

1 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

[MS-PCCRR]:
Peer Content Caching and Retrieval:
Retrieval Protocol Specification

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft's Open Specification Promise (available here:

http://www.microsoft.com/interop/osp) or the Community Promise (available here:

http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if
the technologies described in the Open Specifications are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

2 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Revision Summary

Date

Revision

History

Revision

Class Comments

12/05/2008 0.1 Major Initial Availability

01/16/2009 0.1.1 Editorial Revised and edited the technical content.

02/27/2009 0.1.2 Editorial Revised and edited the technical content.

04/10/2009 0.2 Minor Updated the technical content.

05/22/2009 1.0 Major Updated and revised the technical content.

07/02/2009 1.1 Minor Updated the technical content.

08/14/2009 2.0 Major Updated and revised the technical content.

09/25/2009 2.1 Minor Updated the technical content.

11/06/2009 2.2 Minor Updated the technical content.

12/18/2009 2.2.1 Editorial Revised and edited the technical content.

01/29/2010 2.3 Minor Updated the technical content.

03/12/2010 2.3.1 Editorial Revised and edited the technical content.

04/23/2010 2.4 Minor Updated the technical content.

06/04/2010 3.0 Major Updated and revised the technical content.

07/16/2010 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/27/2010 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

10/08/2010 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

11/19/2010 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

02/11/2011 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

3 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Contents

1 Introduction ... 5
1.1 Glossary ... 5
1.2 References .. 6

1.2.1 Normative References ... 6
1.2.2 Informative References ... 7

1.3 Overview .. 7
1.4 Relationship to Other Protocols .. 8
1.5 Prerequisites/Preconditions ... 8
1.6 Applicability Statement ... 8
1.7 Versioning and Capability Negotiation ... 9
1.8 Vendor-Extensible Fields ... 9
1.9 Standards Assignments .. 9

2 Messages.. 10
2.1 Transport .. 10

2.1.1 Peer Download Transport .. 10
2.1.2 Transport Security .. 10

2.2 Message Syntax .. 10
2.2.1 Common Data Types .. 10

2.2.1.1 BLOCK_RANGE ... 11
2.2.1.2 BLOCK_RANGE_ARRAY .. 11

2.2.2 TRANSPORT_RESPONSE_HEADER .. 11
2.2.3 MESSAGE_HEADER ... 11
2.2.4 Request Message ... 13

2.2.4.1 MSG_NEGO_REQ .. 14
2.2.4.2 MSG_GETBLKLIST .. 14
2.2.4.3 MSG_GETBLKS ... 15

2.2.5 Response Message ... 16
2.2.5.1 MSG_NEGO_RESP ... 17
2.2.5.2 MSG_BLKLIST .. 17
2.2.5.3 MSG_BLK .. 18

3 Protocol Details .. 21
3.1 Retrieval Protocol Details .. 21

3.1.1 Client Details ... 21
3.1.1.1 Abstract Data Model .. 21
3.1.1.2 Timers .. 21
3.1.1.3 Initialization ... 21
3.1.1.4 Higher-Layer Triggered Events ... 22

3.1.1.4.1 MSG_NEGO_REQ Request .. 22
3.1.1.4.2 MSG_GETBLKLIST Initiation.. 22
3.1.1.4.3 MSG_GETBLKS Initiation .. 22

3.1.1.5 Message Processing Events and Sequencing Rules .. 22
3.1.1.5.1 MSG_NEGO_RESP Received .. 22
3.1.1.5.2 MSG_BLKLIST Response Received ... 23
3.1.1.5.3 MSG_BLK Response Received ... 24
3.1.1.5.4 Other Messages Received ... 24

3.1.1.6 Timer Events .. 24
3.1.1.6.1 Request Timer Expiration ... 24

3.1.1.7 Other Local Events .. 24

4 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.2 Server Details .. 24
3.1.2.1 Abstract Data Model .. 24
3.1.2.2 Timers .. 25
3.1.2.3 Initialization ... 25
3.1.2.4 Higher-Layer Triggered Events ... 25
3.1.2.5 Message Processing Events and Sequencing Rules .. 25

3.1.2.5.1 MSG_NEGO_REQ Received ... 25
3.1.2.5.2 MSG_GETBLKLIST Request Received ... 25
3.1.2.5.3 MSG_GETBLKS Request Received .. 26
3.1.2.5.4 Other Messages Received ... 26

3.1.2.6 Timer Events .. 27
3.1.2.6.1 Upload Timer Expiration ... 27

3.1.2.7 Other Local Events .. 27

4 Protocol Examples .. 28
4.1 Download with GetBlockList and GetBlocks Exchanges .. 28
4.2 Simple Download with GetBlocks Download Sub-Sessions only 29

5 Security .. 30
5.1 Security Considerations for Implementers ... 30
5.2 Index of Security Parameters .. 30

6 Appendix A: Product Behavior .. 31

7 Change Tracking... 33

8 Index ... 34

5 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1 Introduction

The Peer Content Caching and Retrieval Framework is based on a peer-to-peer discovery and
distribution model. It is designed to reduce bandwidth consumption on branch-office wide-area-
network (WAN) links by having clients retrieve content from distributed caches when available
instead of the content servers, which are often located remotely from branch offices over the WAN
links. The peers themselves act as caches from which they serve other requesting peers. The
framework also supports the mode of using pre-provisioned hosted caches in place of peer-based
caching. The main benefit of the framework is to reduce operation costs by reducing WAN link

utilization, while providing faster downloads from the local area networks (LANs) in the branch
offices.

The Retrieval Protocol defines two protocol message exchanges – one for querying the server for
the availability of certain content, and the other for retrieving content from a server. The framework
incorporates both the Retrieval Protocol and the Discovery Protocol [MS-PCCRD] together to enable
a client to discover and retrieve content from multiple peers that have the content instead of the
original content server.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

encryption key

The following terms are defined in [MS-PCCRC]:

block
block hash
segment
segment ID (HoHoDk)
segment secret

The following terms are specific to this document:

block range: A set of consecutive blocks within a segment described by a pair of integers, the

first being the index of the first blocks in the range, and the second the number of
consecutive blocks in the range.

client (client-role peer): For the Peer Content Caching and Retrieval Framework, a peer
that is looking for content, either from the server or from other peers or hosted caches. In
the context of the Retrieval Protocol, a client is a peer that requests a block-range from a
server_role_peer.

content server: The original source of the content that peers subsequently retrieve from each

other.

cooperative mode: A mode of operation for the client-role peer in the Peer Content Caching
and Retrieval Framework, in which it discovers and obtains content blocks from other

peers, and shares content blocks it has with other peers in the network.

download schedule session: The session invoked by a client instance of the Peer Content
Caching and Retrieval Framework within a segment retrieval session that schedules

block downloads with available servers.

%5bMS-PCCRD%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf

6 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

higher-layer application: The applications that use the Peer Content Caching and Retrieval:
Retrieval Protocol, either by itself or as part of the Peer Content Caching and Retrieval

Framework or other applications.

hosted cache mode: A mode of operation for the client-role peer in the Peer Content

Caching and Retrieval Framework, in which it obtains and shares content (only) with a
single server whose location is preconfigured on the client-role peer.

index: The block number within a segment, which can be used to compute the offset of the
block in the segment, once multiplied by the block size used for that particular segment
block number within the target segment.

initialization vector: A data block that some modes of AES cipher block operation require as an
additional initial data input. Refer to [SP800-38A] for detailed definition and usage.

peer: An instance of the Retrieval Protocol for the Peer Content Caching and Retrieval
Framework running on a host. A peer can be both a client and a server in the Retrieval
Protocol operations.

