

1 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

[MS-RDPERP]:
Remote Desktop Protocol:
Remote Programs Virtual Channel Extension

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft's Open Specification Promise (available here:

http://www.microsoft.com/interop/osp) or the Community Promise (available here:

http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if
the technologies described in the Open Specifications are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

2 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Revision Summary

Date

Revision

History

Revision

Class Comments

03/02/2007 0.01 MCPP Milestone Longhorn Initial Availability

07/03/2007 1.0 Major MLonghorn+90

07/20/2007 1.0.1 Editorial Revised and edited the technical content.

08/10/2007 1.0.2 Editorial Revised and edited the technical content.

09/28/2007 1.0.3 Editorial Revised and edited the technical content.

10/23/2007 2.0 Major Added new normative references.

11/30/2007 2.1 Minor Corrected some section numbering.

01/25/2008 2.1.1 Editorial Revised and edited the technical content.

03/14/2008 3.0 Major Updated and revised the technical content.

05/16/2008 3.0.1 Editorial Revised and edited the technical content.

06/20/2008 4.0 Major Updated and revised the technical content.

07/25/2008 4.0.1 Editorial Revised and edited the technical content.

08/29/2008 4.0.2 Editorial Revised and edited the technical content.

10/24/2008 4.0.3 Editorial Revised and edited the technical content.

12/05/2008 5.0 Major Updated and revised the technical content.

01/16/2009 5.0.1 Editorial Revised and edited the technical content.

02/27/2009 5.0.2 Editorial Revised and edited the technical content.

04/10/2009 5.1 Minor Updated the technical content.

05/22/2009 6.0 Major Updated and revised the technical content.

07/02/2009 6.0.1 Editorial Revised and edited the technical content.

08/14/2009 6.0.2 Editorial Revised and edited the technical content.

09/25/2009 6.1 Minor Updated the technical content.

11/06/2009 6.1.1 Editorial Revised and edited the technical content.

12/18/2009 7.0 Major Updated and revised the technical content.

01/29/2010 8.0 Major Updated and revised the technical content.

03/12/2010 8.0.1 Editorial Revised and edited the technical content.

3 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Date

Revision

History

Revision

Class Comments

04/23/2010 9.0 Major Updated and revised the technical content.

06/04/2010 10.0 Major Updated and revised the technical content.

07/16/2010 11.0 Major Significantly changed the technical content.

08/27/2010 11.1 Minor Clarified the meaning of the technical content.

10/08/2010 11.1 No change No changes to the meaning, language, or formatting of

the technical content.

11/19/2010 11.1 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 11.1 No change No changes to the meaning, language, or formatting of

the technical content.

02/11/2011 12.0 Major Significantly changed the technical content.

4 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Contents

1 Introduction ... 9
1.1 Glossary ... 9
1.2 References .. 9

1.2.1 Normative References ... 9
1.2.2 Informative References ... 10

1.3 Overview .. 10
1.3.1 Relationship to the Remote Desktop Protocol: Basic Connectivity and Graphics

Remoting Specification ... 11
1.3.2 Message Flows ... 11

1.3.2.1 RAIL Session Connection ... 11
1.3.2.2 RAIL Session Disconnection and Reconnection .. 12
1.3.2.3 RAIL Server/Client Synchronization ... 12
1.3.2.4 RAIL Virtual Channel Messages ... 13
1.3.2.5 RAIL Local Move/Resize ... 13

1.4 Relationship to Other Protocols .. 14
1.5 Prerequisites/Preconditions ... 14
1.6 Applicability Statement ... 14
1.7 Versioning and Capability Negotiation ... 14
1.8 Vendor-Extensible Fields ... 14
1.9 Standards Assignments .. 15

2 Messages.. 16
2.1 Transport .. 16
2.2 Message Syntax .. 16

2.2.1 Updates to the Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting Specification ... 16

2.2.1.1 Capability Sets ... 16
2.2.1.1.1 Remote Programs Capability Set ... 16
2.2.1.1.2 Window List Capability Set ... 17

2.2.1.2 Common Structures .. 18
2.2.1.2.1 Unicode String (UNICODE_STRING)... 18
2.2.1.2.2 Rectangle (TS_RECTANGLE_16) .. 19
2.2.1.2.3 Icon Info (TS_ICON_INFO) ... 19
2.2.1.2.4 Cached Icon Info (TS_CACHED_ICON_INFO) .. 20

2.2.1.3 Windowing Alternate Secondary Drawing Orders .. 21
2.2.1.3.1 Window Information .. 21

2.2.1.3.1.1 Common Header (TS_WINDOW_ORDER_HEADER) 21
2.2.1.3.1.2 Orders ... 21

2.2.1.3.1.2.1 New or Existing Window .. 21
2.2.1.3.1.2.2 Window Icon ... 27
2.2.1.3.1.2.3 Cached Icon .. 27
2.2.1.3.1.2.4 Deleted Window ... 28

2.2.1.3.2 Notification Icon Information .. 29
2.2.1.3.2.1 Common Header (TS_NOTIFYICON_ORDER_HEADER) 29
2.2.1.3.2.2 Orders ... 29

2.2.1.3.2.2.1 New or Existing Notification Icons .. 29
2.2.1.3.2.2.2 Deleted Notification Icons ... 32
2.2.1.3.2.2.3 Notification Icon Balloon Tooltip (TS_NOTIFY_ICON_INFOTIP) 32

2.2.1.3.3 Desktop Information .. 33
2.2.1.3.3.1 Common Header (TS_DESKTOP_ORDER_HEADER) 34

5 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.1.3.3.2 Orders ... 34
2.2.1.3.3.2.1 Actively Monitored Desktop ... 34
2.2.1.3.3.2.2 Non-Monitored Desktop .. 35

2.2.2 Static Virtual Channel Protocol ... 36
2.2.2.1 Common Header (TS_RAIL_PDU_HEADER) .. 36
2.2.2.2 Initialization Messages .. 37

2.2.2.2.1 Handshake PDU (TS_RAIL_ORDER_HANDSHAKE) 37
2.2.2.2.2 Client Information PDU (TS_RAIL_ORDER_CLIENTSTATUS) 38

2.2.2.3 Program Launching Messages ... 38
2.2.2.3.1 Client Execute PDU (TS_RAIL_ORDER_EXEC) ... 38
2.2.2.3.2 Server Execute Result PDU (TS_RAIL_ORDER_EXEC_RESULT) 40

2.2.2.4 Local Client System Parameters Update Messages .. 41
2.2.2.4.1 Client System Parameters Update PDU (TS_RAIL_ORDER_SYSPARAM) 41
2.2.2.4.2 High Contrast System Information Structure (TS_HIGHCONTRAST) 43

2.2.2.5 Server System Parameters Update Messages ... 43
2.2.2.5.1 Server System Parameters Update PDU (TS_RAIL_ORDER_SYSPARAM) 43

2.2.2.6 Local Client Event Messages ... 44
2.2.2.6.1 Client Activate PDU (TS_RAIL_ORDER_ACTIVATE) 44
2.2.2.6.2 Client System Menu PDU (TS_RAIL_ORDER_SYSMENU) 45
2.2.2.6.3 Client System Command PDU (TS_RAIL_ORDER_SYSCOMMAND) 45
2.2.2.6.4 Client Notify Event PDU (TS_RAIL_ORDER_NOTIFY_EVENT) 46
2.2.2.6.5 Client Get Application ID PDU (TS_RAIL_ORDER_GET_APPID_REQ) 48

2.2.2.7 Window Move Messages .. 48
2.2.2.7.1 Server Min Max Info PDU (TS_RAIL_ORDER_MINMAXINFO) 48
2.2.2.7.2 Server Move/Size Start PDU (TS_RAIL_ORDER_LOCALMOVESIZE) 49
2.2.2.7.3 Server Move/Size End PDU (TS_RAIL_ORDER_LOCALMOVESIZE) 52
2.2.2.7.4 Client Window Move PDU (TS_RAIL_ORDER_WINDOWMOVE) 53

2.2.2.8 Server Application ID Response .. 54
2.2.2.8.1 Server Get Application ID Response PDU

(TS_RAIL_ORDER_GET_APPID_RESP) ... 54
2.2.2.9 Language Bar Messages .. 55

2.2.2.9.1 Language Bar Information PDU (TS_RAIL_ORDER_LANGBARINFO) 55

3 Protocol Details .. 57
3.1 Common Details .. 57

3.1.1 Abstract Data Model ... 57
3.1.1.1 Icon Cache Support .. 57

3.1.2 Timers .. 57
3.1.3 Initialization .. 57
3.1.4 Higher-Layer Triggered Events ... 57
3.1.5 Message Processing Events and Sequencing Rules .. 57

3.1.5.1 Constructing Handshake PDU ... 57
3.1.5.2 Processing Handshake PDU .. 58

3.1.6 Timer Events ... 58
3.1.7 Other Local Events ... 58

3.2 Client Details ... 58
3.2.1 Abstract Data Model ... 58

3.2.1.1 Windowing Support Level .. 58
3.2.2 Timers .. 58
3.2.3 Initialization .. 58
3.2.4 Higher-Layer Triggered Events ... 58
3.2.5 Message Processing Events and Sequencing Rules .. 58

3.2.5.1 Updates to RDP Core Protocol .. 59

6 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.2.5.1.1 Constructing Client MCS Connect Initial PDU ... 59
3.2.5.1.2 Processing Server MCS Connect Response PDU 59
3.2.5.1.3 Constructing Client Info PDU... 59
3.2.5.1.4 Constructing Confirm Active PDU ... 59
3.2.5.1.5 Processing Demand Active PDU ... 59
3.2.5.1.6 Processing Window Information Orders .. 60
3.2.5.1.7 Processing Notification Icon Orders .. 60
3.2.5.1.8 Processing Desktop Information Orders.. 61

3.2.5.2 Static Virtual Channel Protocol ... 61
3.2.5.2.1 Initialization Messages ... 61

3.2.5.2.1.1 Sending Client Information PDU .. 61
3.2.5.2.2 Program Launching Messages ... 61

3.2.5.2.2.1 Sending Execute PDU ... 61
3.2.5.2.2.2 Processing Execute Result PDU .. 61

3.2.5.2.3 Local Client System Parameters Update Messages 62
3.2.5.2.3.1 Sending System Parameters Update PDU ... 62

3.2.5.2.4 Server System Parameters Update Messages .. 62
3.2.5.2.4.1 Processing Server System Parameters Update PDU 62

3.2.5.2.5 Local Client Event Messages ... 62
3.2.5.2.5.1 Sending Activate PDU .. 62
3.2.5.2.5.2 Sending System Menu PDU ... 62
3.2.5.2.5.3 Sending System Command PDU .. 62
3.2.5.2.5.4 Sending Notify Event PDU ... 63

3.2.5.2.6 Language Bar Information PDUs .. 63
3.2.5.2.6.1 Sending Language Bar Information PDU ... 63
3.2.5.2.6.2 Processing Language Bar Information PDU .. 63

3.2.5.2.7 Window Move Messages ... 63
3.2.5.2.7.1 Processing Min Max Info PDU .. 63
3.2.5.2.7.2 Processing Move-Size Start PDU .. 63
3.2.5.2.7.3 Sending Window Move PDU .. 64
3.2.5.2.7.4 Processing Move-Size End PDU .. 64

3.2.5.2.8 Application ID Messages... 64
3.2.5.2.8.1 Sending Client Get Application ID PDU ... 64
3.2.5.2.8.2 Processing Server Get Application ID Response PDU 64

3.2.6 Timer Events ... 64
3.2.7 Other Local Events ... 64

3.3 Server Details ... 65
3.3.1 Abstract Data Model ... 65

3.3.1.1 Client Local Move/Size Ability Store .. 65
3.3.1.2 Windowing Support Level .. 65

3.3.2 Timers .. 65
3.3.3 Initialization .. 65
3.3.4 Higher-Layer Triggered Events ... 65
3.3.5 Message Processing Events and Sequencing Rules .. 65

3.3.5.1 Updates to RDP Core Protocol .. 65
3.3.5.1.1 Processing Client MCS Connect Initial PDU ... 65
3.3.5.1.2 Constructing Server MCS Connect Response PDU 65
3.3.5.1.3 Processing Client Info PDU ... 66
3.3.5.1.4 Constructing Demand Active PDU .. 66
3.3.5.1.5 Processing Confirm Active PDU ... 66
3.3.5.1.6 Constructing Window Information Orders ... 66
3.3.5.1.7 Constructing Notification Icon Orders ... 67
3.3.5.1.8 Constructing Desktop Information Orders ... 67

7 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.3.5.2 Static Virtual Channel Protocol ... 67
3.3.5.2.1 Initialization Messages ... 67

3.3.5.2.1.1 Processing Client Information PDU ... 67
3.3.5.2.2 Program Launching Messages ... 68

3.3.5.2.2.1 Processing Execute PDU ... 68
3.3.5.2.2.2 Sending Execute Result PDU ... 68

3.3.5.2.3 Local Client System Parameters Update Messages 68
3.3.5.2.3.1 Processing System Parameters Update PDU 68

3.3.5.2.4 Server System Parameters Update Messages .. 68
3.3.5.2.4.1 Sending Server System Parameters Update PDU 68

3.3.5.2.5 Local Client Event Messages ... 68
3.3.5.2.5.1 Processing Activate PDU ... 68
3.3.5.2.5.2 Processing System Menu PDU ... 68
3.3.5.2.5.3 Processing System Command PDU ... 68
3.3.5.2.5.4 Processing Notify Event PDU ... 69
3.3.5.2.5.5 Processing Language Bar Information PDU .. 69

3.3.5.2.6 Window Move Messages ... 69
3.3.5.2.6.1 Sending Min Max Info PDU .. 69
3.3.5.2.6.2 Sending Move/Size Start PDU ... 69
3.3.5.2.6.3 Processing Window Move PDU ... 69
3.3.5.2.6.4 Sending Move/Size End PDU ... 69

3.3.5.2.7 Application ID Messages... 70
3.3.5.2.7.1 Processing the Get Application ID PDU ... 70
3.3.5.2.7.2 Sending the Get Application ID Response PDU 70

3.3.6 Timer Events ... 70
3.3.7 Other Local Events ... 70

3.3.7.1 Sending Language Bar Information PDU .. 70

4 Protocol Examples .. 71
4.1 Updates to the RDP Core Protocol .. 71

4.1.1 Windowing Alternate Secondary Drawing Orders .. 71
4.1.1.1 New or Existing Windows ... 71
4.1.1.2 Deleted Window ... 72
4.1.1.3 New or Existing Notification Icons ... 72
4.1.1.4 Deleted Notification Icons .. 73
4.1.1.5 Actively Monitored Desktop .. 73
4.1.1.6 Non-monitored Desktop... 73

4.2 Initialization Messages.. 74
4.2.1 TS_RAIL_ORDER_HANDSHAKE .. 74
4.2.2 TS_RAIL_ORDER_CLIENTSTATUS ... 74

4.3 Launching Messages .. 74
4.3.1 TS_RAIL_ORDER_EXEC ... 74
4.3.2 RAIL_ORDER_EXEC_RESULT .. 75

4.4 Local Client System Parameters Update Messages ... 75
4.4.1 TS_RAIL_ORDER_SYSPARAM ... 75

4.5 Local Client Event Messages .. 76
4.5.1 TS_RAIL_ORDER_ACTIVATE .. 76
4.5.2 TS_RAIL_ORDER_SYSMENU .. 76
4.5.3 TS_RAIL_ORDER_SYSCOMMAND .. 76
4.5.4 TS_RAIL_ORDER_NOTIFY_EVENT ... 76
4.5.5 TS_RAIL_ORDER_LANGBARINFO .. 77
4.5.6 TS_RAIL_ORDER_GET_APPID_REQ ... 77
4.5.7 TS_RAIL_ORDER_GET_APPID_RESP ... 77

8 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4.6 Window Move Messages ... 78
4.6.1 TS_RAIL_ORDER_WINDOWMOVE ... 78
4.6.2 TS_RAIL_ORDER_LOCALMOVESIZE .. 78
4.6.3 TS_RAIL_ORDER_MINMAXINFO ... 78

5 Security .. 80
5.1 Security Considerations for Implementers ... 80
5.2 Index of Security Parameters .. 80

6 Appendix A: Product Behavior .. 81

7 Change Tracking... 83

8 Index ... 86

9 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1 Introduction

Remote Programs, also known as remote applications integrated locally (RAIL), is a Remote
Desktop Protocol (RDP) feature (as specified in the Remote Desktop Protocol: Basic Connectivity and
Graphics Remoting Specification) that presents a remote application (running remotely on a RAIL
server) as a local user application (running on the RAIL client machine). RAIL extends the core RDP
protocol to deliver this seamless windows experience.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

Application Desktop Toolbar
balloon tooltip
client area
Control menu

desktop switch

notification area
notification icon
remote application
screen coordinates
system command
System menu

taskbar
tooltip
Unicode
Unicode character
window coordinates
window menu
window visible region

z-order

The following terms are specific to this document:

RAIL notification icon: An icon placed in the notification area of the client machine by the
remote applications integrated locally (RAIL) client.

RAIL window: A local client window that mimics a remote application window.

remote applications integrated locally (RAIL): A software component that enables remoting
of individual windows and notification icons.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com

10 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[MS-DTYP] Microsoft Corporation, "Windows Data Types", January 2007.

[MS-ERREF] Microsoft Corporation, "Windows Error Codes", January 2007.

[MS-RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting Specification", June 2007.

[MS-RDPEGDI] Microsoft Corporation, "Remote Desktop Protocol: Graphics Device Interface (GDI)
Acceleration Extensions", June 2007.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary", March 2007.

[MSDN-CREATEWINEX] Microsoft Corporation, "CreateWindowEx Function",
http://msdn.microsoft.com/en-us/library/ms632680.aspx

[MSDN-HIGHCONTRAST] Microsoft Corporation, "HIGHCONTRAST", http://msdn.microsoft.com/en-
us/library/ms695609.aspx

[MSDN-SHELLNOTIFY] Microsoft Corporation, "Shell_NotifyIcon Function",
http://msdn.microsoft.com/en-us/library/bb762159.aspx

[MSDN-SysParamsInfo] Microsoft Corporation, "SystemParametersInfo Function",
http://msdn.microsoft.com/en-us/library/ms724947(VS.85).aspx

[MSDN-VIRTUALSCR] Microsoft Corporation, "The Virtual Screen", http://msdn.microsoft.com/en-
us/library/dd145136(VS.85).aspx

[MSDN-WINFEATURE] Microsoft Corporation, "Window Features", http://msdn.microsoft.com/en-

us/library/ms632599.aspx

[MSDN-WINSTYLE] Microsoft Corporation, "Window Styles", http://msdn.microsoft.com/en-
us/library/ms632600.aspx

1.3 Overview

Remote Programs, also known as remote applications integrated locally (RAIL), is an RDP feature
(as specified in the Remote Desktop Protocol: Basic Connectivity and Graphics Remoting

Specification) that presents a remote application (running remotely on a RAIL server) as a local user
application (running on the RAIL client machine). RAIL extends the core RDP protocol to deliver this
seamless windows experience. Support for RAIL is optional in RDP, and it is negotiated as part of
the capability negotiation process.

The RAIL client, running on the user's local machine, creates one local window or notification icon

for every window or notification icon running on the RAIL server. These local windows/icons, called

RAIL windows/icons, exactly mimic the appearance of their corresponding remote windows/icons,
which are created by remote applications running on the RAIL server. All local user input to the RAIL
windows/icons is captured by the RAIL client and redirected to the server. All display updates to the
remote windows/icons on the RAIL server are captured by the server and redirected to the client

http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPEGDI%5d.pdf
%5bMS-RDPEGDI%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89982
http://go.microsoft.com/fwlink/?LinkId=90017
http://go.microsoft.com/fwlink/?LinkId=90017
http://go.microsoft.com/fwlink/?LinkId=90132
http://go.microsoft.com/fwlink/?LinkId=187513
http://go.microsoft.com/fwlink/?LinkId=191444
http://go.microsoft.com/fwlink/?LinkId=191444
http://go.microsoft.com/fwlink/?LinkId=90162
http://go.microsoft.com/fwlink/?LinkId=90162
http://go.microsoft.com/fwlink/?LinkId=90166
http://go.microsoft.com/fwlink/?LinkId=90166
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-GLOS%5d.pdf

11 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

RAIL relies on the core RDP protocol for basic connection establishment, connection security, local
input redirection to server, and drawing order updates from server to client (as specified in the

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification). In addition,
RAIL adds the following extensions to the RDP protocol:

Extensions to the RDP core protocol to send drawing orders from the server to the client

describing individual windows and notification icons. This enables the RAIL client to mimic their
geometry in RAIL windows/icons.

Virtual channel messages from client to server containing client information, system parameters

information, and RAIL-specific commands, such as remote program launch.

Virtual channel updates from server to client containing responses to client messages, server

system parameters information, or information regarding other RAIL-specific features such as
local move/resize (specified in section 1.3.2.5).

Certain classes of user input are not directly received by the RAIL window/icon as keyboard or

mouse input. Examples include right-clicking the window's taskbar icon; key combinations to

minimize, maximize, or restore all windows; and all user interactions with notification icons.

These interactions are posted to the RAIL window/icon as non-keyboard or non-mouse messages,
and, hence, cannot be sent over the core RDP channel. The client sends these interactions to the
server as RAIL Virtual Channel messages.

1.3.1 Relationship to the Remote Desktop Protocol: Basic Connectivity and

Graphics Remoting Specification

Remote applications integrated locally (RAIL) protocol messages travel over two separate RDP
channels:

Window information orders from server to client are encapsulated in Alternate Secondary

Drawing Orders (as specified in [MS-RDPEGDI] section 2.2.2.2.1.3.1.1).

All other RAIL-specific messages travel over a static virtual channel, called the RAIL virtual

channel, that is created by the Remote Desktop Protocol: Basic Connectivity and Graphics

Remoting during connection establishment (as specified in [MS-RDPBCGR] sections 1.3.3 and
2.2.1).

1.3.2 Message Flows

1.3.2.1 RAIL Session Connection

RAIL connection establishment follows the Remote Desktop Protocol: Basic Connectivity and

Graphics Remoting connection establishment sequence (as specified in [MS-RDPBCGR] section
1.3.1.1). RAIL-specific information during connection establishment is outlined as follows:

The client must create and initialize a static virtual channel to be used for RAIL protocol

messages. Information regarding this channel is sent to the server in the Client MCS Connect
Initial PDU with GCC Conference Create Request (as specified in [MS-RDPBCGR] section 2.2.1.3).

The Client Info PDU (as specified in [MS-RDPBCGR] section 2.2.1.11) must indicate the client's

request to establish a RAIL connection.

The Alternate Shell field of the Client Info PDU, as specified in [MS-RDPBCGR] section 2.2.1.11,

is NOT used to communicate the initial application started in the session. Instead, the initial
application information is communicated to the server via the Client Execute PDU.

%5bMS-RDPEGDI%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

12 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

If the server supports RAIL, the Demand Active PDU must contain the Remote Programs

Capability Set and Window List Capability Set to indicate that it supports RAIL.

