MUST NOT exceed cbDatalLen bytes. This field MUST be
ignored if fPbDataIsNULL is set to TRUE (0x00000001).

2.2.1.10 WriteCache_Common

The WriteCache_Common structure contains information common between the
WriteCacheA Call and WriteCacheW Call structures.

typedef struct WriteCache Common {

20/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-GLOS%5d.pdf

REDIR SCARDCONTEXT Context;

UUID* CardIdentifier;

unsigned long FreshnessCounter;
[range (0, 65536)] unsigned long cbDatalen;

[unique, size is(cbDatalLen)] byte* pbData;
} WriteCache Common;

Context: A valid context, as specified in section 2.2.1.1.

CardIdentifier: A UUID that identifies the smart card with which the data SHOULD be stored.
CardIdentifier MUST be a unique value per the smart card.

FreshnessCounter: A value specifying the current revision of the data.
cbDatalLen: The number of bytes in the pbData field.

pbData: cbDatalen bytes of data to be stored.
2.2.1.11 ReaderState_Return

The ReaderState_Return structure specifies state information returned from Smart Cards for
Windows.

typedef struct ReaderState Return {
unsigned long dwCurrentState;
unsigned long dwEventState;
[range (0,36)] unsigned long cbAtr;
byte rgbAtr[36];

} ReaderState Return;

dwCurrentState: A bitmap that defines the current state of the reader at the time of the call.
Possible values are specified in section 2.2.7.

dwEventState: A bitmap that defines the state of the reader after a state change as seen by
Smart Cards for Windows. Possible values are specified in section 2.2.7.

cbAtr: The number of used bytes in rgbAtr.

rgbAtr: The values for the card's ATR string. Unused bytes MUST be set to zero and MUST be
ignored on receipt.

2.2.2 TS Server-Generated Structures
All structures in this section are sent from the TS server to the TS client.

2.2.2.1 EstablishContext_Call

The EstablishContext_Call structure is used to specify the scope of Smart Cards for Windows
context to be created (for more information, see section 3.1.4.1).

typedef struct EstablishContext Call {
unsigned long dwScope;
} EstablishContext Call;

21/ 93
[MS-RDPESC] — v20110204

Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

dwScope: The scope of the context that will be established. The following table shows valid
values of this field.

Value Meaning
SCARD_SCOPE_USER The context is a user context; any database operations MUST be
0x00000000 performed with the domain of the user.

SCARD_SCOPE_TERMINAL | The context is a terminal context; any database operations MUST be
0x00000001 performed with the domain of the terminal. This flag is currently
unused; it is here for compatibility with [PCSC5] section 3.1.3.

SCARD_SCOPE_SYSTEM The context is the system context; any database operations MUST be
0x00000002 performed within the domain of the system.

2.2.2.2 Context_Call

The Context_Call structure contains Smart Cards for Windows context.

typedef struct Context Call {
REDIR_SCARDCONTEXT Context;
} Context Call;

Context: A valid context, as specified in section 2.2.1.1.

2.2.2.3 ListReaderGroups_Call

The ListReaderGroups_ Call structure contains the parameters for the List Readers Groups call (for
more information, see sections 3.1.4.5 and 3.1.4.6).

typedef struct _ListReaderGroups Call {
REDIR SCARDCONTEXT Context;
long fmszGroupsIsNULL;
unsigned long cchGroups;

} ListReaderGroups Call;

Context: A valid context, as specified in section 2.2.1.1.

fmszGroupsIsNULL: A Boolean value specifying whether the caller wants to retrieve just the
length of the data. Set to FALSE (0x00000000) in order to allow the data to be returned. Set
to TRUE (0x00000001) and only the length of the data will be returned.

cchGroups: The length of the string buffer specified by the caller. If cchGroups is set to
SCARD_AUTOALLOCATE with a value of OxFFFFFFFF, a string of any length can be returned.
Otherwise, the returned string MUST NOT exceed cchGroups characters in length, including
any null characters. When the string to be returned exceeds cchGroups characters in length,
including any null characters, ListReaderGroups Return.ReturnCode MUST be set to
SCARD_E_INSUFFICIENT_BUFFER (0x80100008). The cchGroups field MUST be ignored if
fmszGroupsIsNULL is set to TRUE (0x00000001). Also, if fmszGroupsIsNULL is set to

22 /93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

http://go.microsoft.com/fwlink/?LinkId=90245

FALSE (0x00000000) but cchGroups is set to 0x00000000, then the call MUST succeed,
ListReaderGroups_Return.cBytes MUST be set to the length of the data, in bytes, and
ListReaderGroups_Return.msz MUST be set to NULL.

2.2.2.4 ListReaders_Call

The ListReaders_Call structure contains the parameters for the List Readers call (for more
information, see sections 3.1.4.7 and 3.1.4.8).

typedef struct ListReaders Call {
REDIR SCARDCONTEXT Context;
[range (0, 65536)] unsigned long cBytes;
[unique, size is(cBytes)] const byte* mszGroups;
long fmszReadersIsNULL;
unsigned long cchReaders;
} ListReaders Call;

Context: A valid context, as specified in section 2.2.1.1.
cBytes: The length, in bytes, of reader groups specified in mszGroups.
mszGroups: The names of the reader groups defined in the system. Reader groups not present

on the protocol server MUST be ignored. The value of this is dependent on the context
(IOCTL) that it is used.

Value Meaning
SCARD_IOCTL_LISTREADERSA ASCII multistring
0x00090028

SCARD_IOCTL_LISTREADERSW Unicode multistring
0x0009002C

fmszReadersIsNULL: A Boolean value specifying whether the caller wants to retrieve the
length of the data. Set to FALSE (0x00000000) to allow the data to be returned. Set to TRUE
(0x00000001), and only the length of the data will be returned.

cchReaders: The length of the string buffer specified by the caller. If cchReaders is set to
SCARD_AUTOALLOCATE with a value of OXFFFFFFFF, a string of any length can be returned.
Otherwise, the returned string MUST NOT exceed cchReaders characters in length, including
any NULL characters. When the string to be returned exceeds cchReaders characters in
length, including any null characters, ListReaders Return.ReturnCode MUST be set to
SCARD_E_INSUFFICIENT_BUFFER (0x80100008). The cchReaders field MUST be ignored if
fmszReadersIsNULL is set to TRUE (0x00000001). Also, if fmszReadersIsNULL is set to
FALSE (0x00000000) but cchReaders is set to 0x00000000, then the call MUST succeed,
ListReaders_Return.cBytes MUST be set to the length of the data in bytes, and
ListReaders_Return.msz MUST be set to NULL.

2.2.2.5 ContextAndStringA_Call

The ContextAndStringA_Call structure contains information used in calls that only require a Smart
Cards for Windows context and an ASCII string.

23/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

typedef struct ContextAndStringA Call {
REDIR_SCARDCONTEXT Context;
[string] const char* sz;

} ContextAndStringA Call;

Context: A valid context, as specified in section 2.2.1.1.

sz: The value of this string depends on the context (based on IOCTL) in which this structure is

used.
Value Meaning
SCARD_IOCTL_INTRODUCEREADERGROUPA Reader group name
0x00090050
SCARD_IOCTL_FORGETREADERGROUPA Reader group name
0x00090058
SCARD_IOCTL_FORGETREADERA Reader name
0x00090068

2.2.2.6 ContextAndStringW_Call

The ContextAndStringW_Call structure contains information used in calls that only require a
Smart Cards for Windows context and a Unicode string.

typedef struct ContextAndStringW Call {
REDIR_SCARDCONTEXT Context;
[string] const wchar t* sz;

} ContextAndStringW Call;

Context: A valid context, as specified in section 2.2.1.1.

sz: The value of this Unicode string depends on the context (based on IOCTL) in which this
structure is used.

Value Meaning
SCARD_IOCTL_INTRODUCEREADERGROUPW Reader group name
0x00090054

SCARD_IOCTL_FORGETREADERGROUPW Reader group name
0x0009005C

SCARD_IOCTL_FORGETREADERW Reader name
0x0009006C

2.2.2.7 ContextAndTwoStringA_Call

The contents of the ContextAndTwoStringA_ Call structure are used in those calls that require a

valid Smart Cards for Windows context (as specified in section 3.2.5) and two strings (friendly
names).

24 /93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

typedef struct ContextAndTwoStringA Call {
REDIR_SCARDCONTEXT Context;
[string] const char* szl;
[string] const char* sz2;

} ContextAndTwoStringA Call;

Context: A valid context, as specified in section 2.2.1.1.

szl1: The value of this ASCII string depends on the context (based on IOCTL) in which it is used.

Value Meaning
SCARD_IOCTL_INTRODUCEREADERA Reader name
0x00090060

SCARD_IOCTL_ADDREADERTOGROUPA Reader name
0x00090070

SCARD_IOCTL_REMOVEREADERFROMGROUPA Reader name
0x00090078

sz2: The value of this ASCII string depends on the context (based on IOCTL) in which it is used.

Value Meaning
SCARD_IOCTL_INTRODUCEREADERA Device name
0x00090060

SCARD_IOCTL_ADDREADERTOGROUPA Reader group name
0x00090070

SCARD_IOCTL_REMOVEREADERFROMGROUPA Reader group name
0x00090078

2.2.2.8 ContextAndTwoStringW_Call

The contents of the ContextAndTwoStringW_Call structure is used in those calls that require a
valid Smart Cards for Windows context (as specified in section 3.2.5) and two strings (friendly
names).

typedef struct _ContextAndTwoStringW Call ({
REDIR SCARDCONTEXT Context;
[string] const wchar t* szl;
[string] const wchar t* sz2;

} ContextAndTwoStringW Call;

Context: A valid context, as specified in section 2.2.1.1.

szl1l: The value of this Unicode string depends on the context (based on IOCTL) in which it is
used.

25/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

Value Meaning
SCARD_IOCTL_INTRODUCEREADERW Reader name
0x00090064

SCARD_IOCTL_ADDREADERTOGROUPW Reader name
0x00090074

SCARD_IOCTL_REMOVEREADERFROMGROUPW Reader name
0x0009007C

sz2: The value of this Unicode string depends on the context (based on IOCTL) in which it is

used.
Value Meaning
SCARD_IOCTL_INTRODUCEREADERW Device name
0x00090064
SCARD_IOCTL_ADDREADERTOGROUPW Reader group name
0x00090074
SCARD_IOCTL_REMOVEREADERFROMGROUPW Reader group name
0x0009007C

2.2.2.9 LocateCardsA_Call

The parameters of the LocateCardsA_Call structure specify the list of smart card readers to search
for the specified card types. For call information, see section 3.1.4.21.

typedef struct LocateCardsA Call {
REDIR SCARDCONTEXT Context;
[range (0, 65536)] unsigned long cBytes;
[size_is(cBytes)] const byte* mszCards;
[range (0,10)] unsigned long cReaders;
[size_is(cReaders)] ReaderStateA* rgReaderStates;
} LocateCardsA Call;

Context: A valid context, as specified in section 2.2.1.1.
cBytes: The number of bytes in the mszCards field.

mszCards: An ASCII multistring of card names to locate. Card names MUST be registered in
Smart Cards for Windows. Unknown card types MUST be ignored.

cReaders: The number of reader state structures.

rgReaderStates: The reader state information specifying which readers are searched for the
cards listed in mszCards.

2.2.2.10 LocateCardsW_Call

The parameters of the LocateCardsW__Call structure specify the list of smart card readers to
search for the specified card types. For more information, see section 3.1.4.22.

26/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

typedef struct LocateCardsW Call ({
REDIR_SCARDCONTEXT Context;
[range (0, 65536)] unsigned long cBytes;
[size is(cBytes)] const byte* mszCards;
[range (0,10)] unsigned long cReaders;

[size is(cReaders)] ReaderStateW* rgReaderStates;
} LocateCardsW_Call;

Context: A valid context, as specified in section 2.2.1.1.

cBytes: The number of bytes in the mszCards field.

mszCards: A Unicode multistring of card names to locate. Card names MUST be registered in
Smart Cards for Windows. Unknown card types MUST be ignored.

cReaders: The number of reader state structures.

rgReaderStates: The reader state information used to locate the cards listed in mszCards.

2.2.2.11 GetStatusChangeA_Call

The GetStatusChangeA_ Call structure provides the state change in the reader as specified in
section 3.1.4.23.

typedef struct GetStatusChangeA Call {
REDIR SCARDCONTEXT Context;
unsigned long dwTimeOutlong;
[range (0,11)] unsigned long cReaders;

[size is(cReaders)] ReaderStateA* rgReaderStates;
} GetStatusChangeA Call;

Context: A valid context, as specified in section 2.2.1.1.

dwTimeOutlong: The maximum amount of time, in milliseconds, to wait for an action. If this
member is set to OXFFFFFFFF (INFINITE), the caller MUST wait until an action occurs.

cReaders: The number of ReaderStates to track.

rgReaderStates: Smart card readers that the caller is tracking.

2.2.2.12 GetStatusChangeW_Call

The GetStatusChangeW_Call structure provides the state change in the Reader as specified in
section 3.1.4.24.

typedef struct _GetStatusChangeW Call {
REDIR SCARDCONTEXT Context;
unsigned long dwTimeOut;
[range (0,11)] unsigned long cReaders;

[size is(cReaders)] ReaderStateW* rgReaderStates;
} GetStatusChangeW Call;

27/ 93
[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

Context: A valid context, as specified in section 2.2.1.1.

dwTimeOut: Maximum amount of time, in milliseconds, to wait for an action. If set to
OXFFFFFFFF (INFINITE), the caller MUST wait until an action occurs.

cReaders: The number of ReaderStates to track.

rgReaderStates: Smart card readers that the caller is tracking.

2.2.2.13 ConnectA_Call

ConnectA_Call opens a connection to the smart card located in the reader identified by a reader
name.

typedef struct ConnectA Call {
[string] const char* szReader;
Connect_ Common Common;

} ConnectA Call;

szReader: An ASCII string specifying the reader name to connect to.

Common: Additional parameters that are required for the Connect call are specified in section
3.1.4.28. For more information, see section 2.2.1.3.

2.2.2.14 ConnectW_Call

The ConnectW__Call structure is used to open a connection to the smart card located in the reader
identified by a reader name.

typedef struct ConnectW Call {
[string] const wchar t* szReader;
Connect Common Common;

} ConnectW Call;

szReader: A Unicode string specifying the reader name to connect to.

Common: Additional parameters that are required for the Connect call. For more information,
see sections 3.1.4.29 and 2.2.1.3.

2.2.2.15 Reconnect_Call

The Reconnect_Call structure is used to reopen a connection to the smart card associated with a
valid context. For more information, see section 3.1.4.36.

typedef struct _Reconnect Call {
REDIR SCARDHANDLE hCard;
unsigned long dwShareMode;
unsigned long dwPreferredProtocols;
unsigned long dwInitialization;

} Reconnect Call;

28/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

hCard: A handle, as specified in section 2.2.1.2.

dwShareMode: A flag that indicates whether other applications can form connections to this
card. For acceptable values of this field, see section 2.2.6.

dwPreferredProtocols: A bit mask of acceptable protocols for this connection. For specifics on
possible values, see section 2.2.5.

dwlnitialization: A type of initialization that SHOULD be performed on the card.

Value Meaning

SCARD_LEAVE_CARD Do not do anything.

0x00000000

SCARD_RESET_CARD Reset the smart card.
0x00000001

SCARD_UNPOWER_CARD Turn off and reset the smart card.
0x00000002

2.2.2.16 HCardAndDisposition_Call

The HCardAndDisposition_Call structure defines the action taken on the disposition of a smart
card associated with a valid context when a connection is terminated.

typedef struct HCardAndDisposition Call {
REDIR SCARDHANDLE hCard;
unsigned long dwDisposition;

} HCardAndDisposition Call;

hCard: A handle, as specified in section 2.2.1.2.

dwDisposition: The action to take on the card in the connected reader upon close. This value is
ignored on a BeginTransaction message call, as specified in section 3.2.5.3.61.

Value Meaning

SCARD_LEAVE_CARD Do not do anything.

0x00000000

SCARD_RESET_CARD Reset the smart card.
0x00000001

SCARD_UNPOWER_CARD Turn off and reset the smart card.
0x00000002

SCARD_EJECT_CARD Eject the smart card.
0x00000003

2.2.2.17 State_Call

The State_Call structure defines parameters to the State call (as specified in section 3.1.4.40) for
querying the contents of a smart card reader.

29/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

typedef struct State Call {
REDIR SCARDHANDLE hCard;
long fpbAtrIsNULL;
unsigned long cbAtrLen;

} State Call;

hCard: A handle, as specified in section 2.2.1.2.

fpbAtrIsNULL: A Boolean value specifying whether the caller wants to retrieve the length of the
data. Set to FALSE (0x00000000) to allow the data to be returned. Set to TRUE
(0x00000001), and only the length of the data will be returned. SHOULD be set to TRUE if
cbAtrLen is set to SCARD_AUTOALLOCATE (OxFFFFFFFF).

Name Value
FALSE 0x00000000
TRUE 0x00000001

cbAtrLen: The length of the buffer specified on the TS server side. If cbAtrLen is set to

SCARD_AUTOALLOCATE with a value of OXFFFFFFFF, an array of any length can be returned.
Otherwise, the returned array MUST NOT exceed cbAtrLen bytes in length. When the array to
be returned exceeds cbAtrLen bytes in length, State Return.ReturnCode MUST be set to
SCARD_E_INSUFFICIENT_BUFFER (0x80100008). Also, cbAtrLen is ignored if fpbAtrIsNULL
is set to TRUE (0x00000001). If fpbAtrIsNULL is set to FALSE (0x00000000) but cbAtrLen
is set to 0x00000000, then the call MUST succeed, State_Return.cbAtrLen MUST be set to
the length of the data in bytes, and State_Return.rgAtr MUST be set to NULL.