Peer Content Caching and Retrieval Framework (or Framework): The framework that
creates Peer Content Caching and Retrieval Discovery Protocol instances to discover client-
role peers and download the content blocks from either client-role peers (cooperative

mode) or hosted cache (hosted-cache mode).

Retrieval Protocol exchange: The request/response communication initiated by a client-role
peer issuing a request to a given server-role peer, and concluded by the server-role peer
responding to the request.

segment retrieval session: A session that defines a set of operations on a client-role peer
that use the Discovery Protocol (in cooperative mode) and the Retrieval Protocol to discover
and retrieve ranges of blocks (partial or complete) of a segment.

server (server-role peer): A peer that listens for incoming block-range requests from client-
role peers, and responds to the requests.

simple download: A GetBlocks request/response that is carried out without an associated
GetBlockList request/response.

target segment: The segment for which the client-role peer is requesting the desired block
range in a segment retrieval session, identified by the segment ID).

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as

described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If

you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=128809
%5bMS-PCCRD%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624

7 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

[SP800-38A] National Institute of Standards and Technology. "Special Publication 800-38A,
Recommendation for Block Cipher Modes of Operation: Methods and Techniques", December 2001,

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

[MS-DTYP] Microsoft Corporation, "Windows Data Types", January 2007.

[MS-PCCRC] Microsoft Corporation, "Peer Content Caching and Retrieval: Content Identification",
December 2008.

[MS-PCCRD] Microsoft Corporation, "Peer Content Caching and Retrieval Discovery Protocol
Specification", December 2008.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

[RFC2616] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC

2616, June 1999, http://www.ietf.org/rfc/rfc2616.txt

1.2.2 Informative References

[FIPS197] National Institute of Standards and Technology, "Federal Information Processing
Standards Publication 197: Advanced Encryption Standard (AES)", November 2001,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary", March 2007.

1.3 Overview

The Retrieval Protocol defines three request/response exchanges between a client and a server on
top of an HTTP [RFC2616] transport – to query the supported version range of the server, to query
the availability of specific content, and to retrieve specific content. The protocol assumes that the
client identifies both the specific content it is looking for and the server it will contact. The discovery

of the content information and the server address is outside the scope of the Retrieval Protocol. The
request/response exchanges are:

Content Availability Request: The client initiates a query to the server for the availability of the

specified content. The server responds with the ranges (subsets or all) of the requested content it
has.

Content Retrieval Request: The client initiates a request to the server for the specified content.

The server either replies with the requested content or with content of zero length when the
requested content is not available.

Version Negotiation Request: The client initiates a request to the server to query the supported

Retrieval Protocol version range. The server replies with its supported Retrieval Protocol version
range.

The exchanges can be utilized in conjunction or independently, as described in the following

examples:

The client can query the server for the availability of the content, identify what content the server

has, and then retrieve only the available content from the server; or

The client can query the server for the availability of the content, identify what content the server

has, and decide not to retrieve the content; or

http://go.microsoft.com/fwlink/?LinkId=128809
%5bMS-DTYP%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRD%5d.pdf
%5bMS-PCCRD%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=89870
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90372

8 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The client can retrieve the content directly from the server without querying for the availability of

the content first.

For all scenarios described earlier, the client can optionally query the server for its supported

version range first before querying for content availability or retrieving blocks.

The Retrieval Protocol does not mandate the relationship between these exchanges, as shown in the
examples. As a result, in the case where they are used in conjunction, the higher-layer
applications invoking the Retrieval Protocol must be able to retain the availability list from the
availability query and use it to retrieve part or all of the available content in the subsequent retrieval
request(s).

Peers within the Peer Content Caching and Retrieval Framework use the Retrieval Protocol in one of

two ways, depending on whether they are in cooperative mode, retrieving content from each
other, or hosted cache mode, retrieving it only from a single preconfigured server. In the
cooperative mode case, a peer uses the framework’s Discovery Protocol (see [MS-PCCRD]) to locate
peers who have the desired content, and then initiates exchanges with the discovered peers to
obtain the content. In hosted cache mode, a peer directly initiates exchanges with the hosted cache

to obtain the desired content.

1.4 Relationship to Other Protocols

The Retrieval Protocol uses HTTP [RFC2616] as a transport.

The Peer Content Caching and Retrieval Framework uses the Retrieval Protocol [MS-PCCRR] and
Discovery Protocol [MS-PCCRD] to discover peers when in cooperative mode, and query and
download content from other peers. The framework also uses the data structures as described in
[MS-PCCRC].

Figure 1: Protocol stack diagram

1.5 Prerequisites/Preconditions

A higher-layer application using the protocol MUST have the Content Information (see [MS-

PCCRC] section 2.3) for the block ranges and segments that it is retrieving from the server. The

Content Information contains all the relevant information necessary for discovering and verifying
the content blocks.

The client must be able to identify and use the encryption algorithm and key used by the server

to encrypt the content.

1.6 Applicability Statement

The Retrieval Protocol is designed to handle the content availability query and content retrieval parts
of the operation.<1> It is also suitable for other types of content or object retrieval tasks because it
does not assume any characteristics of the content.

The Peer Content Caching and Retrieval Framework, which uses the Retrieval Protocol, is best suited
when there is a need to reduce load on a content server or reduce bandwidth usage on the link
between the peers and the content server. This is because the protocol enables downloading data

%5bMS-PCCRC%5d.pdf
%5bMS-PCCRD%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90372
%5bMS-PCCRD%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf

9 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

from peers on the high speed link instead of the content server, which may be behind a slow link or
may be heavily loaded.

1.7 Versioning and Capability Negotiation

The Retrieval Protocol has no version negotiation or capability negotiation behavior, although it
carries a protocol number in its messages.

This document covers versioning issues in the following areas:

Supported Transports: This protocol MUST be implemented on top of HTTP as discussed in

section 2.1.

Protocol Versions: The protocol version is 1.0.

Security and Authentication Methods: There is no authentication or authorization in the

protocol. The blocks served by the server-role peer, however, are encrypted as described in
section 3.1.2.5.3.

Localization: The protocol does not contain locale-dependent information.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

10 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2 Messages

The Retrieval Protocol is made up of a limited number of fully defined messages sent on top of the
Peer Download Transport.

2.1 Transport

2.1.1 Peer Download Transport

The Peer Download Transport is a peer-to-peer transport built on top of HTTP [RFC2616]. The

client/server HTTP protocol is turned into a peer-to-peer transport by having each peer implement
both a client and a server role. In a given transport session between two peers P1 and P2, the
initiator peer acts as client, and the other peer acts as server. If P1 is the initiator of the transport
session, P1 sends an HTTP request, and P2 replies by sending an HTTP response. Both the Retrieval
Protocol request and response message types are included in the body of the HTTP messages. The
payload of each such HTTP request or response consists solely of a single Retrieval Protocol
message, with the response message prefixed with an additional length field (as defined in section

2.2.2) for reassembly purposes. A transport session between any two peers spans a single request-
response sequence, and no context is kept within the transport across different transport sessions
between those two peers.

Each peer implements the server role by reserving the URL under the root path of {116B50EB-
ECE2-41ac-8429-9F9E963361B7}/ and listening for POST requests on it.

The initiating/client-role peer P1 at IP address A1 initiates the transport of a given request-type Peer
Retrieval Protocol message to peer P2 at IP address A2, by sending an HTTP POST request to the

root path of {116B50EB-ECE2-41ac-8429-9F9E963361B7}/.

2.1.2 Transport Security

The Peer Download Transport does not implement any security. There is no peer authentication or
authorization, and messages are sent in clear text. At the transport level, peers accept and process
all messages coming from any other peer.

2.2 Message Syntax

Messages are formed by headers and a message body. Both headers and body are formed by a
sequence of fields. Each field is aligned according to the current protocol version’s default alignment,
currently 4 bytes.