The client must send corresponding Remote Programs Capability Set and Window Capability Set

in the Confirm Active PDU.

If, in the Demand Active PDU, the server does not indicate that it supports RAIL, the client

requests a disconnection according to the Remote Desktop Protocol: Basic Connectivity and
Graphics Remoting ([MS-RDPBCGR] section 1.3.1.4.1). Likewise, if the client does not indicate
that it supports RAIL in the Confirm Active PDU, the server disconnects the client (see [MS-
RDPBCGR] section 1.3.1.4.2).

After the RDP connection is established, a RAIL client and server exchange Handshake PDUs over
the RAIL Virtual Channel to indicate that each is ready for data on the virtual channel.

Figure 1: Handshake PDU

1.3.2.2 RAIL Session Disconnection and Reconnection

RAIL Session Disconnection and RAIL Session Reconnection follow the corresponding Remote
Desktop Protocol: Basic Connectivity and Graphics Remoting sequences, as specified in [MS-

RDPBCGR] section 1.3.1.4 (Disconnection Sequences) and [MS-RDPBCGR] section 1.3.1.5
(Automatic Reconnection).

1.3.2.3 RAIL Server/Client Synchronization

A RAIL server synchronizes with the RAIL client over the RDP channel upon connection

establishment or when a desktop switch occurs.

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-GLOS%5d.pdf

13 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Figure 2: RAIL protocol client synchronization

The synchronization begins with a Desktop Information Order with the

WINDOW_ORDER_FIELD_DESKTOP_ARC_BEGAN(0x00000008) flag set in the Hdr field (section
2.2.1.3.3.2.2). Upon receipt of this order, the client should clear all previously received information

from the server. This order is followed by any number of Windowing Alternate Secondary Drawing
Orders describing windows, notification icons, and desktop. Finally, the server sends a Desktop
Information Order with the WINDOW_ORDER_FIELD_DESKTOP_ARC_COMPLETED (0x00000004)
flag set to signal the end of synchronization data (section 2.2.1.3.3.2.1).

After the initial synchronization, Windowing Alternate Secondary Drawing Orders flow from server to
client whenever a change occurs in a window, notification icon, or desktop state.

If the server is not capable of monitoring the desktop (for example, secure desktop), it sends a

Desktop Information Order with the WINDOW_ORDER_FIELD_DESKTOP_NONE (0x00000001) flag
set in the Hdr field (section 2.2.1.3.3.2.2). Upon receipt of this order, the client should clear out all
previously received information from the server.

1.3.2.4 RAIL Virtual Channel Messages

Client/server or server/client messages can flow over the RAIL anytime after the virtual channel

handshake sequence (section 2.2.2.2.1). The client should send the Client Information PDU and the
Client System Parameters Update PDU immediately after the handshake to inform the server of its
state and system parameters. The server should send the Server System Parameters Update PDU
immediately after the handshake to inform the client of its system parameters. All other virtual
channel messages are generated in response to events on the client or server.

1.3.2.5 RAIL Local Move/Resize

Local move/resize features are RAIL options designed to optimize bandwidth in certain situations
where RAIL windows are moved or resized by the user. A RAIL client indicates to the RAIL server
whether it supports local move/resize through the Client Capabilities PDU (section 2.2.2.2.2), sent
after the Virtual Channel handshake sequence. RAIL servers do not have to explicitly report

move/size support to the client.

Figure 3: RAIL local move/resize operation

14 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Local move/resize is based on the following logic:

1. When the server detects that a window is beginning to be moved or resized, it sends a Server

Min Max Info PDU (section 2.2.2.7.1) to the client with the window extents. This is followed by a
Server Move/Size Start PDU (section 2.2.2.7.2).

2. If the client supports local move/resize, it injects a mouse button-down at the position indicated
by the move/size PDU (if the move/size was initiated via mouse) or posts a command to the
window (if the move/size was initiated via keyboard) to initiate move/resize of the window by the
local window manager.

3. At the same time, the client lets the local Window Manager handle all keyboard and mouse
events for the RAIL window, instead of redirecting to the server, to ensure that the move/size is
entirely happening locally.

4. Finally, when the user is done with the move/resize, the local RAIL window receives this
notification and forwards a mouse button-up to the server to end move/size on the server. For
keyboard-based moves and all resize operations, the client also sends a Client Window Move PDU

(section 2.2.2.7.4) to the server to inform the server of the window's new position and size. (For
mouse-based moves, the mouse button-up is sufficient to inform the window's final position).

5. When the server detects that move/size has ended, it sends a Server Move/Size End PDU

(section 2.2.2.7.3) with the final window position and size. The client may adjust its local RAIL
window if necessary using this information.

1.4 Relationship to Other Protocols

RAIL extends the Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification.

1.5 Prerequisites/Preconditions

The Remote Programs Extensions for Remote Desktop Protocol has the assumption to operate in a
fully operational RDP connection. A fully operational RDP connection is a connection that has passed
the Connection Finalization phase, as specified in [MS-RDPBCGR] section 1.3.1.1.

1.6 Applicability Statement

The Remote Desktop Protocol: Remote Programs Virtual Channel Extension applies only to RDP 6.0
and later.

1.7 Versioning and Capability Negotiation

Versioning: RAIL is supported in RDP 6.0 and later clients only. The RDP version is negotiated as a
part of the Remote Desktop Protocol: Basic Connectivity and Graphics Remoting (as specified in
section 1.7). Capability: RAIL-specific capabilities for Remote Programs and Window List are
negotiated via the Demand Active and Confirm Active PDUs of the server and client, respectively (as
specified in [MS-RDPBCGR], section 2.2.1.13).

1.8 Vendor-Extensible Fields

This protocol uses Win32 error codes as defined in [MS-ERREF] section 2.2. Vendors SHOULD reuse
those values with their indicated meaning. Choosing any other value runs the risk of a collision in
the future.

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-ERREF%5d.pdf

15 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1.9 Standards Assignments

The Remote Desktop Protocol: Remote Programs Virtual Channel Extension does not use any
assigned standards.

16 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2 Messages

The following sections specify how Remote Desktop Protocol: Remote Programs Virtual Channel
Extension messages are transported and Remote Desktop Protocol: Remote Programs Virtual
Channel Extension message syntax.

This protocol references commonly used data types as defined in [MS-DTYP].

2.1 Transport

The Remote Desktop Protocol: Remote Programs Virtual Channel Extension messages are passed

between the client and server, embedded within an RDP connection, as described in section 1.3.1
for an overview.

The protocol uses the TCP connection created by the Remote Desktop Protocol: Basic Connectivity
and Graphics Remoting (as specified in [MS-RDPBCGR] section 2.1) and does not establish any
transport connections.

2.2 Message Syntax

2.2.1 Updates to the Remote Desktop Protocol: Basic Connectivity and Graphics

Remoting Specification

Support for RAIL is indicated by the client and server during the connection establishment phase of
the Remote Desktop Protocol: Basic Connectivity and Graphics Remoting, as described in section
1.3.2.1 for an overview of how the RAIL connection is established.

The Remote Desktop Protocol: Basic Connectivity and Graphics Remoting has also been extended to
support windowing-specific drawing orders for RAIL scenarios. These orders, called Windowing
Alternate Secondary Drawing Orders, describe state for windows, notification icons, and desktop-
related information on the server. The following sections outline the capability sets and drawing
orders that make up the Remote Desktop Protocol: Basic Connectivity and Graphics Remoting
extensions for RAIL.

2.2.1.1 Capability Sets

A RAIL server and client indicate support for RAIL by exchanging two capability sets during the
capabilities negotiation phase of RDP connection establishment. These sets are outlined in the
following sections.

2.2.1.1.1 Remote Programs Capability Set

The Remote Programs Capability Set is sent by the server in the Demand Active PDU and by the

client in the Confirm Active PDU, as specified in [MS-RDPBCGR] section 2.2.1.13. It indicates that
the client and server are capable of communicating RAIL PDUs over the RAIL static virtual channel.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

CapabilitySetType LengthCapability

RailSupportLevel

%5bMS-DTYP%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

17 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

CapabilitySetType (2 bytes): An unsigned 16-bit integer. The type of the capability set. This
field MUST be set to 0x0017 (CAPSETTYPE_RAIL).

LengthCapability (2 bytes): An unsigned 16-bit integer. The combined length of the
CapabilitySetType, LengthCapability, and RailSupportLevel fields, in bytes.

RailSupportLevel (4 bytes): A 4 byte bitfield specifying support for Remote Programs and the
Docked Language Bar for Remote Programs. <1>

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

S L 0

Where the bits are defined as:

Value Description

S

TS_RAIL_LEVEL_SUPPORTED

Set to 1 if the client/server is capable of

supporting Remote Programs; set to 0

otherwise.

L

TS_RAIL_LEVEL_DOCKED_LANGBAR_SUPPORTED

Set to 1 if the client/server is capable of

supporting Docked Language Bar for Remote

Programs; set to 0 otherwise. This flag MUST

be set to 0 if TS_RAIL_LEVEL_SUPPORTED is

0.

2.2.1.1.2 Window List Capability Set

The Window List Capability Set is sent by the server in the Demand Active PDU and by the client in
the Confirm Active PDU, as specified in [MS-RDPBCGR] section 2.2.1.13. It indicates that the client

and server are capable of communicating Windowing Alternate Secondary Drawing Orders as
extensions to the core RDP protocol drawing orders (see section 2.2.1.3).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

CapabilitySetType LengthCapability

WndSupportLevel

NumIconCaches NumIconCacheEntries

CapabilitySetType (2 bytes): An unsigned 16-bit integer. The type of capability set. This field
MUST be set to 0x0018 (CAPSETTYPE_WINDOW).

LengthCapability (2 bytes): An unsigned 16-bit integer. Specifies the combined length of the
CapabilitySetType, LengthCapability, WndSupportLevel, NumIconCaches, and
NumIconCacheEntries fields, in bytes.

WndSupportLevel (4 bytes): An unsigned 32-bit integer. The windowing support level. This
field MUST be set to one of the following values. <2>

%5bMS-RDPBCGR%5d.pdf

18 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

TS_WINDOW_LEVEL_NOT_SUPPORTED

0x00000000

The client or server is not capable of supporting

Windowing Alternate Secondary Drawing Orders.

TS_WINDOW_LEVEL_SUPPORTED

0x00000001

The client or server is capable of supporting Windowing

Alternate Secondary Drawing Orders.

TS_WINDOW_LEVEL_SUPPORTED_EX

0x00000002

The client or server is capable of supporting Windowing

Alternate Secondary Drawing Orders and the following

flags:

 WINDOW_ORDER_FIELD_CLIENTAREASIZE

 WINDOW_ORDER_FIELD_RPCONTENT

 WINDOW_ORDER_FIELD_ROOTPARENT

NumIconCaches (1 byte): An unsigned 8-bit integer. The number of icon caches requested by
the server (Demand Active PDU) or supported by the client (Confirm Active PDU).

The server maintains an icon cache and refers to it to avoid sending duplicate icon information
(see section 2.2.1.3.1.2.3). The client also maintains an icon cache and refers to it when the
server sends across a Cached Icon Window Information Order.

NumIconCacheEntries (2 bytes): An unsigned 16-bit integer. The number of entries within
each icon cache requested by the server (Demand Active PDU) or supported by the client
(Confirm Active PDU).

The server maintains an icon cache and refers to it to avoid sending duplicate icon information

(see section 2.2.1.3.1.2.3). The client also maintains an icon cache and refers to it when the
server sends across a Cached Icon Window Information Order.

2.2.1.2 Common Structures

2.2.1.2.1 Unicode String (UNICODE_STRING)

The UNICODE_STRING packet is used to pack a variable-length Unicode string.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

CbString String (variable)

...

CbString (2 bytes): An unsigned 16-bit integer. The number of bytes in the String field. If
CbString is zero (0), then the String field is absent. The maximum allowed value for

CbString depends on the context in which the string is used.

String (variable): Optional and of variable length. A non-null-terminated Unicode character
string. The number of characters in the string is equal to the value of CbString divided by 2.

19 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.1.2.2 Rectangle (TS_RECTANGLE_16)

The TS_RECTANGLE_16 structure describes a rectangle by using its top-left and bottom-right
coordinates. The units depend on the context in which this structure is used.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Left Top

Right Bottom

Left (2 bytes): An unsigned 16-bit integer. The x-coordinate of the rectangle's top-left corner.

Top (2 bytes): An unsigned 16-bit integer. The y-coordinate of the rectangle's top-left corner.

Right (2 bytes): An unsigned 16-bit integer. The x-coordinate of the rectangle's bottom-right

corner.

Bottom (2 bytes): An unsigned 16-bit integer. The y-coordinate of the rectangle's bottom-right
corner.

2.2.1.2.3 Icon Info (TS_ICON_INFO)

The TS_ICON_INFO packet describes an icon.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

CacheEntry CacheId Bpp

Width Height

CbColorTable (optional) CbBitsMask

CbBitsColor BitsMask (variable)

...

ColorTable (variable)

...

BitsColor (variable)

...

CacheEntry (2 bytes): An unsigned 16-bit integer. The index within an icon cache at which this

icon MUST be stored at the client. The index is unique within a given CacheId (see following
description). The maximum value of CacheEntry is negotiated between server and client

20 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

through the NumIconCacheEntries field of the Window List Capability Set during the
connection establishment phase.

CacheId (1 byte): An unsigned 8-bit integer. The index of the icon cache at which this icon
MUST be stored at the client. If the value is 0xFFFF, the icon SHOULD NOT be cached. The

CacheId is unique within a remote session.

The maximum value of CacheId is negotiated between server and client through the
NumIconCaches field of the Window List Capability Set while establishing the connection.

Bpp (1 byte): An unsigned 8-bit integer. The color depth of the icon. Valid values are as
follows:

1
4

8
16
24

32

Width (2 bytes): An unsigned 16-bit integer. The width, in pixels, of the icon.

Height (2 bytes): An unsigned 16-bit integer. The height, in pixels, of the icon.

CbColorTable (2 bytes): An unsigned 16-bit integer. The size, in bytes, of the color table data.
This field is ONLY present if the bits per pixel (Bpp) value is 1, 4, or 8.

CbBitsMask (2 bytes): An unsigned 16-bit integer. The size, in bytes, of the icon's one-bit
color-depth mask image.

CbBitsColor (2 bytes): An unsigned 16-bit integer. The size, in bytes, of the icon's color
image.

BitsMask (variable): The image data for the 1-bpp bitmap. The length, in bytes, of this field is

equal to the value of CbBitsMask. This field is optional.

ColorTable (variable): The image data for the color bitmap. The length, in bytes, of this field is
equal to the value of CbColorTable. This field is only present if the Bpp value is 1, 4, or 8.

BitsColor (variable): The image data for the icon's color image. The length, in bytes, of this
field is equal to the value of CbBitsColor. This field is optional.

2.2.1.2.4 Cached Icon Info (TS_CACHED_ICON_INFO)

The TS_CACHED_ICON_INFO packet describes a cached icon.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

CacheEntry CacheId

CacheEntry (2 bytes): An unsigned 16-bit integer. The index within an icon cache at the client

that refers to the cached icon. This value MUST have been previously specified by the server
in the IconInfo structure (section 2.2.1.2.3) of a Window Information Order (section
2.2.1.3.2.2) or Icon structure of a New or Existing Notification Icon (section 2.2.1.3.2.2.1).

21 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

CacheId (1 byte): An unsigned 8-bit integer. The index of the icon cache containing the cached
icon. This value MUST have been previously specified by the server in the IconInfo structure of

a Window Information Order or Icon structure of a New or Existing Notification Icon.

2.2.1.3 Windowing Alternate Secondary Drawing Orders

2.2.1.3.1 Window Information

Window Information Orders specify the state of windows on the server.

2.2.1.3.1.1 Common Header (TS_WINDOW_ORDER_HEADER)

The TS_WINDOW_ORDER_HEADER packet contains information common to every Windowing

Alternate Secondary Drawing Order describing a window.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Header OrderSize FieldsPresentFlags

... WindowId

...

Header (1 byte): An unsigned 8-bit integer. An Alternate Secondary Order Header, as specified
in [MS-RDPEGDI] section 2.2.2.2.1.3.1.1. The embedded orderType field MUST be set to

0x0B (TS_ALTSEC_WINDOW).

OrderSize (2 bytes): An unsigned 16-bit integer. The size of the entire packet, in bytes.

FieldsPresentFlags (4 bytes): An unsigned 32-bit integer. The flags indicating which fields are

present in the packet. See Orders.

WindowId (4 bytes): An unsigned 32-bit integer. The ID of the window being described in the
drawing order. It is generated by the server and is unique for every window in the session.

2.2.1.3.1.2 Orders

2.2.1.3.1.2.1 New or Existing Window

A Window Information Order is generated by the server whenever a new window is created on the
server or when a property on a new or existing window is updated.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Hdr

...

... OwnerWindowId

%5bMS-RDPEGDI%5d.pdf

22 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

(optional)

... Style (optional)

... ExtendedStyle (optional)

... ShowState (optional)

TitleInfo (variable)

...

ClientOffsetX (optional)

ClientOffsetY (optional)

ClientAreaWidth (optional)

ClientAreaHeight (optional)

RPContent (optional) RootParentHandle (optional)

... WindowOffsetX (optional)

... WindowOffsetY (optional)

... WindowClientDeltaX (optional)

... WindowClientDeltaY (optional)

... WindowWidth (optional)

... WindowHeight (optional)

... NumWindowRects (optional) WindowRects (variable)

...

VisibleOffsetX (optional)

VisibleOffsetY (optional)

NumVisibilityRects (optional) VisibilityRects (variable)

...

23 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Hdr (11 bytes): Eleven bytes. Common Window AltSec Order header,
TS_WINDOW_ORDER_HEADER. The FieldsPresentFlags field of the header MUST conform to

the values defined as follows.

Value Meaning

0x01000000

WINDOW_ORDER_TYPE_WINDOW

Indicates a Windowing Alternate Secondary

Drawing Order describing a window. This flag

MUST be set.

0x10000000

WINDOW_ORDER_STATE_NEW

Indicates that the Windowing Alternate Secondary

Drawing Order contains information for a new

window. If this flag is not set, the order contains

information for an existing window.

0x00000002

WINDOW_ORDER_FIELD_OWNER

Indicates that the OwnerWindowId field is

present.

0x00000008

WINDOW_ORDER_FIELD_STYLE

Indicates that the Style and ExtendedStyle

fields are present.

0x00000010

WINDOW_ORDER_FIELD_SHOW

Indicates that the ShowState field is present.

0x00000004

WINDOW_ORDER_FIELD_TITLE

Indicates that the TitleInfo field is present.

0x00004000

WINDOW_ORDER_FIELD_CLIENTAREAOFFSET

Indicates that the ClientOffsetX and

ClientOffsetY fields are present.

0x00010000

WINDOW_ORDER_FIELD_CLIENTAREASIZE

Indicates that the ClientAreaWidth and

ClientAreaHeight fields are present.<3>

0x00020000

WINDOW_ORDER_FIELD_RPCONTENT

Indicates that the RPContent field is present.

<4>

0x00040000

WINDOW_ORDER_FIELD_ROOTPARENT

Indicates that the RootParentHandle field is

present. <5>

0x00000800

WINDOW_ORDER_FIELD_WNDOFFSET

Indicates that the WindowOffsetX and

WindowOffsetY fields are present.

0x00008000

WINDOW_ORDER_FIELD_WNDCLIENTDELTA

Indicates that the WindowClientDeltaX and

WindowClientDeltaY fields are present.

0x00000400

WINDOW_ORDER_FIELD_WNDSIZE

Indicates that the WindowWidth and

WindowHeight fields are present.

0x00000100

WINDOW_ORDER_FIELD_WNDRECTS

Indicates that the NumWindowRects and

WindowRects fields are present.

0x00001000

WINDOW_ORDER_FIELD_VISOFFSET

Indicates that the VisibleOffsetX and

VisibleOffsetY fields are present.

0x00000200 Indicates that the NumVisibilityRects and

VisibilityRects fields are present.

24 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

WINDOW_ORDER_FIELD_VISIBILITY

OwnerWindowId (4 bytes): An unsigned 32-bit integer. The ID of the window on the server

that is the owner of the window specified in WindowId field of Hdr. For more information on
owned windows, see [MSDN-WINFEATURE]. This field is present if and only if the
WINDOW_ORDER_FIELD_OWNER flag is set in the FieldsPresentFlags field of
TS_WINDOW_ORDER_HEADER.

Style (4 bytes): An unsigned 32-bit integer. Describes the window's current style. Window
styles determine the appearance and behavior of a window. For more information, see

[MSDN-WINSTYLE]. This field is present if and only if the WINDOW_ORDER_FIELD_STYLE flag
is set in the FieldsPresentFlags field of the TS_WINDOW_ORDER_HEADER.

ExtendedStyle (4 bytes): An unsigned 32-bit integer. Extended window style information. For
more information about extended window styles, see [MSDN-CREATEWINEX].

This field is present if and only if the WINDOW_ORDER_FIELD_STYLE flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

ShowState (1 byte): An unsigned 8-bit integer. Describes the show state of the window.

This field is present if and only if the WINDOW_ORDER_FIELD_SHOW flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

The field MUST be one of the following values.

Value Meaning

0x00 Do not show the window.

0x02 Show the window minimized.

0x03 Show the window maximized.

0x05 Show the window in its current size and position.

TitleInfo (variable): UNICODE_STRING. Variable length. Contains the window's title string.
The maximum value for the CbString field of UNICODE_STRING is 520 bytes. This structure
is present only if the WINDOW_ORDER_FIELD_TITLE flag is set in the FieldsPresentFlags
field of TS_WINDOW_ORDER_HEADER.

ClientOffsetX (4 bytes): An unsigned 32-bit integer. The X (horizontal) offset from the top-left
corner of the screen to the top-left corner of the window's client area, expressed in screen
coordinates.

This field is present only if the WINDOW_ORDER_FIELD_CLIENTAREAOFFSET flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

ClientOffsetY (4 bytes): An unsigned 32-bit integer. The Y (vertical) offset from the top-left
corner of the screen to the top-left corner of the window's client area, expressed in screen
coordinates.

This field is present only if the WINDOW_ORDER_FIELD_CLIENTAREAOFFSET flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

http://go.microsoft.com/fwlink/?LinkId=90162
http://go.microsoft.com/fwlink/?LinkId=90166
http://go.microsoft.com/fwlink/?LinkId=89982
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

25 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

ClientAreaWidth (4 bytes): An unsigned 32-bit integer specifying the width of the client area
rectangle of the target window.

This field only appears if the WndSupportLevel field of the Window List Capability Set
message is set to TS_WINDOW_LEVEL_SUPPORTED_EX (as specified in section 2.2.1.1.2) and

the WINDOW_ORDER_FIELD_CLIENTAREASIZE flag is set in the FieldsPresentFlags field of
the TS_WINDOW_ORDER_HEADER packet (section 2.2.1.3.1.1).