2.2.2.18 Status_Call

Status_Call obtains the status of a connection for a valid smart card reader handle.

typedef struct Status Call {
REDIR_ SCARDHANDLE hCard;
long fmszReaderNamesIsNULL;
unsigned long cchReaderLen;
unsigned long cbAtrLen;

} Status_Call;

hCard: A handle, as specified in section 2.2.1.2.

fmszReaderNamesIsNULL: A Boolean value specifying whether the caller wants to retrieve
the length of the data. Set to FALSE (0x00000000) to allow the data to be returned. Set to
TRUE (0x00000001), and only the length of the data will be returned. Also, cchReaderLen is
ignored if this value is TRUE (0x00000001).

Name Value
FALSE 0x00000000
TRUE 0x00000001

30/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

cchReaderLen: The length of the string buffer specified on the TS server side. If cchReaderLen
is set to SCARD_AUTOALLOCATE with a value of OxFFFFFFFF, a string of any length can be
returned. Otherwise, the returned string MUST NOT exceed cchReaderLen characters in
length, including any null characters. When the string to be returned exceeds cchReaderLen
characters in length, including any null characters, Status Return.ReturnCode MUST be set
to SCARD_E_INSUFFICIENT_BUFFER (0x80100008). The cchReaderLen field MUST be
ignored if fmszReaderNamesIsNULL is TRUE (0x00000001). Also, if
fmszReaderNamesIsNULL is set to FALSE (0x00000000) but cchReaderLen is set to
0x00000000, then the call MUST succeed, Status_Return.cbAtrLen MUST be set to the
length of the data in bytes, and Status_Return.pbAtr MUST be set to NULL.

cbAtrLen: Unused. MUST be ignored upon receipt.

2.2.2.19 Transmit_Call

The Transmit_Call structure is used to send data to the smart card associated with a valid context.

typedef struct Transmit Call {
REDIR_ SCARDHANDLE hCard;
SCardIO Request ioSendPci;
[range (0,66560)] unsigned long cbSendLength;
[size is(cbSendLength)] const byte* pbSendBuffer;
[unique] SCardIO Request* pioRecvPci;
long fpbRecvBufferIsNULL;
unsigned long cbRecvLength;
} Transmit Call;

hCard: A handle, as specified in section 2.2.1.2.

ioSendPci: A packet specifying input header information as specified in section 2.2.1.8.
cbSendLength: The length, in bytes, of the pbSendBuffer field.

pbSendBuffer: The data to be written to the card. The format of the data is specific to an

individual card. For more information about data formats, see [ISO/IEC-7816-4] sections 5
through 7.

pioRecvPci: If non-NULL, this field is an SCardIO_Request packet that is set up in the same
way as the ioSendPci field and passed as the pioRecvPci parameter of the Transmit call. If
the value of this is NULL, the caller is not requesting the pioRecvPci value to be returned.

fpbRecvBufferIsNULL: A Boolean value specifying whether the caller wants to retrieve the
length of the data. MUST be set to TRUE (0x00000001) if the caller wants only to retrieve the
length of the data; otherwise, it MUST be set to FALSE (0x00000000).

Name Value
FALSE 0x00000000
TRUE 0x00000001

cbRecvLength: The maximum size of the buffer to be returned. MUST be ignored if
fpbRecvBufferIsNULL is set to TRUE (0x00000001).

31/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

http://go.microsoft.com/fwlink/?LinkId=89919

2.2.2.20 Control_Call

Normally, communication is to the smart card via the reader. However, in some cases, the ability to
communicate directly with the smart card reader is requested. The Control_Call structure provides
the ability to talk to the reader.

typedef struct Control Call {
REDIR SCARDHANDLE hCard;
unsigned long dwControlCode;
[range (0, 66560)] unsigned long cbInBufferSize;
[unique, size is(cbInBufferSize)]
const byte* pvInBuffer;
long fpvOutBufferIsNULL;
unsigned long cbOutBufferSize;
} Control Call;

hCard: A handle, as specified in section 2.2.1.2.

dwControlCode: The control code for the operation. These values are specific to the hardware
device. This protocol MUST NOT restrict or define any values for this control codes.

cbInBufferSize: The size in bytes of the pvInBuffer field.

pvInBuffer: A buffer that contains the data required to perform the operation. This field
SHOULD be NULL if the dwControlCode field specifies an operation that does not require
input data. Otherwise, this data is specific to the function being performed.

fpvOutBufferIsNULL: A Boolean value specifying whether the caller wants to retrieve the
length of the data. MUST be set to TRUE (0x00000001) if the caller wants only to retrieve the
length of the data; otherwise, it MUST be set to FALSE (0x00000000).

Name Value
FALSE 0x00000000
TRUE 0x00000001

cbOutBufferSize: The maximum size of the buffer to be returned. This field MUST be ignored if
fpvOutBufferIsNULL is set to TRUE (0x00000001).

2.2.2.21 GetAttrib_Call

The GetAttrib_Call structure is used to read smart card reader attributes.

typedef struct GetAttrib Call {
REDIR_ SCARDHANDLE hCard;
unsigned long dwAttrId;
long fpbAttrIsNULL;
unsigned long cbAttrLen;

} GetAttrib Call;

hCard: A handle, as specified in section 2.2.1.2.

32/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

dwAttrId: An identifier for the attribute to get. For more information on defined attributes, see
PCSC3] section 3.1.2.

fpbAttrIsNULL: A Boolean value specifying whether the caller wants to retrieve the length of
the data. Set to FALSE (0x00000000) in order to allow the data to be returned. Set to TRUE
(0x00000001) and only the length of the data will be returned.

Name Value
FALSE 0x00000000
TRUE 0x00000001

cbAttrLen: The length of the buffer specified on the TS Server side. If cbAttrLen is set to
SCARD_AUTOALLOCATE with a value of OXFFFFFFFF then any buffer length can be returned.
Otherwise, the returned buffer MUST NOT exceed cbAttrLen bytes in length. When the buffer
to be returned exceeds cbAttrLen bytes in length, GetAttrib Return.ReturnCode MUST be
set to SCARD_E_INSUFFICIENT_BUFFER (0x80100008). The cbAttrLen field MUST be ignored
if fpbAttrIsNULL is set to TRUE (0x00000001). Also, if fpbAttrIsNULL is set to FALSE
(0x00000000) but cbAttrLen is set to 0x00000000, then the call MUST succeed,
GetAttrib_Return.cbAttrLen MUST be set to the length of the data, in bytes, and
GetAttrib_Return.pbAttr MUST be set to NULL.

2.2.2.22 SetAttrib_Call

The SetAttrib_Call structure allows users to set smart card reader attributes.

typedef struct _SetAttrib Call {
REDIR SCARDHANDLE hCard;
unsigned long dwAttrId;
[range (0,65536)] unsigned long cbAttrLen;
[size is(cbAttrLen)] const byte* pbAttr;
} SetAttrib Call;

hCard: A handle, as specified in section 2.2.1.2.

dwAttrId: The identifier of the attribute to set. The values are write-only. For more information
on possible values, see [PCSC3] section 3.1.2.

cbAttrLen: The size, in bytes, of the data corresponding to the pbAttr field.

pbAttr: A buffer that contains the attribute whose identifier is supplied in the dwAttrId field.
The format is specific to the value being set.

2.2.2.23 LocateCardsByATRA_Call

The LocateCardsByATRA_Call structure returns information concerning the status of the smart
card of interest (ATR).

typedef struct LocateCardsByATRA Call {
REDIR SCARDCONTEXT Context;
[range (0,1000)] unsigned long cAtrs;
[size_is(cAtrs)] LocateCards ATRMask* rgAtrMasks;
[range (0,10)] unsigned long cReaders;

33/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

http://go.microsoft.com/fwlink/?LinkId=90244
http://go.microsoft.com/fwlink/?LinkId=90244

[size_is(cReaders)] ReaderStateA* rgReaderStates;
} LocateCardsByATRA Call;

Context: A valid context, as specified in section 2.2.2.13.

cAtrs: The number of bytes in the rgAtrMasks field.

rgAtrMasks: An array of ATRs to match against currently inserted cards.

cReaders: The number of elements in the rgReaderStates field.

rgReaderStates: The states of the readers that the application is monitoring. The states reflect

what the application determines to be the current states of the readers and that might differ
from the actual states.

2.2.2.24 LocateCardsByATRW_Call

The LocateCardsByATRW_ Call structure returns information concerning the status of the smart
card of interest (ATR).

typedef struct LocateCardsByATRW Call ({
REDIR SCARDCONTEXT Context;
[range (0, 1000)] unsigned long cAtrs;
[size is(cAtrs)] LocateCards ATRMask* rgAtrMasks;
[range (0,10)] unsigned long cReaders;
[size is(cReaders)] ReaderStateW* rgReaderStates;
} LocateCardsByATRW Call;

Context: A valid context, as specified in section 2.2.2.14.

cAtrs: The number of bytes in the rgAtrMasks field.

rgAtrMasks: An array of ATRs to match against currently inserted cards.

cReaders: The number of elements in the rgReaderStates field.

rgReaderStates: The states of the readers that the application is monitoring. The states

reflects what the application believes is the current states of the readers and might differ from
the actual states.

2.2.2.25 ReadCacheA_Call
The ReadCacheA_Call structure is used to obtain the card and reader information from the cache.

typedef struct _ReadCacheA Call {
[string] char* szLookupName;
ReadCache Common Common;

} ReadCacheA Call;

szLookupName: An ASCII string containing the lookup name.

34 /93
[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

Common: Additional parameters for the Read Cache call (for additional information, see section
3.1.4.42), as specified in section 2.2.1.9.

2.2.2.26 ReadCacheW_Call

The ReadCacheW_Call structure is used to obtain the card and reader information from the cache.

typedef struct ReadCacheW Call {
[string] wchar t* szLookupName;
ReadCache Common Common;

} ReadCacheW_Call;

szLookupName: A Unicode string containing the lookup name.

Common: Additional parameters for the Read Cache call (for additional information, see section
3.1.4.43), as specified in section 2.2.1.9.

2.2.2.27 WriteCacheA_Call

The WriteCacheA_Call structure is used to write the card and reader information to the cache.

typedef struct WriteCacheA Call {
[string] char* szLookupName;
WriteCache Common Common;

} WriteCacheA Call;

szLookupName: An ASCII string containing the lookup name.

Common: Additional parameters for the Write Cache call (for more information, see section
3.1.4.44), as specified in section 2.2.1.10.

2.2.2.28 WriteCacheW_Call

The WriteCacheW_Call structure is used to write the card and reader information to the cache.

typedef struct WriteCacheW Call ({
[string] wchar t* szLookupName;
WriteCache Common Common;

} WriteCacheW Call;

szLookupName: An Unicode string containing the lookup name.

Common: Additional parameters for the Write Cache call (for more information, see section
2.2.1.10.

2.2.2.29 GetTransmitCount_Call

The GetTransmitCount_Call structure is used to obtain the number of transmit calls sent to the
card since the reader was introduced.

35/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

typedef struct GetTransmitCount Call {
REDIR SCARDHANDLE hCard;
} GetTransmitCount Call;

hCard: A handle, as specified in section 2.2.1.2.
2.2.2.30 ScardAccessStartedEvent_Call

ScardAccessStartedEvent_Call is just an uninitialized 4-byte buffer that is sent as the IOCTL requires
a payload. There is no corresponding serialized structure for this call.

4(5(6|7|8[9(0|1|2|3[4|5|6|7

Unused

Unused (4 bytes): The field is uninitialized. It SHOULD contain random data and MUST be
ignored on receipt.

2.2.3 TS Client-Generated Structures

These structures originate from the client process and compose part of the return packet. If the

ReturnCode field of the structure is nonzero, all other fields MUST be set to zero and MUST be
ignored on receipt.

2.2.3.1 ReadCache_Return

The ReadCache_Return structure is used to obtain the data that corresponds to the lookup item
requested in ReadCacheA_Call as specified in section 2.2.2.25, or ReadCacheW_Call as specified in
section 2.2.2.26. For more call information, see sections 3.1.4.42 and 3.1.4.43.

typedef struct ReadCache Return {
long ReturnCode;

[range (0,65536)] unsigned long cbDatalen;

[unique, size is(cbDatalen)] byte* pbData;
} ReadCache_ Return;

ReturnCode: HRESULT or Win32 Error codes. Zero indicates success; any other value indicates
failure.

cbDatalen: The number of bytes in the pbData field.
pbData: The value of the look up item.

2.2.3.2 EstablishContext_Return

The EstablishContext_Return structure is used to provide a response to an Establish Context call
(for more information, see section 3.1.4.1.)

typedef struct EstablishContext Return ({

36/ 93
[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

long ReturnCode;
REDIR_SCARDCONTEXT Context;
} EstablishContext Return;

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.

Context: A valid context, as specified in section 2.2.1.1.

2.2.3.3 Long_Return

The Long_Return structure is used for return codes for calls that return only a long value.

typedef struct Long Return {
long ReturnCode;
} Long_Return;

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.

2.2.3.4 ListReaderGroups_Return and ListReaders_Return

The ListReaderGroups_Return and ListReaders_Return structures are used to obtain results
for those calls that return a multistring, in addition to a long return value. For more information, see
sections 3.1.4.5, 3.1.4.6, 3.1.4.7, and 3.1.4.8.

typedef struct longAndMultiString Return ({
long ReturnCode;
[range (0, 65536)] unsigned long cBytes;
[unique, size is(cBytes)] byte* msz;

} ListReaderGroups_ Return,

ListReaders Return;

ReturnCode: HRESULT or Win32 Error code. The value returned from the Smart Card
Redirection call.

cBytes: The number of bytes in the msz array field.

msz: The meaning of this field is specific to the context (IOCTL) in which it is used.

Value Meaning

SCARD_IOCTL_LISTREADERSA ASCII multistring of readers on the system.
0x00090028

SCARD_IOCTL_LISTREADERSW Unicode multistring of readers on the system.
0x0009002C

SCARD_IOCTL_LISTREADERGROUPSA ASCII multistring of reader groups on the system.
0x00090020

37/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

Value Meaning

SCARD_IOCTL_LISTREADERGROUPSW

Unicode multistring of reader groups on the system.
0x00090024

2.2.3.5 LocateCards_Return and GetStatusChange_Return

The LocateCards_Return and GetStatusChange_Return structures are used to obtain the
results on those calls that return updated reader state information. (for more information, see
sections 3.1.4.21, 3.1.4.22, 3.1.4.23, 3.1.4.24, 3.1.4.25, and 3.1.4.26).

typedef struct LocateCards Return {
long ReturnCode;

[range (0, 10)] unsigned long cReaders;

[size is(cReaders)] ReaderState Return* rgReaderStates;
} LocateCards_ Return,

GetStatusChange Return;

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.

cReaders: The number of elements in the rgReaderStates field.

rgReaderStates: The current states of the readers being watched.
2.2.3.6 Control_Return

The Control_Return structure is used to obtain information from a Control Call (for more
information, see section 3.1.4.37).

typedef struct Control Return ({
long ReturnCode;

[range (0,66560)] unsigned long cbOutBufferSize;
[unique, size is(cbOutBufferSize)]
byte* pvOutBuffer;
} Control Return;

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.

cbOutBufferSize: The number of bytes in the pvOutBuffer field.
pvOutBuffer: Contains the return data specific to the value of the Control_Call structure.

2.2.3.7 Reconnect_Return

The Reconnect_Return structure is used to obtain return information from a Reconnect call (for
more information, see section 3.1.4.36).

typedef struct Reconnect Return {
long ReturnCode;

unsigned long dwActiveProtocol;

38/ 93
[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension
Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

} Reconnect Return;

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.

dwActiveProtocol: A flag that indicates the established active protocol. For more information
on acceptable values, see section 2.2.5 .

2.2.3.8 Connect_Return

The Connect_Return structure is used to obtain return information from a Connect call (for more
information, see sections 3.1.4.28 and 3.1.4.29).

typedef struct Connect Return ({
long ReturnCode;
REDIR SCARDCONTEXT hCard;
unsigned long dwActiveProtocol;
} Connect Return;

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.

hCard: A handle, as specified in section 2.2.1.1.

dwActiveProtocol: A value that indicates the active smart card transmission protocol. Possible
values are specified in section 2.2.5.

2.2.3.9 State_Return

The State_Return structure defines return information about the state of the smart card reader
(for more information, see section 3.1.4.40).

typedef struct State Return {
long ReturnCode;
unsigned long dwState;
unsigned long dwProtocol;
[range (0,36)] unsigned long cbAtrLen;
[unique, size is(cbAtrLen)] byte* rgAtr;
} State Return;

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.

dwsState: The current state of the smart card in the Reader. Possible values are specified in
section 2.2.4.

dwProtocol: The current protocol, if any. Possible values are specified in section 2.2.5.

cbAtrLen: The number of bytes in the rgAtr field.

39/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

rgAtr: A pointer to a buffer that receives the ATR string from the currently inserted card, if
available.
2.2.3.10 Status_Return

The Status_Return structure defines return information about the status of the smart card reader
(for more information, see sections 3.1.4.33 and 3.1.4.34).

typedef struct Status Return {
long ReturnCode;
[range (0, 65536)] unsigned long cBytes;
[unique, size is(cBytes)] byte* mszReaderNames;
unsigned long dwState;
unsigned long dwProtocol;
byte pbAtr[32];
[range (0,32)] unsigned long cbAtrLen;
} Status Return;

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.

cBytes: The number of bytes in the mszReaderNames field.

mszReaderNames: A multistring containing the names that the reader is known by. The value
of this is dependent on the context (IOCTL) that it is used.