All Retrieval Protocol messages are variable size messages. The valid range of the total message
size MUST be from 16 bytes to 98,304 bytes (or 96 KB).

2.2.1 Common Data Types

The protocol supports three field types:

Integer (DWORD fields as defined in [MS-DTYP] section 2.2.9, transmitted in network byte

order).

BLOCK_RANGE_ARRAY ((Integer [2])[count], i.e. a count-sized array of BLOCK_RANGE

fields).

BYTE array (BYTE[count], i.e. a count-sized array of bytes).

http://go.microsoft.com/fwlink/?LinkId=90372
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

11 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.1.1 BLOCK_RANGE

A BLOCK_RANGE is an array of two integers that defines a consecutive array of blocks.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Index

Count

Index (4 bytes): The index of the first block in the range.

Count (4 bytes): Count of consecutive adjacent blocks in that range, including the block at the
Index location. The value of this field MUST be greater than 0.

Index and Count are both integer fields in the range of 0x00000000 to 0xFFFFFFFF, but contain a

value in the range from 0 to 511 (inclusive) for the Index field, and 1 to 511–Index (inclusive) for
the Count field. For example, a BLOCK_RANGE of [42, 7] represents all the blocks starting from
block index 42 to block index 48, including the last one.

2.2.1.2 BLOCK_RANGE_ARRAY

Variable-size array containing BLOCK_RANGE entries.

This type is declared as follows:

typedef BLOCK_RANGE BLOCK_RANGE_ARRAY[];

2.2.2 TRANSPORT_RESPONSE_HEADER

The transport adds the following header in front of response-type protocol messages for reassembly
purposes:

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Size

Size (4 bytes): Total message size, in bytes, excluding this field. The valid range of the total

message size MUST be from 16 bytes to 98,304 bytes (or 96 KB).

2.2.3 MESSAGE_HEADER

All Retrieval Protocol messages are prefixed by a message header.

Messages can be one of two types: request-type or response-type. Request-type messages include
MSG_NEGO_REQ (section 2.2.4.1), MSG_GETBLKLIST (section 2.2.4.2), and MSG_GETBLKS (section
2.2.4.3), and response type messages include MSG_NEGO_RESP (section 2.2.5.1), MSG_BLKLIST

(section 2.2.5.2), and MSG_BLK (section 2.2.5.3). Request-type messages initiate a communication

12 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

session between two peers. Response-type messages are sent only on response to a Request-type
one (see Protocol Details (section 3) for more details).

A request-type message can be delivered only as an HTTP request. A response-type message can be
delivered only as an HTTP response to an incoming HTTP request.

The layout of the message header is as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

ProtVer

MsgType

MsgSize

CryptoAlgoId

ProtVer (4 bytes): Protocol version number, formed by concatenating the protocol major
version number and protocol minor version number, encoded as follows (where MSB is Most
Significant Byte and LSB is Least Significant Byte):

1st Byte (Addr: X) 2nd Byte (Addr: X+1) 3rd Byte (Addr: X+2) 4th Byte (Addr: X+3)

Minor version MSB Minor version LSB Major version MSB Major version LSB

The major version number is encoded in the least significant word of the protocol version's
DWORD.

The minor version number is encoded in the most significant word of the protocol version's

DWORD.

Both the major and minor version number can express the version range of 0x00000000 to
0xFFFFFFFF. Currently, the protocol version number MUST be set to {major=1 (0x0001),

minor=0 (0x0000)}.

MsgType (4 bytes): The type of message in the message body, expressed as a binary integer.
MUST be set to one of the following values.

Value Meaning

MSG_NEGO_REQ

0x00000000

A protocol version negotiation request. The request declares the minimum and

maximum version numbers supported by the requesting client-role peer.<2>

MSG_NEGO_RESP

0x00000001

A protocol version negotiation response. It is sent in response to any protocol

version negotiation request or to any other request with protocol version not

supported by the server-role peer.

The response declares the minimum and maximum version numbers

supported by the responding server-role peer.

MSG_GETBLKLIST

0x00000002

A request for a list of block hashes of blocks in the target segment that are

possessed by the destination server-role peer (list expressed as a block

range array), and intersecting the list of block hashes specified in the

%5bMS-PCCRC%5d.pdf

13 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

request itself.

MSG_GETBLKS

0x00000003

A request for an array of block hashes (specified by a block range array).

Since only one block will be returned, a MSG_GETBLKS message SHOULD

specify only a single range containing only a single block.

MSG_BLKLIST

0x00000004

A response message containing a list of block hashes of blocks in the target

segment that are possessed by the destination server-role peer (list expressed

as a block range array), and intersecting the list of block hashes specified in

the previous request from the client-role peer.

MSG_BLK

0x00000005

A response message containing the (first) actual block requested by the client-

role peer via a block range array in a MSG_GETBLKLIST message.

MsgSize (4 bytes): Protocol message total size including MESSAGE_HEADER, but not including

the Transport Header. The valid range of the total message size MUST be from 16 bytes to

98,304 bytes (or 96 KB).

CryptoAlgoId (4 bytes): Encryption algorithm used by the server-role peer to encrypt data.
MUST be one of the following values.<3> Refer to [FIPS197] for the AES standard and
[SP800-38A] for the supported block cipher modes listed in the following table.

Value Meaning

0x00000000 No encryption.

AES_128

0x00000001

AES 128-bit, CBC-mode encryption.

AES_192

0x00000002

AES 192-bit, CBC-mode encryption.

AES_256

0x00000003

AES 256-bit, CBC-mode encryption.

2.2.4 Request Message

The Retrieval Protocol defines three request messages sent by the clients to the servers:
MSG_NEGO_REQ (section 2.2.4.1), MSG_GETBLKLIST (section 2.2.4.2), and MSG_GETBLKS (section
2.2.4.3). The complete layout of a request-type Peer Content Caching and Retrieval: Retrieval

Protocol message is as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

MESSAGE_HEADER

...

...

...

http://go.microsoft.com/fwlink/?LinkId=89870
http://go.microsoft.com/fwlink/?LinkId=128809

14 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

MESSAGE_BODY (variable)

...

MESSAGE_HEADER (16 bytes): Message header.

MESSAGE_BODY (variable): Message body, which contains either a GetBlockList
(MSG_GETBLKLIST) or GetBlocks (MSG_GETBLKS) request message.

2.2.4.1 MSG_NEGO_REQ

The MSG_NEGO_REQ (Negotiation Request) message is a request for the minimum and maximum
protocol version supported by the target server-role peer. The message contains the minimum and
maximum protocol version supported by the requesting client-role peer.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

MinSupportedProtocolVersion

MaxSupportedProtocolVersion

MinSupportedProtocolVersion (4 bytes): Minimum protocol version supported by the
requesting peer. The protocol version is encoded identically to the ProtVer field defined in

section 2.2.3.

MaxSupportedProtocolVersion (4 bytes): Maximum protocol version supported by the
requesting peer. The protocol version is encoded identically to the ProtVer field defined in
section 2.2.3.

2.2.4.2 MSG_GETBLKLIST

The MSG_GETBLKLIST (GetBlockList) message contains a request for a download block list. It is
used when retrieving a set of blocks defined by one or more BLOCK_ARRAY_RANGE items.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SizeOfSegmentID

SegmentID (variable)

...

ZeroPad (variable)

...

NeededBlocksRangeCount

15 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

NeededBlockRanges (variable)

...

SizeOfSegmentID (4 bytes): Size, in bytes. of the subsequent SegmentID field. The
syntactic range of this field is from 0x00000000 to 0xFFFFFFFF. The actual value of this field
depends on the hashing algorithm used as defined in [MS-PCCRC]. Implementations SHOULD

support all allowed SegmentID lengths, and MUST support content with 32-byte
SegmentIDs.<4>

SegmentID (variable): Public Segment Identifier for the target segment of content (also
known as HoHoDk). See [MS-PCCRC] for a description of contents, segments, blocks, and
identifiers.