ClientAreaHeight (4 bytes): An unsigned 32-bit integer specifying the height of the client area
rectangle of the target window.

This field only appears if the WndSupportLevel field of the Window List Capability Set
message is set to TS_WINDOW_LEVEL_SUPPORTED_EX (as specified in section 2.2.1.1.2) and
the Hdr field has the WINDOW_ORDER_FIELD_CLIENTAREASIZE flag is set in the

FieldsPresentFlags field of the TS_WINDOW_ORDER_HEADER packet (section 2.2.1.3.1.1).

RPContent (1 byte): An unsigned BYTE that MUST be set to one of the following possible
values.

Value Meaning

0x00 The window is not used by a render plug-in to do client-side rendering.

0x01 The window is used by a render plug-in to do client-side rendering.

This field only appears if the WndSupportLevel field of the Window List Capability Set
message is set to TS_WINDOW_LEVEL_SUPPORTED_EX (as specified in section 2.2.1.1.2) and
the Hdr field has the WINDOW_ORDER_FIELD_RPCONTENT flag is set in the
FieldsPresentFlags field of the TS_WINDOW_ORDER_HEADER packet (section 2.2.1.3.1.1).

RootParentHandle (4 bytes): An unsigned 32-bit integer specifying the server-side target
window's top-level parent window handle. A Top-Level parent window is the window
immediately below "desktop" in the window hierarchy. If the target window is a top-level
window, the window handle of the target window is sent.

This field only appears if the WndSupportLevel field of the Window List Capability Set
message is set to TS_WINDOW_LEVEL_SUPPORTED_EX (as specified in section 2.2.1.1.2) and
the Hdr field has the WINDOW_ORDER_FIELD_ROOTPARENT flag is set in the

FieldsPresentFlags field of the TS_WINDOW_ORDER_HEADER packet (section 2.2.1.3.1.1).

WindowOffsetX (4 bytes): An unsigned 32-bit integer. The X (horizontal) offset from the top-
left corner of the window to the top-left corner of the window's client area, expressed in
screen coordinates.

This field is present only if the WINDOW_ORDER_FIELD_WNDOFFSET flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

WindowOffsetY (4 bytes): An unsigned 32-bit integer. The Y (vertical) offset from the top-left

corner of the window to the top-left corner of the window's client area, expressed in screen
coordinates.

This field is present only if the WINDOW_ORDER_FIELD_WNDOFFSET flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

WindowClientDeltaX (4 bytes): An unsigned 32-bit integer. The X (horizontal) delta between
the top-left corner of the window and the window's client area.

26 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

This field is present only if the WINDOW_ORDER_FIELD_CLIENTDELTA flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

WindowClientDeltaY (4 bytes): An unsigned 32-bit integer. The Y (vertical) delta between
the top-left corner of the window and the window's client area.

This field is present only if the WINDOW_ORDER_FIELD_CLIENTDELTA flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

WindowWidth (4 bytes): An unsigned 32-bit integer. The window width, in screen
coordinates.

This field is present only if the WINDOW_ORDER_FIELD_WNDSIZE flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

WindowHeight (4 bytes): An unsigned 32-bit integer. The window height, in screen

coordinates.

This field is present only if the WINDOW_ORDER_FIELD_WNDSIZE flag is set in the

FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

NumWindowRects (2 bytes): An unsigned 16-bit integer. A count of rectangles describing the
window geometry.

This field is present only if the WINDOW_ORDER_FIELD_WNDRECTS flag is set in the

FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

WindowRects (variable): An array of TS_RECTANGLE_16 structures, NumWindowRects
wide, describing the window geometry. All coordinates are window coordinates.

This field is present only if the NumWindowRects field is greater than 0 and the
WINDOW_ORDER_FIELD_WNDRECTS flag is set in the FieldsPresentFlags field of
TS_WINDOW_ORDER_HEADER.

VisibleOffsetX (4 bytes): An unsigned 32-bit integer. The X (horizontal) offset from the top-

left corner of the screen to the top-left corner of the window's visible region's bounding
rectangle, expressed in screen coordinates.

This field is present only if the WINDOW_ORDER_FIELD_VISOFFSET flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

VisibleOffsetY (4 bytes): An unsigned 32-bit integer. The Y (vertical) offset from the top-left
corner of the screen to the top-left corner of the window's visible region's bounding rectangle,
expressed in screen coordinates.

This field is present only if the WINDOW_ORDER_FIELD_VISOFFSET flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

NumVisibilityRects (2 bytes): An unsigned 16-bit integer. A count of rectangles describing
the window's visible region.

This field is present only if the WINDOW_ORDER_FIELD_VISIBILITY flag is set in the
FieldsPresentFlags field of TS_WINDOW_ORDER_HEADER.

VisibilityRects (variable): An array of TS_RECTANGLE_16 structures, NumVisibilityRects
wide, describing the window's visible region. All coordinates are window coordinates.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

27 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

This field is present only if the value of the NumVisibilityRects field is greater than 0 and
the WINDOW_ORDER_FIELD_VISIBILITY flag is set in the FieldsPresentFlags field of

TS_WINDOW_ORDER_HEADER.

2.2.1.3.1.2.2 Window Icon

The Window Icon packet is a Window Information Order generated by the server when a new or
existing window sets or updates its associated icon.

Icons are created by combining two bitmaps of the same size. The mask bitmap is always 1 bpp,
although the color depth of the color bitmap can vary. The color bitmap may have an associated
color table.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Hdr

...

... IconInfo (variable)

...

Hdr (11 bytes): Eleven bytes. A TS_WINDOW_ORDER_HEADER structure. The

FieldsPresentFlags field of the header MUST be constructed using the following values.

Value Meaning

0x01000000

WINDOW_ORDER_TYPE_WINDOW

Indicates a Windowing Alternate Secondary Drawing Order

that describes a window. This flag MUST be set.

0x10000000

WINDOW_ORDER_STATE_NEW

Indicates that the Windowing Alternate Secondary Drawing

Order contains information for a new window. If this flag is

not set, the order contains information for an existing

window.

0x40000000

WINDOW_ORDER_ICON

Indicates that the order contains icon information for the

window. This flag MUST be set.

0x00002000

WINDOW_ORDER_FIELD_ICON_BIG

Indicates that the large version of the icon is being sent. If

this flag is not present, the icon is a small icon. <6>

IconInfo (variable): Variable length. TS_ICON_INFO structure. Describes the window’s icon.

2.2.1.3.1.2.3 Cached Icon

The Cached Icon Window Information Order is generated by the server when a new or existing
window sets or updates the icon in its title bar or in the Alt-Tab dialog box. If the icon information
was transmitted by the server in a previous Window Information Order or Notification Icon
Information Order in the same session, and the icon was cacheable (that is, the server specified a
cacheEntry and cacheId for the icon), the server reports the icon cache entries to avoid sending
duplicate information.

28 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Hdr

...

... CachedIcon

...

Hdr (11 bytes): Eleven bytes. A TS_WINDOW_ORDER_HEADER structure. The
FieldsPresentFlags field of the header MUST conform to the values defined as follows.

Value Description

WINDOW_ORDER_TYPE_WINDOW

0x01000000

Indicates a Windowing Alternate Secondary Drawing Order

that describes a window. This flag MUST be set.

WINDOW_ORDER_STATE_NEW

0x10000000

Indicates that the Windowing Alternate Secondary Drawing

Order contains information for a new window. If this flag is

not set, the order contains information for an existing

window.

WINDOW_ORDER_CACHEDICON

0x80000000

Indicates that the order contains cached icon information for

the window. This flag MUST be set.

WINDOW_ORDER_FIELD_ICON_BIG

0x00002000

Indicates that the large version of the icon is being referred

to. If this flag is not present, the icon is a small icon. <7>

CachedIcon (3 bytes): Three bytes. TS_CACHED ICON_INFO structure. Describes a cached

icon on the client.

2.2.1.3.1.2.4 Deleted Window

The Deleted Window Information Order is generated by the server whenever an existing window is

destroyed on the server.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Hdr

...

...

Hdr (11 bytes): Eleven bytes. A TS_WINDOW_ORDER_HEADER structure. The
FieldsPresentFlags field of the header MUST be constructed using the following values.

29 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

0x01000000

WINDOW_ORDER_TYPE_WINDOW

Indicates a Windowing Alternate Secondary Drawing Order

describing a window. This flag MUST be set.

0x20000000

WINDOW_ORDER_STATE_DELETED

Indicates that the window is deleted. If this flag is set, the

order MUST NOT contain any other information.

2.2.1.3.2 Notification Icon Information

Notification Icon Information orders specify the state of the notification icon on the server.

2.2.1.3.2.1 Common Header (TS_NOTIFYICON_ORDER_HEADER)

The TS_NOTIFYICON_ORDER_HEADER packet contains information common to every Windowing
Alternate Secondary Drawing Order specifying a notification icon.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Header OrderSize FieldsPresentFlags

... WindowId

... NotifyIconId

...

Header (1 byte): An unsigned 8-bit integer. An Alternate Secondary Order Header, as specified
in [MS-RDPEGDI] section 2.2.2.2.1.3.1.1. The embedded orderType field MUST be set to

0x0B (TS_ALTSEC_WINDOW).

OrderSize (2 bytes): An unsigned 16-bit integer. The size, in bytes, of the entire packet.

FieldsPresentFlags (4 bytes): An unsigned 32-bit integer. The flags indicating which fields are

present in the packet. See New or Existing Notification Icons.

WindowId (4 bytes): An unsigned 32-bit integer. The ID of the window owning the notification
icon specified in the drawing order. The ID is generated by the server and is unique for every
window in the session.

NotifyIconId (4 bytes): An unsigned 32-bit integer. The ID of the notification icon specified in
the drawing order. The ID is generated by the application that owns the notification icon and
SHOULD be unique for every notification icon owned by the application.

2.2.1.3.2.2 Orders

2.2.1.3.2.2.1 New or Existing Notification Icons

The Notification Icon Information Order packet is generated by the server whenever a new
notification icon is created on the server or when an existing notification icon is updated.

%5bMS-RDPEGDI%5d.pdf

30 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Hdr

...

...

... Version (optional)

... ToolTip (variable)

...

InfoTip (variable)

...

State (optional)

Icon (variable)

...

CachedIcon (optional)

Hdr (15 bytes): Fifteen bytes. A TS_NOTIFYICON_ORDER_HEADER structure. Common AltSec

Order header. The FieldsPresentFlags field of the header MUST conform to the values
defined as follows.

Value Meaning

WINDOW_ORDER_TYPE_NOTIFY

0x02000000

Indicates a Windowing Alternate Secondary Drawing

Order specifying a notification icon. This flag MUST

be set.

WINDOW_ORDER_STATE_NEW

0x10000000

Indicates that the Windowing Alternate Secondary

Drawing Order contains information for a new

notification icon. If this flag is set, one of the Icon

and CachedIcon fields MUST be present. If this flag

is not set, the Windowing Alternate Secondary

Drawing Order contains information for an existing

notification icon.

WINDOW_ORDER_FIELD_NOTIFY_VERSION

0x00000008

Indicates that the Version field is present.

WINDOW_ORDER_FIELD_NOTIFY_TIP

0x00000001

Indicates that the Tooltip field is present.

31 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

WINDOW_ORDER_FIELD_NOTIFY_INFO_TIP

0x00000002

Indicates that the InfoTip field is present.

WINDOW_ORDER_FIELD_NOTIFY_STATE

0x00000004

Indicates that the State field is present.

WINDOW_ORDER_ICON

0x40000000

Indicates that the Icon field is present. Either the

Icon or the CachedIcon field SHOULD be present,

but not both.

WINDOW_ORDER_CACHED_ICON

0x80000000

Indicates that the CachedIcon field is present.

Either the Icon or the CachedIcon field SHOULD

be present, but not both. <8>

Version (4 bytes): An unsigned 32-bit integer. Specifies the behavior of the notification icons.

This field is present only if the WINDOW_ORDER_FIELD_NOTIFY_VERSION flag is set in the

FieldsPresentFlags field of TS_NOTIFYICON_ORDER_HEADER. This field MUST be set to one
of the following values.

Value Meaning

0 Use this value for applications designed for Windows NT 4.0.

3 Use the Windows 2000 notification icons behavior. Use this value for applications designed

for Windows 2000 and Windows XP.

4 Use the current behavior. Use this value for applications designed for Windows Vista and

Windows 7.

For more information about notification icons, see [MSDN-SHELLNOTIFY], the Remarks

section.

ToolTip (variable): Variable length. UNICODE_STRING. Specifies the text of the notification
icon tooltip. This structure is present only if the WINDOW_ORDER_FIELD_NOTIFY_TIP flag is
set in the FieldsPresentFlags field of TS_NOTIFYICON_ORDER_HEADER.

InfoTip (variable): Variable length. A TS_NOTIFY_ICON_INFOTIP structure. Specifies the
notify icon's balloon tooltip. This field SHOULD NOT be present for icons that follow
Windows 95 behavior (Version = 0). This structure is present only if the

WINDOW_ORDER_FIELD_NOTIFY_INFO_TIP flag is set in the FieldsPresentFlags field of
TS_NOTIFYICON_ORDER_HEADER.

State (4 bytes): Unsigned 32-bit integer. Specifies the state of the notify icon. This field
SHOULD NOT be present for icons that follow Windows 95 behavior (Version = 0).

This field is present only if the WINDOW_ORDER_FIELD_NOTIFY_STATE flag is set in the
FieldsPresentFlags field of TS_NOTIFYICON_ORDER_HEADER.

Value Meaning

1 The notify icon is hidden.

http://go.microsoft.com/fwlink/?LinkId=90132
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

32 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Icon (variable): Variable length. A TS_ICON_INFO structure. Specifies the notify icon’s image.
This structure is present only if the WINDOW_ORDER_ICON flag is set in the

FieldsPresentFlags field of TS_NOTIFYICON_ORDER_HEADER.

A Notification Icon Order MUST NOT contain both an Icon field and a CachedIcon field. If

the WINDOW_ORDER_STATE_NEW flag is set, either the Icon field or the CachedIcon field
MUST be present.

CachedIcon (3 bytes): Three bytes. A TS_CACHED_ICON_INFO structure. Specifies the notify
icon as a cached icon on the client.

This structure is present only if the WINDOW_ORDER_CACHEDICON flag is set in the
FieldsPresentFlags field of TS_NOTIFYICON_ORDER_HEADER. Only one of Icon and
CachedIcon fields SHOULD be present in the Notification Icon Order. If the

WINDOW_ORDER_STATE_NEW flag is set, only one of Icon and CachedIcon fields MUST be
present.

2.2.1.3.2.2.2 Deleted Notification Icons

The server generates a Notification Icon Information (section 2.2.1.3.2) order packet whenever an
existing notification icon is deleted on the server.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Hdr

...

...

...

Hdr (15 bytes): Fifteen bytes. A TS_NOTIFYICON_ORDER_HEADER (section 2.2.1.3.2.1)
structure. The FieldsPresentFlags field of the header MUST be constructed using the
following values.

Value Meaning

0x02000000

WINDOW_ORDER_TYPE_NOTIFY

Indicates an order specifying a notification icon. This flag

MUST be set.

0x20000000

WINDOW_ORDER_STATE_DELETED

Indicates that the window is deleted. This flag MUST be set,

and the order MUST NOT contain any other information.

2.2.1.3.2.2.3 Notification Icon Balloon Tooltip (TS_NOTIFY_ICON_INFOTIP)

The TS_NOTIFY_ICON_INFOTIP structure specifies the balloon tooltip of a notification icon.

33 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Timeout

InfoFlags

InfoTipText (variable)

...

Title (variable)

...

Timeout (4 bytes): An unsigned 32-bit integer. The timeout in milliseconds for the notify icon's
balloon tooltip. After the specified timeout, the tooltip SHOULD be destroyed. <9>

InfoFlags (4 bytes): An unsigned 32-bit integer. The flags that can be set to add an icon to a
balloon tooltip. It is placed to the left of the title. If the InfoTipText field length is zero-

length, the icon is not shown.

Value Meaning

NIIF_NONE

0x00000000

Do not show an icon.

NIIF_INFO

0x00000001

Show an informational icon next to the balloon tooltip text.

NIIF_WARNING

0x00000002

Show a warning icon next to the balloon tooltip text.

NIIF_ERROR

0x00000003

Show an error icon next to the balloon tooltip text.

NIIF_NOSOUND

0x00000010

Do not play an associated sound.

NIIF_LARGE_ICON

0x00000020

TShow the large version of the icon.

InfoTipText (variable): Variable length. A UNICODE_STRING specifying the text of the balloon
tooltip. The maximum length of the tooltip text string is 510 bytes.

Title (variable): Variable length. A UNICODE_STRING specifying the title of the balloon tooltip.
The maximum length of the tooltip title string is 126 bytes.

2.2.1.3.3 Desktop Information

Desktop Information Orders specify the state of the desktop on the server.

34 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.1.3.3.1 Common Header (TS_DESKTOP_ORDER_HEADER)

The TS_DESKTOP_ORDER_HEADER packet contains information common to every order specifying
the desktop.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Header OrderSize FieldsPresentFlags

...

Header (1 byte): An unsigned 8-bit integer. An Alternate Secondary Order Header, as specified
in [MS-RDPEGDI] section 2.2.2.2.1.3.1.1. The embedded orderType field MUST be set to
0x0B (TS_ALTSEC_WINDOW).

OrderSize (2 bytes): An unsigned 16-bit integer. The size of the entire packet in bytes.

FieldsPresentFlags (4 bytes): An unsigned 32-bit integer. The flags indicating which fields are
present in the packet. See Actively Monitored Desktop for values and use.

2.2.1.3.3.2 Orders

2.2.1.3.3.2.1 Actively Monitored Desktop

The Actively Monitored Desktop packet contains information about the actively monitored desktop.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Hdr

... ActiveWindowId

(optional)

... NumWindowIds

(optional)

WindowIds (variable)

...

Hdr (7 bytes): Seven bytes. A TS_DESKTOP_ORDER_HEADER header. The
FieldsPresentFlags field of the header MUST be constructed using the following values.

Value Meaning

0x04000000

WINDOW_ORDER_TYPE_DESKTOP

Indicates an order specifying a desktop. This

flag MUST be set.

0x00000002 Indicates that the server will be sending

%5bMS-RDPEGDI%5d.pdf

35 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

WINDOW_ORDER_FIELD_DESKTOP_HOOKED information for the server's current input

desktop.

0x00000008

WINDOW_ORDER_FIELD_DESKTOP_ARC_BEGAN

Indicates that the server is beginning to

synchronize information with the client after

the client has auto-reconnected or the server

has just begun monitoring a new desktop. If

this flag is set, the

WINDOW_ORDER_FIELD_DESKTOP_HOOKED

flag MUST also be set.

0x00000004

WINDOW_ORDER_FIELD_DESKTOP_ARC_COMPLETED

Indicates that the server has finished

synchronizing data after the client has auto-

reconnected or the server has just begun

monitoring a new desktop. The client

SHOULD assume that any window or shell

notify icon not received during the

synchronization is discarded. This flag MUST

only be combined with the

WINDOW_ORDER_TYPE_DESKTOP flag.

0x00000020

WINDOW_ORDER_FIELD_DESKTOP_ACTIVEWND

Indicates that the ActiveWindowId field is

present.

0x00000010

WINDOW_ORDER_FIELD_DESKTOP_ZORDER

Indicates that the NumWindowIds field is

present. If the NumWindowIds field has a

value greater than 0, the WindowIDs field

MUST also be present.

ActiveWindowId (4 bytes): Optional. An unsigned 32-bit integer. The ID of the currently

active window on the server. This field is present if and only if the
WINDOW_ORDER_FIELD_DESKTOP_ACTIVEWND flag is set in the FieldsPresentFlags field
of the TS_DESKTOP_ORDER_HEADER packet (section 2.2.1.3.3.1).

NumWindowIds (1 byte): Optional. An unsigned 8-bit integer. The number of top-level
windows on the server. This field is present if and only if the
WINDOW_ORDER_FIELD_DESKTOP_ZORDER flag is set in the FieldsPresentFlags field of

the TS_DESKTOP_ORDER_HEADER packet (section 2.2.1.3.3.1).

WindowIds (variable): Variable length. An array of 4-byte window IDs, corresponding to the
IDs of the top-level windows on the server, ordered by their Z-order on the server. The
number of window IDs in the array is equal to the value of the NumWindowIds field.

This field is present if and only if the NumWindowIds field is greater than 0 and the
WINDOW_ORDER_FIELD_DESKTOP_ZORDER flag is set in the FieldsPresentFlags field of
the TS_DESKTOP_ORDER_HEADER packet (section 2.2.1.3.3.1).

2.2.1.3.3.2.2 Non-Monitored Desktop

The Non-Monitored Desktop packet is generated by the server when it is not actively monitoring the
current desktop on the server.

%5bMS-GLOS%5d.pdf

36 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Hdr

...

Hdr (7 bytes): Seven bytes. A TS_DESKTOP_ORDER_HEADER header. The
FieldsPresentFlags field of the header MUST be constructed using the following values.

Value Meaning

0x04000000

WINDOW_ORDER_TYPE_DESKTOP

Indicates an order specifying a desktop. This flag

MUST be set.

0x00000001

WINDOW_ORDER_FIELD_DESKTOP_NONE

Indicates that the server will not be sending

information for the server's current input desktop.

This flag MUST be set.

2.2.2 Static Virtual Channel Protocol

The RAIL Static Virtual Channel is responsible for communicating non–RDP specific data between the
RAIL client and server. The following sections outline the messages that are transmitted over the
virtual channel.

2.2.2.1 Common Header (TS_RAIL_PDU_HEADER)

The TS_RAIL_PDU_HEADER packet contains information common to every RAIL Virtual Channel

PDU.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

orderType orderLength

orderType (2 bytes): An unsigned 16-bit integer. The type of the Virtual Channel message.
MUST be one of the following values.

Value Meaning

TS_RAIL_ORDER_EXEC

0x0001

Indicates a Client Execute PDU from client to server.

TS_RAIL_ORDER_ACTIVATE

0x0002

Indicates a Client Activate PDU from client to server.

TS_RAIL_ORDER_SYSPARAM

0x0003

Indicates a Client System Parameters Update PDU from

client to server or a Server System Parameters Update PDU

from server to client.

TS_RAIL_ORDER_SYSCOMMAND

0x0004

Indicates a Client System Command PDU from client to

server.

37 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

TS_RAIL_ORDER_HANDSHAKE

0x0005

Indicates a bi-directional Handshake PDU.

TS_RAIL_ORDER_NOTIFY_EVENT

0x0006

Indicates a Client Notify Event PDU from client to server.

TS_RAIL_ORDER_WINDOWMOVE

0x0008

Indicates a Client Window Move PDU from client to server.

TS_RAIL_ORDER_LOCALMOVESIZE

0x0009

Indicates a Server Move/Size Start PDU and a Server

Move/Size End PDU from server to client.

TS_RAIL_ORDER_MINMAXINFO

0x000a

Indicates a Server Min Max Info PDU from server to client.