Value Meaning
SCARD_IOCTL_STATUSA ASCII multistring
0x000900C8

SCARD_IOCTL_STATUSW Unicode multistring
0x000900CC

dwsState: The current state of the smart card in the reader. Possible values are specified in
section 2.2.4.

dwProtocol: The current protocol, if any. Possible values are specified in section 2.2.5.

pbAtr: A pointer to a buffer that receives the ATR string from the currently inserted card, if
available.

cbAtrLen: The number of bytes in the ATR string.

2.2.3.11 Transmit_Return

The Transmit_Return structure defines return information from a smart card after a Transmit call
(for more information, see section 3.1.4.35).

typedef struct Transmit Return {
long ReturnCode;
[unique] SCardIO Request* pioRecvPci;
[range (0, 66560)] unsigned long cbRecvLength;
[unique, size is(cbRecvLength)]

40/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

byte* pbRecvBuffer;
} Transmit Return;

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.

pioRecvPci: The protocol header structure for the instruction, followed by a buffer in which to

receive any returned protocol control information (PCI) that is specific to the protocol in use.
If this field is NULL, a protocol header MUST NOT be returned.

cbRecvLength: The size, in bytes, of the pbRecvBuffer field.

pbRecvBuffer: The data returned from the card.

2.2.3.12 GetAttrib_Return
The GetAttrib_Return structure defines attribute information from a smart card reader (for more
information, see section 3.1.4.38).

typedef struct GetAttrib Return {
long ReturnCode;

[range (0, 65536)] unsigned long cbAttrLen;
[unique, size is(cbAttrLen)] byte* pbAttr;
} GetAttrib Return;

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.
cbAttrLen: The number of bytes in the pbAttr field.

pbAttr: A pointer to an array that contains any values returned from the corresponding call.
2.2.3.13 GetTransmitCount_Return

The GetTransmitCount_Return structure defines the number of transmit calls that were
performed on the smart card reader (for more information, see section 3.1.4.41).

typedef struct GetTransmitCount Return ({
long ReturnCode;

unsigned long cTransmitCount;
} GetTransmitCount Return;

ReturnCode: HRESULT or Win32 Error code. Zero indicates success; any other value indicates
failure.

cTransmitCount: The field specifies the number of successful Transmit calls (for more
information, see section 3.1.4.35) performed on the reader since it was introduced to the
system.

[MS-RDPESC] — v20110204

41/ 93
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

2.2.4 Card/Reader State

The following represents the current state of the smart card reader according to Smart Cards for
Windows.

-
N
w

0|1|{2(3(4|5|6|7(8|9|/0|1|2(3|4|5|6[7|8|9|0(1({2|3|4|5|6(7|8|9|0(1

CardReaderState

CardReaderState (4 bytes): One of the following values.

Value Meaning

SCARD_UNKNOWN The current state of the reader is unknown.

0x00000000

SCARD_ABSENT There is no card in the reader.

0x00000001

SCARD_PRESENT There is a card in the reader but it has not been moved into position for
0x00000002 use.

SCARD_SWALLOWED There is a card in the reader in position for use. The card is not powered.
0x00000003

SCARD_POWERED There is power being applied to the card but the mode of the card is
0x00000004 unknown.

SCARD_NEGOTIABLE The card has been reset and is awaiting PTS negotiation.

0x00000005

SCARD_SPECIFICMODE | The card has been reset and specific communication protocols have been
0x00000006 established.

2.2.5 Protocol Identifier

A Protocol Identifier.

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4(5|6|7(8|9(0]1

Protocolldentifier

ProtocolIdentifier (4 bytes): This field MUST have a value from Table A which is logically
OR'ed with a value from Table B.

Table A

Value Meaning

SCARD_PROTOCOL_UNDEFINED No transmission protocol is active.
0x00000000

42 /93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

Value Meaning

SCARD_PROTOCOL_TO Transmission protocol 0 (T=0) is active. It is the asynchronous
0x00000001 half-duplex character transmission protocol.
SCARD_PROTOCOL_T1 Transmission protocol 1 (T=1) is active. It is the asynchronous
0x00000002 half-duplex block transmission protocol.
SCARD_PROTOCOL_Tx Bitwise OR combination of both of the two International
0x00000003 Standards Organization (IS0) transmission protocols

SCARD_PROTOCOL_TO and SCARD_PROTOCOL_T1. This value
can be used as a bitmask.

SCARD_PROTOCOL_RAW Transmission protocol raw is active. The data from the smart

0x00010000 card is raw and does not conform to any transmission protocol.
Table B

Value Meaning

SCARD_PROTOCOL_DEFAULT | A bitwise OR with this value forces the use of the default
0x80000000 transmission parameters and card clock frequency.

SCARD_PROTOCOL_OPTIMAL | Optimal transmission parameters and card clock frequency MUST
0x00000000 be used. This flag is considered the default. No actual value is
defined for this flag; it is there for compatibility with [PCSC5
section 3.1.3.

2.2.6 Access Mode Flags

Access mode flags provide possible values for applications to connect to the smart card.

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|(5|6|7|8|9(0|1|2[3|4(5|6|7(8|9(0]1

AccessModeFlag

AccessModeFlag (4 bytes): One of the following possible values:

Value Meaning

SCARD_SHARE_EXCLUSIVE | This application is not willing to share this smart card with other
0x00000001 applications.

SCARD_SHARE_SHARED This application is willing to share this smart card with other
0x00000002 applications.

SCARD_SHARE_DIRECT This application demands direct control of the smart card reader;
0x00000003 therefore, it is not available to other applications.

2.2.7 Reader State

The Reader State packet has a sub-structure as shown in the following table.

43/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

http://go.microsoft.com/fwlink/?LinkId=90245

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4(5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

Reader State

Reader State (4 bytes): Both the dwCurrentState field and the dwEventState field, found
in the ReaderState Common Call (section 2.2.1.5) and ReaderState Return (section
2.2.1.11) structures, consist of the following two subfields.

o w
-

0(1(2|3|4|5(6|7|8|9(0|1|2|3|4|5|6|7|8[9|0]|1|2(3|4|5|6|7[8]|9

Count State

Count (2 bytes): The contents of this field depend on the value of the associated reader
name. If the reader name (for more information, see sections 2.2.1.6 and 2.2.1.7 for
the szReader field) is \\?PnP?\Notification, then Count is a count of the number of
readers installed on the system and all bits except SCARD_STATE_CHANGED in State
MUST be zero. Otherwise, Count is a count of the number of times a card has been
inserted and/or removed from the smart card reader being monitored.

State (2 bytes): The state of a reader. The value MUST be according to the following

table.

Value Meaning

SCARD_STATE_UNAWARE The application requires the current state but does not know

0x0000 it. The use of this value results in an immediate return from
state transition monitoring services.

SCARD_STATE_IGNORE The application requested that this reader be ignored. If this

0x0001 bit is set in the dwCurrentState field of a
ReaderState_Common_Call structure, other bits MUST
NOT be set in the dwEventState field of the corresponding
ReaderState_Return structure.

SCARD_STATE_CHANGED There is a difference between the state believed by the

0x0002 application, and the state known by Smart Cards for
Windows.

SCARD_STATE_UNKNOWN The reader name is not recognized by Smart Cards for

0x0004 Windows. If this bit is set in the dwEventState field of the

ReaderState_Return structure, both
SCARD_STATE_IGNORE and SCARD_STATE_CHANGED
values MUST be set. This bit SHOULD NOT be set in the
dwCurrentState field of a ReaderState_Common_Call
structure.

SCARD_STATE_UNAVAILABLE | The actual state of this reader is not available. If this bit is

0x0008 set, all of the following bits MUST be clear.
SCARD_STATE_EMPTY There is no card in the reader. If this bit is set, all of the
0x0010 following bits MUST be clear.

SCARD_STATE_PRESENT There is a card in the reader.

44 /93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

Value Meaning

0x0020

SCARD_STATE_ATRMATCH There is a card in the reader with an ATR that matches one

0x0040 of the target cards. If this bit is set,
SCARD_STATE_PRESENT MUST be set.

SCARD_STATE_EXCLUSIVE The card in the reader is allocated for exclusive use by

0x0080 another application. If this bit is set,
SCARD_STATE_PRESENT MUST be set.

SCARD_STATE_INUSE The card in the reader is in use by one or more other

0x0100 applications, but it can be connected to in shared mode. If
this bit is set, SCARD_STATE_PRESENT MUST be set.

SCARD_STATE_MUTE The card in the reader is unresponsive or is not supported

0x0200 by the reader or software.

SCARD_STATE_UNPOWERED This implies that the card in the reader has not been turned

0x0400 on.

2.2.8 Return Code

The following Smart Card Facility Codes for Windows-specific return codes MAY be returned by the
protocol server to the protocol client and are of the data type NTSTATUS, with the sev field set to
STATUS_SEVERITY_WARNING (0x2) and the reserved bit (N) set to 0.

0|1{2({3(4|5|/6|7(8|9|/0|12(3|4|5|6[7|8|9|0(1(2|3|4|5|6(7|8|9|0(1

ReturnCode

ReturnCode (4 bytes): One of the following return codes:

Value Meaning

SCARD_S_SUCCESS No error has occurred.

0x00000000

SCARD_F_INTERNAL_ERROR An internal consistency check failed.
0x80100001

SCARD_E_CANCELLED The action was canceled by a Cancel request.
0x80100002

SCARD_E_INVALID_HANDLE The supplied handle was invalid.

0x80100003

SCARD_E_INVALID_PARAMETER One or more of the supplied parameters could not be
0x80100004 properly interpreted.
SCARD_E_INVALID_TARGET Registry startup information is missing or invalid.
0x80100005

SCARD_E_NO_MEMORY Not enough memory available to complete this

45/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

Value Meaning

0x80100006 command.

SCARD_F_WAITED_TOO_LONG An internal consistency timer has expired.
0x80100007

SCARD_E_INSUFFICIENT_BUFFER The data buffer to receive returned data is too small for
0x80100008 the returned data.

SCARD_E_UNKNOWN_READER The specified reader name is not recognized.
0x80100009

SCARD_E_TIMEOUT The user-specified time-out value has expired.
0x8010000A

SCARD_E_SHARING_VIOLATION The smart card cannot be accessed because of other
0x8010000B connections outstanding.

SCARD_E_NO_SMARTCARD The operation requires a smart card, but no smart card
0x8010000C is currently in the device.
SCARD_E_UNKNOWN_CARD The specified smart card name is not recognized.
0x8010000D

SCARD_E_CANT_DISPOSE The system could not dispose of the media in the
0x8010000E requested manner.

SCARD_E_PROTO_MISMATCH The requested protocols are incompatible with the
0x8010000F protocol currently in use with the smart card.
SCARD_E_NOT_READY The reader or smart card is not ready to accept
0x80100010 commands.

SCARD_E_INVALID_VALUE One or more of the supplied parameters values could
0x80100011 not be properly interpreted.
SCARD_E_SYSTEM_CANCELLED The action was canceled by the system, presumably to
0x80100012 log off or shut down.

SCARD_F_COMM_ERROR An internal communications error has been detected.
0x80100013

SCARD_F_UNKNOWN_ERROR An internal error has been detected, but the source is
0x80100014 unknown.

SCARD_E_INVALID_ATR An ATR obtained from the registry is not a valid ATR
0x80100015 string.

SCARD_E_NOT_TRANSACTED An attempt was made to end a non-existent
0x80100016 transaction.

SCARD_E_READER_UNAVAILABLE The specified reader is not currently available for use.
0x80100017

SCARD_P_SHUTDOWN The operation has been stopped to allow the server
0x80100018 application to exit.

SCARD_E_PCI_TOO_SMALL The PCI Receive buffer was too small.

46 /93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

Value

Meaning

0x80100019

SCARD_E_ICC_INSTALLATION
0x80100020

No primary provider can be found for the smart card.

SCARD_E_ICC_CREATEORDER
0x80100021

The requested order of object creation is not supported.

SCARD_E_UNSUPPORTED_FEATURE
0x80100022

This smart card does not support the requested feature.

SCARD_E_DIR_NOT_FOUND
0x80100023

The specified directory does not exist in the smart card.

SCARD_E_FILE_NOT_FOUND
0x80100024

The specified file does not exist in the smart card.

SCARD_E_NO_DIR
0x80100025

The supplied path does not represent a smart card
directory.

SCARD_E_READER_UNSUPPORTED
0x8010001A

The reader device driver does not meet minimal
requirements for support.

SCARD_E_DUPLICATE_READER
0x8010001B

The reader device driver did not produce a unique
reader name.

SCARD_E_CARD_UNSUPPORTED
0x8010001C

The smart card does not meet minimal requirements for
support.

SCARD_E_NO_SERVICE
0x8010001D

Smart Cards for Windows is not running.

SCARD_E_SERVICE_STOPPED
0x8010001E

Smart Cards for Windows has shut down.

SCARD_E_UNEXPECTED
0x8010001F

An unexpected card error has occurred.

SCARD_E_NO_FILE
0x80100026

The supplied path does not represent a smart card file.

SCARD_E_NO_ACCESS
0x80100027

Access is denied to this file.

SCARD_E_WRITE_TOO_MANY
0x80100028

The smart card does not have enough memory to store
the information.

SCARD_E_BAD_SEEK
0x80100029

There was an error trying to set the smart card file
object pointer.

SCARD_E_INVALID_CHV
0x8010002A

The supplied PIN is incorrect.

SCARD_E_UNKNOWN_RES_MSG
0x8010002B

An unrecognized error code was returned from a
layered component.

SCARD_E_NO_SUCH_CERTIFICATE

The requested certificate does not exist.

47/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

Value

Meaning

0x8010002C

SCARD_E_CERTIFICATE_UNAVAILABLE

0x8010002D

The requested certificate could not be obtained.

SCARD_E_NO_READERS_AVAILABLE

0x8010002E

Cannot find a smart card reader.

SCARD_E_COMM_DATA_LOST
0x8010002F

A communications error with the smart card has been
detected. Retry the operation.

SCARD_E_NO_KEY_CONTAINER
0x80100030

The requested key container does not exist.

SCARD_E_SERVER_TOO_BUSY
0x80100031

Smart Cards for Windows is too busy to complete this
operation.

SCARD_E_PIN_CACHE_EXPIRED
0x80100032

The smart card PIN cache has expired.

SCARD_E_NO_PIN_CACHE
0x80100033

The smart card PIN cannot be cached.

SCARD_E_READ_ONLY_CARD
0x80100034

The smart card is read-only and cannot be written to.

SCARD_W_UNSUPPORTED_CARD
0x80100065

The reader cannot communicate with the smart card
due to ATR configuration conflicts.

SCARD_W_UNRESPONSIVE_CARD
0x80100066

The smart card is not responding to a reset.

SCARD_W_UNPOWERED_CARD
0x80100067

Power has been removed from the smart card, so that
further communication is impossible.

SCARD_W_RESET_CARD
0x80100068

The smart card has been reset, so any shared state
information is invalid.

SCARD_W_REMOVED_CARD
0x80100069

The smart card has been removed, so that further
communication is impossible.

SCARD_W_SECURITY_VIOLATION
0x8010006A

Access was denied because of a security violation.

SCARD_W_WRONG_CHV
0x8010006B

The card cannot be accessed because the wrong PIN
was presented.

SCARD_W_CHV_BLOCKED
0x8010006C

The card cannot be accessed because the maximum
number of PIN entry attempts has been reached.

SCARD_W_EOF
0x8010006D

The end of the smart card file has been reached.

SCARD_W_CANCELLED_BY_USER
0x8010006E

The action was canceled by the user.

SCARD_W_CARD_NOT_AUTHENTICATED No PIN was presented to the smart card.

48/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

Value

Meaning

0x8010006F

SCARD_W_CACHE_ITEM_NOT_FOUND
0x80100070

The requested item could not be found in the cache.

SCARD_W_CACHE_ITEM_STALE
0x80100071

The requested cache item is too old and was deleted
from the cache.

SCARD_W_CACHE_ITEM_TOO_BIG
0x80100072

The new cache item exceeds the maximum per-item
size defined for the cache.

[MS-RDPESC] — v20110204

Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

49/ 93

3 Protocol Details

The following sections specify details of the Remote Desktop Protocol: Smart Card Virtual Channel
Extension, including abstract data models, interface method syntax, and message processing rules.

3.1 Protocol Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of a possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model provided that their external behavior is consistent with that described in this
document.

The protocol server relies on an implementation of Smart Cards for Windows.
The following state MUST be kept by this protocol:

dwDeviceld: The device id assigned by Remote Desktop Protocol: File System Virtual Channel
Extension that identifies this protocol.

rgSCardContextList: List of contexts opened by the protocol server.

3.1.2 Timers

None.

3.1.3 Initialization

Initialization is triggered by the Remote Desktop Protocol: File System Virtual Channel Extension
when it enumerates all pre-logon devices. At this time, TS client initialization is performed.

If the TS server operating system version is earlier than 5.1, the device is not announced to the
TS server

The dwbDeviceld field MUST be set to the device Id selected by Remote Desktop Protocol: File
System Virtual Channel Extension, and rgSCardContextList MUST be set to the empty list.