ZeroPad (variable): Sequence of bytes added (as needed) to restore 4-byte alignment,

relative to the beginning of this message. The value of each byte MUST be set to zero. This

field is 0 to 3 bytes in length, as required.

NeededBlocksRangeCount (4 bytes): Number of items in the subsequent block range array.
The syntactic range of this field is from 0x00000000 to 0xFFFFFFFF. The effective range of this
field MUST be between 1 and 256 inclusive, because there cannot be more than 256 non-
overlapping and non-contiguous ranges in a maximum segment size of 512 blocks.

NeededBlockRanges (variable): Block range array listing the block hashes of the blocks

within the target segment that the client-role peer is interested in. The server-role peer will
reply with a block range array representing the intersection between the list of block hashes in
the NeededBlockRanges array and the block range array set of blocks within the target
segment currently available for sharing in the local cache of the server-role peer.<5>

2.2.4.3 MSG_GETBLKS

The MSG_GETBLKS (GetBlocks) message contains a request for blocks of content. It is used to

retrieve a set of blocks defined by a single BLOCK_ARRAY_RANGE.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SizeOfSegmentID

SegmentID (variable)

...

ZeroPad (variable)

...

ReqBlockRangeCount

ReqBlockRanges (variable)

%5bMS-PCCRC%5d.pdf
%5bMS-PCCRC%5d.pdf

16 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

...

SizeOfDataForVrfBlock

DataForVrfBlock (variable)

...

SizeOfSegmentID (4 bytes): Size in bytes of the subsequent SegmentID field. The syntactic
range of this field is from 0x00000000 to 0xFFFFFFFF. The actual value of this field depends
on the hashing algorithm used as defined in [MS-PCCRC]. Implementations SHOULD support

all allowed SegmentID lengths, and MUST support content with 32-byte SegmentIDs.<6>

SegmentID (variable): Public Segment Identifier for the target segment of content (also
known as HoHoDk). See [MS-PCCRC] for a description of contents, segment, blocks, and
identifiers.

ZeroPad (variable): Sequence of bytes added (as needed) to restore 4-byte alignment,
relative to the beginning of this message. The value of each byte MUST be set to zero. This

field is 0 to 3 bytes in length, as required.

ReqBlockRangeCount (4 bytes): Number of items in the subsequent block range array. The
syntactic range of this field is from 0x00000000 to 0xFFFFFFFF. The effective range of this
field MUST be between 1 and 256 inclusive, because there cannot be more than 256 non-
overlapping and non-contiguous ranges in a maximum segment size of 512 blocks.

ReqBlockRanges (variable): Block range array representing the blocks requested for the
target segment. RegBlockRanges MUST specify a block range containing only one block.

SizeOfDataForVrfBlock (4 bytes): Size in bytes of the subsequent DataForVrfBlock field.
This field SHOULD be zero.

DataForVrfBlock (variable): Not used by the protocol. This field SHOULD be empty.

2.2.5 Response Message

The Retrieval Protocol defines three response messages sent by the servers in response to client
requests: MSG_NEGO_RESP (section 2.2.5.1), MSG_BLKLIST (section 2.2.5.2), and MSG_BLK

(section 2.2.5.3). The complete layout of a response-type Peer Content Caching and Retrieval:
Retrieval Protocol message is as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

TRANSPORT_RESPONSE_HEADER

MESSAGE_HEADER

...

...

%5bMS-PCCRC%5d.pdf

17 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

...

MESSAGE_BODY (variable)

...

TRANSPORT_RESPONSE_HEADER (4 bytes): Transport response header.

MESSAGE_HEADER (16 bytes): Message header.

MESSAGE_BODY (variable): Message body, which may contain either a MSG_BLKLIST or a
MSG_BLK message.

2.2.5.1 MSG_NEGO_RESP

The MSG_NEGO_RESP (Negotiation Response) message is the response message containing the

minimum and maximum protocol version supported by the responding server-role peer. The
message is sent in response to a Negotiation Request message or to any other request message
with a protocol version not supported by the server-role peer.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

MinSupportedProtocolVersion

MaxSupportedProtocolVersion

MinSupportedProtocolVersion (4 bytes): Minimum protocol version supported by the
requesting peer. The protocol version is encoded identically to the ProtVer field defined in
section 2.2.3.

MaxSupportedProtocolVersion (4 bytes): Maximum protocol version supported by the
requesting peer. The protocol version is encoded identically to the ProtVer field defined in
section 2.2.3.

2.2.5.2 MSG_BLKLIST

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SizeOfSegmentId

SegmentId (variable)

...

ZeroPad (variable)

...

18 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

BlockRangeCount

BlockRanges (variable)

...

NextBlockIndex

SizeOfSegmentId (4 bytes): The size, in bytes, of the subsequent SegmentId field.

SegmentId (variable): The Public Segment Identifier for the target segment of content (also
known as HoHoDk). See [MS-PCCRC] for details.

ZeroPad (variable): A sequence of N bytes added (only as needed) to restore 4-byte
alignment, where 0 <= N <= 3. Each byte's value MUST be set to zero.

BlockRangeCount (4 bytes): Number of items in the subsequent block range array. The
server MUST set the BlockRangeCount field to 0 if it does not have any of the requested
block ranges.

BlockRanges (variable): A block range array describing the blocks currently available for

download from the current server-role peer for the target segment, within the boundaries of
the list of block ranges of interest (NeededBlockRanges) specified by the client-role peer in
the previously received GetBlockList request message (MSG_GETBLKLIST (section 2.2.4.2)).
<7>

NextBlockIndex (4 bytes): The index of the first block after the block sent in the current
message, currently available for download from this server-role peer. If no such next block is
available, this index MUST be zero.

2.2.5.3 MSG_BLK

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SizeOfSegmentId

SegmentId (variable)

...

ZeroPad (variable)

...

BlockIndex

NextBlockIndex

SizeOfBlock

%5bMS-PCCRC%5d.pdf

19 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Block (variable)

...

ZeroPad_2 (variable)

...

SizeOfVrfBlock

VrfBlock (variable)

...

ZeroPad_3 (variable)

...

SizeOfIVBlock

IVBlock (variable)

...

SizeOfSegmentId (4 bytes): The size, in bytes, of the subsequent SegmentId field.

SegmentId (variable): The Public Segment Identifier for the target segment of content (also
known as HoHoDk). See [MS-PCCRC] for details.

ZeroPad (variable): A sequence of N bytes added (only as needed) to restore 4-byte
alignment, where 0 <= N <= 3. Each byte's value MUST be set to zero.

BlockIndex (4 bytes): The index in the target segment of the block sent in the current
message.

NextBlockIndex (4 bytes): The index of the first block after the block sent in the current
message, currently available for download from this server-role peer. If no such next block is

available, this index MUST be zero.

SizeOfBlock (4 bytes): The size, in bytes, of the subsequent Block field. The server MUST set
the SizeOfBlock field to zero if it does not have the requested block.

Block (variable): The actual block of data, encrypted according to the cryptographic algorithm
specified in the header of the message itself, not including the initialization vector.

ZeroPad_2 (variable): A sequence of N bytes added (only as needed) to restore 4-byte
alignment, where 0 <= N <= 3. Each byte's value MUST be set to zero.

SizeOfVrfBlock (4 bytes): The size, in bytes, of the subsequent VrfBlock field, which SHOULD
be zero.

%5bMS-PCCRC%5d.pdf

20 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

VrfBlock (variable): Currently not used, and SHOULD be empty.