TS_RAIL_ORDER_CLIENTSTATUS

0x000b

Indicates a Client Information PDU from client to server.

TS_RAIL_ORDER_SYSMENU

0x000c

Indicates a Client System Menu PDU from client to server.

TS_RAIL_ORDER_LANGBARINFO

0x000d

Indicates a Server Language Bar Information PDU from

server to client, or a Client Language Bar Information PDU

from client to server.

TS_RAIL_ORDER_EXEC_RESULT

0x0080

Indicates a Server Execute Result PDU from server to client.

TS_RAIL_ORDER_GET_APPID_REQ

0x000E

Indicates a Client Get Application ID PDU from client to

server.

TS_RAIL_ORDER_GET_APPID_RESP

0x000F

Indicates a Server Get Application ID Response PDU from

server to client.

orderLength (2 bytes): An unsigned 16-bit integer. The length of the Virtual Channel PDU, in
bytes.

2.2.2.2 Initialization Messages

Initialization messages are exchanged between client and server at the start of a RAIL session.

2.2.2.2.1 Handshake PDU (TS_RAIL_ORDER_HANDSHAKE)

The Handshake PDU is exchanged between the server and the client to establish that both endpoints
are ready to begin RAIL mode. The server sends the Handshake PDU and the client responds with

the Handshake PDU.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

buildNumber

38 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

header (4 bytes): A TS_RAIL_PDU_HEADER structure. The orderType field of the header
MUST be set to 0x0005 (TS_RAIL_ORDER_HANDSHAKE).

buildNumber (4 bytes): An unsigned 32-bit integer. The build or version of the sending party.

2.2.2.2.2 Client Information PDU (TS_RAIL_ORDER_CLIENTSTATUS)

The Client Information PDU is sent from client to server and contains information about RAIL client
state and features supported by the client.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

Flags

header (4 bytes): A TS_RAIL_PDU_HEADER structure. The orderType field of header MUST
be set to 0x000b (TS_RAIL_ORDER_CLIENTSTATUS).

Flags (4 bytes): An unsigned 32-bit integer. RAIL features that are supported by the client.
MUST be set to one of the following.

Value Meaning

TS_RAIL_CLIENTSTATUS_ALLOWLOCALMOVESIZE

0x00000001

Indicates that the client supports the local

move/size RAIL feature.

TS_RAIL_CLIENTSTATUS_AUTORECONNECT

0x00000002

Indicates that the client is auto-reconnecting

to the server after an unexpected disconnect

of the session.

2.2.2.3 Program Launching Messages

2.2.2.3.1 Client Execute PDU (TS_RAIL_ORDER_EXEC)

The Client Execute PDU is sent from a client to a server to request that a remote application launch
on the server.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

Flags ExeOrFileLength

WorkingDirLength ArgumentsLen

ExeOrFile (variable)

...

39 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

WorkingDir (variable)

...

Arguments (variable)

...

header (4 bytes): A TS_RAIL_PDU_HEADER structure. The orderType field of the header
MUST be set to 0x0001 (TS_RAIL_ORDER_EXEC).

Flags (2 bytes): An unsigned 16-bit integer. Specifies a bitfield of flags that indicate

modifications to the Client Execute PDU fields.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

A B C D 0 0 0 0 0 0 0 0 0 0 0 0

Where the bits are defined as:

Value Description

A

TS_RAIL_EXEC_FLAG_EXPAND_WORKINGDIRECTORY

The environment variables in the

WorkingDir field MUST be expanded on the

server.

B

TS_RAIL_EXEC_FLAG_TRANSLATE_FILES

The drive letters in the file path MUST be

converted to corresponding mapped drives

on the server. This flag MUST NOT be set

if the TS_RAIL_EXEC_FLAG_FILE (0x0004)

flag is not set.

C

TS_RAIL_EXEC_FLAG_FILE

If this flag is set, the ExeOrFile field

refers to a file path. If it is not set, the

ExeOrFile field refers to an executable.

D

TS_RAIL_EXEC_FLAG_EXPAND_ARGUMENTS

The environment variables in the

Arguments field MUST be expanded on

the server.

ExeOrFileLength (2 bytes): An unsigned 16-bit integer. Specifies the length of the ExeOrFile
field in bytes. The length MUST be nonzero. The maximum length is 520 bytes.

WorkingDirLength (2 bytes): An unsigned 16-bit integer. Specifies the length of the
WorkingDir field in bytes. The minimum length is 0, and the maximum length is 520 bytes.

ArgumentsLen (2 bytes): An unsigned 16-bit integer. Specifies the length of the Arguments
field in bytes. The minimum length is 0, and the maximum length is 16000 bytes. <10>

ExeOrFile (variable): UNICODE_STRING. Variable length. Specifies the executable or file path
to be launched on the server, as a non-null-terminated UNICODE_STRING. This field MUST be

40 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

present. The maximum length of this field, including file path translations (see
TS_RAIL_EXEC_FLAG_TRANSLATE_FILES mask of Flags field) is 520 bytes.

WorkingDir (variable): Optional UNICODE_STRING. Variable length. Specifies the working
directory of the launched ExeOrFile field, as a non-null-terminated UNICODE_STRING. If the

WorkingDirLength field is 0, this field MUST NOT be present; otherwise, it MUST be present.
The maximum length of this field, including expanded environment variables (see
TS_RAIL_EXEC_FLAG_EXPAND_WORKINGDIRECTORY mask of Flags field) is 520 bytes.

Arguments (variable): Optional UNICODE_STRING. Variable length. Specifies the arguments
to the ExeOrFile field, as a non-null-terminated UNICODE_STRING. If the ArgumentsLength
field is 0, this field MUST NOT be present; otherwise, it MUST be present. The maximum
length of this field, including expanded environment variables (see

TS_RAIL_EXEC_FLAG_EXPAND_ARGUMENTS mask of Flags field) is 16000 bytes.

2.2.2.3.2 Server Execute Result PDU (TS_RAIL_ORDER_EXEC_RESULT)

The Server Execute Result PDU is sent from server to client in response to a Client Execute PDU

request, and contains the result of the server's attempt to launch the requested executable.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

Flags ExecResult

RawResult

Padding ExeOrFileLength

ExeOrFile (variable)

...

header (4 bytes): A TS_RAIL_PDU_HEADER structure. The orderType field of the header

MUST be set to TS_RAIL_ORDER_EXEC_RESULT (0x0080).

Flags (2 bytes): An unsigned 16-bit integer. Identical to the Flags field of the Client Execute
PDU. The server sets this field to enable the client to match the Client Execute PDU with the
Server Execute Result PDU.

ExecResult (2 bytes): An unsigned 16-bit integer. The result of the Client Execute PDU. This
field MUST be set to one of the following values.

Value Meaning

RAIL_EXEC_S_OK

0x0000

The Client Execute request was successful and the requested

application or file has been launched.

RAIL_EXEC_E_HOOK_NOT_LOADED

0x0001

The Client Execute request could not be satisfied because

the server is not monitoring the current input desktop.

41 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

RAIL_EXEC_E_DECODE_FAILED

0x0002

The Execute request could not be satisfied because the

request PDU was malformed.

RAIL_EXEC_E_NOT_IN_ALLOWLIST

0x0003

The Client Execute request could not be satisfied because

the requested application was blocked by policy from being

launched on the server.

RAIL_EXEC_E_FILE_NOT_FOUND

0x0005

The Client Execute request could not be satisfied because

the application or file path could not be found.

RAIL_EXEC_E_FAIL

0x0006

The Client Execute request could not be satisfied because an

unspecified error occurred on the server.

RAIL_EXEC_E_SESSION_LOCKED

0x0007

The Client Execute request could not be satisfied because

the remote session is locked.

RawResult (4 bytes): An unsigned 32-bit integer. Contains an operating system-specific return
code for the result of the Client Execute request.<11>

Padding (2 bytes): An unsigned 16-bit integer. Not used.

ExeOrFileLength (2 bytes): An unsigned 16-bit integer. Specifies the length of the ExeOrFile
field in bytes. The length MUST be nonzero. The maximum length is 520 bytes.

ExeOrFile (variable): The executable or file that was attempted to be launched. This field is
copied from the ExeOrFile field of the Client Execute PDU. The server sets this field to enable
the client to match the Client Execute PDU with the Server Execute Result PDU.

2.2.2.4 Local Client System Parameters Update Messages

2.2.2.4.1 Client System Parameters Update PDU (TS_RAIL_ORDER_SYSPARAM)

The Client System Parameters Update PDU is sent from the client to the server to synchronize
system parameters on the server with those on the client.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header

SystemParam

Body (variable)

...

header (4 bytes): A TS_RAIL_PDU_HEADER structure. The orderType field of header MUST be

set to TS_RAIL_ORDER_SYSPARAM(0x0003).

SystemParam (4 bytes): An unsigned 32-bit integer. The type of system parameter being
transmitted. The field MUST be set to one of the following values.

42 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

SPI_SETDRAGFULLWINDOWS

0x00000025

The system parameter for full-window drag.

SPI_SETKEYBOARDCUES

0x0000100B

The system parameter to determine whether menu access keys

are always underlined.

SPI_SETKEYBOARDPREF

0x00000045

The system parameter specifying a preference for the keyboard

instead of the mouse.

SPI_SETWORKAREA

0x0000002F

The system parameter to set the size of the work area. The work

area is the portion of the screen not obscured by the system

taskbar or by application desktop toolbars.

RAIL_SPI_DISPLAYCHANGE

0x0000F001

The system parameter for display resolution.

SPI_SETMOUSEBUTTONSWAP

0x00000021

The system parameter to swap or restore the meaning of the left

and right mouse buttons.

RAIL_SPI_TASKBARPOS

0x0000F000

The system parameter to indicate the size of the client taskbar.

SPI_SETHIGHCONTRAST

0x00000043

The system parameter to set the parameters of the HighContrast

accessibility feature.

Body (variable): The contents of this field depend on the SystemParameter field. The
following table outlines the valid values of the SystemParameter field (Value column) and
corresponding values of the Body field (Meaning column).

Value Meaning

SPI_SETDRAGFULLWINDOWS

0x0025

Size of Body field: 1 byte.

0 (FALSE): Full Window Drag is disabled. Nonzero (TRUE): Full

Window Drag is enabled.

SPI_SETKEYBOARDCUES

0x100B

Size of Body field: 1 byte.

0 (FALSE): Menu Access Keys are underlined only when the menu

is activated by the keyboard. Nonzero (TRUE): Menu Access Keys

are always underlined.

SPI_SETKEYBOARDPREF

0x0045

Size of Body field: 1 byte.

0 (FALSE): The user does not prefer the keyboard over mouse.

Nonzero (TRUE): The user prefers the keyboard over mouse. This

causes applications to display keyboard interfaces that would

otherwise be hidden.

SPI_SETMOUSEBUTTONSWAP

0x0021

Size of Body field: 1 byte.

0 (FALSE): Restores the meaning of the left and right mouse

buttons to their original meanings. Nonzero (TRUE): Swaps the

meaning of the left and right mouse buttons.

SPI_SETWORKAREA

0x002F

Size of Body field: 8 bytes.

The body is a TS_RECTANGLE_16 structure that defines the work

area in virtual screen coordinates. In a system with multiple

%5bMS-GLOS%5d.pdf

43 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

display monitors, the work area is that of the monitor that

contains the specified rectangle. For more information about

virtual screen coordinates, see [MSDN-VIRTUALSCR].

RAIL_SPI_DISPLAYCHANGE

0xF001

Size of Body field: 8 bytes.

The body is a TS_RECTANGLE_16 structure that indicates the new

display resolution in virtual screen coordinates. For more

information about virtual screen coordinates, see [MSDN-

VIRTUALSCR].

RAIL_SPI_TASKBARPOS

0xF000

Size of Body field: 8 bytes.

The body is a TS_RECTANGLE_16 structure that indicates the size

of the client taskbar.

SPI_SETHIGHCONTRAST

0x0043

Size of Body field: Variable number of bytes.

The body is a TS_HIGHCONTRAST structure.

2.2.2.4.2 High Contrast System Information Structure (TS_HIGHCONTRAST)

The TS_HIGHCONTRAST packet defines parameters for the high-contrast accessibility feature.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Flags

ColorSchemeLength

ColorScheme (variable)

...

Flags (4 bytes): An unsigned 32-bit integer. This field is opaque to RAIL. It is transmitted from
the client to the server and used by the server to set the High Contrast parameters.<12>

ColorSchemeLength (4 bytes): An unsigned 32-bit integer. The length, in bytes, of the
ColorScheme field.

ColorScheme (variable): UNICODE_STRING. Variable length. The Windows-specific name of
the High Contrast Color Scheme, specified as a null-terminated UNICODE_STRING.<13>

2.2.2.5 Server System Parameters Update Messages

2.2.2.5.1 Server System Parameters Update PDU (TS_RAIL_ORDER_SYSPARAM)

The Server System Parameters Update PDU is sent from the server to client to synchronize system

parameters on the client with those on the server.

http://go.microsoft.com/fwlink/?LinkId=191444
http://go.microsoft.com/fwlink/?LinkId=191444
http://go.microsoft.com/fwlink/?LinkId=191444

44 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Header

SystemParameter

Body

Header (4 bytes): A TS_RAIL_PDU_HEADER structure. The orderType field of header MUST
be set to 0x03 (TS_RAIL_ORDER_SYSPARAM).

SystemParameter (4 bytes): An unsigned 32-bit integer. The type of system parameter being
transmitted. This field MUST be set to one of the following values.

Value Meaning

SPI_SETSCREENSAVEACTIVE

0x00000011

The system parameter indicating whether the screen saver is

enabled.

SPI_SETSCREENSAVESECURE

0x00000077

The system parameter indicating whether the desktop should be

locked after switching out of screen saver mode (that is, after the

screen saver starts due to inactivity, then stops due to

activity).<14>

Body (1 byte): The content of this field depends on the SystemParameter field. The following
table outlines the valid values of the SystemParameter field (Value column) and corresponding

values of the Body field (Meaning column).

Value Meaning

SPI_SETSCREENSAVEACTIVE

0x00000011

Size of Body field: 1 byte.

0 (FALSE): Screen saver is not enabled. Nonzero (TRUE): Screen

Saver is enabled.

SPI_SETSCREENSAVESECURE

0x00000077

Size of Body field: 1 byte.

0 (FALSE): Do not lock the desktop when switching out of screen

saver mode. Nonzero (TRUE): Lock the desktop when switching

out of screen saver mode.

2.2.2.6 Local Client Event Messages

These messages are generated by the client whenever a window or notification icon event occurs on

the client side that is not communicated via the RDP channel.

2.2.2.6.1 Client Activate PDU (TS_RAIL_ORDER_ACTIVATE)

The Client Activate PDU is sent from client to server when a local RAIL window on the client is
activated or deactivated.

45 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Hdr

WindowId

Enabled

Hdr (4 bytes): A TS_RAIL_PDU_HEADER structure. The orderType field of the header MUST
be set to TS_RAIL_ORDER_ACTIVATE (0x0002).

WindowId (4 bytes): An unsigned 32-bit integer. The ID of the associated window on the
server that should be activated or deactivated.

Enabled (1 byte): An unsigned 8-bit integer. Indicates whether the window should be activated

(value = nonzero) or deactivated (value = 0).

2.2.2.6.2 Client System Menu PDU (TS_RAIL_ORDER_SYSMENU)

The Client System Menu PDU packet is sent from the client to the server when a local RAIL window
on the client receives a command to display its System menu. This command is forwarded to the
server via the System menu PDU.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Hdr

WindowId

Left Top

Hdr (4 bytes): A TS_RAIL_PDU_HEADER header. The orderType field of the header MUST be
set to TS_RAIL_ORDER_SYSMENU (0x000C).

WindowId (4 bytes): An unsigned 32-bit integer. The ID of the window on the server that
SHOULD display its System menu.

Left (2 bytes): An unsigned 16-bit integer. The x-coordinate of the top-left corner at which the
System menu should be displayed. Specified in screen coordinates.

Top (2 bytes): An unsigned 16-bit integer. The y-coordinate of the top-left corner at which the
System menu should be displayed. Specified in screen coordinates.

2.2.2.6.3 Client System Command PDU (TS_RAIL_ORDER_SYSCOMMAND)

The Client System Command PDU packet is sent from the client to the server when a local RAIL
window on the client receives a command to perform an action on the window, such as minimize or
maximize. This command is forwarded to the server via the System Command Menu PDU.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

46 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Hdr

WindowId

Command

Hdr (4 bytes): A TS_RAIL_PDU_HEADER header. The orderType field of the header MUST be
set to TS_RAIL_ORDER_SYSCOMMAND (0x0004).

WindowId (4 bytes): An unsigned 32-bit integer. The ID of the window on the server to
activate or deactivate.

Command (2 bytes): An unsigned 16-bit integer. Specifies the type of command. The field

MUST be one of the following values.

Value Meaning

SC_SIZE

0xF000

Resize the window.

SC_MOVE

0xF010

Move the window.

SC_MINIMIZE

0xF020

Minimize the window.

SC_MAXIMIZE

0xF030

Maximize the window.

SC_CLOSE

0xF060

Close the window.

SC_KEYMENU

0xF100

The ALT + SPACE key combination was pressed; display the window's system

menu.

SC_RESTORE

0xF120

Restore the window to its original shape and size.

SC_DEFAULT

0xF160

Perform the default action of the window's system menu.

2.2.2.6.4 Client Notify Event PDU (TS_RAIL_ORDER_NOTIFY_EVENT)

The Client Notify Event PDU packet is sent from a client to a server when a local RAIL Notification
Icon on the client receives a keyboard or mouse message from the user. This notification is

forwarded to the server via the Notify Event PDU.

47 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Hdr

WindowId

NotifyIconId

Message

Hdr (4 bytes): A TS_RAIL_PDU_HEADER header. The orderType field of the header MUST be
set to TS_RAIL_ORDER_NOTIFY_EVENT (0x0006).

WindowId (4 bytes): An unsigned 32-bit integer. The ID of the associated window on the
server that owns the notification icon being specified in the PDU.

NotifyIconId (4 bytes): An unsigned 32-bit integer. The ID of the associated notification icon
on the server that SHOULD receive the keyboard or mouse interaction.

Message (4 bytes): An unsigned 32-bit integer. The message being sent to the notification
icon on the server.

Value Meaning

WM_LBUTTONDOWN

0x00000201

The user pressed the left mouse button in the client area of the

notification icon.

WM_LBUTTONUP

0x00000202

The user released the left mouse button while the cursor was in the

client area of the notification icon.

WM_RBUTTONDOWN

0x00000204

The user pressed the right mouse button in the client area of the

notification icon.

WM_RBUTTONUP

0x00000205

The user released the right mouse button while the cursor was in the

client area of the notification icon.

WM_CONTEXTMENU

0x0000007B

The user selected a notify icon's shortcut menu with the keyboard.

This message is sent only for notification icons that follow

Windows 2000 behavior (see Version field in section 2.2.1.3.2.2.1).

WM_LBUTTONDBLCLK

0x00000203

The user double-clicked the left mouse button in the client area of the

notification icon.

WM_RBUTTONDBLCLK

0x00000206

The user double-clicked the right mouse button in the client area of

the notification icon.

NIN_SELECT

0x00000400

The user selected a notify icon with the mouse and activated it with

the ENTER key. This message is sent only for notification icons that

follow Windows 2000 behavior (see Version field in section

2.2.1.3.2.2.1).

NIN_KEYSELECT

0x00000401

The user selected a notify icon with the keyboard and activated it with

the SPACEBAR or ENTER key. This message is sent only for notification

icons that follow Windows 2000 behavior (see Version field in section

48 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

2.2.1.3.2.2.1).

NIN_BALLOONSHOW

0x00000402

The user passed the mouse pointer over an icon with which a balloon

tooltip is associated (see InfoTip field in section 2.2.1.3.2.2.1), and

the balloon tooltip was shown. This message is sent only for

notification icons that follow Windows 2000 behavior (see Version

field in section 2.2.1.3.2.2.1).

NIN_BALLOONHIDE

0x00000403

The icon's balloon tooltip disappeared because, for example, the icon

was deleted. This message is not sent if the balloon is dismissed

because of a timeout or mouse click by the user. This message is sent

only for notification icons that follow Windows 2000 behavior (see

Version field in section 2.2.1.3.2.2.1).

NIN_BALLOONTIMEOUT

0x00000404

The icon's balloon tooltip was dismissed because of a timeout. This

message is sent only for notification icons that follow Windows 2000

behavior (see Version field in section 2.2.1.3.2.2.1).

NIN_BALLOONUSERCLICK

0x00000405

User dismissed the balloon by clicking the mouse. This message is

sent only for notification icons that follow Windows 2000 behavior (see

Version field in section 2.2.1.3.2.2.1).

2.2.2.6.5 Client Get Application ID PDU (TS_RAIL_ORDER_GET_APPID_REQ)

The Client Get Application ID PDU is sent from a client to a server. This PDU requests information
from the server about the Application ID that the window SHOULD <15> have on the client.

The server MAY ignore this PDU.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Hdr

WindowId

Hdr (4 bytes): A TS_RAIL_PDU_HEADER header. The orderType field of the header MUST be
set to TS_RAIL_ORDER_GET_APPID_REQ (0x000E).

WindowId (4 bytes): An unsigned 32-bit integer specifying the ID of the associated window on

the server that requires needs an Application ID.

2.2.2.7 Window Move Messages

2.2.2.7.1 Server Min Max Info PDU (TS_RAIL_ORDER_MINMAXINFO)

The Server Min Max Info PDU is sent from a server to a client when a window move or resize on the
server is being initiated. This PDU contains information about the minimum and maximum extents

to which the window can be moved or sized.

49 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Hdr

WindowId

MaxWidth MaxHeight

MaxPosX MaxPosY

MinTrackWidth MinTrackHeight

MaxTrackWidth MaxTrackHeight

Hdr (4 bytes): A TS_RAIL_PDU_HEADER header. The orderType field of the header MUST be
set to TS_RAIL_ORDER_MINMAXINFO (0x000A).

WindowId (4 bytes): An unsigned 32-bit integer. The ID of the window on the server that is
being moved or resized.

MaxWidth (2 bytes): An unsigned 16-bit integer. The width of the maximized window.

MaxHeight (2 bytes): An unsigned 16-bit integer. The height of the maximized window.

MaxPosX (2 bytes): An unsigned 16-bit integer. The x-coordinate of the top-left corner of the
maximized window.

MaxPosY (2 bytes): An unsigned 16-bit integer. The y-coordinate of the top-left corner of the
maximized window.

MinTrackWidth (2 bytes): An unsigned 16-bit integer. The minimum width to which the

window can be resized.

MinTrackHeight (2 bytes): An unsigned 16-bit integer. The minimum height to which the
window can be resized.

MaxTrackWidth (2 bytes): An unsigned 16-bit integer. The maximum width to which the
window can be resized.

MaxTrackHeight (2 bytes): An unsigned 16-bit integer. The maximum height to which the

window can be resized.