3.1.4 Message Processing Events and Sequencing Rules

Only messages of type DR_CONTROL_REQ and DR_CONTROL_RSP (as specified in [MS-RDPEFS],
sections 2.2.1.4.5 and 2.2.1.5.5 respectively) are valid for this protocol. All other messages MUST
be processed according to the Remote Desktop Protocol: File System Virtual Channel Extension.

Only the control codes specified in the IOCTL Processing Rules in the following table are valid.
Invalid packets MUST be dropped without a reply.

Functio Value for

n IoControlCod
number e IRP_MJ_DEVICE_CONTROL request Input packet, Output packet
5 0x00090014 SCARD_IOCTL_ESTABLISHCONTEXT EstablishContext Call

section 2.2.2.1),

50/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-RDPEFS%5d.pdf
%5bMS-RDPEFS%5d.pdf
%5bMS-RDPEFS%5d.pdf

Functio Value for
n IoControlCod
number e IRP_MJ_DEVICE_CONTROL request Input packet, Output packet

EstablishContext Return

section 2.2.3.2

6 0x00090018 SCARD_IOCTL_RELEASECONTEXT Context Call (section

2.2.2.2), Long Return
section 2.2.3.3

7 0x0009001C SCARD_IOCTL_ISVALIDCONTEXT Context_Call (section
2.2.2.2), Long_Return
(section 2.2.3.3)

8 0x00090020 SCARD_IOCTL_LISTREADERGROUPSA ListReaderGroups Call
section 2.2.2.3),

ListReaderGroups Return

section 2.2.3.4

9 0x00090024 SCARD_IOCTL_LISTREADERGROUPSW ListReaderGroups_Call
(section 2.2.2.3),
ListReaderGroups_Return
(section 2.2.3.4)

10 0x00090028 SCARD_IOCTL_LISTREADERSA ListReaders Call (section
2.2.2.4),
ListReaders_Return (section
2.2.3.4)

11 0x0009002C SCARD_IOCTL_LISTREADERSW ListReaders_Call (section
2.2.2.4),
ListReaders_Return (section
2.2.3.4)

20 0x00090050 SCARD_IOCTL_INTRODUCEREADERGROUPA ContextAndStringA Call

(section 2.2.2.5),
Long_Return (section
2.2.3.3)

21 0x00090054 SCARD_IOCTL_INTRODUCEREADERGROUPW ContextAndStringW_Call
(section 2.2.2.6),
Long_Return (section
2.2.3.3)

22 0x00090058 SCARD_IOCTL_FORGETREADERGROUPA ContextAndStringA_Call
(section 2.2.2.5),
Long_Return (section
2.2.3.3)

23 0x0009005C SCARD_IOCTL_FORGETREADERGROUPW ContextAndStringW_Call
(section 2.2.2.6),
Long_Return (section
2.2.3.3)

24 0x00090060 SCARD_IOCTL_INTRODUCEREADERA ContextAndTwoStringA Cal
| (section 2.2.2.7),

Long_Return (section
2.2.3.3)

51/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

Functio
n
number

Value for
IoControlCod
e

IRP_MIJ_DEVICE_CONTROL request

Input packet, Output packet

25

0x00090064

SCARD_IOCTL_INTRODUCEREADERW

ContextAndTwoStringW_Ca
Il (section 2.2.2.8),
Long_Return (section
2.2.3.3)

26

0x00090068

SCARD_IOCTL_FORGETREADERA

ContextAndStringA_Call
(section 2.2.2.5),
Long_Return (section
2.2.3.3)

27

0x0009006C

SCARD_IOCTL_FORGETREADERW

ContextAndStringW_Call
(section 2.2.2.6),
Long_Return (section
2.2.3.3)

28

0x00090070

SCARD_IOCTL_ADDREADERTOGROUPA

ContextAndTwoStringA_Cal
I (section 2.2.2.7),
Long_Return (section
2.2.3.3)

29

0x00090074

SCARD_IOCTL_ADDREADERTOGROUPW

ContextAndTwoStringW_Ca
Il (section 2.2.2.8),
Long_Return (section
2.2.3.3)

30

0x00090078

SCARD_IOCTL_REMOVEREADERFROMGROUP
A

ContextAndTwoStringA_Cal
I (section 2.2.2.7),
Long_Return (section
2.2.3.3)

31

0x0009007C

SCARD_IOCTL_REMOVEREADERFROMGROUP
W

ContextAndTwoStringW_Ca
Il (section 2.2.2.8),
Long_Return (section
2.2.3.3)

38

0x00090098

SCARD_IOCTL_LOCATECARDSA

LocateCardsA Call (section

2.2.2.9),

LocateCards Return
(section 2.2.3.5)

39

0x0009009C

SCARD_IOCTL_LOCATECARDSW

LocateCardsW_Call
(section 2.2.2.10),
LocateCards_Return
(section 2.2.3.5)

40

0x000900A0

SCARD_IOCTL_GETSTATUSCHANGEA

GetStatusChangeA Call
(section 2.2.2.11),
GetStatusChange_Return
(section 2.2.3.5)

41

0x000900A4

SCARD_IOCTL_GETSTATUSCHANGEW

GetStatusChangeW Call
(section 2.2.2.12),
GetStatusChange_Return

(section 2.2.3.5)

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

52 /93

Functio
n
number

Value for

IoControlCod

e

IRP_MIJ_DEVICE_CONTROL request

Input packet, Output packet

42

0x000900A8

SCARD_IOCTL_CANCEL

Context_Call (section
2.2.2.2), Long_Return
(section 2.2.3.3)

43

0x000900AC

SCARD_IOCTL_CONNECTA

ConnectA Call (section
2.2.2.13), Connect Return

(section 2.2.3.8)

44

0x000900B0

SCARD_IOCTL_CONNECTW

ConnectW Call (section
2.2.2.14), Connect_Return
(section 2.2.3.8)

45

0x000900B4

SCARD_IOCTL_RECONNECT

Reconnect Call (section

2.2.2.15),

Reconnect Return (section

2.2.3.7)

46

0x000900B8

SCARD_IOCTL_DISCONNECT

HCardAndDisposition Call
(section 2.2.2.16),

Long_Return (section
2.2.3.3)

47

0x000900BC

SCARD_IOCTL_BEGINTRANSACTION

HCardAndDisposition_Call
(section 2.2.2.16),
Long_Return (section
2.2.3.3)

48

0x000900C0

SCARD_IOCTL_ENDTRANSACTION

HCardAndDisposition_Call
(section 2.2.2.16),
Long_Return (section
2.2.3.3)

49

0x000900C4

SCARD_IOCTL_STATE

State Call (section
2.2.2.17), State Return
(section 2.2.3.9)

50

0x000900C8

SCARD_IOCTL_STATUSA

Status Call (section
2.2.2.18), Status Return
(section 2.2.3.10)

51

0x000900CC

SCARD_IOCTL_STATUSW

Status_Call (section
2.2.2.18), Status_Return
(section 2.2.3.10)

52

0x000900D0

SCARD_IOCTL_TRANSMIT

Transmit Call (section
2.2.2.19), Transmit Return
(section 2.2.3.11)

53

0x000900D4

SCARD_IOCTL_CONTROL

Control Call (section
2.2.2.20), Control Return
section 2.2.3.6

54

0x000900D8

SCARD_IOCTL_GETATTRIB

GetAttrib Call (section
2.2.2.21), GetAttrib Return

(section 2.2.3.12)

[MS-RDPESC] — v20110204

Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

53/93

Functio
n
number

Value for
IoControlCod
e

IRP_MIJ_DEVICE_CONTROL request

Input packet, Output packet

55

0x000900DC

SCARD_IOCTL_SETATTRIB

SetAttrib _Call (section

2.2.2.22), Long_Return
(section 2.2.3.3)

56

0x000900EO0

SCARD_IOCTL_ACCESSSTARTEDEVENT

ScardAccessStartedEvent Call
(section 2.2.2.30),
Long_Return (section
2.2.3.3)

58

0x000900E8

SCARD_IOCTL_LOCATECARDSBYATRA

LocateCardsByATRA Call
(section 2.2.2.23),

LocateCards_Return
(section 2.2.3.5)

59

0x000900EC

SCARD_IOCTL_LOCATECARDSBYATRW

LocateCardsByATRW Call
(section 2.2.2.24),

LocateCards_Return
(section 2.2.3.5)

60

0x000900F0

SCARD_IOCTL_READCACHEA

ReadCacheA Call (section
2.2.2.25),

ReadCache Return (section

2.2.3.1)

61

0x000900F4

SCARD_IOCTL_READCACHEW

ReadCacheW Call (section
2.2.2.26),

ReadCache_Return (section
2.2.3.1)

62

0x000900F8

SCARD_IOCTL_WRITECACHEA

WriteCacheA Call (section

2.2.2.27), Long_Return
(section 2.2.3.3)

63

0x000900FC

SCARD_IOCTL_WRITECACHEW

WriteCacheW Call (section

2.2.2.28), Long_Return
(section 2.2.3.3)

64

0x00090100

SCARD_IOCTL_GETTRANSMITCOUNT

GetTransmitCount Call

(section 2.2.2.29),

GetTransmitCount Return
(section 2.2.3.13)

66

0x000900E4

SCARD_IOCTL_RELEASETARTEDEVENT

Not used.

The TS client MUST be able to process multiple requests simultaneously within the limits of its

resources.

Any errors from the Smart Cards for Windows layer MUST be transferred to the TS server and MUST
NOT be modified by the TS client. No exceptions are thrown in this protocol.

The following steps MUST be performed on each call packet received:

1. The IoControlCode MUST be present, as specified in the preceding IOCTL Processing Rules table,
for the specific protocol version implemented.<2>

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

54 /93

2. The input data type is interpreted according to the IOCTL Processing Rules table. The data MUST
be decoded as specified in [MS-RPCE] section 2.2.6.

3. Processing MUST be performed according to the corresponding section that follows. On success,
it MUST return a structure as specified in the preceding IOCTL Processing Rules table.

4. If the protocol encounters problems decoding the input or encoding the results, then
DR_DEVICE_IOCOMPLETION.IOStatus (as specified in [MS-RDPEFS] section 2.2.1.5) MUST be set
to an NTSTATUS code (as specified in [MS-ERREF] section 2.3), the most common of which
appear in the following table.

Return value/code Description

STATUS_NO_MEMORY Not enough virtual memory or paging file quota is available to
0xC0000017 complete the specified operation.

STATUS_UNSUCCESSFUL The requested operation was unsuccessful.

0xC0000001

STATUS_BUFFER_TOO_SMALL | The buffer is too small to contain the entry. No information has
0xC0000023 been written to the buffer.

5. On error, DR_DEVICE_IOCOMPLETION.Parameters.DevicelIOControl.OutputBufferLength MUST be
set to zero and DR_DEVICE_IOCOMPLETION.Parameters.DeviceIOControl.OutputBuffer MUST set
to NULL.

6. Otherwise, DR_DEVICE_IOCOMPLETION.IOStatus MUST be set to 0 (STATUS_SUCCESS) and
DR_DEVICE_IOCOMPLETION.Parameters.DevicelOControl.OutputBuffer MUST contain an
encoding of the structure (as specified in the preceding Message Processing Events and
Sequencing Rules IOCTL Table) as specified in [MS-RPCE] section 2.2.6.
DR_DEVICE_IOCOMPLETION.Parameters.DeviceIOControl.OutputBufferLength is the length of the
data.

7. The return packet is then sent according to Remote Desktop Protocol: File System Virtual
Channel Extension.

.1.4.1 SCARD_IOCTL_ESTABLISHCONTEXT (IOCTL 0x00090014)

Establish Context creates a new Smart Cards for Windows context specified for use in subsequent
communication with Smart Cards for Windows.

Return Values: This method sets EstablishContext Return.ReturnCode to SCARD_S SUCCESS on
success; otherwise, it sets one of the smart card-specific errors or one of the return codes from
Winerror.h. No specialized error codes are associated with this method.

If the call is successful, EstablishContext_Return.Context MUST be added to the
rgSCardContextList list maintained by this client.

.1.4.2 SCARD_IOCTL_RELEASECONTEXT (IOCTL 0x00090018)

Release Context releases a previously established Smart Cards for Windows context as specified in
section 3.1.4.1. The context MUST exist in rgSCardContextList.

Return Values: This method sets Long_Return.ReturnCode (for more information, see section
2.2.3.3) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors

55/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-RPCE%5d.pdf
%5bMS-RDPEFS%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-RPCE%5d.pdf

or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

If the call is successful, Context_Call.Context (for more information, see section 2.2.2.2) is removed
from rgSCardContextList.

3.1.4.3 SCARD_IOCTL_ISVALIDCONTEXT (IOCTL 0x0009001C)

Is Valid Context checks if a previously established Smart Cards for Windows context from

SCARD IOCTL ESTABLISHCONTEXT is still valid. For this call to succeed, Context_Call.Context (for
more information, see section 2.2.2.2) MUST exist in rgSCardContextList and the Smart Cards for
Windows communication channel MUST still be present.

Return Values: This method sets Long_Return.ReturnCode (for more information, see section
2.2.3.3) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.4 SCARD_IOCTL_ACCESSSTARTEDEVENT (IOCTL 0x000900EO0)
Access Started Event waits until Smart Cards for Windows is running.

Return Values: This method sets Long_Return.ReturnCode (for more information, see section
2.2.3.3) to SCARD_S_SUCCESS if Smart Cards for Windows is running; otherwise, it sets one of the
smart card-specific errors or one of the return codes from Winerror.h. No specialized error codes are
associated with this method.

3.1.4.5 SCARD_IOCTL_LISTREADERGROUPSA (IOCTL 0x00090020)

The ASCII version List Reader Groups returns the reader groups known to Smart Cards for Windows.
ListReaderGroups Return is constructed according to ListReaderGroups_Return and
ListReaders_Return and the information in ListReaderGroups Call.

Return Values: This method sets ListReaderGroups_Return.ReturnCode (for more information, see
section 2.2.3.4) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific
errors or one of the return codes from Winerror.h. No specialized error codes are associated with
this method.

3.1.4.6 SCARD_IOCTL_LISTREADERGROUPSW (IOCTL 0x00090024)

The Unicode version List Reader Groups returns the reader groups known to Smart Cards for
Windows. ListReaderGroups Return is constructed according to ListReaderGroups_Return and
ListReaders_Return and the information in ListReaderGroups Call.

Return Values: This method sets ListReaderGroups_Return.ReturnCode (for more information, see
section 2.2.3.4) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific
errors or one of the return codes from Winerror.h. No specialized error codes are associated with
this method.

3.1.4.7 SCARD_IOCTL_LISTREADERSA (IOCTL 0x00090028)

The ASCII version of List Readers returns the smart card readers known to Smart Cards for
Windows. ListReaders Return is constructed according to ListReaderGroups_Return and
ListReaders_Return and ListReaders Call.

56 /93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

Return Values: The method sets ListReaders_Return.ReturnCode (for more information, see section
2.2.3.4) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.8 SCARD_IOCTL_LISTREADERSW (IOCTL 0x0009002C)

The Unicode version of List Readers returns the smart card readers known to Smart Cards for
Windows. ListReaders Return is constructed according to ListReaderGroups_Return and
ListReaders_Return and ListReaders Call.

Return Values: The method sets ListReaders_Return.ReturnCode (for more information, see section
2.2.3.4) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.9 SCARD_IOCTL_INTRODUCEREADERGROUPA (IOCTL 0x00090050)

The ASCII version of Introduce Reader Group adds the reader group specified in
ContextAndStringA_Call.sz (for more information, see section 2.2.2.5) to the list of reader groups
known to Smart Cards for Windows.

Return Values: The method sets Long_Return.ReturnCode (for more information, see section
2.2.3.3) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.10 SCARD_IOCTL_INTRODUCEREADERGROUPW (IOCTL 0x00090054)

The Unicode version of Introduce Reader Group adds the reader group specified in
ContextAndStringW_Call.sz (for more information, see section 2.2.2.6) to the list of reader groups
known to Smart Cards for Windows.

Return Values: The method sets Long_Return.ReturnCode (for more information, see section
2.2.3.3) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.11 SCARD_IOCTL_FORGETREADERGROUPA (IOCTL 0x00090058)

The ASCII version of Forget Reader Group removes the reader group specified in
ContextAndStringA_Call.sz (for more information, see section 2.2.2.5) from the list of reader groups
known to the Smart Cards for Windows.

Return Values: The method sets Long_Return.ReturnCode (for more information, see section
2.2.3.3) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.12 SCARD_IOCTL_FORGETREADERGROUPW (IOCTL 0x0009005C)

The Unicode version of Forget Reader Group removes the reader group specified in
ContextAndStringW_Call.sz (for more information, see section 2.2.2.6) from the list of reader
groups known to Smart Cards for Windows.

57793

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

Return Values: The method sets Long_Return.ReturnCode (for more information, see section
2.2.3.3) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors

or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.13 SCARD_IOCTL_INTRODUCEREADERA (IOCTL 0x00090060)

The ASCII version of Introduce Reader adds the device name specified in

ContextAndTwoStringA_Call.sz2 (for more information, see section 2.2.2.7) to the smart card reader
specified in ContextAndTwoStringA_Call.sz1.

Return Values: The method sets Long_Return.ReturnCode (for more information, see section
2.2.3.3) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors

or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.14 SCARD_IOCTL_INTRODUCEREADERW (IOCTL 0x00090064)

The Unicode version of Introduce Reader adds the device name specified in
ContextAndTwoStringW_Call.sz2 (for more information, see section 2.2.2.8) to the smart card
reader specified in ContextAndTwoStringW_Call.sz1.