ZeroPad_3 (variable): A sequence of N bytes added (only as needed) to restore 4-byte

alignment, where 0 <= N <= 3. Each byte's value MUST be set to zero.

SizeOfIVBlock (4 bytes): The size, in bytes, of the subsequent IVBlock field.

IVBlock (variable): The initialization vector used by the server-role peer when encrypting the
block of data (Block field) sent with this message.

21 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3 Protocol Details

The Retrieval Protocol consists of three types of exchanges: the Negotiation request/response, the
BlockList request/response, and the Block request/response. (See section 2 for message formats
and field definitions.)

Protocol Version Negotiation: A client-role peer (referred to here simply as "client") initiates a

protocol version negotiation with a server-role peer (referred to here simply as "server") by
sending a Negotiation Request message (MSG_NEGO_REQ (section 2.2.4.1)), declaring the

minimum and maximum protocol versions it supports. The server responds with a Negotiation
Response message (MSG_NEGO_RESP (section 2.2.5.1)), declaring the minimum and maximum
protocol versions it supports. Implementation of the client side of the protocol version negotiation
is optional. The server side of the protocol version negotiation MUST be implemented.

BlockList request/response: A client initiates a GetBlockList request (MSG_GETBLKLIST

(section 2.2.4.2)) to a server in order to query the list of content blocks available on the server
for a given segment ID, and a list of block ranges within the segment, by sending a

MSG_GETBLKLIST request. The server responds with a BlockList response (MSG_BLKLIST

(section 2.2.5.2)) containing the list of block ranges for the specific segment ID that are within
the ranges of the request. If the server does not support the client's protocol version, it treats
the request as a Negotiation Request and responds accordingly (see section 3.1.2.5.1).

Blocks request/response: A client initiates a GetBlocks request (MSG_GETBLKS (section

2.2.4.3)) to a server to retrieve a specific block of a given segment, which is identified by the

segment ID and the index of the block in the segment. It does this by sending a MSG_GETBLKS
request. The server responds with the requested content blocks in a Block response (MSG_BLK
(section 2.2.5.3)). If the server does not support the client's protocol version, it treats the
request as a Negotiation Request, and responds accordingly (see section 3.1.2.5.1).

The Peer Content Caching and Retrieval Framework (also referred to as simply "the framework")
then uses the Retrieval Protocol to retrieve and assemble complete segments of a content from a

combination of sources, including either a set of server peers or a hosted cache, plus the original
content server if the former does not have the complete content.

3.1 Retrieval Protocol Details

3.1.1 Client Details

3.1.1.1 Abstract Data Model

The Core Retrieval Protocol client maintains the following data:

Outstanding Request List: A list of request messages sent for which responses have not yet

been received, along with the addresses of the peers to which they were sent.

3.1.1.2 Timers

Request Timer: A per-request-message timer set by the client whenever it sends a

MSG_GETBLKLIST (section 2.2.4.2) or a MSG_GETBLKS (section 2.2.4.3) request message.
When the timer expires before the exchange is completed, the client MUST cancel the current
exchange. The default timeout value MUST be set to 2 seconds.<8>

3.1.1.3 Initialization

The Retrieval Protocol requires no explicit initialization for clients.

22 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.1.4 Higher-Layer Triggered Events

3.1.1.4.1 MSG_NEGO_REQ Request

An implementation of the Retrieval Protocol MAY support the sending of a Protocol Version
Negotiation Request message (MSG_NEGO_REQ (section 2.2.4.1)), when triggered by a higher-layer
application.<9> The following description only applies to the implementations that support this
feature.

When initiating a Retrieval Protocol query for the supported protocol versions, the higher-layer
applications MUST specify a server address. The Retrieval Protocol implementation MUST:

1. Construct an MSG_NEGO_REQ message (as specified in section 2.2.4.1).

2. Fill in the minimum and maximum protocol versions it supports.

3. Send the message to the server.

4. Store the message in the Outstanding Request List.

5. Start the Request Timer.

3.1.1.4.2 MSG_GETBLKLIST Initiation

To initiate a Retrieval Protocol query for the list of block ranges on a server, the higher-layer

applications MUST specify a server address, a segment ID, and a set of block ranges within the
segment identified by the segment ID. The client instance of the Retrieval Protocol instantiation
MUST construct and send a GetBlockList message (MSG_GETBLKLIST (section 2.2.4.2)) to the
server, store it in the Outstanding Request List (3.1.1.1), and start the Request Timer
(3.1.1.2). The SegmentID and NeededBlocksRanges fields of the GetBlockList message
correspond to the segment ID and the set of block ranges supplied by the higher-layer applications.

3.1.1.4.3 MSG_GETBLKS Initiation

To initiate a Retrieval Protocol request for specific block ranges, the higher-layer applications MUST
specify a server address, a segment ID, and a set of block ranges with the segment identified by the
segment ID. The client instance of the Retrieval Protocol MUST construct and send a GetBlocks
message (MSG_GETBLKS (section 2.2.4.3)) to the server, store it in the Outstanding Request List
(3.1.1.1), and start the Request Timer (3.1.1.2). The SegmentID and ReqBlockRanges fields

correspond to the segment ID and the block ranges of the request.

The Retrieval Protocol SHOULD only request and retrieve one block per exchange of MSG_GETBLKS
request and MSG_BLK (section 2.2.5.3) response messages. If the higher-layer applications need to
retrieve more than one block, multiple GetBlocks messages MUST be sent with one block per
request.

A peer SHOULD perform a simple download if it involves a limited number of consecutive blocks in
a single block range.<10> This implies that the blocks are consecutive in the segment.

3.1.1.5 Message Processing Events and Sequencing Rules

3.1.1.5.1 MSG_NEGO_RESP Received

On receiving a MSG_NEGO_RESP (section 2.2.5.1) response message from a server, the client
MUST first determine if this is a response to a previously sent request by checking the Outstanding
Request List for the address of the server. If it is a response to either a MSG_GETBLKLIST (section

23 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.4.2) or MSG_GETBLKS (section 2.2.4.3) message, the client MUST compare the ranges of
protocol versions and select a protocol version based on the rules described later in this section. It

must then resend the original MSG_GETBLKLIST or MSG_GETBLKS message, using the selected
version.

If it is a response to an MSG_NEGO_REQ (section 2.2.4.1), the client MUST return the highest
protocol version supported by both the client and the server to the higher-layer applications.

If the client and server are incompatible, then the client MUST silently discard the MSG_NEGO_RESP
message and MUST abort any current exchange with the server, including exchanges for previously
sent MSG_GETBLKLIST, MSG_GETBLKS, or MSG_NEGO_REQ messages.

The rules for determining compatibility and selecting a version are listed below:

1. The client’s and the server’s major version ranges are calculated from the MSG_NEGO_REQ and

MSG_NEGO_RESP messages, respectively. In both cases, they are defined as the inclusive range
between the major version from the MinSupportedProtocolVersion field and the major version
from the MaxSupportedProtocolVersion field. The highest common major version is the

highest value that is included in both ranges. If these ranges do not contain any common values,
then no highest common major version exists.

2. The minor versions within the same major version do not affect protocol compatibility. For

instance, a client sending a version 3.2 request message and a server replying with version 3.0
message are fully compatible. The client and the server MUST each select their own highest
minor version supported within the highest common major version. For example, if the client
supports protocol version range [3.2, 5.0] and the server supports protocol version range [2.0,
4.3], then the highest common major version is 4, and the client will be sending messages with
version 4.8 (assuming the highest minor version number for major version 4 is 4.8), whereas the
server will be replying with messages with version 4.3. Another example: a client with a

supported version range of [1.0, 2.1] and a server with a supported range of [2.5, 2.9] will result
in a highest common major version of 2, with the client using version 2.1 and the server using
version 2.9.