2.2.2.7.2 Server Move/Size Start PDU (TS_RAIL_ORDER_LOCALMOVESIZE)

The Server Move/Size Start PDU packet is sent by the server when a window on the server is
beginning a move or resize. The client uses this information to initiate a local move or resize of the

corresponding local window.

50 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Hdr

WindowId

IsMoveSizeStart MoveSizeType

PosX PosY

Hdr (4 bytes): A TS_RAIL_PDU_HEADER header. The orderType field of the header MUST be
set to TS_RAIL_ORDER_LOCALMOVESIZE (0x0009).

WindowId (4 bytes): An unsigned 32-bit integer. The ID of the window on the server that is
being moved or resized.

IsMoveSizeStart (2 bytes): An unsigned 16-bit integer. Indicates that the move/size is
beginning. MUST be set to a nonzero value.

MoveSizeType (2 bytes): An unsigned 16-bit integer. Indicates the type of the move/size. This
value determines the meaning of the fields PosX and PosY.

Value Meaning

RAIL_WMSZ_LEFT

0x0001

The left edge of the window is being sized.

RAIL_WMSZ_RIGHT

0x0002

The right edge of the window is being sized.

RAIL_WMSZ_TOP

0x0003

The top edge of the window is being sized.

RAIL_WMSZ_TOPLEFT

0x0004

The top-left corner of the window is being sized.

RAIL_WMSZ_TOPRIGHT

0x0005

The top-right corner of the window is being sized.

RAIL_WMSZ_BOTTOM

0x0006

The bottom edge of the window is being sized.

RAIL_WMSZ_BOTTOMLEFT

0x0007

The bottom-left corner of the window is being sized.

RAIL_WMSZ_BOTTOMRIGHT

0x0008

The bottom-right corner of the window is being sized.

RAIL_WMSZ_MOVE

0x0009

The window is being moved by using the mouse.

RAIL_WMSZ_KEYMOVE

0x000A

The window is being moved by using the keyboard.

51 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

RAIL_WMSZ_KEYSIZE

0x000B

The window is being resized by using the keyboard.

PosX (2 bytes): An unsigned 16-bit integer. The meaning of this field depends upon the value
of the MoveSizeType field.

Value Meaning

RAIL_WMSZ_LEFT

0x0001

The x-coordinate of the last mouse button-down.

RAIL_WMSZ_RIGHT

0x0002

The x-coordinate of the last mouse button-down.

RAIL_WMSZ_TOP

0x0003

The x-coordinate of the last mouse button-down.

RAIL_WMSZ_TOPLEFT

0x0004

The x-coordinate of the last mouse button-down.

RAIL_WMSZ_TOPRIGHT

0x0005

The x-coordinate of the last mouse button-down.

RAIL_WMSZ_BOTTOM

0x0006

The x-coordinate of the last mouse button-down.

RAIL_WMSZ_BOTTOMLEFT

0x0007

The x-coordinate of the last mouse button-down.

RAIL_WMSZ_BOTTOMRIGHT

0x0008

The x-coordinate of the last mouse button-down.

RAIL_WMSZ_MOVE

0x0009

The horizontal offset between the window’s top-left edge and the

current mouse position.

RAIL_WMSZ_KEYMOVE

0x000A

The x-coordinate of the last mouse button-down.

RAIL_WMSZ_KEYSIZE

0x000B

The x-coordinate of the last mouse button-down.

PosY (2 bytes): An unsigned 16-bit integer. The meaning of this field depends on the value of
the MoveSizeType field.

Value Meaning

RAIL_WMSZ_LEFT

0x0001

The y-coordinate of the last mouse button-down.

RAIL_WMSZ_RIGHT

0x0002

The y-coordinate of the last mouse button-down.

RAIL_WMSZ_TOP

0x0003

The y-coordinate of the last mouse button-down.

52 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

RAIL_WMSZ_TOPLEFT

0x0004

The y-coordinate of the last mouse button-down.

RAIL_WMSZ_TOPRIGHT

0x0005

The y-coordinate of the last mouse button-down.

RAIL_WMSZ_BOTTOM

0x0006

The y-coordinate of the last mouse button-down.

RAIL_WMSZ_BOTTOMLEFT

0x0007

The y-coordinate of the last mouse button-down.

RAIL_WMSZ_BOTTOMRIGHT

0x0008

The y-coordinate of the last mouse button-down.

RAIL_WMSZ_MOVE

0x0009

The vertical offset between the window's top-left edge and the

current mouse position.

RAIL_WMSZ_KEYMOVE

0x000A

The y-coordinate of the last mouse button-down.

RAIL_WMSZ_KEYSIZE

0x000B

The y-coordinate of the last mouse button-down.

2.2.2.7.3 Server Move/Size End PDU (TS_RAIL_ORDER_LOCALMOVESIZE)

The Server Move/Size End PDU is sent by the server when a window on the server is completing a
move or resize. The client uses this information to end a local move/resize of the corresponding
local window.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Hdr

WindowId

IsMoveSizeStart MoveSizeType

TopLeftX TopLeftY

Hdr (4 bytes): A TS_RAIL_PDU_HEADER header. The orderType field of the header MUST be
set to TS_RAIL_ORDER_LOCALMOVESIZE (0x0009).

WindowId (4 bytes): An unsigned 32-bit integer. The ID of the window on the server that is
being moved or resized.

IsMoveSizeStart (2 bytes): An unsigned 16-bit integer. Indicates the move or resize is
ending. This field MUST be set to 0.

MoveSizeType (2 bytes): An unsigned 16-bit integer. Indicates the type of the move/size.

53 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

RAIL_WMSZ_LEFT

0x0001

The left edge of the window is being sized.

RAIL_WMSZ_RIGHT

0x0002

The right edge of the window is being sized.

RAIL_WMSZ_TOP

0x0003

The top edge of the window is being sized.

RAIL_WMSZ_TOPLEFT

0x0004

The top-left corner of the window is being sized.

RAIL_WMSZ_TOPRIGHT

0x0005

The top-right corner of the window is being sized.

RAIL_WMSZ_BOTTOM

0x0006

The bottom edge of the window is being sized.

RAIL_WMSZ_BOTTOMLEFT

0x0007

The bottom-left corner of the window is being sized.

RAIL_WMSZ_BOTTOMRIGHT

0x0008

The bottom-right corner of the window is being sized.

RAIL_WMSZ_MOVE

0x0009

The window is being moved by using the mouse.

RAIL_WMSZ_KEYMOVE

0x000A

The window is being moved by using the keyboard.

RAIL_WMSZ_KEYSIZE

0x000B

The window is being resized by using the keyboard.

TopLeftX (2 bytes): An unsigned 16-bit integer. The x-coordinate of the moved or resized
window's top-left corner.

TopLeftY (2 bytes): An unsigned 16-bit integer. The y-coordinate of the moved or resized
window's top-left corner.

2.2.2.7.4 Client Window Move PDU (TS_RAIL_ORDER_WINDOWMOVE)

The Client Window Move PDU packet is sent from the client to the server when a local window is
ending a move or resize. The client communicates the locally moved or resized window's position to
the server by using this packet. The server uses this information to reposition its window.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Hdr

WindowId

Left Top

54 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Right Bottom

Hdr (4 bytes): A TS_RAIL_PDU_HEADER header. The orderType field of the header MUST be
set to TS_RAIL_ORDER_WINDOWMOVE (0x0008).

WindowId (4 bytes): An unsigned 32-bit integer. The ID of the window on the server
corresponding to the local window that was moved or resized.

Left (2 bytes): An unsigned 16-bit integer. The x-coordinate of the top-left corner of the
window's new position.

Top (2 bytes): An unsigned 16-bit integer. The y-coordinate of the top-left corner of the
window's new position.

Right (2 bytes): An unsigned 16-bit integer. The x-coordinate of the bottom-right corner of the
window's new position.

Bottom (2 bytes): An unsigned 16-bit integer. The y-coordinate of the bottom-right corner of
the window's new position.

2.2.2.8 Server Application ID Response

2.2.2.8.1 Server Get Application ID Response PDU

(TS_RAIL_ORDER_GET_APPID_RESP)

The Server Get Application ID Response PDU is sent from a server to a client. This PDU MAY be sent
to the client as a response to a Client Get Application ID PDU.

This PDU specifies the Application ID that the specified window SHOULD <16> have on the client.
The client MAY ignore this PDU.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Hdr

WindowId

ApplicationId

...

...

...

...

...

55 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

...

...

(ApplicationId cont'd for 56 rows)

Hdr (4 bytes): A TS_RAIL_PDU_HEADER header. The orderType field of the header MUST be
set to TS_RAIL_ORDER_GET_APPID_RESP (0x000F).

WindowId (4 bytes): An unsigned 32-bit integer specifying the ID of the associated window on
the server whose Application ID is being sent to the client.

ApplicationId (256 bytes): A null-terminated string of Unicode characters specifying the
Application ID that the Client SHOULD associate with its window, if it supports using the

Application ID for identifying and grouping windows.

2.2.2.9 Language Bar Messages

2.2.2.9.1 Language Bar Information PDU (TS_RAIL_ORDER_LANGBARINFO)

The Language Bar Information PDU is used to set the language bar status. It is sent from a client to
a server or a server to a client, but only when both support the Language Bar docking capability

(TS_RAIL_LEVEL_DOCKED_LANGBAR_SUPPORTED). This PDU contains information about the
language bar status.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Hdr

LanguageBarStatus

Hdr (4 bytes): A TS_RAIL_PDU_HEADER (section 2.2.2.1) header. The orderType field of the
header MUST be set to TS_RAIL_ORDER_LANGBARINFO (0x000D).

LanguageBarStatus (4 bytes): An unsigned 32-bit integer. The possible values are indicated
in the table below. The server sends the LanguageBarStatus it retrieves from the local
language bar:

Value Meaning

TF_SFT_SHOWNORMAL

0x00000001

Display the language bar as a floating window. This

constant cannot be combined with the TF_SFT_DOCK,

TF_SFT_MINIMIZED, TF_SFT_HIDDEN, or

TF_SFT_DESKBAND constants.

TF_SFT_DOCK

0x00000002

Dock the language bar in its own task pane. This

constant cannot be combined with the

TF_SFT_SHOWNORMAL, TF_SFT_MINIMIZED,

TF_SFT_HIDDEN, or TF_SFT_DESKBAND constants.

<17>

%5bMS-GLOS%5d.pdf

56 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

TF_SFT_MINIMIZED

0x00000004

Display the language bar as a single icon in the system

tray. This constant cannot be combined with the

TF_SFT_SHOWNORMAL, TF_SFT_DOCK,

TF_SFT_HIDDEN, or TF_SFT_DESKBAND constants.

TF_SFT_HIDDEN

0x00000008

Hide the language bar. This constant cannot be combined

with the TF_SFT_SHOWNORMAL, TF_SFT_DOCK,

TF_SFT_MINIMIZED, or TF_SFT_DESKBAND constants.

TF_SFT_NOTRANSPARENCY

0x00000010

Make the language bar opaque.

TF_SFT_LOWTRANSPARENCY

0x00000020

Make the language bar partially transparent. <18>

TF_SFT_HIGHTRANSPARENCY

0x00000040

Make the language bar highly transparent. <19>

TF_SFT_LABELS

0x00000080

Display text labels next to language bar icons.

TF_SFT_NOLABELS

0x00000100

Hide language bar icon text labels.

TF_SFT_EXTRAICONSONMINIMIZED

0x00000200

Display text service icons on the taskbar when the

language bar is minimized.

TF_SFT_NOEXTRAICONSONMINIMIZED

0x00000400

Hide text service icons on the taskbar when the language

bar is minimized.

TF_SFT_DESKBAND

0x00000800

Dock the language bar in the system task bar. This

constant cannot be combined with the

TF_SFT_SHOWNORMAL, TF_SFT_DOCK,

TF_SFT_MINIMIZED, or TF_SFT_HIDDEN constants.

<20>

57 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3 Protocol Details

3.1 Common Details

3.1.1 Abstract Data Model

3.1.1.1 Icon Cache Support

If the implementation supports icon caching, then the following state is negotiated between the

client and server as part of the Window List Capability Set order (section 2.2.1.1.2), and thereafter
maintained on both client and server.

NumIconCaches: the number of discrete caches for icons maintained on client and server.

NumIconCacheEntries: the number of entries allocated in each icon cache.

Once an icon cache capability is established, individual entries in the cache are identified by a
Cached Icon Info packet (section 2.2.1.2.4), containing a pair of index values designating the
specific icon cache and the entry within that cache.

3.1.2 Timers

A handshake timer MAY<21> be used by the client and/or server to wait for the Handshake PDU
from the sending party.

3.1.3 Initialization

The static virtual channel between the client and the server MUST be established before protocol

operations can commence (see section 1.3.2.1 for an overview).

The Handshake PDU (as specified in section 2.2.2.2.1) is exchanged between the server and the
client to establish that both endpoints are ready to begin RAIL mode.

The Client Information PDU (as specified in section 2.2.2.2.2) is sent from a client to a server and
contains information about RAIL client state and features supported by the client.

3.1.4 Higher-Layer Triggered Events

No higher-layer triggered events are used.

3.1.5 Message Processing Events and Sequencing Rules

The following sections describe construction and processing of common messages.

3.1.5.1 Constructing Handshake PDU

The Handshake PDU is constructed during initialization of the remote applications integrated locally

(RAIL) virtual channel. The buildNumber field SHOULD be initialized to the build or version of the
sending party. This PDU MUST be sent before any other PDU on the virtual channel.

58 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.5.2 Processing Handshake PDU

The receiving party SHOULD check the buildNumber field to verify compatibility of the receiver
with the sender.<22>

The receiving party MUST NOT process any other virtual channel PDUs unless the Handshake PDU
has been received.

3.1.6 Timer Events

Upon the expiration of the handshake timer (as specified in section 3.1.2), the receiving party
SHOULD drop the connection.

3.1.7 Other Local Events

No additional events are used.

3.2 Client Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with what is described in this
document.

Note: It is possible to implement the following conceptual data by using a variety of techniques as
long as the implementation produces external behavior that is consistent with what is described in
this document.

3.2.1.1 Windowing Support Level

The windowing support level determines whether the server is capable of supporting Windowing
Alternate Secondary Drawing Orders and the following flags:
WINDOW_ORDER_FIELD_CLIENTAREASIZE, WINDOW_ORDER_FIELD_RPCONTENT, and
WINDOW_ORDER_FIELD_ROOTPARENT. This is communicated to the client by the

WndSupportLevel field, as part of the Window List Capability Set (section 2.2.1.1.2).

3.2.2 Timers

No timers are used.

3.2.3 Initialization

3.2.4 Higher-Layer Triggered Events

There are no higher-layer triggered events.

3.2.5 Message Processing Events and Sequencing Rules

The following sections describe construction and processing of client messages.

59 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.2.5.1 Updates to RDP Core Protocol

3.2.5.1.1 Constructing Client MCS Connect Initial PDU

The Client MCS Connect Initial PDU is constructed by the client during the connection establishment
phase, as specified in [MS-RDPBCGR] section 3.2.5.3.3.

For remote applications integrated locally (RAIL) clients, the clientNetworkData field (as specified
in [MS-RDPBCGR] section 2.2.1.3) MUST be present and MUST contain a CHANNEL_DEF structure in
channelDefArray for the RAIL virtual channel. This informs the server that the client wants to use a
static virtual channel for communicating RAIL virtual channel messages.<23>

3.2.5.1.2 Processing Server MCS Connect Response PDU

This PDU is sent by the server in response to the Client MCS Connect Initial PDU. It is processed by
the client, as specified in [MS-RDPBCGR] section 3.2.5.3.4.

3.2.5.1.3 Constructing Client Info PDU

The Client Info PDU (as specified in [MS-RDPBCGR] section 2.2.1.11) is constructed by the client
during the connection establishment phase (as specified in [MS-RDPBCGR] section 3.2.5.3.11).

For remote applications integrated locally (RAIL) clients, the flags field of the Info Packet (as
specified in [MS-RDPBCGR], section 2.2.1.11.1.1) MUST have the INFO_RAIL (0x00008000) flag
set. This informs the server that the client wants to create a RAIL session.

3.2.5.1.4 Constructing Confirm Active PDU

The Confirm Active PDU is constructed by the client in response to the Demand Active PDU, as
specified in [MS-RDPBCGR] section 3.2.5.3.13.2.

Remote applications integrated locally (RAIL) clients MUST populate this PDU with two RAIL-specific
capabilities in the capabilitySets field: the Remote Programs Capability Set, as specified in section

2.2.1.1.1, and the Window List Capability Set, as specified in section 2.2.1.1.2.

The NumIconCaches and NumIconCacheEntries of the Window List Capability Set SHOULD be
reported as the minimum of the corresponding values supported by the client, and those reported
by the server in the Demand Active PDU. The values MUST not exceed those reported by the server

in the Demand Active PDU.

3.2.5.1.5 Processing Demand Active PDU

The Demand Active PDU is processed by the client during the connection establishment phase, as
specified in [MS-RDPBCGR] section 3.2.5.3.13.1.

Remote applications integrated locally (RAIL) clients MUST verify that this PDU contains two RAIL-
specific capabilities in the capabilitySets field: the Remote Programs Capability Set, as specified in

section 2.2.1.1.1, and the Window List Capability Set, as specified in section 2.2.1.1.2. If it does not
contain these capability sets, or if the RailSupportLevel of the Remote Programs Capability Set is not

set to at least TS_RAIL_LEVEL_SUPPORTED, or the WndSupportLevel of the Window List Capability
Set is TS_WINDOW_LEVEL_NOT_SUPPORTED (0), the client MUST drop the connection.

The client SHOULD use the NumIconCaches and NumIconCacheEntries of the Window List Capability
Set to determine the values of NumIconCaches and NumIconCacheEntries reported by it in the
Confirm Active PDU, as specified in section 3.2.5.1.4.

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

60 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.2.5.1.6 Processing Window Information Orders

Window Information Orders (section 2.2.1.3.1) inform the client of the following types of window
events on the server:

Creation of a new window.

Updates on window properties for a new or existing window.

Updates on icons for a new or existing window.

Deletion of an existing window.

Upon receipt of a Window Information Order for a new window (the FieldsPresentFlags field of the

Hdr contains the WINDOW_ORDER_STATE_NEW (0x10000000) flag, as specified in section
2.2.1.3.1.2.1), the client SHOULD create a new RAIL window locally. The client SHOULD store an
association of the WindowId reported in the Hdr field with the local RAIL window.

Upon receipt of a Window Information Order for an existing window (the FieldsPresentFlags field

of Hdr does not contain the WINDOW_ORDER_STATE_NEW (0x10000000) flag, as specified in
section 2.2.1.3.1.2.1), the client SHOULD locate the local RAIL window that corresponds to the

WindowId reported in the Hdr field and apply the specified updates to the RAIL window. If no such
window can be found, the client SHOULD ignore the order.

Upon receipt of a Window Information Order for an icon or cached icon, as specified in sections
2.2.1.3.1.2.2 and 2.2.1.3.1.2.3, the client SHOULD locate the local RAIL window that corresponds to
the WindowId reported in the Hdr field and apply the icon updates to the RAIL window. If no such
window can be found, the client SHOULD ignore the order.

Upon receipt of a Window Information Order for a deleted window, as specified in section

2.2.1.3.1.2.4, the client SHOULD locate the local RAIL window that corresponds to the WindowId
reported in the Hdr field and destroy it. If no such window can be found, the client SHOULD ignore
the order.

3.2.5.1.7 Processing Notification Icon Orders

Notification Icon Information Orders (section 2.2.1.3.2) inform the client of the following types of
notification icon events on the server:

Creation of a new notification icon.

Updates on properties for a new or existing notification icon.

Deletion of an existing notification icon.

Upon receipt of a Notification Icon Order for a new notify icon (the FieldsPresentFlags field of Hdr
contains the WINDOW_ORDER_STATE_NEW (0x10000000) flag, as specified in section

2.2.1.3.2.2.1), the client SHOULD create a new RAIL notification icon locally. The client SHOULD
store an association of the WindowId and NotifyIconId reported in the Hdr field with the local
notify icon.

Upon receipt of a Notification Icon Order for an existing notify icon (the FieldsPresentFlags field of
Hdr does not contain the WINDOW_ORDER_STATE_NEW (0x10000000) flag, as specified in section
2.2.1.3.2.2.1), the client SHOULD locate the RAIL notify icon that corresponds to the WindowId and
NotifyIconId reported in the Hdr field, and then apply the specified updates to the RAIL notify icon.

If no such icon can be found, the client SHOULD ignore the Order.

61 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Upon receipt of a Notification Icon Order for a deleted icon, as specified in section 2.2.1.3.2.2.2, the
client SHOULD locate the local RAIL notify icon that corresponds to the WindowId and NotifyIconId

reported in the Hdr field and destroy it. If no such icon can be found, the client SHOULD ignore the
Order.

3.2.5.1.8 Processing Desktop Information Orders

Desktop Information Orders inform the client of events on the server that are not confined to a
single window or notification icon. Processing of these orders is indicated as follows:

Upon receipt of a Desktop Information Order, as specified in section 2.2.1.3.3.2.1, with the

WINDOW_ORDER_FIELD_DESKTOP_ARC_BEGAN (0x00000008) and the

WINDOW_ORDER_FIELD_DESKTOP_HOOKED (0x00000002) flags set in the Hdr field, the client
SHOULD discard all of the existing RAIL windows and Notify Icons and prepare for Window Orders
(see sections 2.2.1.3.1.2.1 and 2.2.1.3.1.2.4) and Notify Icon Orders (see sections
2.2.1.3.1.2.2and 2.2.1.3.1.2.3) from the server.

Upon receipt of a Desktop Information Order for a non-monitored desktop, as specified in section

2.2.1.3.3.2.2, the client SHOULD discard all of the existing RAIL windows and Notify Icons.

Upon receipt of a Desktop Information Order with the

WINDOW_ORDER_FIELD_DESKTOP_HOOKED (0x00000002) flag set in the Hdr field, the client
SHOULD prepare for Window and Notify Icon Orders from the server.

Upon receipt of a Desktop Information Order with the NumWindowIds and WindowIds fields

present, the client SHOULD apply the specified Z-order of the server's windows to its local RAIL
windows.

Upon receipt of a Desktop Information Order with the ActiveWindowId field present, the client

SHOULD activate the corresponding local RAIL window.

3.2.5.2 Static Virtual Channel Protocol

3.2.5.2.1 Initialization Messages

3.2.5.2.1.1 Sending Client Information PDU

The client information PDU is initialized as specified in section 2.2.2.2.2.

3.2.5.2.2 Program Launching Messages

3.2.5.2.2.1 Sending Execute PDU

As specified in section 2.2.2.3.1, the client SHOULD store the execute request to match execute

requests with Execute Result PDUs from the server. For Server Execute Result PDU, see section
2.2.2.3.2.

3.2.5.2.2.2 Processing Execute Result PDU

The client SHOULD match the Execute Result PDU with a previously sent Execute PDU and report
the results to the user.