Return Values: The method sets Long_Return.ReturnCode (for more information, see section
2.2.3.3) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors

or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.15 SCARD_IOCTL_FORGETREADERA (IOCTL 0x00090068)

The ASCII version of Forget Reader removes the smart card reader specified in
ContextAndStringA_Call.sz (for more information, see section 2.2.2.5) from the list of smart card
readers known to Smart Cards for Windows.

Return Values: The method sets Long_Return.ReturnCode (for more information, see section
2.2.3.3) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors

or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.16 SCARD_IOCTL_FORGETREADERW (IOCTL 0x0009006C)

The Unicode version of Forget Reader removes the smart card reader specified in

ContextAndStringW_Call.sz (for more information, see section 2.2.2.6) from the list of smart card
readers known to Smart Cards for Windows.

Return Values: The method sets Long_Return.ReturnCode (for more information, see section
2.2.3.3) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors

or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.17 SCARD_IOCTL_ADDREADERTOGROUPA (IOCTL 0x00090070)

The ASCII version of Add Reader to Group adds the smart card reader specified in
ContextAndTwoStringA_Call.sz2 (for more information, see section 2.2.2.7).

58/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

Return Values: The method sets Long_Return.ReturnCode (for more information, see section
2.2.3.3) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.18 SCARD_IOCTL_ADDREADERTOGROUPW (IOCTL 0x00090074)

The Unicode version of Add Reader to Group adds the smart card reader specified in
ContextAndTwoStringW_Call.sz2 (for more information, see section 2.2.2.8).

Return Values: The method sets Long_Return.ReturnCode (for more information, see section
2.2.3.3) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.19 SCARD_IOCTL_REMOVEREADERFROMGROUPA (IOCTL 0x00090078)

The ASCII version of Remove Reader From Group removes the smart card reader specified in
ContextAndTwoStringA_Call.sz2 (for more information, see section 2.2.2.7).

Return Values: The method sets Long_Return.ReturnCode (for more information, see section
2.2.3.3) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.20 SCARD_IOCTL_REMOVEREADERFROMGROUPW (IOCTL 0x0009007C)

The Unicode version of Remove Reader From Group removes the smart card reader specified in
ContextAndTwoStringW_Call.sz2 (for more information, see section 2.2.2.8).

Return Values: The method sets Long_Return.ReturnCode (for more information, see section
2.2.3.3) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.21 SCARD_IOCTL_LOCATECARDSA (IOCTL 0x00090098)

The ASCII version of Locate Cards searches the readers specified in LocateCardsA_Call.mszCards
(for more information, see section 2.2.2.9). Unknown Card Types MUST be ignored.
LocateCards Return is constructed according to LocateCards_Return and
GetStatusChange_Return by using the information in LocateCardsA_Call.

Return Values: The method sets LocateCards_Return.ReturnCode (for more information, see section
2.2.3.5) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.22 SCARD_IOCTL_LOCATECARDSW (IOCTL 0x0009009C)

The Unicode version of Locate Cards searches the readers specified in LocateCardsW_Call.mszCards
(for more information, see section 2.2.2.10). Unknown Card Types MUST be ignored.

LocateCards Return is constructed according to LocateCards_Return and
GetStatusChange_Return by using the information in LocateCardsW_Call.

59/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

Return Values: The method sets LocateCards_Return.ReturnCode to SCARD_S_SUCCESS on
success; otherwise it sets one of the smart card-specific errors or one of the return codes from
Winerror.h. No specialized error codes are associated with this method.

3.1.4.23 SCARD_IOCTL_GETSTATUSCHANGEA (IOCTL 0x000900A0)

The ASCII version of Get Status Change monitors the smart card readers specified in
GetStatusChangeA_Call.rgReaderStates (for more information, see section 2.2.2.11) MUST correctly
represent the state of the Readers as known by Smart Cards for Windows.

Return Values: The method sets GetStatusChange Return.ReturnCode to SCARD_S_SUCCESS on
success; otherwise, it sets one of the smart card-specific errors or one of the return codes from
Winerror.h. No specialized error codes are associated with this method.

3.1.4.24 SCARD_IOCTL_GETSTATUSCHANGEW (IOCTL 0x000900A4)

The Unicode version of Get Status Change monitors the smart card readers specified in
GetStatusChangeW_Call.rgReaderStates (for more information, see section 2.2.2.12) MUST
correctly represent the state of the readers as known by Smart Cards for Windows.

Return Values: The method sets GetStatusChange Return.ReturnCode to SCARD_S_SUCCESS on
success; otherwise, it sets one of the smart card-specific errors or one of the return codes from
Winerror.h. No specialized error codes are associated with this method.

3.1.4.25 SCARD_IOCTL_LOCATECARDSBYATRA (IOCTL 0x000900ES8)

The ASCII version of Locate Cards By ATR searches the Readers specified in
LocateCardsByATRA_Call.rgAtrMasks (for more information, see section 2.2.2.23). Unknown card
types MUST be ignored. LocateCards Return is constructed according to LocateCards_Return
and GetStatusChange_Return by using the information in LocateCardsByATRA_Call.

Return Values: The method sets LocateCards_Return.ReturnCode (for more information, see section
2.2.3.5) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.26 SCARD_IOCTL_LOCATECARDSBYATRW (IOCTL 0x000900EC)

The Unicode version of Locate Cards By ATR searches the readers specified in
LocateCardsByATRW_Call.rgAtrMasks (LocateCardsByATRW Call). Unknown Card Types MUST be
ignored. LocateCards Return is constructed according to LocateCards_Return and
GetStatusChange_Return by using the information in LocateCardsByATRW_Call.

Return Values: The method sets LocateCards_Return.ReturnCode (for more information, see section
2.2.3.5) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.27 SCARD_IOCTL_CANCEL (IOCTL 0x000900A8)

The Cancel method MUST instruct Smart Cards for Windows to cancel any outstanding calls by using
the context specified by Context_Call.Context (for more information, see section 2.2.2.2).

Return Values: The method sets Long_Return.ReturnCode (for more information, see section
2.2.3.3) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors

60/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.28 SCARD_IOCTL_CONNECTA (IOCTL 0x000900AC)

The ASCII version of Connect establishes a handle to a smart card reader. On success,
Connect Return is initialized according to Control Return.

Return Values: The method sets the Connect_Return.ReturnCode (for more information, see section
2.2.3.8) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.29 SCARD_IOCTL_CONNECTW (IOCTL 0x000900B0)

The Unicode version of Connect establishes a smart card reader handle. On success,
Connect Return is initialized according to Control Return and the caller is given a handle to
execute additional methods on the reader.

Return Values: The method sets the Connect_Return.ReturnCode (for more information, see section
2.2.3.8) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.30 SCARD_IOCTL_DISCONNECT (IOCTL 0x000900B8)

The disconnect method releases a smart card reader handle that was acquired in ConnectA Call or
ConnectW Call,using HCardAndDisposition Call.dwDisposition. After a successful call, The
smart card reader handle is released and MUST be made available to the system.

Return Values: The method sets Long Return.ReturnCode to SCARD_S_SUCCESS on success;
otherwise, it sets one of the smart card-specific errors or one of the return codes from Winerror.h.
No specialized error codes are associated with this method.

3.1.4.31 SCARD_IOCTL_BEGINTRANSACTION (IOCTL 0x000900BC)

The Begin Transaction method locks a smart card reader for exclusive access for the specified smart
card reader handle. If the caller is unable to receive exclusive access, this call MUST block until the
request can be met.

Return Values: The method sets Long_Return.ReturnCode (for more information, see section
2.2.3.3) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.32 SCARD_IOCTL_ENDTRANSACTION (IOCTL 0x000900C0)

The End Transaction method releases a smart card reader after being locked by a previously
successful call to Begin Transaction (for more information, see section 3.1.4.31).

Return Values: The method sets Long_Return.ReturnCode (for more information, see section
2.2.3.3) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

61/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

3.1.4.33 SCARD_IOCTL_STATUSA (IOCTL 0x000900C8)

The ASCII version of the Status call returns the current state of the smart card reader and any
smart card inserted. On success, Status_Return MUST be initialized according to Status Return.

Return Values: The method sets Status_Return.ReturnCode (for more information, see section
2.2.3.10) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.34 SCARD_IOCTL_STATUSW (IOCTL 0x000900CC)

The Unicode version of the Status call returns the current state of the smart card reader and any
smart card inserted. On success, Status_Return MUST be initialized according to Status Return.

Return Values: The method sets Status_Return.ReturnCode (for more information, see section
2.2.3.10) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.35 SCARD_IOCTL_TRANSMIT (IOCTL 0x000900DO0)

The Transmit function sends a command to a smart card inserted to the smart card reader
associated with the smart card reader handle. On success, the command has been successfully sent
to the card and the response has been placed in Transmit Return.

Return Values: The method sets Transmit_Return.ReturnCode (for more information, see section
2.2.3.11) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.36 SCARD_IOCTL_RECONNECT (IOCTL 0x000900B4)

The reconnect method re-establishes a smart card reader handle. On success, the handle is valid
once again.

Return Values: The method sets Reconnect_Return.ReturnCode (for more information, see section
2.2.3.7) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.37 SCARD_IOCTL_CONTROL (IOCTL 0x000900D4)

The Control function sends a command to a smart card reader associated with the smart card reader
handle. On success, the command has been successfully sent to the smart card reader and the
response has been placed in Control Return.

Return Values: The method sets Control_Return.ReturnCode (for more information, see section
2.2.3.6) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

62/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

3.1.4.38 SCARD_IOCTL_GETATTRIB (IOCTL 0x000900D8)

The Get Attribute function requests an attribute of the smart card reader associated with the smart
card reader handle. On success, the attribute is copied to GetAttrib Return.

Return Values: The method sets GetAttrib_Return.ReturnCode (for more information, see section
2.2.3.12) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.39 SCARD_IOCTL_SETATTRIB (IOCTL 0x000900DC)

The Set Attribute function changes the value of an attribute of the smart card reader associated with
the smart card reader handle.

Return Values: The method sets Long_Return.ReturnCode (for more information, see section
2.2.3.3) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.40 SCARD_IOCTL_STATE (IOCTL 0x000900C4)

The State method returns the current state of the smart card reader and any smart card inserted.
On success, Status Return MUST be initialized as specified in section 2.2.3.10.

Return Values: The method sets State_Return.ReturnCode (for more information, see section
2.2.3.9) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.41 SCARD_IOCTL_GETTRANSMITCOUNT (IOCTL 0x00090100)

The Get Transmit Count retrieves the number of times a successful Transmit method (for more
information, see section 3.1.4.35) has been performed on the smart card reader. On success,
GetTrasmitCount Return MUST be initialized as specified in section 2.2.3.13.

Return Values: The method sets State_Return.ReturnCode (for more information, see section
2.2.3.9) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.42 SCARD_IOCTL_READCACHEA (IOCTL 0x000900F0)

The ASCII version of Read Cache retrieves cached data for a specific smart card. Data is cached
according to the smart card UUID (ReadCacheA_Call.Common.CardIdentifier; for more information,
see section 2.2.1.9), the Card Lookup Name (ReadCacheA_Call.szLookupName; for more
information, see section 2.2.2.25), and the freshness of the data
(ReadCacheA_Call.Common.FreshnessCounter; for more information, see section 2.2.1.9). All three
MUST match in order for this call to be successful. On success, ReadCache_Return MUST be
initialized as specified in section 2.2.3.1.

Return Values: The method sets ReadCache_Return.ReturnCode (for more information, see section
2.2.3.1) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

63/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

3.1.4.43 SCARD_IOCTL_READCACHEW (IOCTL 0x000900F4)

The Unicode version of Read Cache retrieves cached data for a specific smart card in a Smart Cards
for Windows cache. Data is cached according to the smart card UUID
(ReadCacheA_Call.Common.CardIdentifier; for more information, see section 2.2.1.9), the Card
Lookup Name (ReadCacheW_Call.szLookupName; for more information, see section 2.2.2.26), and
the freshness of the data (ReadCacheW_Call.Common.FreshnessCounter; for more information, see
section 2.2.1.9). All three MUST match in order for this call to be successful. On success,
ReadCache_Return MUST be initialized as specified in section 2.2.3.1.

Return Values: The method sets ReadCache_Return.ReturnCode (for more information, see section
2.2.3.1) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method.

3.1.4.44 SCARD_IOCTL_WRITECACHEA (IOCTL 0x000900F8)

The ASCII version of Write Cache stores data for a specific smart card in a Smart Cards for Windows
cache. Data is cached according to the smart card UUID (ReadCacheA_Call.szLookupName; for more
information, see section 2.2.2.25), and the freshness of the data
(ReadCacheA_Call.Common.FreshnessCounter).

Return Values: The method sets Long_Return.ReturnCode (for more information, see section
2.2.3.3) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method

3.1.4.45 SCARD_IOCTL_WRITECACHEW (IOCTL 0x000900FC)

The Unicode version of Write Cache stores data for a specific smart card in a Smart Cards for
Windows cache. Data is cached according to the smart card UUID

(ReadCacheA_Call.szLookupName; for more information, see section 2.2.2.25), and the freshness of
the data (ReadCacheA_Call.Common.FreshnessCounter).

Return Values: The method sets Long_Return.ReturnCode (for more information, see section
2.2.3.3) to SCARD_S_SUCCESS on success; otherwise, it sets one of the smart card-specific errors
or one of the return codes from Winerror.h. No specialized error codes are associated with this
method

3.1.4.46 SCARD_IOCTL_RELEASETARTEDEVENT

The SCARD_IOCTL_RELEASETARTEDEVENT IOCTL value is not used.

3.1.5 Timer Events

None.

3.1.6 Other Local Events

On protocol termination, the following actions are performed.

For each context in rgSCardContextList, Cancel is called causing all outstanding messages to be
processed. After there are no more outstanding messages, Release Context is called on each context
and the context MUST be removed from rgSCardContextList.

64 /93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

3.2 Protocol Client Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model provided that their external behavior is consistent with that described in this
document.

The following state MUST be kept by this protocol:

dwDeviceld: device ID of smart card redirection device.

rgOutstandingMessages: Outstanding call packets have not received a return packet.

3.2.2 Timers

No timers are required.

3.2.3 Initialization

Initialization occurs when the protocol server sends a device-announce message according to
Remote Desktop Protocol: File System Virtual Channel Extension. At that time, dwDeviceld MUST
receive the unique device ID announced. The rgOutstandingMessage field MUST be set to the
empty list.

3.2.4 Higher-Layer Triggered Events

None.
3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Sending Outgoing Messages

Messages are constructed according to Remote Desktop Protocol: File System Virtual Channel
Extension as a device I/O control message on the redirected device dwDeviceld. The call packet
MUST follow the format specified in IOCTL Processing Rules. The structure MUST be encoded as
specified in [MS-RPCE] section 2. The output buffer length SHOULD be set to 2,048 bytes.

The message is sent to the protocol server by using a transport as specified in [MS-RDPEFS] section
2.1.

3.2.5.2 Processing Incoming Replies
The following steps MUST be applied to each message when they are received.

If IOStatus is STATUS_BUFFER_TOO_SMALL, then the message SHOULD be retransmitted according
to Sending Outgoing Messages, doubling the previously requested buffer length.

If IOStatus is zero, the corresponding IoControlCode-specific reply processing MUST be performed.

Otherwise, the call is considered a failure and the error MUST be propagated to the higher layer.

65/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-RPCE%5d.pdf
%5bMS-RDPEFS%5d.pdf

3.2.5.3 Messages

3.2.5.3.1 Sending EstablishContext Message

IoControlCode MUST be set to SCARD IOCTL ESTABLISHCONTEXT.

EstablishContext Call MUST be initialized as specified in section 2.2.2.1.

3.2.5.3.2 Processing EstablishContext Reply

The OutputBuffer MUST be decoded as EstablishContext Return, as specified in [MS-RPCE
section 2.2.6.

3.2.5.3.3 Sending ReleaseContext Message

IoControlCode MUST be set to SCARD IOCTL RELEASECONTEXT.

Context Call MUST be initialized, as specified in section 2.2.2.2.
3.2.5.3.4 Processing ReleaseContext Reply

The response message MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.5 Sending IntroduceReader (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL INTRODUCEREADERA.

ContextAndTwoStringA Call MUST be initialized as specified in section 2.2.2.7 for a
SCARD_IOCTL_INTRODUCEREADERA call.

3.2.5.3.6 Processing IntroduceReader (ASCII) Reply

The OutputBuffer MUST be decoded as a Long Return.

3.2.5.3.7 Sending IntroduceReader (Unicode) Message
IoControlCode MUST be set to SCARD IOCTL INTRODUCEREADERW.

ContextAndTwoStringW Call MUST be initialized, as specified in section 2.2.2.8, for a
SCARD_IOCTL_INTRODUCEREADERW call.

3.2.5.3.8 Processing IntroduceReader (Unicode) Reply
The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.9 Sending ForgetReader (ASCII) Message
IoControlCode MUST be set to SCARD IOCTL FORGETREADERA.

ContextAndStringA Call MUST be initialized, as specified in section 2.2.2.5, for a
SCARD_IOCTL_FORGETREADERA call.

3.2.5.3.10 Processing ForgetReader (ASCII) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

66 /93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

3.2.5.3.11 Sending ForgetReader (Unicode) Message

IoControlCode MUST be set to SCARD IOCTL FORGETREADERW.

ContextAndStringW _Call MUST be initialized, as specified in section 2.2.2.6, for a
SCARD_IOCTL_FORGETREADERW call.

3.2.5.3.12 Processing ForgetReader (Unicode) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.13 Sending IntroduceReaderGroup (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL INTRODUCEREADERGROUPA.