3. If no highest common major version exists, then the client and the server are incompatible.

If there is no existing request message previously sent to the server stored in the Outstanding
Request List, the client MUST silently discard the received message.

3.1.1.5.2 MSG_BLKLIST Response Received

On receiving a MSG_BLKLIST (section 2.2.5.2) response message from a server, the client MUST
verify that it is well-formed and corresponds to a GetBlockList request message (MSG_GETBLKLIST
(section 2.2.4.2)) in its Outstanding Request List. The client then performs the following checks:

The client SHOULD verify if the segment ID matches any request in the Outstanding Request

List. If the client performs the segment ID check, it MUST silently discard the MSG_BLKLIST

message and abort the exchange if the segment ID does not match the segment ID of any
request.<11>

The client MUST check if the block ranges overlap with the ranges specified in any request with a

matching segment ID in the Outstanding Request List. The client MUST silently discard the
MSG_BLKLIST message and abort the exchange if the check fails.

If this verification is successful, then the peer MUST:

Delete the corresponding request message from the Outstanding Request List, and cancel its

Request Timer.

24 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Return the segment ID and block range from the MSG_BLKLIST message, as well as the server

address, to the higher-layer applications.

Otherwise, the response message MUST be silently discarded.

3.1.1.5.3 MSG_BLK Response Received

On receiving a MSG_BLK (section 2.2.5.3) response message from a discovered peer, the client
MUST verify that it is well-formed and corresponds to a GetBlocks request message (MSG_GETBLKS
(section 2.2.4.3)) in its Outstanding Request List (the segment ID and block index would match
that of an outstanding GetBlocks request). The client MUST silently discard the message if this
verification is unsuccessful. Otherwise, it MUST:

Delete the corresponding request message from the Outstanding Request List, and cancel its

Request Timer.

If an encryption algorithm (CryptoAlgoID ≠ 0) is specified in the MSG_BLK message, decrypt

the block using the pre-provisioned key.

Pass the segment ID, block index, and (encrypted) block up to the higher-layer applications.

Otherwise, the response message MUST be silently discarded and the exchange aborted.

3.1.1.5.4 Other Messages Received

All malformed messages received by the client and messages of unknown type sent to the Retrieval
Protocol URLs specified in section 2.1.1 MUST be silently discarded.

3.1.1.6 Timer Events

3.1.1.6.1 Request Timer Expiration

When the Request Timer expires before the exchange (GetBlockList (MSG_GETBLKLIST (section
2.2.4.2)), GetBlocks (MSG_GETBLKS (section 2.2.4.3)), or Negotiation Request (MSG_NEGO_REQ

(section 2.2.4.1))) is completed, the client MUST abort the current exchange.

3.1.1.7 Other Local Events

None.

3.1.2 Server Details

3.1.2.1 Abstract Data Model

Content Cache: This is the local content cache on the server. It consists of a list of segment IDs

and associated block ranges, along with their Content Information (see [MS-PCCRC] section 2.3)

and corresponding content blocks that the client or server has previously obtained either from
other peers or from the content server. The server replies to client queries with the information
and content blocks stored in its content cache; the client retrieves the content from the server

using the Core Retrieval Protocol.

Active Client Count: This counter keeps the number of active clients the server is currently

serving. The counter is incremented by 1 when the server receives a request (GetBlockList

(MSG_GETBLKLIST (section 2.2.4.2)) or GetBlocks (MSG_GETBLKS (section 2.2.4.3))), and is
decremented by 1 when the server sends back a response or discards the request. This counter is

%5bMS-PCCRC%5d.pdf

25 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

used to limit the number of concurrent clients for a server to a maximum value. The default
maximum threshold SHOULD be set to 64<12><13>, and it MUST be configurable. The system

administrators should configure this value based on the processing capability of the server. If this
counter reaches the threshold, the server will send back an empty response (empty block range

in BlockList (MSG_BLKLIST (section 2.2.5.2)) or empty block in Block (MSG_BLK (section
2.2.5.3))) to the client.

3.1.2.2 Timers

Upload Timer: A per-instantiation timer set by a server when the protocol is instantiated. The

server MUST abort the protocol instance when the timer expires before the request/response

exchange is completed. The default timeout value MUST be set to 15 seconds.<14>

3.1.2.3 Initialization

The server is initialized by starting to listen for incoming HTTP requests on the URL specified in
section 2.1.1. The server MUST set the Active Client Count to zero.

3.1.2.4 Higher-Layer Triggered Events

There are no explicit higher-layer triggered events for the server, other than waiting for the client
messages as enabled by the initialization.

3.1.2.5 Message Processing Events and Sequencing Rules

3.1.2.5.1 MSG_NEGO_REQ Received

On receiving a valid MSG_NEGO_REQ (section 2.2.4.1) message from a client, the server MUST

construct a MSG_NEGO_RESP (section 2.2.5.1) message with the maximum and minimum protocol
versions that it supports, set the Upload Timer, and send the response message back to the client.

3.1.2.5.2 MSG_GETBLKLIST Request Received

On receiving a valid MSG_GETBLKLIST (section 2.2.4.2) request message from a client, the server
MUST perform the following actions in the order specified:

1. The server MUST first check if the protocol version is supported, based on the version range

comparison rules specified in section 3.1.1.5.1. If the major protocol version is outside the range
of the server implementation, the server MUST construct an MSG_NEGO_RESP (section 2.2.5.1)
message, fill it in with the maximum and minimum protocol versions it supports, and send the
MSG_NEGO_RESP message back to the client.

2. If the major version is supported by the server, the server MUST select a compatible protocol
version based on the same rules specified in section 3.1.1.5.1 for the following reply message.

3. The server MUST check if its Active Client Count is greater than or equal to the maximum

number allowed. If the server is already serving more than or equal to the maximum number of
clients, the server MUST reply to the client using a MSG_BLKLIST (section 2.2.5.2) message with

an empty block range.

4. Otherwise, the server MUST increment the Active Client Count by 1, set the Upload Timer,
and compute the intersection of the block ranges (for the segment specified) in the
MSG_GETBLKLIST request with the block ranges for the same segment in the server's Content

Cache. The server MUST then send the client a MSG_BLKLIST response message containing the

26 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

segment ID listed in the MSG_GETBLKLIST request message, and the computed intersection
block ranges (possibly empty).

5. Once the MSG_BLKLIST response message is sent, the server MUST decrement the Active
Client Count by 1. If the resulting value is negative, the server MUST set the counter to zero.

3.1.2.5.3 MSG_GETBLKS Request Received

On receiving a valid MSG_GETBLKS (section 2.2.4.3) request message from a client, the server
MUST perform the following actions in the order specified:

1. The server MUST first check if the protocol version is supported, based on the version range
comparison rules specified in section 3.1.1.5.1. If the major version is outside the range of the
server implementation, the server MUST construct a MSG_NEGO_RESP (section 2.2.5.1)

message, fill in the maximum and minimum protocol versions it supports, and send the
MSG_NEGO_RESP message back to the client.

2. If the major version is supported by the server, the server MUST select a compatible protocol

version based on the same rules specified in section 3.1.1.5.1 for the following reply message.

3. The server MUST check if its Active Client Count (Abstract Data Model, section 3.1.2.1) is
greater than or equal to the maximum number allowed. If the server is already serving more

than or equal to the maximum number of clients, the server MUST reply to the client using a
MSG_BLK (section 2.2.5.3) message with an empty block.

4. Otherwise, the server MUST increment the Active Client Count by 1, set the Upload Timer
(Timers, section 2.2.5.3), and construct and send the client a MSG_BLK response message
containing a block that is selected based on the following rules:

If the block ranges in the MSG_GETBLKS request message contain only one block, the server

MUST select the requested block.