62 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.2.5.2.3 Local Client System Parameters Update Messages

3.2.5.2.3.1 Sending System Parameters Update PDU

Initialized as specified in section 2.2.2.4.1, this PDU SHOULD be sent at the start of every remote
applications integrated locally (RAIL) connection or reconnection and when a system parameter on
the client changes its value.

3.2.5.2.4 Server System Parameters Update Messages

3.2.5.2.4.1 Processing Server System Parameters Update PDU

On receipt of this PDU, the client SHOULD update its system parameters to those reported by the
server. This helps to maintain consistency between local client and remote server settings, which is
an important aspect of the seamless windows experience.

3.2.5.2.5 Local Client Event Messages

Local Client Event Messages are Virtual Channel PDUs sent from the client to the server specifying
user interactions with RAIL windows and notifications that cannot be captured and sent over the

regular RDP channel.

3.2.5.2.5.1 Sending Activate PDU

The Activate PDU is sent by the client when a RAIL window is activated by a means other than
clicking it, such as by pressing ALT+TAB.

Note Mouse clicks on the RAIL window are forwarded to the server via the RDP core protocol. The
PDU is initialized as specified in section 2.2.2.6.1.

The WindowId field SHOULD be initialized to the ID of an existing window on the server that is
associated with the local RAIL window being activated. The RAIL client SHOULD create this
association during processing of the Window Information Order for new windows, as specified in

section 2.2.1.3.1.2.1.

3.2.5.2.5.2 Sending System Menu PDU

The System Menu PDU is sent by the client when a RAIL window receives a command to display its

system menu by a means other than clicking it, such as by right-clicking the taskbar icon for the
window.

Note Mouse clicks in the RAIL window are forwarded to the server via the RDP core protocol. The
PDU is initialized as specified in section 2.2.2.6.2.

The WindowId field SHOULD be initialized to the ID of an existing window on the server that is
associated with the local RAIL window. The RAIL client SHOULD create this association during

processing of the Window Information Order for new windows, as specified in section 2.2.1.3.1.2.1.

3.2.5.2.5.3 Sending System Command PDU

The System Command PDU is sent by the client when a RAIL window receives a system command
by a means other than clicking it (for example, by pressing the Windows logo key+M to minimize
the window, by clicking the Show Desktop button in the taskbar, or by selecting the system menu
by pressing ALT+SPACE).

%5bMS-GLOS%5d.pdf

63 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Note Mouse clicks in the RAIL window are forwarded to the server via the RDP core protocol. The
PDU is initialized as specified in section 2.2.2.6.3.

The WindowId field SHOULD be initialized to the ID of an existing window on the server that is
associated with the local RAIL window. The RAIL client SHOULD create this association during

processing of the Window Information Order for new windows, as specified in section 2.2.1.3.1.2.1.

3.2.5.2.5.4 Sending Notify Event PDU

The Notify Event PDU is sent by the client when a remote applications integrated locally (RAIL)
notify icon receives any user interaction via the keyboard or mouse. The PDU is initialized as
specified in section 2.2.2.6.4.

The WindowId and NotifyIconId fields SHOULD be initialized to the ID of an existing Window and

notification icon (respectively) on the server and associated with the local RAIL notification icon. The
RAIL client SHOULD create this association during processing of the Notification Icon Information
Order for new notify icons, as specified in section 2.2.1.3.2.2.1.

3.2.5.2.6 Language Bar Information PDUs

3.2.5.2.6.1 Sending Language Bar Information PDU

After initialization (as specified in section 2.2.2.9.1), this PDU SHOULD be sent from a client to a
server just after sending the RAIL handshake (see section 2.2.2.2.1). This enables the server
synchronize its language bar state with the client's.

This PDU MUST NOT be sent if the server does not support the Docked Language Bar RAIL capability
(TS_RAIL_LEVEL_DOCKED_LANGBAR_SUPPORTED).

3.2.5.2.6.2 Processing Language Bar Information PDU

Upon receipt of this PDU, the client SHOULD update the status of its language using the Language
Bar Information PDU.

3.2.5.2.7 Window Move Messages

Window Move Messages are generated by the server and client to enable the local move/size feature
of RAIL.

3.2.5.2.7.1 Processing Min Max Info PDU

On receipt of the Min Max Info PDU, if the client supports local move/size, it SHOULD locate the local
RAIL window that corresponds to the WindowId field and apply the specified window extents
(MaxWidth, MaxHeight, MaxPosX, MaxPosY, MinTrackWidth, MinTrackHeight,
MaxTrackWidth, and MaxTrackHeight fields) to it.

If no such RAIL window can be found, the client SHOULD ignore this PDU.

If the client does not support local move/size, it SHOULD ignore this PDU.

3.2.5.2.7.2 Processing Move-Size Start PDU

On receipt of the Move-Size Start PDU, if the client supports local move/size features, it SHOULD
locate the local RAIL window that corresponds to the WindowId field and initiate a move/size of the
local RAIL window by using the local Window Manager based on the MoveSizeType field. The client

64 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

SHOULD also suppress forwarding of keyboard/mouse events to the server to maintain a local-only
move/size of the RAIL window.

If no RAIL window can be found corresponding to WindowId, the client SHOULD ignore this PDU.

If the client does not support local move/size, it SHOULD ignore this PDU.

3.2.5.2.7.3 Sending Window Move PDU

If the client supports local move/size, it SHOULD send the Window Move PDU upon receiving a
notification from the local window manager that a local move/size of a RAIL window has ended. The
PDU is sent for keyboard–based moves and all resizes, and it is initialized as specified in section
2.2.2.7.4.

The WindowId field SHOULD be initialized to the ID of an existing window on the server that is

associated with the local RAIL window. The RAIL client SHOULD create this association during
processing of the Window Information Order for new windows, as specified in section 2.2.1.3.1.2.1.

If the client suppressed forwarding of keyboard/mouse events to the server during processing of the
Move-Size Start PDU, it MUST resume the forwarding of these events to the server to allow the
server to detect a move/size end of the remote window.

3.2.5.2.7.4 Processing Move-Size End PDU

Upon receipt of the Move-Size End PDU, if the client supports local move/size features, it SHOULD
locate the local RAIL window that corresponds to the WindowId field and move it to the
coordinates specified by the TopLeftX and TopLeftY fields. This ensures synchronization between
the final positions of the corresponding moved/resized windows on the server and client.

If no RAIL window can be found corresponding to WindowId, the client SHOULD ignore this PDU.

If the client does not support local move/size, it SHOULD ignore this PDU.

3.2.5.2.8 Application ID Messages

3.2.5.2.8.1 Sending Client Get Application ID PDU

After being initialized as specified in section 2.2.2.6.5, this PDU MAY be sent from a client to a
server after receiving a Windows Information Order containing the WINDOW_ORDER_STATE_NEW
(0x10000000) flag.

3.2.5.2.8.2 Processing Server Get Application ID Response PDU

Upon receipt of this PDU, the client MAY <24>update the Application ID string of the Window
matching the Windows ID received from the server.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

65 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.3 Server Details

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with what is described in this
document.

Note: It is possible to implement the following conceptual data by using a variety of techniques as
long as the implementation produces external behavior that is consistent with what is described in

this document.

3.3.1.1 Client Local Move/Size Ability Store

The Client Local Move/Size Ability store determines whether the client has the ability to support
Local Move/Size in RAIL. This is communicated to the server by the

TS_RAIL_CLIENTSTATUS_ALLOWLOCALMOVESIZE flag as part of Client Information PDU (see
section 2.2.2.2.2).

3.3.1.2 Windowing Support Level

The windowing support level determines whether the client is capable of supporting Windowing
Alternate Secondary Drawing Orders and the following flags:
WINDOW_ORDER_FIELD_CLIENTAREASIZE, WINDOW_ORDER_FIELD_RPCONTENT, and
WINDOW_ORDER_FIELD_ROOTPARENT. This is communicated to the server by the

WndSupportLevel field, as part of the Window List Capability Set (section 2.2.1.1.2).

3.3.2 Timers

No timers are used.

3.3.3 Initialization

None.

3.3.4 Higher-Layer Triggered Events

No higher-layer triggered events are used.

3.3.5 Message Processing Events and Sequencing Rules

3.3.5.1 Updates to RDP Core Protocol

3.3.5.1.1 Processing Client MCS Connect Initial PDU

The Client MCS Connect Initial PDU is processed by the server during the connection establishment

phase, as specified in [MS-RDPBCGR].

3.3.5.1.2 Constructing Server MCS Connect Response PDU

This PDU is sent by the server in response to the Client MCS Connect Initial PDU, as specified in

[MS-RDPBCGR].

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

66 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.3.5.1.3 Processing Client Info PDU

The Client Info PDU is processed by the server during the connection establishment phase, as
specified in [MS-RDPBCGR].

If the flags field of the Info Packet (as specified in [MS-RDPBCGR], section 2.2.1.11.1.1) has the
INFO_RAIL (0x00008000) flag set, it indicates that the client wants to start a remote applications
integrated locally (RAIL) connection. If the server supports RAIL, it SHOULD indicate this by using
the Demand Active PDU (see section 3.3.5.1.4).

3.3.5.1.4 Constructing Demand Active PDU

The Demand Active PDU is constructed by the server during the connection establishment phase, as

specified in [MS-RDPBCGR] section 3.3.5.3.13.1.

If the client has requested support for remote applications integrated locally (RAIL) in the Client Info
PDU (as specified in [MS-RDPBCGR] section 2.2.1.11), and the server supports RAIL, the server
MUST specify two RAIL–specific capabilities in the capabilitySets field of the PDU: the Remote

Programs Capability Set (section 2.2.1.1.1) and the Window List Capability Set (section 2.2.1.1.2).

The server MUST specify the number of icon caches supported by using the NumIconCaches and

NumIconCacheEntries of the Window List Capability Set.

3.3.5.1.5 Processing Confirm Active PDU

The Confirm Active PDU is processed by the server, as specified in [MS-RDPBCGR] section
3.3.5.3.13.2.

If the client has requested support for remote applications integrated locally (RAIL) in the Client Info
PDU (see section 3.2.5.1.3), and the server has indicated support for RAIL in the Demand Active

PDU (see section 3.3.5.1.4), the server MUST verify that this PDU contains two RAIL-specific
capabilities in the capabilitySets field: the Remote Programs Capability Set (section 2.2.1.1.1) and
the Window List Capability Set (section 2.2.1.1.2). If it does not contain these capability sets, or the
RailSupportLevel of the Remote Programs Capability Set is not set to at least

TS_RAIL_LEVEL_SUPPORTED, or the WndSupportLevel of the Window List Capability Set is
TS_WINDOW_LEVEL_NOT_SUPPORTED (0), the server MUST drop the connection.

The server MUST verify that the NumIconCaches and NumIconCacheEntries of the Window List

Capability Set do not exceed the corresponding entries set by the server in the Demand Active PDU.
<25> The server MUST also update its icon cache limits to those reported in NumIconCaches and
NumIconCacheEntries.

3.3.5.1.6 Constructing Window Information Orders

The server generates Window Information Orders to inform the client of the following types of
window events on the server:

Creation of a new window.

Updates on window properties for a new or existing window.

Updates on icons for a new or existing window.

Deletion of an existing window.

The Window Information Orders are constructed as specified in section 2.2.1.3.1.

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

67 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.3.5.1.7 Constructing Notification Icon Orders

The server generates Notification Icon Information Orders to inform the client of the following types
of notification icon events on the server.

Creation of a new notification icon.

Updates on properties for a new or existing notification icon.

Deletion of an existing notification icon.

The Notification Icon Orders are constructed as specified in section 2.2.1.3.2.

3.3.5.1.8 Constructing Desktop Information Orders

Desktop Information Orders are generated by the server to inform the client of events on the server
that are not confined to a single window or notification icon. These events include the following:

A client connects to the server that is actively monitoring a desktop. The server generates the

following events in order:

1. A Desktop Information Order (see section 2.2.1.3.3.2.1) with the
WINDOW_ORDER_FIELD_DESKTOP_ARC_BEGAN (0x00000008) and the

WINDOW_ORDER_FIELD_DESKTOP_HOOKED (0x00000002) flags set in the Hdr field to
indicate that the synchronization has begun.

2. After all orders specifying windows, icons, and the desktop are sent, the server generates a
Desktop Information Order with the WINDOW_ORDER_FIELD_DESKTOP_ARC_COMPLETED
(0x00000004) flag set to signal the end of synchronization data.

A desktop switch occurred on the server causing the server to stop monitoring the current

desktop and (optionally) start monitoring the new desktop. This is indicated by generating the
following events in order.

1. A Desktop Information Order for the non-monitored desktop (see section 2.2.1.3.3.2.2).

2. A Desktop Information Order with the WINDOW_ORDER_FIELD_DESKTOP_HOOKED
(0x00000002) flag set in the Hdr field. If the server is unable to monitor the new desktop, the
server SHOULD NOT send this order.

The number and/or Z-order of top-level windows on the server changes. This is indicated by

generating a Desktop Information Order with the NumWindowIds and WindowIds fields
present.

The active window on the server changes. This is indicated by generating a Desktop Information

Order with the ActiveWindowId field present.

3.3.5.2 Static Virtual Channel Protocol

3.3.5.2.1 Initialization Messages

3.3.5.2.1.1 Processing Client Information PDU

If the Flags field of the PDU contains the
TS_RAIL_CLIENTSTATUS_ALLOWLOCALMOVESIZE(0x00000001) flag, the client supports Local

68 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Move/Size. If the server also supports Local Move/Size, it SHOULD record this fact and SHOULD
send Move Messages to the client window when appropriate (see section 2.2.2.7.4).

3.3.5.2.2 Program Launching Messages

3.3.5.2.2.1 Processing Execute PDU

Upon receipt of this PDU, the server MUST start the application specified in the PDU on the server.
The PDU is processed as specified in 2.2.2.3.2.

3.3.5.2.2.2 Sending Execute Result PDU

This PDU is sent in response to an Execute PDU from the client and is initialized as specified in

section 2.2.2.3.2.

3.3.5.2.3 Local Client System Parameters Update Messages

3.3.5.2.3.1 Processing System Parameters Update PDU

Upon receipt of this PDU, the server SHOULD set its system parameters to those reported by the
client. This helps applications running remotely to behave consistently with local user settings, which

is an important aspect of the seamless Microsoft Windows® experience.

3.3.5.2.4 Server System Parameters Update Messages

3.3.5.2.4.1 Sending Server System Parameters Update PDU

This PDU is initialized as specified in section 2.2.2.5.1. This PDU SHOULD be sent at the start of
every remote applications integrated locally (RAIL) connection/reconnection, and when a system

parameter on the server changes its value.

3.3.5.2.5 Local Client Event Messages

3.3.5.2.5.1 Processing Activate PDU

Upon receipt of this PDU, the server SHOULD activate or deactivate the remote window whose ID is
specified by WindowId and whose activation state is specified by the Enabled field.

If no such window exists, the server SHOULD ignore the PDU.

3.3.5.2.5.2 Processing System Menu PDU

On receipt of this PDU, the server SHOULD post a command to the remote window whose ID is
specified by WindowId to display its system menu at the coordinates specified by the Left and Top
fields.

If no such window exists, the server SHOULD ignore the PDU.

3.3.5.2.5.3 Processing System Command PDU

Upon receipt of this PDU, the server SHOULD post the system command specified by the Command
field to the remote window whose ID is specified by WindowId.

If no such window exists, the server SHOULD ignore the PDU.

69 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.3.5.2.5.4 Processing Notify Event PDU

Upon receipt of this PDU, the server SHOULD post the message specified by the Message field to
the remote notification icon specified by the WindowId and NotifyIconId fields.

If no such notify icon exists, the server SHOULD ignore the PDU.

3.3.5.2.5.5 Processing Language Bar Information PDU

Upon receipt of this PDU, the server MUST first send the status of its language bar to the client
using the Language Bar Information PDU. The server MUST then adjust the server-side language bar
to match the client's language bar status by making it either float or be docked.

3.3.5.2.6 Window Move Messages

The Window Move messages are generated by the server and client to enable the Local Move/Size
feature of RAIL.

3.3.5.2.6.1 Sending Min Max Info PDU

This PDU is sent by the server when a user attempts to move or resize a local RAIL window and
when the corresponding keyboard input or mouse input forwarded to the server causes the

corresponding remote window to begin to move or resize. It is initialized as specified in section
2.2.2.7.1.

This PDU SHOULD be sent if the client and server both support local move/size features.

3.3.5.2.6.2 Sending Move/Size Start PDU

This PDU is sent by the server when a user attempts to move or resize a local RAIL window (for
example, by dragging the window title with the mouse or resizing the window borders with the

mouse), and the corresponding keyboard input or mouse input forwarded to the server causes the
corresponding remote window to begin the move or resize. It is initialized as specified in section

2.2.2.7.2.

This PDU SHOULD be sent if the client and server both support local move/size features. It SHOULD
be sent immediately after the Min Max Info PDU (see section 2.2.2.7.1).

3.3.5.2.6.3 Processing Window Move PDU

On receipt of the Client Window Move PDU section 2.2.2.7.4, the server SHOULD move the remote
window specified by the WindowId field to the coordinates specified by the Left, Top, Right, and
Bottom fields.

If no such Window exists, the server SHOULD ignore the PDU.

3.3.5.2.6.4 Sending Move/Size End PDU

This PDU is sent by the server when a user completes a move or resize of a local RAIL window (for

example, by releasing the mouse button), and the corresponding keyboard input or mouse input
forwarded to the server causes the corresponding remote window to complete the move or resize. It
is initialized as specified in section 2.2.2.7.3.

This PDU SHOULD be sent if the client and server both support local move/size features.

70 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.3.5.2.7 Application ID Messages

3.3.5.2.7.1 Processing the Get Application ID PDU

Upon receipt of the Get Application ID PDU, the server MAY <26> retrieve the application id of the
window whose window id is specified in the PDU.

If no such window exists, the server SHOULD ignore the PDU.

3.3.5.2.7.2 Sending the Get Application ID Response PDU

The Get Application ID Response PDU is sent in response to a Get Application ID PDU from the client
and is initialized as specified in section 2.2.2.8.1.

3.3.6 Timer Events

No timer events are used.

3.3.7 Other Local Events

3.3.7.1 Sending Language Bar Information PDU

Upon receiving a notification from the server-side language bar indicating that its status was
updated, the server MUST then send the updated status of its language bar to the client using the
Language Bar Information PDU. This enables the client to stay in sync with the server.

71 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4 Protocol Examples

The following sections describe several operations as used in common scenarios to illustrate the
function of the Remote Desktop Protocol: Remote Programs Virtual Channel Extension.

4.1 Updates to the RDP Core Protocol

4.1.1 Windowing Alternate Secondary Drawing Orders

4.1.1.1 New or Existing Windows

The following is a network capture of a Window Information Order, sent when a new window is
created on the server or when a property on a new or existing window is updated (as specified in
2.2.1.3.1.2.1).

00000000 2e 82 00 1e de 00 11 5e 00 03 00 00 00 00 00 00^........

00000010 00 ef 34 00 03 04 00 02 36 00 43 00 3a 00 5c 00 ..4.....6.C.:.\.

00000020 57 00 69 00 6e 00 64 00 6f 00 77 00 73 00 5c 00 W.i.n.d.o.w.s.\.

00000030 73 00 79 00 73 00 74 00 65 00 6d 00 33 00 32 00 s.y.s.t.e.m.3.2.

00000040 5c 00 63 00 6d 00 64 00 2e 00 65 00 78 00 65 00 \.c.m.d...e.x.e.

00000050 00 00 00 00 98 04 00 00 00 00 00 00 98 04 00 00

00000060 00 00 00 00 00 00 00 00 a0 00 00 00 18 00 00 00

00000070 00 00 00 00 98 04 00 00 01 00 00 00 00 00 a0 00

00000080 18 00

2e -> TS_WINDOW_ORDER_HEADER::Flags(1 Byte)

82 00 -> TS_WINDOW_ORDER_HEADER::OrderSize(2 Bytes)

1e de 00 11 -> TS_WINDOW_ORDER_HEADER::FieldsPresentFlags(4 Bytes)

5e 00 03 00 -> TS_WINDOW_ORDER_HEADER::WindowId(4 Bytes)

00 00 00 00 -> OwnerWindowId(4 Bytes)

00 00 ef 34 -> Style

00 03 04 00 -> ExtendedStyle

02 -> Show

00000010 00 ef 34 00 03 04 00 02 36 00 43 00 3a 00 5c 00 ..4.....6.C.:.\.

00000020 57 00 69 00 6e 00 64 00 6f 00 77 00 73 00 5c 00 W.i.n.d.o.w.s.\.

00000030 73 00 79 00 73 00 74 00 65 00 6d 00 33 00 32 00 s.y.s.t.e.m.3.2.

00000040 5c 00 63 00 6d 00 64 00 2e 00 65 00 78 00 65 00 \.c.m.d...e.x.e.

-> Title (C:\Windows\system32\cmd.exe)

00 00 00 00 -> ClientOffsetX (0)

98 04 00 00 -> ClientOffsetY (1176)

00 00 00 00 -> WindowOffsetX (0)

98 04 00 00 -> WindowOffsetY (1176)

00 00 00 00 -> WindowClientDeltaX (0)

00 00 00 00 -> WindowClientDeltaY (0)

a0 00 00 00 -> WindowWidth (160)

18 00 00 00 -> WindowHeight (24)

00 00 00 00 -> VisibleOffsetX (0)

98 04 00 00 -> VisibleOffsetY (1176)

01 00 -> NumVisibilityRects (1)

00 00 00 00 a0 00 18 00 -> VisibilityRects (0,0,160,24)

72 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4.1.1.2 Deleted Window

The following is a network capture of a Window Information Order, sent when an existing window is
destroyed on the server (as specified in 2.2.1.3.1.2.4).

00000000 2e 0b 00 00 00 00 21 24 00 03 00......!$...

2e -> TS_WINDOW_ORDER_HEADER::Flags(1 Byte)

0b 00 -> TS_WINDOW_ORDER_HEADER::OrderSize(2 Bytes)

00 00 00 21 -> TS_WINDOW_ORDER_HEADER::FieldsPresentFlags(4 Bytes)

 (WINDOW_ORDER_TYPE_WINDOW | WINDOW_ORDER_STATE_DELETED)

24 00 03 00 -> WindowId(4 Bytes)

4.1.1.3 New or Existing Notification Icons

The following is a network capture of a Notification Icon Information Order, sent when a new

notification icon is created on the server (as specified in 2.2.1.3.2.2.1).

00000000 2e 9d 04 01 00 00 52 8e 00 01 00 d2 9c 00 00 40R........@

00000010 00 2a 20 0e 20 43 00 6f 00 6d 00 6d 00 75 00 6e .* . C.o.m.m.u.n

00000020 00 69 00 63 00 61 00 74 00 6f 00 72 00 20 00 2d .i.c.a.t.o.r. .-

00000030 00 20 00 4e 00 6f 00 74 00 20 00 73 00 69 00 67 . .N.o.t. .s.i.g

00000040 00 6e 00 65 00 64 00 20 00 69 00 6e 00 0e 20 2c .n.e.d. .i.n.. ,

00000050 20 00 00 02 20 10 00 10 00 40 00 00 04 fe 03 00 @......