ContextAndStringA Call MUST be initialized, as specified in section 2.2.2.5, for a
SCARD_IOCTL_INTRODUCEREADERGROUPA call.

3.2.5.3.14 Processing IntroduceReaderGroup (ASCII) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.15 Sending IntroduceReaderGroup (Unicode) Message

IoControlCode MUST be set to SCARD IOCTL INTRODUCEREADERGROUPW.

ContextAndStringW Call MUST be initialized, as specified in section 2.2.2.6, for a
SCARD_IOCTL_INTRODUCEREADERGROUPW call.

3.2.5.3.16 Processing IntroduceReaderGroup (Unicode) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.17 Sending ForgetReaderGroup (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL FORGETREADERGROUPA.

ContextAndStringA Call MUST be initialized, as specified in section 2.2.2.5, for a
SCARD_IOCTL_FORGETREADERGROUPA call.

3.2.5.3.18 Processing ForgetReaderGroup (ASCII) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.19 Sending ForgetReaderGroup (ASCII) Message
IoControlCode MUST be set to SCARD IOCTL FORGETREADERGROUPW.

ContextAndStringW Call MUST be initialized, as specified in section 2.2.2.6, for a
SCARD_IOCTL_FORGETREADERGROUPW call.

3.2.5.3.20 Processing ForgetReaderGroup (Unicode) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

67/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

3.2.5.3.21 Sending AddReaderToGroup (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL ADDREADERTOGROUPA.

ContextAndTwoStringA Call MUST be initialized, as specified in section 2.2.2.7, for a
SCARD_IOCTL_ADDREADERTOGROUPA call.

3.2.5.3.22 Processing AddReaderToGroup (ASCII) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.23 Sending AddReaderToGroup (Unicode) Message

IoControlCode MUST be set to SCARD IOCTL ADDREADERTOGROUPW.

ContextAndTwoStringW Call MUST be initialized, as specified in section 2.2.2.8, for a
SCARD_IOCTL_ADDREADERTOGROUPW call.

3.2.5.3.24 Processing AddReaderToGroup (Unicode) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.25 Sending RemoveReaderFromGroup (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL REMOVEREADERFROMGROUPA.

ContextAndTwoStringA Call MUST be initialized, as specified in section 2.2.2.7, for a
SCARD_IOCTL_REMOVEREADERFROMGROUPA call.

3.2.5.3.26 Processing RemoveReaderFromGroup (ASCII) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.27 Sending RemoveReaderFromGroup (Unicode) Message

IoControlCode MUST be set to SCARD IOCTL REMOVEREADERFROMGROUPW.

ContextAndTwoStringW Call MUST be initialized, as specified in section 2.2.2.8, for a
SCARD_IOCTL_REMOVEREADERFROMGROUPW call.

3.2.5.3.28 Processing RemoveReaderFromGroup (Unicode) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.29 Sending ListReaderGroups (ASCII) Message
IoControlCode MUST be set to SCARD IOCTL LISTREADERGROUPSA.

ListReaderGroups Call MUST be initialized, as specified in section 2.2.2.3.

3.2.5.3.30 Processing ListReaderGroups (ASCII) Reply

The OutputBuffer MUST be decoded as ListReaderGroups Return, as specified in [MS-RPCE
section 2.2.6.

68/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

3.2.5.3.31 Sending ListReaderGroups (Unicode) Message

IoControlCode MUST be set to SCARD IOCTL LISTREADERGROUPSW.

ListReaderGroups Call MUST be initialized, as specified in section 2.2.2.3.

3.2.5.3.32 Processing ListReaderGroups (Unicode) Reply

The OutputBuffer MUST be decoded as ListReaderGroups Return, as specified in [MS-RPCE
section 2.2.6.

3.2.5.3.33 Sending ListReaders (ASCII) Message

IoControlCode MUST be set to SCARD_ IOCTL LISTREADERSA.

ListReaders Call MUST be initialized, as specified in section 2.2.2.4, for an ASCII call.

3.2.5.3.34 Processing ListReadersReply (ASCII) Reply

The OutputBuffer MUST be decoded as ListReaders Return, as specified in [MS-RPCE] section
2.2.6.

3.2.5.3.35 Sending ListReaders (Unicode) Message

IoControlCode MUST be set to SCARD IOCTL LISTREADERSW.

ListReaders Call MUST be initialized, as specified in section 2.2.2.4, for an Unicode call.

3.2.5.3.36 Processing ListReadersReply (Unicode) Reply

The OutputBuffer MUST be decoded as ListReaders Return, as specified in [MS-RPCE] section
2.2.6.

3.2.5.3.37 Sending LocateCards (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL LOCATECARDSA.

LocateCardsA Call MUST be initialized as specified in section 2.2.2.9.

3.2.5.3.38 Processing LocateCards (ASCII) Reply

The OutputBuffer MUST be decoded as LocateCards Return, as specified in [MS-RPCE] section
2.2.6.

3.2.5.3.39 Sending LocateCards (Unicode) Message
IoControlCode MUST be set to SCARD IOCTL LOCATECARDSW.

LocateCardsW Call MUST be initialized, as specified in section 2.2.2.10.

3.2.5.3.40 Processing LocateCards (Unicode) Reply

The OutputBuffer MUST be decoded as LocateCards Return, as specified in [MS-RPCE] section
2.2.6.

69/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

3.2.5.3.41 Sending GetStatusChange (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL GETSTATUSCHANGEA.

GetStatusChangeA Call MUST be initialized, as specified in section 2.2.2.11.

3.2.5.3.42 Processing GetStatusChange (ASCII) Reply

The OutputBuffer MUST be decoded as GetStatusChange Return, as specified in [MS-RPCE
section 2.2.6.

3.2.5.3.43 Sending GetStatusChange (Unicode) Message

IoControlCode MUST be set to SCARD IOCTL GETSTATUSCHANGEW.

GetStatusChangeW Call MUST be initialized, as specified in section 2.2.2.12.

3.2.5.3.44 Processing GetStatusChange (Unicode) Reply

The OutputBuffer MUST be decoded as GetStatusChange Return, as specified in [MS-RPCE
section 2.2.6.

3.2.5.3.45 Sending Cancel Message

IoControlCode MUST be set to SCARD IOCTL CANCEL.

Context_Call.Context MUST be initialized, as specified in section 2.2.2.2.

3.2.5.3.46 Processing Cancel Reply
The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.47 Sending Connect (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL CONNECTA.

ConnectA Call MUST be initialized, as specified in section 2.2.2.13.

3.2.5.3.48 Processing Connect (ASCII) Reply

The OutputBuffer MUST be decoded as Connect Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.49 Sending Connect (Unicode) Message

IoControlCode MUST be set to SCARD IOCTL CONNECTW.

ConnectW Call MUST be initialized, as specified in section 2.2.2.14.

3.2.5.3.50 Processing Connect (Unicode) Reply

The OutputBuffer MUST be decoded as Connect Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.51 Sending Reconnect Message

IoControlCode MUST be set to SCARD IOCTL RECONNECT.

70/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

Reconnect Call MUST be initialized, as specified in section 2.2.2.15.

3.2.5.3.52 Processing Reconnect Reply

The OutputBuffer MUST be decoded as Reconnect Return, as specified in [MS-RPCE] section
2.2.6.

3.2.5.3.53 Sending Disconnect Message

IoControlCode MUST be set to SCARD IOCTL DISCONNECT.

HCardAndDisposition Call MUST be initialized, as specified in section 2.2.2.16, for a
SCARD_IOCTL_DISCONNECT call.

3.2.5.3.54 Processing Disconnect Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.55 Sending Status (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL STATUSA.

Status Call MUST be initialized, as specified in section 2.2.2.18.

3.2.5.3.56 Processing Status (ASCII) Reply

The OutputBuffer MUST be decoded as Status Return, as specified in [MS-RPCE] section 2.2.6,
and interpreted as a SCARD IOCTL STATUSA return.

3.2.5.3.57 Sending Status (Unicode) Message

IoControlCode MUST be set to SCARD IOCTL STATUSW.

Status Call MUST be initialized, as specified in section 2.2.2.18 .

3.2.5.3.58 Processing Status (Unicode) Reply

The OutputBuffer MUST be decoded as Status Return, as specified in [MS-RPCE] section 2.2.6,
and interpreted as a SCARD IOCTL STATUSW return.

3.2.5.3.59 Sending State Message

IoControlCode MUST be set to SCARD IOCTL STATE.

State Call MUST be initialized, as specified in section 2.2.2.17, for a SCARD_IOCTL_STATE call.

3.2.5.3.60 Processing State Message Reply

The OutputBuffer MUST be decoded as State Return, as specified in [MS-RPCE] section 2.2.6, and
interpreted as a SCARD IOCTL STATE return.

3.2.5.3.61 Sending BeginTransaction Message

IoControlCode MUST be set to SCARD IOCTL BEGINTRANSACTION.

71/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

HCardAndDisposition Call MUST be initialized, as specified in section 2.2.2.16, for a
SCARD_IOCTL_BEGINTRANSACTION call.

3.2.5.3.62 Processing BeginTransaction Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.63 Sending EndTransaction Message

IoControlCode MUST be set to SCARD IOCTL ENDTRANSACTION.

HCardAndDisposition Call MUST be initialized, as specified in section 2.2.2.16, for a
SCARD_IOCTL_ENDTRANSACTION call.

3.2.5.3.64 Processing EndTransaction Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.65 Sending Transmit Message

IoControlCode MUST be set to SCARD IOCTL TRANSMIT.

Transmit Call MUST be initialized as specified in section 2.2.2.19.

3.2.5.3.66 Processing Transmit Reply

The OutputBuffer MUST be decoded as Transmit Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.67 Sending Control Message
IoControlCode MUST be set to SCARD IOCTL CONTROL.

Control Call MUST be initialized as specified in section 2.2.2.20.

3.2.5.3.68 Processing Control Reply

The OutputBuffer MUST be decoded as Control Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.69 Sending GetReaderCapabilities Message

IoControlCode MUST be set to SCARD IOCTL GETATTRIB.

GetAttrib _Call MUST be initialized as specified in section 2.2.2.21.

3.2.5.3.70 Processing GetReaderCapabilities Reply

The OutputBuffer MUST be decoded as GetAttrib Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.71 Sending SetReaderCapabilities Message

IoControlCode MUST be set to SCARD IOCTL SETATTRIB.

SetAttrib_Call MUST be initialized as specified in section 2.2.2.22.

72 /93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

3.2.5.3.72 Processing SetReaderCapabilities Reply
The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.73 Sending WaitForResourceManager Message

IoControlCode MUST be set to SCARD IOCTL ACCESSSTARTEDEVENT.

ScardAccessStartedEvent Call MUST be initialized as specified in section 2.2.2.30. This structure
MUST NOT be encoded and MUST be sent as is.

3.2.5.3.74 Processing WaitForResourceManager Reply
The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.75 Sending LocateCardsByATR (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL LOCATECARDSBYATRA.

LocateCardsByATRA Call MUST be initialized as specified in section 2.2.2.23.

3.2.5.3.76 Processing LocateCardsByATR (Unicode) Reply

The OutputBuffer MUST be decoded as LocateCards Return, as specified in [MS-RPCE] section
2.2.6.

3.2.5.3.77 Processing LocateCardsByATR (ASCII) Reply

The OutputBuffer MUST be decoded as LocateCards Return, as specified in [MS-RPCE] section
2.2.6.

3.2.5.3.78 Sending LocateCardsByATR (Unicode) Message

IoControlCode MUST be set to SCARD IOCTL LOCATECARDSBYATRW.

LocateCardsByATRW Call MUST be initialized as specified in section 2.2.2.24.

3.2.5.3.79 Sending ReadCache (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL READCACHEA.

ReadCacheA Call MUST be initialized as specified in section 2.2.2.25.

3.2.5.3.80 Processing ReadCache (ASCII) Reply

The OutputBuffer MUST be decoded as ReadCache Return, as specified in [MS-RPCE] section
2.2.6.

3.2.5.3.81 Sending ReadCache (Unicode) Message

IoControlCode MUST be set to SCARD IOCTL READCACHEW.

ReadCacheW Call MUST be initialized as specified in section 2.2.2.26.

73/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

3.2.5.3.82 Processing ReadCache (Unicode) Reply

The OutputBuffer MUST be decoded as ReadCache Return, as specified in [MS-RPCE] section
2.2.6.

3.2.5.3.83 Sending WriteCache (ASCII) Message

IoControlCode MUST be set to SCARD IOCTL WRITECACHEA.

WriteCacheA Call MUST be initialized as specified in section 2.2.2.27.

3.2.5.3.84 Processing WriteCache (ASCII) Reply
The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.85 Sending WriteCache (Unicode) Message

IoControlCode MUST be set to SCARD IOCTL WRITECACHEW.

WriteCacheW Call MUST be initialized as specified in section 2.2.2.28.

3.2.5.3.86 Processing WriteCache (Unicode) Reply

The OutputBuffer MUST be decoded as Long Return, as specified in [MS-RPCE] section 2.2.6.

3.2.5.3.87 Sending GetTransmitCount Message
IoControlCode MUST be set to SCARD IOCTL GETTRANSMITCOUNT.

GetTransmitCount Call MUST be initialized as specified in section 2.2.2.29.

3.2.5.3.88 Processing GetTransmitCount Reply

The OutputBuffer MUST be decoded as GetTransmitCount Return, as specified in of [MS-RPCE
section 2.2.6.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

74 /93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

4 Protocol Examples

This example shows the messages sent to perform a simple querying of a card in the TS client
machine. It assumes that a channel has already been set up on the between the TS client and the
TS server. In addition, a PC/SC-compatible resource manager is running on the TS client and there
exists a smart card reader with a smart card inserted. The following figure represents the program
flow.

Protocol Procotol
Server (TS Client (TS
Client) Server)

——
_,._____-—-—-—Establlshc:nntext Call
Establish Cnnte:ctll'

—EstablishContext Return .
- R —

_ist Readers Call B
List Readers

List Readers Retyrn

_h.
I
et Status Change Call

*____._.—-—G

-Get Status Change Return

*__________._-Cunn =

Get Status Change

—
ot Call———————"" |

Connect Iﬁ
=Connect Return e
‘__________Beg'ln Transaction Call — b
-Begin Transaction Return . Begin Transaction
*____________-—S'r.atu5 Call
Status
Status Return .

action Call———

‘__________.F_nd Trans
End Transaction

—End Transaction Return

d____________.Disc-:}nﬁECt call
Disconnect

—Disconnect Return

‘____________Release[:ontext Call—
Release Context

Release Context Return

I I 7 I 7 I

Figure 4: Protocol flow

75/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

This representation of the protocol flow is simplified in that there is only one application sending
data over this protocol. In an actual implementation there could be multiple outstanding calls at any

time.

All packets are constructed as specified in sections 3.2.5 and 3.2.5.3. The Status field refers to the

IoStatus field as specified in [MS-RDPEFS] section 2.2.1.5. The CompletionId field is also

specified in [MS-RDPEFS] section 2.2.1.5.

4.1 Establish Context Call

IoControlCode= SCARD IOCTL_ ESTABLISHCONTEXT
CompletionId = 0

EstablishContext Call {

dwScope = SCARD_SCOPE_SYSTEM

}

The Completionld field is specified in [MS-RDPEFS] section 2.2.1.4.

4.2 Establish Context Return

CompletionId = 0

Status = 0
EstablishContext Return {
ReturnCode = 0

Context = {cbContext = 4, pbContext = {0x00,0x00,0x01,0xcd} }

}

The Status field is specified as the IoStatus field in [MS-RDPEFS] section 2.2.1.5.