If the block ranges contain more than one block, the server SHOULD select the first (smallest-

index) block from the block ranges and the segment that is specified in the request message.

The server then MUST check whether the selected block exists in the server’s Content Cache
(Abstract Data Model section 2.2.5.1). If it does, then the server MUST include this block in the
MSG_BLK response message it sends. Otherwise, the response MUST contain an empty MSG_BLK
response message. The SegmentID field in the response message MUST be set to the segment

ID of the request, and the BlockIndex field MUST be set to the index of the block sent in this
message. The server MUST also calculate the value of the NextBlockIndex field (section
2.2.5.3).

The server MUST apply the encryption algorithm chosen by the upper-layer application to the
block in MSG_BLK response message. The list of permissible encryption algorithms is given by
the CryptoAlgoID value table in section 2.2.3.

5. Once the MSG_BLK message is sent, the server MUST decrement the Active Client Count by 1.
If the resulting value is negative, the server MUST set the counter to zero.

3.1.2.5.4 Other Messages Received

All malformed messages received by the server and messages of unknown types sent to the
Retrieval Protocol URLs specified in section 2.1.1 MUST be silently discarded.

27 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.2.6 Timer Events

3.1.2.6.1 Upload Timer Expiration

When the Upload Timer expires, the server-role peer MUST abort the protocol instance.

3.1.2.7 Other Local Events

None.

28 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4 Protocol Examples

4.1 Download with GetBlockList and GetBlocks Exchanges

Scenario: Peer P1 is trying to download blocks BN0 -:- BN1 and BN2 -:- BN3 of segment S1 from
peer P2.

Figure 2: Download using GetBlockList and GetBlocks request/response pairs

Sequence of events:

1. Peer P1 sends a GetBlockList message (MSG_GETBLKLIST (section 2.2.4.2)) to P2, specifying two
block ranges of interest, one for BN0 -:- BN1 and one for BN2 -:- BN3.

2. Upon receiving the GetBlockList message, P2 gathers the list of blocks it currently has for the
target segment S1, it intersects that with the list of needed blocks specified by P1 in the

GetBlockList message, and it sends back to P1 a BlockList message (MSG_BLKLIST (section
2.2.5.2)) containing the set resulting from the previous intersection.

3. Upon receiving the BlockList message from P2, P1 starts downloading blocks by sending a
GetBlocks message (MSG_GETBLKS (section 2.2.4.3)) for one block at a time.

4. Upon receiving the GetBlocks message for a given block, P2 replies with a Block message

(MSG_BLK (section 2.2.5.3)) containing the actual block of data encrypted using the crypto
algorithm selected locally on the server-role peer P2. The encryption key MUST be provisioned

on both P1 and P2. Refer to section 5.1 for the detailed requirements on encryption and
initialization vector generation.

%5bMS-GLOS%5d.pdf

29 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The encrypted block and initialization vector are added to the Block message and sent back to
the client-role peer. The requesting peer will be able to decrypt the data only if it knows the hash

of data of the segment.

4.2 Simple Download with GetBlocks Download Sub-Sessions only

Scenario: Peer P1 is trying to download two consecutive blocks, BN and BN + 1, of segment S1 from
peer P2.

Figure 3: Simple Download using GetBlocks request/response

Sequence of events:

1. Since the download involves only two blocks, P1 decides to skip the GetBlockList message

(MSG_GETBLKLIST (section 2.2.4.2)). It sends a GetBlocks message (MSG_GETBLKS (section
2.2.4.3)) for BN, and later for BN+1.

2. Upon receiving the GetBlocks message, P2 replies with a Block message (MSG_BLK (section
2.2.5.3)) containing the encrypted block of data and the initialization vector used during the
encryption.

3. Once received the Block message, P1 decrypts and stores it, then it proceeds asking for the

second block by sending a new GetBlocks message.

30 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

5 Security

5.1 Security Considerations for Implementers

A higher-layer application provides the server-role peer with the encryption algorithm, key size and
the encryption key. The choice of the encryption algorithm and key size MUST be one of the
CryptoAlgoId field values specified in section 2.2.3.

The server-role peer generates an initialization vector suitable for the chosen encryption algorithm
and uses the encryption key to encrypt the block using the chosen encryption algorithm. The server-

role peer then records the chosen algorithm and the initialization vector in the message, as
described in section 2.2.5.3.

Server-role peers and client-role peers never exchange/share/send each other the encryption key.

The client-role peer MUST have a-priori knowledge of the encryption key. Using the encryption
algorithm and initialization vector it received from the server-role peer, it decrypts the block.

There is no other explicit authentication or authorization built into the protocol, except for the Utility
Index strategies above described that may lead to deny service to peers currently considered

untrustworthy.

5.2 Index of Security Parameters

None.

31 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows Vista® operating system

Windows Server® 2008 operating system

Windows® 7 operating system

Windows Server® 2008 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 1.6: For Windows Vista and Windows Server 2008, support for the client-side elements
of this protocol is available only via the optional installation of the Background Intelligent Transfer
Service via Windows Management Framework. Support for the server-side elements of this protocol
is not available for Windows Vista or Windows Server 2008.

<2> Section 2.2.3: This message is never sent by Windows, but it is handled by the code if
received, by responding with an MSG_NEGO_RESP (section 2.2.5.1) message.

<3> Section 2.2.3: Windows uses AES_128 as the default encryption algorithm. Windows supports:
no encryption, AES_128, AES_ 192, and AES_256.

<4> Section 2.2.4.2: By default, Windows implementations use SHA-256 as the hashing algorithm
to generate the SegmentID, which corresponds to a SegmentID length of 32 bytes. Windows
Server 2008 R2 is capable of generating SegmentIDs using SHA-384 and SHA-512 in addition to

SHA-256, but the Windows implementation of the Retrieval Protocol only supports SegmentIDs
generated using SHA-256.

<5> Section 2.2.4.2: Windows implementations normalize the ranges in the array of block ranges in
the MSG_GETBLKLIST and MSG_BLKLIST messages, using the following rules:

Ranges in the array never overlap with each other.

Overlapped or adjacent ranges in the array are always combined into a single range.

Ranges in the array are always sorted by Index.

Windows implementations always send block ranges normalized with these rules, but can accept

non-normalized ranges in received messages.

<6> Section 2.2.4.3: By default, Windows implementations use SHA-256 as the hashing algorithm
to generate the SegmentID, which corresponds to a SegmentID length of 32 bytes. Windows
Server 2008 R2 is capable of generating SegmentIDs using SHA-384 and SHA-512 in addition to

SHA-256, but the Windows implementation of the Retrieval Protocol only supports SegmentIDs
generated using SHA-256.

32 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<7> Section 2.2.5.2: Windows implementations normalize the ranges in the array of block ranges in
the MSG_GETBLKLIST and MSG_BLKLIST messages, using the following rules:

Ranges in the array never overlap with each other.

Overlapped or adjacent ranges in the array are always combined into a single range.

Ranges in the array are always sorted by Index.

Windows implementations always send block ranges normalized with these rules, but can accept
non-normalized ranges in received messages.

<8> Section 3.1.1.2: Windows uses a 2 second timeout for each request message. The timeout is
configurable between 1 millisecond and 1 minute.

<9> Section 3.1.1.4.1: Windows does not implement this Negotiation Request.

<10> Section 3.1.1.4.3: Windows performs a simple download when it involves less than 4
consecutive blocks in a single block range. When Internet Explorer is used for content retrieval, it

reads into 64K buffers. Therefore, in general each read generates a segment retrieval session for
a single block; in some cases the read could span two blocks if it is not block aligned. This results in
a simple download, and no MSG_GETBLKLIST is generated.