00000060 00 fc 01 00 00 fc 01 00 00 c0 01 00 00 80 00 00

00000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00

00000090 00 80 01 00 00 f0 3f 00 00 f8 7f 00 00 00 00 00?.........

000000a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000000b0 00 00 00 00 00 00 00 00 00 18 36 80 18 1e 38 7f6...8.

000000c0 9c 19 35 96 ef 1a 3c b5 fe 1e 3e ad ee 15 34 8c ..5...<...>...4.

000000d0 8d 14 30 77 1b 00 00 00 00 00 00 00 00 00 00 00 ..0w............

000000e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000000f0 00 00 00 00 00 1c 38 85 17 1a 34 87 c6 17 31 9d8...4...1.

00000100 ff 0d 2c af ff 15 39 cd ff 1a 42 e3 ff 22 49 e0 ..,...9...B.."I.

00000110 fc 17 39 a4 c1 13 30 78 1b 00 00 00 00 00 00 00 ..9...0x........

……………………………………………….(more icon data)

2e -> TS_NOTIFYICON_ORDER_HEADER::Flags(1 Byte)

9d 04 -> TS_NOTIFYICON_ORDER_HEADER::OrderSize(2 Bytes)

01 00 00 52 -> TS_NOTIFYICON_ORDER_HEADER::FieldsPresentFlags (4 Bytes)

 WINDOW_ORDER_TYPE_NOTIFY | WINDOW_ORDER_FIELD_NOTIFY_TIP |

 WINDOW_ORDER_STATE_NEW | WINDOW_ORDER_ICON)

8e 00 01 00 -> WindowId

d2 9c 00 00 -> NotifyIconId

0000000f 40

00000010 00 57 00 69 00 6e 00 64 00 6f 00 77 00 73 00 20

00000020 00 54 00 61 00 73 00 6b 00 20 00 4d 00 61 00 6e

00000030 00 61 00 67 00 65 00 72 00 00 00 02 10 10 00 10

00000040 00 6e 00 65 00 64 00 20 00 69 00 6e 00 0e 20 2c -> ToolTip (Communicator - Not

signed in)

00000050 20 00 00 02 20 10 00 10 00 40 00 00 04 fe 03 00 @......

00000060 00 fc 01 00 00 fc 01 00 00 c0 01 00 00 80 00 00

00000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

73 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00

00000090 00 80 01 00 00 f0 3f 00 00 f8 7f 00 00 00 00 00?.........

000000a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000000b0 00 00 00 00 00 00 00 00 00 18 36 80 18 1e 38 7f6...8.

000000c0 9c 19 35 96 ef 1a 3c b5 fe 1e 3e ad ee 15 34 8c ..5...<...>...4.

000000d0 8d 14 30 77 1b 00 00 00 00 00 00 00 00 00 00 00 ..0w............

000000e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000000f0 00 00 00 00 00 1c 38 85 17 1a 34 87 c6 17 31 9d8...4...1.

00000100 ff 0d 2c af ff 15 39 cd ff 1a 42 e3 ff 22 49 e0 ..,...9...B.."I.

00000110 fc 17 39 a4 c1 13 30 78 1b 00 00 00 00 00 00 00 ..9...0x........ -> Icon

……………………………………………….(more icon data)

Note The icon data is significantly large and accounts for the remainder of the order. For the sake

of brevity, the icon information in the remaining bytes of the orderSize field has been truncated in
this example.

4.1.1.4 Deleted Notification Icons

The following is a network capture of a Notification Icon Information Order, sent when an existing
notification icon is deleted on the server (as specified in 2.2.1.3.2.2.2).

00000000 2e 0f 00 01 00 00 62 f4 01 03 00 00 00 00 00 .y....B........

2e -> TS_NOTIFYICON_ORDER_HEADER::Flags(1 Byte)

0f 00 -> TS_NOTIFYICON_ORDER_HEADER::OrderSize(2 Bytes)

01 00 00 62 -> TS_NOTIFYICON_ORDER_HEADER::FieldsPresentFlags (4 Bytes)

 WINDOW_ORDER_TYPE_NOTIFY | WINDOW_ORDER_STATE_DELETED |

 WINDOW_ORDER_FIELD_NOTIFY_TIP | WINDOW_ORDER_ICON)

f4 01 03 00 -> WindowId

00 00 00 00 -> NotifyIconId

4.1.1.5 Actively Monitored Desktop

The following is a network capture of an Actively Monitored Desktop packet (as specified in
2.2.1.3.3.2.1).

00000000 2e 14 00 30 00 00 04 a0 00 01 00 02 a0 00 01 00 ...0............

2e -> TS_DESKTOP_ORDER_HEADER::Flags

14 00 -> TS_DESKTOP_ORDER_HEADER::OrderSize

30 00 00 04 -> TS_DESKTOP_ORDER_HEADER::FieldsPresentFlags (0x4000030)

 (WINDOW_ORDER_TYPE_DESKTOP | WINDOW_ORDER_FIELD_DESKTOP_ZORDER

WINDOW_ORDER_FIELD_DESKTOP_ACTIVEWND)

a0 00 01 00 -> ActiveWindowId

02 -> NumWindowIds

66 00 02 00

a0 00 01 00 -> WindowIds

4.1.1.6 Non-monitored Desktop

The following is a network capture of a Non-Monitored Desktop packet (as specified in
2.2.1.3.3.2.2).

74 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

00000000 2e 07 00 01 00 00 04 @.....

2e -> TS_DESKTOP_ORDER_HEADER::Flags

07 00 -> TS_DESKTOP_ORDER_HEADER::OrderSize

01 00 00 04 -> TS_DESKTOP_ORDER_HEADER::FieldsPresentFlags

 (WINDOW_ORDER_TYPE_DESKTOP | WINDOW_ORDER_FIELD_DESKTOP_NONE)

4.2 Initialization Messages

4.2.1 TS_RAIL_ORDER_HANDSHAKE

The following are network captures of the Filter Updated PDUs (TS_RAIL_ORDER_HANDSHAKE, as
specified in 2.2.2.2.1).

Server to Client

00000000 05 00 08 00 71 17 00 00 q...

05 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_HANDSHAKE (5) (2 Bytes)

08 00 -> TS_RAIL_PDU_HEADER::cbOrder = 8 (2 Bytes)

71 17 00 00 -> buildNumber (4 Bytes)

Client to Server

00000000 05 00 08 00 71 17 00 00 q...

05 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_HANDSHAKE (5) (2 Bytes)

08 00 -> TS_RAIL_PDU_HEADER::cbOrder = 8 (2 Bytes)

71 17 00 00 -> buildNumber (4 Bytes)

4.2.2 TS_RAIL_ORDER_CLIENTSTATUS

The following is a network capture of the Client Caps PDU (TS_RAIL_ORDER_CLIENTSTATUS, as
specified in 2.2.2.2.2).

00000000 0b 00 08 00 01 00 00 00

0b 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_CLIENTSTATUS (11) (2 Bytes)

08 00 -> TS_RAIL_PDU_HEADER::cbOrder = 8 (2 Bytes)

01 00 00 00 -> CLIENTCAPS (4 Bytes)

4.3 Launching Messages

4.3.1 TS_RAIL_ORDER_EXEC

The following is a network capture of the Client Execute PDU (TS_RAIL_ORDER_EXEC, as specified
in 2.2.2.3.1).

75 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 00000000 01 00 5e 00 08 00 14 00 26 00 18 00 7c 00 7c 00 ..^.....&...|.|.

 00000010 69 00 65 00 78 00 70 00 6c 00 6f 00 72 00 65 00 i.e.x.p.l.o.r.e.

 00000020 66 00 3a 00 5c 00 77 00 69 00 6e 00 64 00 6f 00 f.:.\.w.i.n.d.o.

 00000030 77 00 73 00 5c 00 73 00 79 00 73 00 74 00 65 00 w.s.\.s.y.s.t.e.

 00000040 6d 00 33 00 32 00 77 00 77 00 77 00 2e 00 62 00 m.3.2.w.w.w...b.

 00000050 69 00 6e 00 67 00 2e 00 63 00 6f 00 6d 00 00 00 i.n.g...c.o.m...

Header:

01 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_EXEC (1) (2 Bytes)

5e 00 -> TS_RAIL_PDU_HEADER::cbOrder = 94 (2 Bytes)

08 00 -> Flags : TS_RAIL_EXEC_FLAG_EXPAND_ARGUMENTS (2 Bytes)

14 00 -> ExeorFileLength : 0x14 (2 Bytes)

26 00 -> WorkingDirLength : 0x26 (2 Bytes)

18 00 -> ArgumentsLength : 0x18 (2 Bytes)

7c 00 7c 00 69 00 65 00 78 00 70 00 6c 00 6f 00 72 00 65 00 -> ExeOrFile : ||iexplore (20

Bytes)

66 00 3a 00 5c 00 77 00 69 00 6e 00 64 00 6f 00 77 00 73 00 5c 00 73 00 79 00 73 00 74 00 65

00 6d 00 33 00 32 00 -> WorkingDir: f:\windows\system32 (38 bytes)

77 00 77 00 77 00 2e 00 62 00 69 00 6e 00 67 00 2e 00 63 00 6f 00 6d 00 -> Arguments (24

bytes)

4.3.2 RAIL_ORDER_EXEC_RESULT

The following is a network capture of the Server Execute Result PDU (RAIL_ORDER_EXEC_RESULT,
as specified in 2.2.2.3.2).

00000000 80 00 24 00 08 00 03 00 15 00 00 00 00 00 14 00 ..$.............

00000010 7c 00 7c 00 57 00 72 00 6f 00 6e 00 67 00 41 00 |.|.W.r.o.n.g.A.

00000020 70 00 70 00 p.p.

80 00 -> TS_RAIL_PDU_HEADER::orderType = RAIL_ORDER_EXEC_RESULT(128) (2 Bytes)

24 00 -> TS_RAIL_PDU_HEADER::cbOrder = 36 (2 Bytes)

08 00 -> Flags : TS_RAIL_EXEC_FLAG_EXPAND_ARGUMENTS (2 Bytes)

03 00 -> ExecResult : 3 (2 Bytes)

15 00 00 00 -> RawResult : 0x15 (4 Bytes)

00 00 -> Padding : 0 (2 Bytes)

14 00 -> ExeOrFileLength : 0x14 (2 Bytes)

7c 00 7c 00 57 00 72 00 6f 00 6e 00 67 00 41 00

70 00 70 00 : ExeOrFile : ||WrongApp (20 Bytes)

4.4 Local Client System Parameters Update Messages

4.4.1 TS_RAIL_ORDER_SYSPARAM

The following are network captures of the Client System Parameters Update PDU
(TS_RAIL_ORDER_SYSPARAM, as specified in 2.2.2.4.1).

00000000 03 00 12 00 43 00 00 00 7e 00 00 00 02 00 00 00C...~.......

00000010 00 00 ..

03 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_SYSPARAM(3) (2 Bytes)

12 00 -> TS_RAIL_PDU_HEADER::cbOrder = 18 (2 Bytes)

43 00 00 00 -> SystemParam: SPI_SETHIGHCONTRAST (4 Bytes)

7e 00 00 00 -> Flags: 0x7e (4 Bytes)

76 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

02 00 00 00 -> ColorSchemeLength: 2 (4 Bytes)

00 00 -> ColorScheme: 0 (2 Bytes)

4.5 Local Client Event Messages

4.5.1 TS_RAIL_ORDER_ACTIVATE

The following is a network capture of the Client Activate PDU (TS_RAIL_ORDER_ACTIVATE, as
specified in 2.2.2.6.1).

00000000 02 00 09 00 4e 01 01 00 01 N....

02 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_ACTIVATE(2) (2 Bytes)

09 00 -> TS_RAIL_PDU_HEADER::cbOrder = 9 (2 Bytes)

4e 01 01 00 -> WindowId:: 0x1014e (4 Bytes)

01 -> Enabled (1 Byte)

4.5.2 TS_RAIL_ORDER_SYSMENU

The following is a network capture of the Client System Menu PDU (TS_RAIL_ORDER_SYSMENU, as
specified in 2.2.2.6.2).

00000000 0c 00 0c 00 22 01 09 00 a4 ff 4a 02 ".....J.

0c 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_SYSMENU(12) (2 Bytes)

0c 00 -> TS_RAIL_PDU_HEADER::cbOrder = 12 (2 Bytes)

22 01 09 00 -> WindowId:: 0x90122 (4 Bytes)

a4 ff -> Left (2 Bytes)

4a 02 -> Top (2 Bytes)

4.5.3 TS_RAIL_ORDER_SYSCOMMAND

The following is a network capture of the Client System Command PDU
(TS_RAIL_ORDER_SYSCOMMAND, as specified in 2.2.2.6.3).

00000000 04 00 0a 00 52 00 02 00 20 f0 R... .

04 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_SYSCOMMAND(4) (2 Bytes)

0a 00 -> TS_RAIL_PDU_HEADER::cbOrder = 10 (2 Bytes)

52 00 02 00 -> WindowId:: 0x20052 (4 Bytes)

20 f0 -> Command (2 Bytes)

4.5.4 TS_RAIL_ORDER_NOTIFY_EVENT

The following is a network capture of the Client Notify Event PDU (TS_RAIL_ORDER_NOTIFY_EVENT,
as specified in 2.2.2.6.4).

77 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

00000000 06 00 10 00 aa 01 02 00 02 00 00 00 04 02 00 00

06 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_NOTIFY_EVENT(6) (2 Bytes)

10 00 -> TS_RAIL_PDU_HEADER::cbOrder = 16 (2 Bytes)

aa 01 02 00 -> WindowId (4 Bytes)

02 00 00 00 -> NotifyIconId (4 Bytes)

04 02 00 00 -> Message (4 Bytes)

4.5.5 TS_RAIL_ORDER_LANGBARINFO

The following is a network capture of the Language Bar Information PDU
(TS_RAIL_ORDER_LANGBARINFO, as specified in 2.2.2.9.1).

0D 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_LANGBARINFO (13) (2 Bytes)

08 00 -> TS_RAIL_PDU_HEADER::cbOrder = 8 (2 Bytes)

01 00 00 00 -> LanguageBarStatus:: 0x00000001 (4 Bytes)

4.5.6 TS_RAIL_ORDER_GET_APPID_REQ

The following is a network capture of the Client Get Application ID PDU
(TS_RAIL_ORDER_GET_APPID_REQ), as specified in section 2.2.2.6.5.

00000000 0E 00 08 00 52 00 02 00 R...

0E 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_GET_APPID_REQ (14) (2 Bytes)

08 00 -> TS_RAIL_PDU_HEADER::cbOrder = 8 (2 Bytes)

52 00 02 00 -> WindowId:: 0x20052 (4 Bytes)

4.5.7 TS_RAIL_ORDER_GET_APPID_RESP

The following is a network capture of the Server Get Application ID Response PDU

(TS_RAIL_ORDER_GET_APPID_RESP), as specified in section 2.2.2.8.1.

00000000 0F 00 08 20 52 00 02 00 6d 00 69 00 63 00 72 00R...m.i.c.r.

00000010 6f 00 73 00 6f 00 66 00 74 00 2e 00 77 00 69 00 o.s.o.f.t...w.i.

00000020 6e 00 64 00 6f 00 77 00 73 00 2e 00 6e 00 6f 00 n.d.o.w.s...n.o.

00000030 74 00 65 00 70 00 61 00 64 00 00 00 00 00 00 00 t.e.p.a.d.......

 00000040 00 ...

00000200 00 00 00 00 00 00 00 00

0F 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_GET_APPID_RESP (15) (2 Bytes)

08 20 -> TS_RAIL_PDU_HEADER::cbOrder = 520 (2 Bytes)

52 00 02 00 -> WindowId:: 0x1014e (4 Bytes)

6d 00 69 00 63 00 72 00 6f 00 73 00 6f 00 66 00 74 00 2e 00 77 00 69 00 6e 00 64 00

6f 00 77 00 73 00 2e 00 6e 00 6f 00 74 00 65 00 70 00 61 00 64 00 00 ... -> ApplicationId::

microsoft.windows.notepad (512 Bytes)

78 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4.6 Window Move Messages

4.6.1 TS_RAIL_ORDER_WINDOWMOVE

The following is a network capture of the Client Window Move PDU
(TS_RAIL_ORDER_WINDOWMOVE, as specified in 2.2.2.7.4).

00000000 08 00 10 00 20 00 02 00 09 03 00 01 db 05 88 01

08 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_WINDOWMOVE(8) (2 Bytes)

10 00 -> TS_RAIL_PDU_HEADER::cbOrder = 16 (2 Bytes)

20 00 02 00 -> WindowId (4 Bytes)

09 03 -> Left(2 Bytes)

00 01 -> Top(2 Bytes)

db 05 -> Right(2 Bytes)

88 01 -> Bottom(2 Bytes)

4.6.2 TS_RAIL_ORDER_LOCALMOVESIZE

The following is a network capture of the Server Local Move-Size PDU
(TS_RAIL_ORDER_LOCALMOVESIZE, as specified in 2.2.2.7.3).

00000000 09 00 10 00 94 00 01 00 01 00 08 00 2c 05 e9 03,...

09 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_LOCALMOVESIZE(9) (2 Bytes)

10 00 -> TS_RAIL_PDU_HEADER::cbOrder = 16 (2 Bytes)

94 00 01 00 -> WindowId (4 Bytes)

01 00 -> IsMoveSizeStart (2 Bytes)

08 00 -> MoveSizeType (2 Bytes)

2c 05 -> PosX (2 Bytes)

e9 03 -> PosY (2 Bytes)

4.6.3 TS_RAIL_ORDER_MINMAXINFO

The following is a network capture of the Server Min Max Info PDU (TS_RAIL_ORDER_MINMAXINFO,
as specified in 2.2.2.7.1).

*00000000 0a 00 18 00 94 00 01 00 48 06 b8 04 00 00 00 00H.......

*00000010 70 00 1b 00 4c 06 bc 04 p...L...

0a 00 -> TS_RAIL_PDU_HEADER::orderType = TS_RAIL_ORDER_MINMAXINFO(10) (2 Bytes)

18 00 -> TS_RAIL_PDU_HEADER::cbOrder = 24 (2 Bytes)

94 00 01 00 -> WindowId (4 Bytes)

48 06 -> MaxWidth (2 Bytes)

b8 04 -> MaxHeight (2 Bytes)

00 00 -> MaxPosX (2 Bytes)

00 00 -> MaxPosY (2 Bytes)

70 00 -> MinTrackWidth (2 Bytes)

1b 00 -> MinTrackHeight (2 Bytes)

4c 06 -> MaxTrackWidth (2 Bytes)

bc 04 -> MaxTrackHeight (2 Bytes)

79 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

80 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

5 Security

The following sections specify security considerations for implementers of the Remote Desktop
Protocol: Remote Programs Virtual Channel Extension.

5.1 Security Considerations for Implementers

There are no security considerations for Remote Desktop Protocol: Remote Programs Virtual
Channel Extension messages because all traffic is secured by the underlying Remote Desktop
Protocol core protocol. For an overview of the implemented security-related mechanisms, see [MS-
RDPBCGR] section 5.

5.2 Index of Security Parameters

There are no security parameters in the Remote Desktop Protocol: Remote Programs Virtual
Channel Extension.

%5bMS-RDPBCGR%5d.pdf
%5bMS-RDPBCGR%5d.pdf

81 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows Vista® operating system

Windows Server® 2008 operating system

Windows® 7 operating system

Windows Server® 2008 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 2.2.1.1.1: Microsoft implementations set TS_RAIL_LEVEL_SUPPORTED to 1 in the
following versions of Windows: Windows Server 2008, Windows Server 2008 R2, Windows 7
Enterprise, Windows 7 Enterprise N, Windows 7 Ultimate, Windows 7 Ultimate N.

Microsoft implementations set TS_RAIL_LEVEL_DOCKED_LANGBAR_SUPPORTED to 1 in the

following versions of Windows: Windows Server 2008 R2, Windows 7 Enterprise, Windows 7
Enterprise N, Windows 7 Ultimate, Windows 7 Ultimate N.

Microsoft implementations set TS_RAIL_LEVEL_SUPPORTED to 0 on other versions when that
capability is sent and the server does not support Remote Programs.

<2> Section 2.2.1.1.2: Only Windows 7 and Windows Server 2008 R2 send the
TS_WINDOW_LEVEL_SUPPORTED_EX value to the client instead of the
TS_WINDOW_LEVEL_SUPPORTED value.

<3> Section 2.2.1.3.1.2.1: This flag is not set in any Windows server implementation.

<4> Section 2.2.1.3.1.2.1: This flag is not set in any Windows server implementation.

<5> Section 2.2.1.3.1.2.1: This flag is not set in any Windows server implementation.

<6> Section 2.2.1.3.1.2.2: Windows applications display large icons in elements such as the Alt-Tab
dialog box and on the desktop, and place small icons in elements such as the window’s title bar and
taskbar buttons.

<7> Section 2.2.1.3.1.2.3: Windows applications display large icons in elements such as the Alt-Tab

dialog box and on the desktop, and place small icons in elements such as the window’s title bar and

taskbar buttons.

<8> Section 2.2.1.3.2.2.1: The WINDOW_ORDER_CACHED_ICON flag is not set in Windows 7 and
Windows Server 2008 R2 implementations.

<9> Section 2.2.1.3.2.2.3: Microsoft implementations set minimum value to 10000 (10 seconds)
and the maximum value to 30000 (30 seconds).

82 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<10> Section 2.2.2.3.1: The length of the ArgumentsLen field is set to a maximum of 520 bytes
on Windows Vista and Windows Server 2008, and to a maximum of 16000 bytes on Windows 7 and

Windows Server 2008 R2.

<11> Section 2.2.2.3.2: This contains a Win32 error code. For more information, see [MS-ERREF].

<12> Section 2.2.2.4.2: Sets the High-Contrast parameters using the Win32 API. For more
information, see [MSDN-HIGHCONTRAST].

<13> Section 2.2.2.4.2: Uses the Windows–specific name of the color scheme.

<14> Section 2.2.2.5.1: This system parameter is supported only on the following versions of
Windows: Windows Vista, Windows Server 2008, Windows 7 and Windows Server 2008 R2. For
more information, see ([MSDN-SysParamsInfo]).

<15> Section 2.2.2.6.5: Only Windows 7 and Windows Server 2008 R2 use the Application ID string

to identify and group windows.

<16> Section 2.2.2.8.1: Only Windows 7 and Windows Server 2008 R2 use the Application ID string

to identify and group windows.

<17> Section 2.2.2.9.1: This option is available on Windows 7 and Windows Server 2008 R2 only.

<18> Section 2.2.2.9.1: This option is available on Windows 7 and Windows Server 2008 R2 only.

<19> Section 2.2.2.9.1: This option is available on Windows Server 2008 R2 only.

<20> Section 2.2.2.9.1: This option is available on Windows Server 2008 R2 only.

<21> Section 3.1.2: Microsoft implementations use 30 seconds as the time-out value.