4.3 List Readers Call

IoControlCode = SCARD IOCTL LISTREADERSW
CompletionId = 0
ListReaders Call {

Context = {cbContext = 4, pbContext = {0x00,0x00,0x01,0xcd} }

cBytes = 44
mszGroups = L"SCard$DefaultReaders\0\0"
fmszReadersIsNULL = 0

cchReaders = OxXFFFFFFFF

4.4 List Readers Return

CompletionId = 0

Status = 0

ListReaders Return ({

ReturnCode = 0

cReaders =66

msz = L"Gemplus USB Smart Card Reader 0\0\0"
}

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

76 /93

%5bMS-RDPEFS%5d.pdf
%5bMS-RDPEFS%5d.pdf
%5bMS-RDPEFS%5d.pdf
%5bMS-RDPEFS%5d.pdf

4.5 Get Status Change Call

IoControlCode = SCARD IOCTL GETSTATUSCHANGEW
CompletionId = 0
GetStatusChangeW Call {

Context = {cbContext = 4, pbContext = {0x00,0x00,0x01,0xcd}

dwTimeOut = 0

cReaders =1

rgReaderStates = {

{ szReader = L"Gemplus USB Smart Card Reader 0"
Common = {

dwCurrentState = SCARD STATE UNAWARE

dwEventState = 0

cbAtr 0

pbAtr {0} }

4.6 Get Status Change Return

Status = 0
CompletionId = 0
GetStatusChange Return = ({
ReturnCode = 0
cReaders =1
rgReaderStates = {
dwCurrentState = SCARD STATE UNAWARE
dwEventState = SCARD_STATE_CHANGED |
SCARD STATE_PRESENT | SCARD STATE INUSE
cbAtr = 9

rgbAtr = {0x3b, 0x16, 0x94,0x41, 0x73, 0x74,0x72,0x69,

0x64}

4.7 Connect Call

IoControlCode = SCARD IOCTL CONNECTW
CompletionId = 0

ConnectW_Call = {

szReader = L"Gemplus USB Smart Card Reader 0"
Common = {

Context = { cbContext = 4, pbContext = {0x00,0x00,0x01,0xcd} }

dwShareMode = SCARD SHARE SHARED

dwPreferredProtocols = SCARD PROTOCOL TO | SCARD_ PROTOCOL T1

}
}

4.8 Connect Return

CompletionId = 0
Status = 0
Connect Return = {
ReturnCode = 0

[MS-RDPESC] — v20110204

Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

77/ 93

hCard = {
Context = { cbContext = 4, pbContext = {0x00,0x00,0x01,0xcd} }
cbHandle = 4

pbHandle = {0x00,0x00,0x01,0xea}{0x00,0x00,0x01,0xea}}
dwActiveProtocol = SCARD PROTOCOL TO

}

4.9 Begin Transaction Call

IoControlCode = SCARD IOCTL BEGINTRANSACTION

CompletionId = 0

HCardAndDisposition Call = {

hCard = {

Context = { cbContext = 4, pbContext = {0x00,0x00,0x01,0xcd} }
cbHandle = 4

pbHandle = {0x00,0x00,0x01,0xea}}

dwDisposition = 0

}

4.10 Begin Transaction Return

CompletionId = 0
Status = 0
Long_Return = {
ReturnCode = 0

}

4.11 Status Call

IoControlCode = SCARD IOCTL STATUSW

CompletionId = 0

Status_Call = {

hCard = {

Context = { cbContext = 4, pbContext = {0x00,0x00,0x01,0xcd} }
cbHandle = 4

pbHandle = {0x00,0x00,0x01,0xea} }
fmszReaderNamesIsNULL = 0
cchReaderLen = OxFFFFFFFF

cbAtrLen = 36

}

4.12 Status Return

CompletionId = 0

IoStatus = 0

Status_Return = {

ReturnCode = 0

cBytes = 66

mszReaderNames = L"Gemplus USB Smart Card Reader 0\0\O"
dwState = SCARD SPECIFICMODE

dwProtocol = SCARD PROTOCOL_TO

pbAtr = {0x3b, 0x16, 0x94,0x41, 0x73, 0x74,0x72,0x69,0x64}
cbAtr = 9

78/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

4.13 End Transaction Call

IoControlCode = SCARD IOCTL ENDTRANSACTION

CompletionId = 0

HCardAndDisposition Call = {

hCard = {

Context = { cbContext = 4, pbContext = {0x00,0x00,0x01,0xcd} }
cbHandle = 4

pbHandle = {0x00,0x00,0x01,0xea}}

dwDisposition = SCARD LEAVE CARD

}

4.14 End Transaction Return

CompletionId = 0
Status = 0
Long_Return = {
ReturnCode = 0

}

4.15 Disconnect Call

IoControlCode = SCARD IOCTL_DISCONNECT

CompletionId = 0

HCardAndDisposition Call = {

hCard = {

Context = { cbContext = 4, pbContext = {0x00,0x00,0x01,0xcd} }
cbHandle = 4

pbHandle = {0x00,0x00,0x01,0xea}}

dwDisposition = SCARD_RESET_ CARD

}

4.16 Disconnect Return

CompletionId = 0
Status = 0

Long Return = {
ReturnCode = 0

}

4.17 Release Context Call

IoControlCode = SCARD_IOCTL RELEASECONTEXT

CompletionId = 0

Context Call = {

Context = {cbContext = 4, pbContext = {0x00,0x00,0x01,0xcd} }

}

79/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

4.18 Release Context Return

CompletionId = 0
Status = 0

Long Return = {
ReturnCode = 0

}

80/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

5 Security

This protocol has no security aspects and relies on the underlying transport for any security.

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

81 /93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

6 Appendix A: Full IDL

For ease of implementation, the full Interface Definition Language (IDL) is provided below
where ms-dtyp.idl is the IDL as specified in [MS-DTYP] Appendix A and ms-dcom.idl is the IDL as
specified in [MS-DCOM] Appendix A.

import "ms-dtyp.idl";
import "ms-dcom.idl";

uuid (A35AF600-9CF4-11CD-A076-08002B2BD711),
version(1.0),
pointer default (unique)

]

interface type scard pack

{

//

// Packing for calls that use the same params

//

typedef struct REDIR SCARDCONTEXT

{
[range (0, 16)] unsigned long cbContext;
[unique] [size is(cbContext)] byte *pbContext;

} REDIR SCARDCONTEXT;

typedef struct REDIR SCARDHANDLE
{

REDIR SCARDCONTEXT Context;
[range (0, 16)] unsigned long cbHandle;
[size is(cbHandle)] byte *pbHandle;

} REDIR SCARDHANDLE;

typedef struct long Return
{

long ReturnCode;
} long Return;

typedef struct longAndMultiString Return
{

long ReturnCode;
[range (0, 65536)] unsigned long cBytes;
[unique] [size_ is(cBytes)] byte *msz;

} ListReaderGroups_ Return, ListReaders Return;

typedef struct _Context Call
{

REDIR SCARDCONTEXT Context;
} Context Call;

typedef struct ContextAndStringA Call
{
REDIR SCARDCONTEXT Context;
[string] const char * sz;
} ContextAndStringA Call;

typedef struct ContextAndStringW Call
{

82/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf

REDIR SCARDCONTEXT Context;
[string] const wchar t * sz;
} ContextAndStringW Call;

typedef struct ContextAndTwoStringA Call
{

REDIR SCARDCONTEXT Context;
[string] const char * szl;
[string] const char * sz2;

} ContextAndTwoStringA Call;

typedef struct ContextAndTwoStringW Call
{

REDIR SCARDCONTEXT Context;
[string] const wchar t * szl;
[string] const wchar t * sz2;

} ContextAndTwoStringW Call;

//
// Call specific packing
//
typedef struct EstablishContext Call
{
unsigned long dwScope;
} EstablishContext Call;

typedef struct EstablishContext Return

{
long ReturnCode;
REDIR_SCARDCONTEXT Context;

} EstablishContext Return;

typedef struct ListReaderGroups Call
{

REDIR_SCARDCONTEXT Context;
long fmszGroupsIsNULL;
unsigned long cchGroups;

} ListReaderGroups_Call;

typedef struct ListReaders Call

{
REDIR SCARDCONTEXT Context;

[range (0, 65536)] unsigned long cBytes;
[unique] [size is(cBytes)] const byte *mszGroups;
long fmszReadersIsNULL;
unsigned long cchReaders;

} ListReaders Call;

typedef struct ReaderState Common Call
{

unsigned long dwCurrentState;

unsigned long dwEventState;
[range (0, 36)] unsigned long cbAtr;

byte rgbAtr([36];

} ReaderState Common_Call;

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

83/ 93

typedef struct ReaderStateA
{
[string] const char *
ReaderState Common Call
} ReaderStateA;

typedef struct ReaderStateW
{
[string] const wchar t *
ReaderState Common_Call
} ReaderStateW;

typedef struct ReaderState Return
{
unsigned long
unsigned long
[range (0, 36)] unsigned long
byte
} ReaderState Return;

typedef struct GetStatusChangeA Call

{
REDIR SCARDCONTEXT

[range (0, 65536)] unsigned long
[size is(cBytes)] const byte
[range (0, 10)] unsigned long

[size is(cReaders)] ReaderStateA
} GetStatusChangeA Call;

typedef struct LocateCardsA Call {

szReader;
Common;

szReader;
Common;

dwCurrentState;
dwEventState;
cbAtr;
rgbAtr[36];

Context;

cBytes;
*mszCards;

cReaders;
*rgReaderStates;

REDIR_SCARDCONTEXT Context;
[range (0, 65536)] unsigned long cBytes;

[size is(cBytes)] const byte * mszCards;
[range (0, 10)] unsigned long cReaders;

[size is(cReaders)]

ReaderStateA * rgReaderStates;

} LocateCardsA Call;

typedef struct LocateCardsW_Call

{
REDIR_SCARDCONTEXT

[range (0, 65536)] unsigned long
[size is(cBytes)] const byte

[range (0, 10)] unsigned long
[size is(cReaders)] ReaderStateW

} LocateCardsW Call;

typedef struct LocateCards_ ATRMask
{
[range (0, 36)] unsigned long
byte
byte
} LocateCards_ ATRMask;

typedef struct LocateCardsByATRA Call

{
REDIR SCARDCONTEXT
[range (0, 1000)] unsigned long

[size is(cAtrs)] LocateCards ATRMask

Context;

cBytes;
*mszCards;

cReaders;
*rgReaderStates;

cbAtr;
rgbAtr[36];
rgbMask[36];

Context;

CAtrs;

*rgAtrMasks;

[MS-RDPESC] — v20110204

Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

84 /93

[range (0, 10)] unsigned long cReaders;
[size is(cReaders)] ReaderStateA *rgReaderStates;
} LocateCardsByATRA Call;

typedef struct LocateCardsByATRW Call
{

REDIR SCARDCONTEXT Context;
[range (0, 1000)] unsigned long cAtrs;
[size is(cAtrs)] LocateCards ATRMask *rgAtrMasks;
[range (0, 10)] unsigned long cReaders;
[size is(cReaders)] ReaderStateW *rgReaderStates;

} LocateCardsByATRW _Call;

typedef struct GetStatusChange Return
{

long ReturnCode;
[range (0, 10)] unsigned long cReaders;
[size is(cReaders)] ReaderState Return *rgReaderStates;

} LocateCards Return, GetStatusChange Return;

typedef struct GetStatusChangeW Call
{

REDIR SCARDCONTEXT Context;
unsigned long dwTimeOut;
[range (0, 11)] unsigned long cReaders;
[size is(cReaders)] ReaderStateW *rgReaderStates;

} GetStatusChangeW Call;

typedef struct Connect Common

{

REDIR_SCARDCONTEXT Context;
unsigned long dwShareMode;
unsigned long dwPreferredProtocols;

} Connect Common;

typedef struct _ConnectA Call
{

[string] const char * szReader;

Connect_Common Common;
} ConnectA Call;

typedef struct ConnectW Call
{

[string] const wchar t * szReader;

Connect Common Common ;
} ConnectW Call;

typedef struct _Connect Return
{

long ReturnCode;
REDIR_SCARDHANDLE hCard;
unsigned long dwActiveProtocol;

} Connect Return;

typedef struct Reconnect Call
{

REDIR SCARDHANDLE hCard;
unsigned long dwShareMode;
unsigned long dwPreferredProtocols;

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

85/93

unsigned long dwInitialization;
} Reconnect Call;

typedef struct Reconnect Return
{
long ReturnCode;
unsigned long dwActiveProtocol;
} Reconnect Return;

typedef struct HCardAndDisposition Call
{
REDIR SCARDHANDLE hCard;
unsigned long dwDisposition;
} HCardAndDisposition Call;

typedef struct State Call
{

REDIR_ SCARDHANDLE hCard;
long fpbAtrIsNULL;
unsigned long cbAtrLen;

// EDITOR'S NOTE: Can be OxFFFFFFFF
} State Call;

typedef struct State Return
{

long ReturnCode;
unsigned long dwState;
unsigned long dwProtocol;
[range (0, 36)] unsigned long cbAtrLen;
[unique] [size is(cbAtrLen)] byte *rgAtr;
} State_ Return;
typedef struct _Status Call
{
REDIR_SCARDHANDLE hCard;
long fmszReaderNamesIsNULL;
unsigned long cchReaderLen;
unsigned long cbAtrLen;
} Status_Call;
typedef struct Status Return
{
long ReturnCode;
[range (0, 65536)] unsigned long cBytes;
[unique] [size is(cBytes)] byte *mszReaderNames;

unsigned long dwState;
unsigned long dwProtocol;
byte pbAtr[32];
[range (0, 32)] unsigned long cbAtrLen;
} Status_Return;

typedef struct SCardIO Request
{
unsigned long dwProtocol;
[range (0, 1024)] unsigned long cbExtraBytes;
[unique] [size is(cbExtraBytes)] byte *pbExtraBytes;

86 /93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

} SCardIO_Request;
typedef struct Transmit Call
{
REDIR_ SCARDHANDLE hCard;

SCardIO Request ioSendPci;
[range (0, 66560)] unsigned long cbSendLength;
[size is(cbSendLength)] const byte *pbSendBuffer;
[unique] SCardIO Request *pioRecvPci;
long fpbRecvBufferIsNULL;
unsigned long cbRecvLength;

} Transmit Call;
typedef struct Transmit Return
{

long ReturnCode;
[unique] SCardIO Request *pioRecvPci;
[range (0, 66560)] unsigned long cbRecvLength;
[unique] [size is(cbRecvLength)] byte *pbRecvBuffer;

} Transmit Return;

typedef struct GetTransmitCount Call
{

REDIR SCARDHANDLE hCard;
} GetTransmitCount Call;

typedef struct GetTransmitCount Return
{
long ReturnCode;
unsigned long cTransmitCount;
} GetTransmitCount_Return;

typedef struct Control Call

{
REDIR SCARDHANDLE hCard;

unsigned long dwControlCode;
[range (0, 66560)] unsigned long cbInBufferSize;
[unique] [size is(cbInBufferSize)] const byte *pvInBuffer;
long fpvOutBufferIsNULL;
unsigned long cbOutBufferSize;
} Control Call;
typedef struct _Control Return
{
long ReturnCode;
[range (0, 66560)] unsigned long cbOutBufferSize;
[unique] [size is(cbOutBufferSize)] byte *pvOutBuffer;
} Control Return;
typedef struct _GetAttrib Call
{
REDIR_SCARDHANDLE hCard;
unsigned long dwAttrId;
long fpbAttrIsNULL;
unsigned long cbAttrLen;
} GetAttrib Call;
typedef struct GetAttrib Return
{
long ReturnCode;
[range (0, 65536)] unsigned long cbAttrLen;

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

87/ 93

[unique] [size is(cbAttrLen)] byte *pbAttr;
} GetAttrib Return;

typedef struct _SetAttrib Call
{

REDIR_ SCARDHANDLE hCard;

unsigned long dwAttrId;
[range (0, 65536)] unsigned long cbAttrLen;
[size is(cbAttrLen)] const byte *pbAttr;

} SetAttrib Call;

typedef struct ReadCache Common
{

REDIR SCARDCONTEXT Context;

UuUID *CardIdentifier;
unsigned long FreshnessCounter;
long fPbDatalIsNULL;
unsigned long cbDatalen;

} ReadCache_ Common;

typedef struct ReadCacheA Call
{
[string] char * szLookupName;
ReadCache Common Common ;
} ReadCacheA Call;

typedef struct ReadCacheW Call
{
[string] wchar t * szLookupName;
ReadCache Common Common;
} ReadCacheW Call;

typedef struct ReadCache Return
{

long ReturnCode;
[range (0, 65536)] unsigned long cbDatalen;
[unique] [size is(cbDatalen)] byte *pbData;

} ReadCache_ Return;

typedef struct WriteCache_ Common

{
REDIR SCARDCONTEXT Context;

UUID *CardIdentifier;

unsigned long FreshnessCounter;
[range (0, 65536)] unsigned long cbDatalen;
[unique] [size is(cbDatalen)] byte *pbData;

} WriteCache Common;

typedef struct WriteCacheA Call
{
[string] char * szLookupName;
WriteCache Common Common
} WriteCacheA Call;

typedef struct WriteCacheW Call
{
[string] wchar t * szLookupName;
WriteCache Common Common;
} WriteCacheW Call;

88/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

89/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

= Windows® XP operating system

= Windows Server® 2003 operating system

= Windows Vista® operating system

= Windows Server® 2008 operating system

» Windows® 7 operating system

= Windows Server® 2008 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 1.7: The Windows XP and Windows Server 2003 versions always use
SCREDIR_VERSION_XP. Windows Vista and Windows Server 2008 are always
SCREDIR_VERSION_LONGHORN.

<2> Section 3.1.4: Windows XP and Windows Server 2003 implement function numbers 5 through
58. Windows Vista and Windows Server 2008 implement function numbers 5 through 64.