<11> Section 3.1.1.5.2: Windows implementations do not perform the segment ID verification for

any MSG_BLKLIST message received. Windows implementations rely on the binding handle of the
transport from which the MSG_BLKLIST is received in order to identify which request (and,
implicitly, the corresponding segment ID) the MSG_BLKLIST is for.

<12> Section 3.1.2.1: By default the server-role peer Windows implementation serves up to 64
simultaneous Upload Sessions per serving-role peer; this limit is configurable between 1 and
16,384.

<13> Section 3.1.2.1: By default the server-role peer Windows implementation serves up to 1,024
simultaneous Upload Sessions per hosted cache server; this limit is configurable between 1 and
4,294,967,295.

<14> Section 3.1.2.2: Windows uses a 15 second timeout for each incoming request. The timeout
value is configurable between 100 milliseconds and 1 hour.

33 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

34 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

8 Index

A

Abstract data model
client - Retrieval Protocol 21
server - Retrieval Protocol 24

Applicability 8

B

BLOCK_RANGE packet 11
BLOCK_RANGE_ARRAY 11

C

Capability negotiation 9
Change tracking 33
Client - Retrieval Protocol

abstract data model 21
higher-layer triggered events

MSG_GETBLKLIST Initiation 22
MSG_GETBLKS Initiation 22
MSG_NEGO_REQ request 22

initialization 21
local events 24
message processing

MSG_BLK response received 24
MSG_BLKLIST response received 23
MSG_NEGO_RESP received 22
other messages received 24

sequencing rules
MSG_BLK response received 24
MSG_BLKLIST response received 23

MSG_NEGO_RESP received 22
other messages received 24

timer events - Request Timer expiration 24
timers 21

Common data types 10

D

Data model - abstract
client - Retrieval Protocol 21
server - Retrieval Protocol 24

Data types 10
Download with GetBlockList and GetBlocks

exchanges example 28

E

Examples
download with GetBlockList and GetBlocks

exchanges 28
simple download with GetBlocks download sub-

sessions only 29

F

Fields - vendor-extensible 9

G

Glossary 5

H

Higher-layer triggered events
client - Retrieval Protocol

MSG_GETBLKLIST Initiation 22
MSG_GETBLKS Initiation 22
MSG_NEGO_REQ request 22

server - Retrieval Protocol 25

I

Implementer - security considerations 30
Index of security parameters 30
Informative references 7
Initialization

Client - Retrieval Protocol 21
server - Retrieval Protocol 25

Introduction 5

L

Local events
client - Retrieval Protocol 24
server - Retrieval Protocol 27

M

Message processing
client - Retrieval Protocol

MSG_BLK response received 24
MSG_BLKLIST response received 23
MSG_NEGO_RESP received 22
other messages received 24

server - Retrieval Protocol
MSG_GETBLKLIST request received 25
MSG_GETBLKS request received 26
MSG_NEGO_REQ received 25
other messages received 26

MESSAGE_HEADER packet 11
Messages

data types 10
syntax 10
transport

peer download 10
security 10

MSG_BLK packet 18
MSG_BLKLIST packet 17
MSG_GETBLKLIST packet 14
MSG_GETBLKS packet 15
MSG_NEGO_REQ packet 14
MSG_NEGO_RESP packet 17

N

35 / 35

[MS-PCCRR] — v20110204
 Peer Content Caching and Retrieval: Retrieval Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Normative references 6

O

Overview (synopsis) 7

P

Parameters - security index 30
Peer download transport 10
Preconditions 8
Prerequisites 8
Product behavior 31

R

References
informative 7
normative 6

Relationship to other protocols 8
Request Message packet 13
Response Message packet 16
Retrieval Protocol

message processing
server 25

sequencing rules
server 25

S

Security
implementer considerations 30
parameter index 30

Sequencing rules
client - Retrieval Protocol

MSG_BLK response received 24
MSG_BLKLIST response received 23
MSG_NEGO_RESP received 22
other messages received 24

server - Retrieval Protocol
MSG_GETBLKLIST request received 25
MSG_GETBLKS request received 26
MSG_NEGO_REQ received 25
other messages received 26

Server - Retrieval Protocol
abstract data model 24
higher-layer triggered events 25
initialization 25
local events 27
message processing

MSG_GETBLKLIST request received 25
MSG_GETBLKS request received 26
MSG_NEGO_REQ received 25

other messages received 26
sequencing rules

MSG_GETBLKLIST request received 25
MSG_GETBLKS request received 26
MSG_NEGO_REQ received 25
other messages received 26

timer events - Upload Timer expiration 27
timers 25

Simple download with GetBlocks download sub-
sessions only example 29

Standards assignments 9
Syntax 10

T

Timer events
client - Retrieval Protocol - Request Timer

expiration 24
server - Retrieval Protocol - Upload Timer

expiration 27
Timers

client - Retrieval Protocol 21
server - Retrieval Protocol 25

Tracking changes 33
Transport

peer download 10
security 10

TRANSPORT_RESPONSE_HEADER packet 11
Triggered events - higher-layer

client - Retrieval Protocol
MSG_GETBLKLIST Initiation 22
MSG_GETBLKS Initiation 22
MSG_NEGO_REQ request 22

server - Retrieval Protocol 25

V

Vendor-extensible fields 9
Versioning 9

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.1.1 Peer Download Transport
	2.1.2 Transport Security

	2.2 Message Syntax
	2.2.1 Common Data Types
	2.2.1.1 BLOCK_RANGE
	2.2.1.2 BLOCK_RANGE_ARRAY

	2.2.2 TRANSPORT_RESPONSE_HEADER
	2.2.3 MESSAGE_HEADER
	2.2.4 Request Message
	2.2.4.1 MSG_NEGO_REQ
	2.2.4.2 MSG_GETBLKLIST
	2.2.4.3 MSG_GETBLKS

	2.2.5 Response Message
	2.2.5.1 MSG_NEGO_RESP
	2.2.5.2 MSG_BLKLIST
	2.2.5.3 MSG_BLK

	3 Protocol Details
	3.1 Retrieval Protocol Details
	3.1.1 Client Details
	3.1.1.1 Abstract Data Model
	3.1.1.2 Timers
	3.1.1.3 Initialization
	3.1.1.4 Higher-Layer Triggered Events
	3.1.1.4.1 MSG_NEGO_REQ Request
	3.1.1.4.2 MSG_GETBLKLIST Initiation
	3.1.1.4.3 MSG_GETBLKS Initiation

	3.1.1.5 Message Processing Events and Sequencing Rules
	3.1.1.5.1 MSG_NEGO_RESP Received
	3.1.1.5.2 MSG_BLKLIST Response Received
	3.1.1.5.3 MSG_BLK Response Received
	3.1.1.5.4 Other Messages Received

	3.1.1.6 Timer Events
	3.1.1.6.1 Request Timer Expiration

	3.1.1.7 Other Local Events

	3.1.2 Server Details
	3.1.2.1 Abstract Data Model
	3.1.2.2 Timers
	3.1.2.3 Initialization
	3.1.2.4 Higher-Layer Triggered Events
	3.1.2.5 Message Processing Events and Sequencing Rules
	3.1.2.5.1 MSG_NEGO_REQ Received
	3.1.2.5.2 MSG_GETBLKLIST Request Received
	3.1.2.5.3 MSG_GETBLKS Request Received
	3.1.2.5.4 Other Messages Received

	3.1.2.6 Timer Events
	3.1.2.6.1 Upload Timer Expiration

	3.1.2.7 Other Local Events

	4 Protocol Examples
	4.1 Download with GetBlockList and GetBlocks Exchanges
	4.2 Simple Download with GetBlocks Download Sub-Sessions only

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