<22> Section 3.1.5.2: Windows implementations ignore any incompatibility resulting from checking
the buildNumber field between the sender and the receiver.

<23> Section 3.2.5.1.1: Windows implementations use RAIL as the name of the virtual channel.

<24> Section 3.2.5.2.8.2: Only Windows 7 and Windows Server 2008 R2 use the Application ID
string to identify and group windows.

<25> Section 3.3.5.1.5: In Windows implementations the NumIconCaches and
NumCacheEntries fields for each cache are set to 0 if the values in the Windows List Capability
Sets exceed the corresponding entries set in the server cache.

<26> Section 3.3.5.2.7.1: Windows 7 and Windows Server 2008 R2 use the Application ID string to
identify and group windows.

%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90017
http://go.microsoft.com/fwlink/?LinkID=187513

83 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

7 Change Tracking

This section identifies changes that were made to the [MS-RDPERP] protocol document between the
January 2011 and February 2011 releases. Changes are classified as New, Major, Minor, Editorial, or
No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A document revision that incorporates changes to interoperability requirements or functionality.

An extensive rewrite, addition, or deletion of major portions of content.

The removal of a document from the documentation set.

Changes made for template compliance.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are

updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the language and formatting in the technical content was
changed. Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical or language changes were introduced.
The technical content of the document is identical to the last released version, but minor editorial
and formatting changes, as well as updates to the header and footer information, and to the revision

summary, may have been made.

Major and minor changes can be described further using the following change types:

New content added.

Content updated.

Content removed.

New product behavior note added.

Product behavior note updated.

Product behavior note removed.

New protocol syntax added.

Protocol syntax updated.

Protocol syntax removed.

New content added due to protocol revision.

Content updated due to protocol revision.

Content removed due to protocol revision.

New protocol syntax added due to protocol revision.

84 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Protocol syntax updated due to protocol revision.

Protocol syntax removed due to protocol revision.

New content added for template compliance.

Content updated for template compliance.

Content removed for template compliance.

Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please

contact protocol@microsoft.com.

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

1.3.2.1

RAIL Session Connection

62975

Added a reference to the "Handshake PDU"

section.

N Content

updated.

1.8

Vendor-Extensible Fields

62785

Added information regarding error codes.

N Content

updated.

2.1

Transport

62776

Specified that the reference to the

"Relationship to the Remote Desktop

Protocol: Basic Connectivity and Graphics

Remoting Specification" section is an

overview.

Y Content

updated.

2.2.1

Updates to the Remote

Desktop Protocol: Basic

Connectivity and Graphics

Remoting Specification

62777

Clarified that the "RAIL Session Connection"

section reference is an overview of how the

RAIL connection is established.

Y Content

updated.

2.2.1.3.2.2.1

New or Existing Notification

Icons

62784

Clarified the meaning of Version field values.

N Content

updated.

3.1.1.1

Icon Cache Support

62783

Added section.

Y New

content

added.

3.1.3 62970 N Content

mailto:protocol@microsoft.com

85 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

Initialization Added initialization information about static

virtual channels, Handshake PDUs, and Client

Information PDUs.

updated.

3.2.1

Abstract Data Model

62781

Added main description and note.

N Content

updated.

3.2.1.1

Windowing Support Level

62781

Added section.

Y New

content

added.

3.3.1.2

Windowing Support Level

62781

Added section.

Y New

content

added.

86 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

8 Index

A

Abstract data model
client (section 3.1.1 57, section 3.2.1 58)
server (section 3.1.1 57, section 3.3.1 65)

Activate PDU (section 3.2.5.2.5.1 62, section
3.3.5.2.5.1 68)

Actively_Monitored_Desktop packet 34
Applicability 14

C

Cached_Icon packet 27
Capability negotiation 14
Capability sets 16
Change tracking 83
Client

abstract data model (section 3.1.1 57, section
3.2.1 58)

handshake PDU (section 3.1.5.1 57, section
3.1.5.2 58)

higher-layer triggered events (section 3.1.4 57,
section 3.2.4 58)

initialization (section 3.1.3 57, section 3.2.3 58)
local events (section 3.1.7 58, section 3.2.7 64)
message processing (section 3.1.5 57, section

3.2.5 58)
RDP core 59
sequencing rules (section 3.1.5 57, section 3.2.5

58)
Static Virtual Channel 61
timer events (section 3.1.6 58, section 3.2.6 64)
timers (section 3.1.2 57, section 3.2.2 58)

Client Info PDU (section 3.2.5.1.3 59, section
3.3.5.1.3 66)

Client Information PDU (section 3.2.5.2.1.1 61,

section 3.3.5.2.1.1 67)
Client MCS Connect Initial PDU (section 3.2.5.1.1

59, section 3.3.5.1.1 65)
Common structures 18
Confirm Active PDU (section 3.2.5.1.4 59, section

3.3.5.1.5 66)
Construction - handshake PDU 57

D

Data model - abstract
client (section 3.1.1 57, section 3.2.1 58)
server (section 3.1.1 57, section 3.3.1 65)

Deleted_Notification_Icon packet 32
Deleted_Window packet 28
Demand Active PDU (section 3.2.5.1.5 59, section

3.3.5.1.4 66)
Desktop 33
Desktop Information Orders (section 3.2.5.1.8 61,

section 3.3.5.1.8 67)

E

Examples
initialization messages examples 74
Launching messages examples 74
local client event messages examples 76
local client system parameters update messages

examples 75
overview 71
updates to RDP code protocol examples 71
window move messages examples 78

Execute PDU (section 3.2.5.2.2.1 61, section
3.3.5.2.2.1 68)

Execute Result PDU (section 3.2.5.2.2.2 61, section
3.3.5.2.2.2 68)

F

Fields - vendor-extensible 14

G

Glossary 9

H

Handshake PDU
construction 57
processing 58

Higher-layer triggered events
client (section 3.1.4 57, section 3.2.4 58)
server (section 3.1.4 57, section 3.3.4 65)

I

Implementers - security considerations 80
Informative references 10
Initialization

client (section 3.1.3 57, section 3.2.3 58)
server (section 3.1.3 57, section 3.3.3 65)

Initialization messages (section 2.2.2.2 37, section
3.2.5.2.1 61, section 3.3.5.2.1 67)

Initialization messages examples 74
Introduction 9

L

Launching messages examples 74
Local client event messages (section 2.2.2.6 44,

section 3.2.5.2.5 62, section 3.3.5.2.5 68)
Local client event messages examples 76
Local client system parameters update messages

(section 2.2.2.4 41, section 3.2.5.2.3 62, section
3.3.5.2.3 68)

Local client system parameters update messages
examples 75

Local events
client (section 3.1.7 58, section 3.2.7 64)
server (section 3.1.7 58, section 3.3.7 70)

87 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

M

Message processing
client (section 3.1.5 57, section 3.2.5 58)
server (section 3.1.5 57, section 3.3.5 65)

Messages
flows 11
overview 16
RDP core 16
Static Virtual Channel 36
syntax 16
transport 16

Min Max Info PDU (section 3.2.5.2.7.1 63, section
3.3.5.2.6.1 69)

Move/Size End PDU 69
Move/Size Start PDU 69
Move-Size End PDU 64
Move-Size Start PDU 63

N

Non_monitored_Desktop packet 35
Normative references 9
Notification icon 29
Notification Icon Orders (section 3.2.5.1.7 60,

section 3.3.5.1.7 67)
Notification_Icon_Information_Order packet 29
Notify Event PDU (section 3.2.5.2.5.4 63, section

3.3.5.2.5.4 69)

O

Overview (synopsis) 10

P

Parameters - security 80
Preconditions 14
Prerequisites 14
Processing - handshake PDU 58
Product behaviors 81
Program launching messages (section 2.2.2.3 38,

section 3.2.5.2.2 61, section 3.3.5.2.2 68)

R

RAIL local move/size 13
RAIL server-client synchronization 12

RAIL session
connection 11
disconnection 12
logoff 12
reconnection 12

RAIL virtual channel messages 13
RDP core

client 59
messages 16
server 65

References
informative 10
normative 9

Relation to RDP core protocol 11

Relationship to other protocols 14
Remote_Programs_Capability_Set packet 16

S

Security 80
Sequencing rules

client (section 3.1.5 57, section 3.2.5 58)
server (section 3.1.5 57, section 3.3.5 65)

Server
abstract data model (section 3.1.1 57, section

3.3.1 65)
handshake PDU (section 3.1.5.1 57, section

3.1.5.2 58)
higher-layer triggered events (section 3.1.4 57,

section 3.3.4 65)
initialization (section 3.1.3 57, section 3.3.3 65)
local events (section 3.1.7 58, section 3.3.7 70)
message processing (section 3.1.5 57, section

3.3.5 65)
RDP core 65
sequencing rules (section 3.1.5 57, section 3.3.5

65)
Static Virtual Channel 67
timer events (section 3.1.6 58, section 3.3.6 70)
timers (section 3.1.2 57, section 3.3.2 65)

Server MCS Connect Initial PDU 65
Server MCS Connect Response PDU 59
Server system parameters update messages

(section 2.2.2.5 43, section 3.2.5.2.4 62)
Server system parameters update PDU (section

3.2.5.2.4.1 62, section 3.3.5.2.4.1 68)
Server_Move_Size_End_PDU packet 52
Server_Move_Size_Start_PDU packet 49
Server_System_Parameters_Update_PDU packet 43
Standards assignments 15
Static Virtual Channel

client 61
messages 36
server 67

Structures 18
Syntax - message 16
System Command PDU (section 3.2.5.2.5.3 62,

section 3.3.5.2.5.3 68)
System Menu PDU (section 3.2.5.2.5.2 62, section

3.3.5.2.5.2 68)
System parameters update messages 68
System parameters update PDU (section

3.2.5.2.3.1 62, section 3.3.5.2.3.1 68)

T

Timer events
client (section 3.1.6 58, section 3.2.6 64)
server (section 3.1.6 58, section 3.3.6 70)

Timers
client (section 3.1.2 57, section 3.2.2 58)
server (section 3.1.2 57, section 3.3.2 65)

Tracking changes 83
Transport - message 16
Triggered events - higher-layer

client (section 3.1.4 57, section 3.2.4 58)

88 / 88

[MS-RDPERP] — v20110204
 Remote Desktop Protocol: Remote Programs Virtual Channel Extension

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

server (section 3.1.4 57, section 3.3.4 65)
TS_CACHED_ICON_INFO packet 20
TS_DESKTOP_ORDER_HEADER packet 34
TS_HIGHCONTRAST packet 43
TS_ICON_INFO packet 19
TS_NOTIFY_ICON_INFOTIP packet 32
TS_NOTIFYICON_ORDER_HEADER packet 29
TS_RAIL_ORDER_ACTIVATE packet 44
TS_RAIL_ORDER_CLIENTSTATUS packet 38
TS_RAIL_ORDER_EXEC packet 38
TS_RAIL_ORDER_EXEC_RESULT packet 40
TS_RAIL_ORDER_GET_APPID_REQ packet 48
TS_RAIL_ORDER_GET_APPID_RESP packet 54
TS_RAIL_ORDER_HANDSHAKE packet 37
TS_RAIL_ORDER_LANGBARINFO packet 55
TS_RAIL_ORDER_MINMAXINFO packet 48
TS_RAIL_ORDER_NOTIFY_EVENT packet 46
TS_RAIL_ORDER_SYSCOMMAND packet 45
TS_RAIL_ORDER_SYSMENU packet 45
TS_RAIL_ORDER_SYSPARAM packet 41
TS_RAIL_ORDER_WINDOWMOVE packet 53
TS_RAIL_PDU_HEADER packet 36
TS_RECTANGLE_16 packet 19

TS_WINDOW_ORDER_HEADER packet 21

U

UNICODE_STRING packet 18
Updates to RDP code protocol examples 71

V

Vendor-extensible fields 14
Versioning 14

W

Window information 21
Window Information Orders (section 3.2.5.1.6 60,

section 3.3.5.1.6 66)
Window move messages (section 2.2.2.7 48,

section 3.2.5.2.7 63, section 3.3.5.2.6 69)
Window move messages examples 78
Window Move PDU (section 3.2.5.2.7.3 64, section

3.3.5.2.6.3 69)
Window_Icon packet 27
Window_Information_Order packet 21
Window_List_Capability_Set packet 17
Windowing alternate secondary drawing orders 21

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Relationship to the Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification
	1.3.2 Message Flows
	1.3.2.1 RAIL Session Connection
	1.3.2.2 RAIL Session Disconnection and Reconnection
	1.3.2.3 RAIL Server/Client Synchronization
	1.3.2.4 RAIL Virtual Channel Messages
	1.3.2.5 RAIL Local Move/Resize

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Updates to the Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification
	2.2.1.1 Capability Sets
	2.2.1.1.1 Remote Programs Capability Set
	2.2.1.1.2 Window List Capability Set

	2.2.1.2 Common Structures
	2.2.1.2.1 Unicode String (UNICODE_STRING)
	2.2.1.2.2 Rectangle (TS_RECTANGLE_16)
	2.2.1.2.3 Icon Info (TS_ICON_INFO)
	2.2.1.2.4 Cached Icon Info (TS_CACHED_ICON_INFO)

	2.2.1.3 Windowing Alternate Secondary Drawing Orders
	2.2.1.3.1 Window Information
	2.2.1.3.1.1 Common Header (TS_WINDOW_ORDER_HEADER)
	2.2.1.3.1.2 Orders
	2.2.1.3.1.2.1 New or Existing Window
	2.2.1.3.1.2.2 Window Icon
	2.2.1.3.1.2.3 Cached Icon
	2.2.1.3.1.2.4 Deleted Window

	2.2.1.3.2 Notification Icon Information
	2.2.1.3.2.1 Common Header (TS_NOTIFYICON_ORDER_HEADER)
	2.2.1.3.2.2 Orders
	2.2.1.3.2.2.1 New or Existing Notification Icons
	2.2.1.3.2.2.2 Deleted Notification Icons
	2.2.1.3.2.2.3 Notification Icon Balloon Tooltip (TS_NOTIFY_ICON_INFOTIP)

	2.2.1.3.3 Desktop Information
	2.2.1.3.3.1 Common Header (TS_DESKTOP_ORDER_HEADER)
	2.2.1.3.3.2 Orders
	2.2.1.3.3.2.1 Actively Monitored Desktop
	2.2.1.3.3.2.2 Non-Monitored Desktop

	2.2.2 Static Virtual Channel Protocol
	2.2.2.1 Common Header (TS_RAIL_PDU_HEADER)
	2.2.2.2 Initialization Messages
	2.2.2.2.1 Handshake PDU (TS_RAIL_ORDER_HANDSHAKE)
	2.2.2.2.2 Client Information PDU (TS_RAIL_ORDER_CLIENTSTATUS)

	2.2.2.3 Program Launching Messages
	2.2.2.3.1 Client Execute PDU (TS_RAIL_ORDER_EXEC)
	2.2.2.3.2 Server Execute Result PDU (TS_RAIL_ORDER_EXEC_RESULT)

	2.2.2.4 Local Client System Parameters Update Messages
	2.2.2.4.1 Client System Parameters Update PDU (TS_RAIL_ORDER_SYSPARAM)
	2.2.2.4.2 High Contrast System Information Structure (TS_HIGHCONTRAST)

	2.2.2.5 Server System Parameters Update Messages
	2.2.2.5.1 Server System Parameters Update PDU (TS_RAIL_ORDER_SYSPARAM)

	2.2.2.6 Local Client Event Messages
	2.2.2.6.1 Client Activate PDU (TS_RAIL_ORDER_ACTIVATE)
	2.2.2.6.2 Client System Menu PDU (TS_RAIL_ORDER_SYSMENU)
	2.2.2.6.3 Client System Command PDU (TS_RAIL_ORDER_SYSCOMMAND)
	2.2.2.6.4 Client Notify Event PDU (TS_RAIL_ORDER_NOTIFY_EVENT)
	2.2.2.6.5 Client Get Application ID PDU (TS_RAIL_ORDER_GET_APPID_REQ)

	2.2.2.7 Window Move Messages
	2.2.2.7.1 Server Min Max Info PDU (TS_RAIL_ORDER_MINMAXINFO)
	2.2.2.7.2 Server Move/Size Start PDU (TS_RAIL_ORDER_LOCALMOVESIZE)
	2.2.2.7.3 Server Move/Size End PDU (TS_RAIL_ORDER_LOCALMOVESIZE)
	2.2.2.7.4 Client Window Move PDU (TS_RAIL_ORDER_WINDOWMOVE)

	2.2.2.8 Server Application ID Response
	2.2.2.8.1 Server Get Application ID Response PDU (TS_RAIL_ORDER_GET_APPID_RESP)

	2.2.2.9 Language Bar Messages
	2.2.2.9.1 Language Bar Information PDU (TS_RAIL_ORDER_LANGBARINFO)

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.1.1 Icon Cache Support

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Constructing Handshake PDU
	3.1.5.2 Processing Handshake PDU

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.1.1 Windowing Support Level

	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Updates to RDP Core Protocol
	3.2.5.1.1 Constructing Client MCS Connect Initial PDU
	3.2.5.1.2 Processing Server MCS Connect Response PDU
	3.2.5.1.3 Constructing Client Info PDU
	3.2.5.1.4 Constructing Confirm Active PDU
	3.2.5.1.5 Processing Demand Active PDU
	3.2.5.1.6 Processing Window Information Orders
	3.2.5.1.7 Processing Notification Icon Orders
	3.2.5.1.8 Processing Desktop Information Orders

	3.2.5.2 Static Virtual Channel Protocol
	3.2.5.2.1 Initialization Messages
	3.2.5.2.1.1 Sending Client Information PDU

	3.2.5.2.2 Program Launching Messages
	3.2.5.2.2.1 Sending Execute PDU
	3.2.5.2.2.2 Processing Execute Result PDU

	3.2.5.2.3 Local Client System Parameters Update Messages
	3.2.5.2.3.1 Sending System Parameters Update PDU

	3.2.5.2.4 Server System Parameters Update Messages
	3.2.5.2.4.1 Processing Server System Parameters Update PDU

	3.2.5.2.5 Local Client Event Messages
	3.2.5.2.5.1 Sending Activate PDU
	3.2.5.2.5.2 Sending System Menu PDU
	3.2.5.2.5.3 Sending System Command PDU
	3.2.5.2.5.4 Sending Notify Event PDU

	3.2.5.2.6 Language Bar Information PDUs
	3.2.5.2.6.1 Sending Language Bar Information PDU
	3.2.5.2.6.2 Processing Language Bar Information PDU

	3.2.5.2.7 Window Move Messages
	3.2.5.2.7.1 Processing Min Max Info PDU
	3.2.5.2.7.2 Processing Move-Size Start PDU
	3.2.5.2.7.3 Sending Window Move PDU
	3.2.5.2.7.4 Processing Move-Size End PDU

	3.2.5.2.8 Application ID Messages
	3.2.5.2.8.1 Sending Client Get Application ID PDU
	3.2.5.2.8.2 Processing Server Get Application ID Response PDU

	3.2.6 Timer Events
	3.2.7 Other Local Events

	3.3 Server Details
	3.3.1 Abstract Data Model
	3.3.1.1 Client Local Move/Size Ability Store
	3.3.1.2 Windowing Support Level

	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.5 Message Processing Events and Sequencing Rules
	3.3.5.1 Updates to RDP Core Protocol
	3.3.5.1.1 Processing Client MCS Connect Initial PDU
	3.3.5.1.2 Constructing Server MCS Connect Response PDU
	3.3.5.1.3 Processing Client Info PDU
	3.3.5.1.4 Constructing Demand Active PDU
	3.3.5.1.5 Processing Confirm Active PDU
	3.3.5.1.6 Constructing Window Information Orders
	3.3.5.1.7 Constructing Notification Icon Orders
	3.3.5.1.8 Constructing Desktop Information Orders

	3.3.5.2 Static Virtual Channel Protocol
	3.3.5.2.1 Initialization Messages
	3.3.5.2.1.1 Processing Client Information PDU

	3.3.5.2.2 Program Launching Messages
	3.3.5.2.2.1 Processing Execute PDU
	3.3.5.2.2.2 Sending Execute Result PDU

	3.3.5.2.3 Local Client System Parameters Update Messages
	3.3.5.2.3.1 Processing System Parameters Update PDU

	3.3.5.2.4 Server System Parameters Update Messages
	3.3.5.2.4.1 Sending Server System Parameters Update PDU

	3.3.5.2.5 Local Client Event Messages
	3.3.5.2.5.1 Processing Activate PDU
	3.3.5.2.5.2 Processing System Menu PDU
	3.3.5.2.5.3 Processing System Command PDU
	3.3.5.2.5.4 Processing Notify Event PDU
	3.3.5.2.5.5 Processing Language Bar Information PDU

	3.3.5.2.6 Window Move Messages
	3.3.5.2.6.1 Sending Min Max Info PDU
	3.3.5.2.6.2 Sending Move/Size Start PDU
	3.3.5.2.6.3 Processing Window Move PDU
	3.3.5.2.6.4 Sending Move/Size End PDU

	3.3.5.2.7 Application ID Messages
	3.3.5.2.7.1 Processing the Get Application ID PDU
	3.3.5.2.7.2 Sending the Get Application ID Response PDU

	3.3.6 Timer Events
	3.3.7 Other Local Events
	3.3.7.1 Sending Language Bar Information PDU

	4 Protocol Examples
	4.1 Updates to the RDP Core Protocol
	4.1.1 Windowing Alternate Secondary Drawing Orders
	4.1.1.1 New or Existing Windows
	4.1.1.2 Deleted Window
	4.1.1.3 New or Existing Notification Icons
	4.1.1.4 Deleted Notification Icons
	4.1.1.5 Actively Monitored Desktop
	4.1.1.6 Non-monitored Desktop

	4.2 Initialization Messages
	4.2.1 TS_RAIL_ORDER_HANDSHAKE
	4.2.2 TS_RAIL_ORDER_CLIENTSTATUS

	4.3 Launching Messages
	4.3.1 TS_RAIL_ORDER_EXEC
	4.3.2 RAIL_ORDER_EXEC_RESULT

	4.4 Local Client System Parameters Update Messages
	4.4.1 TS_RAIL_ORDER_SYSPARAM

	4.5 Local Client Event Messages
	4.5.1 TS_RAIL_ORDER_ACTIVATE
	4.5.2 TS_RAIL_ORDER_SYSMENU
	4.5.3 TS_RAIL_ORDER_SYSCOMMAND
	4.5.4 TS_RAIL_ORDER_NOTIFY_EVENT
	4.5.5 TS_RAIL_ORDER_LANGBARINFO
	4.5.6 TS_RAIL_ORDER_GET_APPID_REQ
	4.5.7 TS_RAIL_ORDER_GET_APPID_RESP

	4.6 Window Move Messages
	4.6.1 TS_RAIL_ORDER_WINDOWMOVE
	4.6.2 TS_RAIL_ORDER_LOCALMOVESIZE
	4.6.3 TS_RAIL_ORDER_MINMAXINFO

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