90/ 93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

91/93

[MS-RDPESC] — v20110204
Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

9 Index

A

Abstract data model

client 65

server 50
Access Mode Flags packet 43
Applicability 15

Begin transaction call example 78
Begin transaction return example 78

C

Capability negotiation 15
Card Reader State packet 42
Change tracking 91
Client
abstract data model 65
higher-layer triggered events 65
initialization 65
local events 74
message processing 65
seguencing rules 65

structures (section 2.2.1 17, section 2.2.3 36)

timer events 74

timers 65
Connect call example 77
Connect return example 77
Connect Common structure 18
Connect Return structure 39
ConnectA Call structure 28
ConnectW_Call structure 28
Context Call structure 22
ContextAndStringA Call structure 23
ContextAndStringW_Call structure 24
ContextAndTwoStringA Call structure 24
ContextAndTwoStringW Call structure 25
Control Call structure 32
Control Return structure 38

D

Data model - abstract
client 65
server 50
Data types 17
Disconnect call example 79
Disconnect return example 79

End transaction call example 79

End transaction return example 79
Establish context call example 76
Establish context return example 76
EstablishContext Call structure 21
EstablishContext Return structure 36

Examples
begin transaction call example 78
begin transaction return example 78
connect call example 77
connect return example 77
disconnect call example 79
disconnect return example 79
end transaction call example 79
end transaction return example 79
establish context call example 76
establish context return example 76
get status change call example 77
get status change return example 77
list reader call example 76
list reader return example 76
overview 75
release context call example 79
release context return example 80
status call example 78
status return example 78

F

Fields - vendor-extensible 16
Full IDL 82

G

Get status change call example 77

Get status change return example 77
GetAttrib Call structure 32

GetAttrib Return structure 41
GetStatusChange Return 38
GetStatusChangeA Call structure 27
GetStatusChangeW Call structure 27
GetTransmitCount Call structure 35
GetTransmitCount Return structure 41

Glossary 10
H

HCardAndDisposition Call structure 29
Higher-layer triggered events - client 65

I

IDL 82
Implementers - security considerations 81
Informative references 12
Initialization
client 65
server 50
Introduction 10

L

List reader call example 76
List reader return example 76
ListReaderGroups Call structure 22

[MS-RDPESC] — v20110204

Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

ListReaderGroups Return structure 37
ListReaders Call structure 23
ListReaders Return 37
Local events

client 74

server 64
LocateCards ATRMask structure 18
LocateCards Return structure 38
LocateCardsA Call structure 26
LocateCardsByATRA Call structure 33
LocateCardsByATRW Call structure 34
LocateCardsW _Call structure 26
Long Return structure 37

Message processing
client 65
server 50
Messages
names 66
overview 17
processing incoming replies 65
sending outgoing messages 65
transport 17

Normative references 11

o

Outgoing messages - sending 65
Overview (synopsis) 12

P

Parameters - security 81
Preconditions 15
Prerequisites 15

Product behavior 90

Protocol Identifier packet 42

R

ReadCache Common structure 20
ReadCache Return structure 36
ReadCacheA Call structure 34
ReadCacheW Call structure 35
Reader State packet 43
ReaderState Common_Call structure 18
ReaderState Return structure 21
ReaderStateA structure 19
ReaderStateW structure 19
Reconnect Call structure 28
Reconnect Return structure 38
REDIR SCARDCONTEXT structure 17
REDIR SCARDHANDLE structure 17
References

informative 12

normative 11
Relationship to other protocols 15

Release context call example 79
Release context return example 80
Replies - processing 65

Return Code packet 45

S

ScardAccessStartedEvent Call packet 36
SCardIO Request structure 20
Security 81
Sequencing rules
client 65
server 50
Server
abstract data model 50
initialization 50
local events 64
message processing 50
sequencing rules 50
structures (section 2.2.1 17, section 2.2.2 21)
timer events 64
timers 50
SetAttrib Call structure 33
Standards assignments 16
State Call structure 29
State Return structure 39
Status call example 78
Status return example 78
Status Call structure 30
Status Return structure 40
Structures
client (section 2.2.1 17, section 2.2.3 36)
server (section 2.2.1 17, section 2.2.2 21)

T

Timer events

client 74

server 64
Timers

client 65

server 50
Tracking changes 91
Transmit Call structure 31
Transmit Return structure 40
Transport - message 17
Triggered events - higher-layer - client 65

\"

Vendor-extensible fields 16
Versioning 15

W

WriteCache Common structure 20
WriteCacheA Call structure 35
WriteCacheW Call structure 35

[MS-RDPESC] — v20110204

93/ 93

Remote Desktop Protocol: Smart Card Virtual Channel Extension

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 Common Structures
	2.2.1.1 REDIR_SCARDCONTEXT
	2.2.1.2 REDIR_SCARDHANDLE
	2.2.1.3 Connect_Common
	2.2.1.4 LocateCards_ATRMask
	2.2.1.5 ReaderState_Common_Call
	2.2.1.6 ReaderStateA
	2.2.1.7 ReaderStateW
	2.2.1.8 SCardIO_Request
	2.2.1.9 ReadCache_Common
	2.2.1.10 WriteCache_Common
	2.2.1.11 ReaderState_Return

	2.2.2 TS Server-Generated Structures
	2.2.2.1 EstablishContext_Call
	2.2.2.2 Context_Call
	2.2.2.3 ListReaderGroups_Call
	2.2.2.4 ListReaders_Call
	2.2.2.5 ContextAndStringA_Call
	2.2.2.6 ContextAndStringW_Call
	2.2.2.7 ContextAndTwoStringA_Call
	2.2.2.8 ContextAndTwoStringW_Call
	2.2.2.9 LocateCardsA_Call
	2.2.2.10 LocateCardsW_Call
	2.2.2.11 GetStatusChangeA_Call
	2.2.2.12 GetStatusChangeW_Call
	2.2.2.13 ConnectA_Call
	2.2.2.14 ConnectW_Call
	2.2.2.15 Reconnect_Call
	2.2.2.16 HCardAndDisposition_Call
	2.2.2.17 State_Call
	2.2.2.18 Status_Call
	2.2.2.19 Transmit_Call
	2.2.2.20 Control_Call
	2.2.2.21 GetAttrib_Call
	2.2.2.22 SetAttrib_Call
	2.2.2.23 LocateCardsByATRA_Call
	2.2.2.24 LocateCardsByATRW_Call
	2.2.2.25 ReadCacheA_Call
	2.2.2.26 ReadCacheW_Call
	2.2.2.27 WriteCacheA_Call
	2.2.2.28 WriteCacheW_Call
	2.2.2.29 GetTransmitCount_Call
	2.2.2.30 ScardAccessStartedEvent_Call

	2.2.3 TS Client-Generated Structures
	2.2.3.1 ReadCache_Return
	2.2.3.2 EstablishContext_Return
	2.2.3.3 Long_Return
	2.2.3.4 ListReaderGroups_Return and ListReaders_Return
	2.2.3.5 LocateCards_Return and GetStatusChange_Return
	2.2.3.6 Control_Return
	2.2.3.7 Reconnect_Return
	2.2.3.8 Connect_Return
	2.2.3.9 State_Return
	2.2.3.10 Status_Return
	2.2.3.11 Transmit_Return
	2.2.3.12 GetAttrib_Return
	2.2.3.13 GetTransmitCount_Return

	2.2.4 Card/Reader State
	2.2.5 Protocol Identifier
	2.2.6 Access Mode Flags
	2.2.7 Reader State
	2.2.8 Return Code

	3 Protocol Details
	3.1 Protocol Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 SCARD_IOCTL_ESTABLISHCONTEXT (IOCTL 0x00090014)
	3.1.4.2 SCARD_IOCTL_RELEASECONTEXT (IOCTL 0x00090018)
	3.1.4.3 SCARD_IOCTL_ISVALIDCONTEXT (IOCTL 0x0009001C)
	3.1.4.4 SCARD_IOCTL_ACCESSSTARTEDEVENT (IOCTL 0x000900E0)
	3.1.4.5 SCARD_IOCTL_LISTREADERGROUPSA (IOCTL 0x00090020)
	3.1.4.6 SCARD_IOCTL_LISTREADERGROUPSW (IOCTL 0x00090024)
	3.1.4.7 SCARD_IOCTL_LISTREADERSA (IOCTL 0x00090028)
	3.1.4.8 SCARD_IOCTL_LISTREADERSW (IOCTL 0x0009002C)
	3.1.4.9 SCARD_IOCTL_INTRODUCEREADERGROUPA (IOCTL 0x00090050)
	3.1.4.10 SCARD_IOCTL_INTRODUCEREADERGROUPW (IOCTL 0x00090054)
	3.1.4.11 SCARD_IOCTL_FORGETREADERGROUPA (IOCTL 0x00090058)
	3.1.4.12 SCARD_IOCTL_FORGETREADERGROUPW (IOCTL 0x0009005C)
	3.1.4.13 SCARD_IOCTL_INTRODUCEREADERA (IOCTL 0x00090060)
	3.1.4.14 SCARD_IOCTL_INTRODUCEREADERW (IOCTL 0x00090064)
	3.1.4.15 SCARD_IOCTL_FORGETREADERA (IOCTL 0x00090068)
	3.1.4.16 SCARD_IOCTL_FORGETREADERW (IOCTL 0x0009006C)
	3.1.4.17 SCARD_IOCTL_ADDREADERTOGROUPA (IOCTL 0x00090070)
	3.1.4.18 SCARD_IOCTL_ADDREADERTOGROUPW (IOCTL 0x00090074)
	3.1.4.19 SCARD_IOCTL_REMOVEREADERFROMGROUPA (IOCTL 0x00090078)
	3.1.4.20 SCARD_IOCTL_REMOVEREADERFROMGROUPW (IOCTL 0x0009007C)
	3.1.4.21 SCARD_IOCTL_LOCATECARDSA (IOCTL 0x00090098)
	3.1.4.22 SCARD_IOCTL_LOCATECARDSW (IOCTL 0x0009009C)
	3.1.4.23 SCARD_IOCTL_GETSTATUSCHANGEA (IOCTL 0x000900A0)
	3.1.4.24 SCARD_IOCTL_GETSTATUSCHANGEW (IOCTL 0x000900A4)
	3.1.4.25 SCARD_IOCTL_LOCATECARDSBYATRA (IOCTL 0x000900E8)
	3.1.4.26 SCARD_IOCTL_LOCATECARDSBYATRW (IOCTL 0x000900EC)
	3.1.4.27 SCARD_IOCTL_CANCEL (IOCTL 0x000900A8)
	3.1.4.28 SCARD_IOCTL_CONNECTA (IOCTL 0x000900AC)
	3.1.4.29 SCARD_IOCTL_CONNECTW (IOCTL 0x000900B0)
	3.1.4.30 SCARD_IOCTL_DISCONNECT (IOCTL 0x000900B8)
	3.1.4.31 SCARD_IOCTL_BEGINTRANSACTION (IOCTL 0x000900BC)
	3.1.4.32 SCARD_IOCTL_ENDTRANSACTION (IOCTL 0x000900C0)
	3.1.4.33 SCARD_IOCTL_STATUSA (IOCTL 0x000900C8)
	3.1.4.34 SCARD_IOCTL_STATUSW (IOCTL 0x000900CC)
	3.1.4.35 SCARD_IOCTL_TRANSMIT (IOCTL 0x000900D0)
	3.1.4.36 SCARD_IOCTL_RECONNECT (IOCTL 0x000900B4)
	3.1.4.37 SCARD_IOCTL_CONTROL (IOCTL 0x000900D4)
	3.1.4.38 SCARD_IOCTL_GETATTRIB (IOCTL 0x000900D8)
	3.1.4.39 SCARD_IOCTL_SETATTRIB (IOCTL 0x000900DC)
	3.1.4.40 SCARD_IOCTL_STATE (IOCTL 0x000900C4)
	3.1.4.41 SCARD_IOCTL_GETTRANSMITCOUNT (IOCTL 0x00090100)
	3.1.4.42 SCARD_IOCTL_READCACHEA (IOCTL 0x000900F0)
	3.1.4.43 SCARD_IOCTL_READCACHEW (IOCTL 0x000900F4)
	3.1.4.44 SCARD_IOCTL_WRITECACHEA (IOCTL 0x000900F8)
	3.1.4.45 SCARD_IOCTL_WRITECACHEW (IOCTL 0x000900FC)
	3.1.4.46 SCARD_IOCTL_RELEASETARTEDEVENT

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 Protocol Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Sending Outgoing Messages
	3.2.5.2 Processing Incoming Replies
	3.2.5.3 Messages
	3.2.5.3.1 Sending EstablishContext Message
	3.2.5.3.2 Processing EstablishContext Reply
	3.2.5.3.3 Sending ReleaseContext Message
	3.2.5.3.4 Processing ReleaseContext Reply
	3.2.5.3.5 Sending IntroduceReader (ASCII) Message
	3.2.5.3.6 Processing IntroduceReader (ASCII) Reply
	3.2.5.3.7 Sending IntroduceReader (Unicode) Message
	3.2.5.3.8 Processing IntroduceReader (Unicode) Reply
	3.2.5.3.9 Sending ForgetReader (ASCII) Message
	3.2.5.3.10 Processing ForgetReader (ASCII) Reply
	3.2.5.3.11 Sending ForgetReader (Unicode) Message
	3.2.5.3.12 Processing ForgetReader (Unicode) Reply
	3.2.5.3.13 Sending IntroduceReaderGroup (ASCII) Message
	3.2.5.3.14 Processing IntroduceReaderGroup (ASCII) Reply
	3.2.5.3.15 Sending IntroduceReaderGroup (Unicode) Message
	3.2.5.3.16 Processing IntroduceReaderGroup (Unicode) Reply
	3.2.5.3.17 Sending ForgetReaderGroup (ASCII) Message
	3.2.5.3.18 Processing ForgetReaderGroup (ASCII) Reply
	3.2.5.3.19 Sending ForgetReaderGroup (ASCII) Message
	3.2.5.3.20 Processing ForgetReaderGroup (Unicode) Reply
	3.2.5.3.21 Sending AddReaderToGroup (ASCII) Message
	3.2.5.3.22 Processing AddReaderToGroup (ASCII) Reply
	3.2.5.3.23 Sending AddReaderToGroup (Unicode) Message
	3.2.5.3.24 Processing AddReaderToGroup (Unicode) Reply
	3.2.5.3.25 Sending RemoveReaderFromGroup (ASCII) Message
	3.2.5.3.26 Processing RemoveReaderFromGroup (ASCII) Reply
	3.2.5.3.27 Sending RemoveReaderFromGroup (Unicode) Message
	3.2.5.3.28 Processing RemoveReaderFromGroup (Unicode) Reply
	3.2.5.3.29 Sending ListReaderGroups (ASCII) Message
	3.2.5.3.30 Processing ListReaderGroups (ASCII) Reply
	3.2.5.3.31 Sending ListReaderGroups (Unicode) Message
	3.2.5.3.32 Processing ListReaderGroups (Unicode) Reply
	3.2.5.3.33 Sending ListReaders (ASCII) Message
	3.2.5.3.34 Processing ListReadersReply (ASCII) Reply
	3.2.5.3.35 Sending ListReaders (Unicode) Message
	3.2.5.3.36 Processing ListReadersReply (Unicode) Reply
	3.2.5.3.37 Sending LocateCards (ASCII) Message
	3.2.5.3.38 Processing LocateCards (ASCII) Reply
	3.2.5.3.39 Sending LocateCards (Unicode) Message
	3.2.5.3.40 Processing LocateCards (Unicode) Reply
	3.2.5.3.41 Sending GetStatusChange (ASCII) Message
	3.2.5.3.42 Processing GetStatusChange (ASCII) Reply
	3.2.5.3.43 Sending GetStatusChange (Unicode) Message
	3.2.5.3.44 Processing GetStatusChange (Unicode) Reply
	3.2.5.3.45 Sending Cancel Message
	3.2.5.3.46 Processing Cancel Reply
	3.2.5.3.47 Sending Connect (ASCII) Message
	3.2.5.3.48 Processing Connect (ASCII) Reply
	3.2.5.3.49 Sending Connect (Unicode) Message
	3.2.5.3.50 Processing Connect (Unicode) Reply
	3.2.5.3.51 Sending Reconnect Message
	3.2.5.3.52 Processing Reconnect Reply
	3.2.5.3.53 Sending Disconnect Message
	3.2.5.3.54 Processing Disconnect Reply
	3.2.5.3.55 Sending Status (ASCII) Message
	3.2.5.3.56 Processing Status (ASCII) Reply
	3.2.5.3.57 Sending Status (Unicode) Message
	3.2.5.3.58 Processing Status (Unicode) Reply
	3.2.5.3.59 Sending State Message
	3.2.5.3.60 Processing State Message Reply
	3.2.5.3.61 Sending BeginTransaction Message
	3.2.5.3.62 Processing BeginTransaction Reply
	3.2.5.3.63 Sending EndTransaction Message
	3.2.5.3.64 Processing EndTransaction Reply
	3.2.5.3.65 Sending Transmit Message
	3.2.5.3.66 Processing Transmit Reply
	3.2.5.3.67 Sending Control Message
	3.2.5.3.68 Processing Control Reply
	3.2.5.3.69 Sending GetReaderCapabilities Message
	3.2.5.3.70 Processing GetReaderCapabilities Reply
	3.2.5.3.71 Sending SetReaderCapabilities Message
	3.2.5.3.72 Processing SetReaderCapabilities Reply
	3.2.5.3.73 Sending WaitForResourceManager Message
	3.2.5.3.74 Processing WaitForResourceManager Reply
	3.2.5.3.75 Sending LocateCardsByATR (ASCII) Message
	3.2.5.3.76 Processing LocateCardsByATR (Unicode) Reply
	3.2.5.3.77 Processing LocateCardsByATR (ASCII) Reply
	3.2.5.3.78 Sending LocateCardsByATR (Unicode) Message
	3.2.5.3.79 Sending ReadCache (ASCII) Message
	3.2.5.3.80 Processing ReadCache (ASCII) Reply
	3.2.5.3.81 Sending ReadCache (Unicode) Message
	3.2.5.3.82 Processing ReadCache (Unicode) Reply
	3.2.5.3.83 Sending WriteCache (ASCII) Message
	3.2.5.3.84 Processing WriteCache (ASCII) Reply
	3.2.5.3.85 Sending WriteCache (Unicode) Message
	3.2.5.3.86 Processing WriteCache (Unicode) Reply
	3.2.5.3.87 Sending GetTransmitCount Message
	3.2.5.3.88 Processing GetTransmitCount Reply

	3.2.6 Timer Events
	3.2.7 Other Local Events

	4 Protocol Examples
	4.1 Establish Context Call
	4.2 Establish Context Return
	4.3 List Readers Call
	4.4 List Readers Return
	4.5 Get Status Change Call
	4.6 Get Status Change Return
	4.7 Connect Call
	4.8 Connect Return
	4.9 Begin Transaction Call
	4.10 Begin Transaction Return
	4.11 Status Call
	4.12 Status Return
	4.13 End Transaction Call
	4.14 End Transaction Return
	4.15 Disconnect Call
	4.16 Disconnect Return
	4.17 Release Context Call
	4.18 Release Context Return

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

