

1 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

[MS-MQRR]:
Message Queuing (MSMQ):
Queue Manager Remote Read Protocol Specification

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft's Open Specification Promise (available here:

http://www.microsoft.com/interop/osp) or the Community Promise (available here:

http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if
the technologies described in the Open Specifications are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

2 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Revision Summary

Date

Revision

History

Revision

Class Comments

02/22/2007 0.01 MCPP Milestone 3 Initial Availability

06/01/2007 1.0 Major Updated and revised the technical content.

07/03/2007 1.0.1 Editorial Revised and edited the technical content.

07/20/2007 1.0.2 Editorial Revised and edited the technical content.

08/10/2007 2.0 Major Updated and revised the technical content.

09/28/2007 2.0.1 Editorial Revised and edited the technical content.

10/23/2007 2.0.2 Editorial Revised and edited the technical content.

11/30/2007 2.0.3 Editorial Revised and edited the technical content.

01/25/2008 2.0.4 Editorial Revised and edited the technical content.

03/14/2008 2.0.5 Editorial Revised and edited the technical content.

05/16/2008 2.0.6 Editorial Revised and edited the technical content.

06/20/2008 2.1 Minor Updated the technical content.

07/25/2008 2.1.1 Editorial Revised and edited the technical content.

08/29/2008 3.0 Major Updated and revised the technical content.

10/24/2008 4.0 Major Updated and revised the technical content.

12/05/2008 5.0 Major Updated and revised the technical content.

01/16/2009 5.1 Minor Updated the technical content.

02/27/2009 6.0 Major Updated and revised the technical content.

04/10/2009 6.0.1 Editorial Revised and edited the technical content.

05/22/2009 7.0 Major Updated and revised the technical content.

07/02/2009 7.1 Minor Updated the technical content.

08/14/2009 8.0 Major Updated and revised the technical content.

09/25/2009 9.0 Major Updated and revised the technical content.

11/06/2009 9.1 Minor Updated the technical content.

12/18/2009 10.0 Major Updated and revised the technical content.

01/29/2010 11.0 Major Updated and revised the technical content.

3 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Date

Revision

History

Revision

Class Comments

03/12/2010 11.1 Minor Updated the technical content.

04/23/2010 11.1.1 Editorial Revised and edited the technical content.

06/04/2010 11.2 Minor Updated the technical content.

07/16/2010 11.2 No change No changes to the meaning, language, or formatting of

the technical content.

08/27/2010 12.0 Major Significantly changed the technical content.

10/08/2010 13.0 Major Significantly changed the technical content.

11/19/2010 13.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 14.0 Major Significantly changed the technical content.

02/11/2011 15.0 Major Significantly changed the technical content.

4 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Contents

1 Introduction ... 7
1.1 Glossary ... 7
1.2 References .. 8

1.2.1 Normative References ... 8
1.2.2 Informative References ... 8

1.3 Overview .. 9
1.3.1 Messages .. 9
1.3.2 Queues ... 9
1.3.3 Queue Operations .. 10
1.3.4 Access Patterns .. 10
1.3.5 Transactions .. 11

1.4 Relationship to Other Protocols .. 11
1.5 Prerequisites/Preconditions ... 11
1.6 Applicability Statement ... 11
1.7 Versioning and Capability Negotiation ... 12
1.8 Vendor-Extensible Fields ... 12
1.9 Standards Assignments .. 12

2 Messages.. 13
2.1 Transport .. 13
2.2 Common Data Types .. 13

2.2.1 HRESULT ... 13
2.2.2 GUID .. 13
2.2.3 QUEUE_FORMAT .. 13
2.2.4 Queue Context Handles ... 14

2.2.4.1 QUEUE_CONTEXT_HANDLE_NOSERIALIZE ... 14
2.2.4.2 QUEUE_CONTEXT_HANDLE_SERIALIZE ... 14

2.2.5 Message Packet Structure ... 15
2.2.5.1 UserMessage .. 16

2.2.5.1.1 Binary Message ... 20
2.2.5.1.2 SRMP Message .. 20

2.2.5.1.2.1 SRMPEnvelopeHeader .. 20
2.2.5.1.2.2 CompoundMessageHeader .. 20

2.2.5.2 ExtensionHeader .. 21
2.2.5.3 SubqueueHeader .. 22
2.2.5.4 DeadLetterHeader... 24
2.2.5.5 ExtendedAddressHeader .. 24

2.2.6 SectionBuffer ... 25
2.2.7 SectionType ... 26
2.2.8 XACTUOW ... 27

2.3 Directory Service Schema Elements ... 27

3 Protocol Details .. 28
3.1 RemoteRead Server Details ... 28

3.1.1 Abstract Data Model ... 28
3.1.1.1 Shared Data Elements ... 28
3.1.1.2 PendingRequestEntry .. 28

3.1.1.2.1 Attributes ... 28
3.1.1.3 PendingRequestTable .. 29
3.1.1.4 Message .. 29

5 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.1.4.1 Attributes ... 29
3.1.2 Timers .. 29

3.1.2.1 RPC Call Timeout Timer ... 29
3.1.2.2 Pending Request Cleanup Timer ... 29

3.1.3 Initialization .. 30
3.1.4 Message Processing Events and Sequencing Rules .. 30

3.1.4.1 R_GetServerPort (Opnum 0) .. 31
3.1.4.2 R_OpenQueue (Opnum 2).. 32
3.1.4.3 R_CloseQueue (Opnum 3) ... 34
3.1.4.4 R_CreateCursor (Opnum 4) ... 35
3.1.4.5 R_CloseCursor (Opnum 5) ... 36
3.1.4.6 R_PurgeQueue (Opnum 6) ... 37
3.1.4.7 R_StartReceive (Opnum 7) .. 38
3.1.4.8 R_CancelReceive (Opnum 8) .. 46
3.1.4.9 R_EndReceive (Opnum 9) .. 47
3.1.4.10 R_MoveMessage (Opnum 10) ... 49
3.1.4.11 R_OpenQueueForMove (Opnum 11) .. 51
3.1.4.12 R_QMEnlistRemoteTransaction (Opnum 12) ... 53
3.1.4.13 R_StartTransactionalReceive (Opnum 13) .. 54
3.1.4.14 R_SetUserAcknowledgementClass (Opnum 14) ... 62
3.1.4.15 R_EndTransactionalReceive (Opnum 15) .. 63

3.1.5 Timer Events ... 65
3.1.5.1 Pending Request Cleanup Timer Event .. 65

3.1.6 Other Local Events ... 65
3.1.6.1 RPC Failure Event ... 65
3.1.6.2 Queue Context Handles Rundown Routine ... 66

3.2 RemoteRead Client Details .. 67
3.2.1 Abstract Data Model ... 67
3.2.2 Timers .. 67
3.2.3 Initialization .. 67
3.2.4 Message Processing Events and Sequencing Rules .. 67

3.2.4.1 Opening a Queue .. 68
3.2.4.2 Enlisting in a Transaction ... 68
3.2.4.3 Peek a Message .. 69
3.2.4.4 Receive a Message .. 69

3.2.4.4.1 Receive a Message Without a Transaction .. 69
3.2.4.4.2 Receive a Message with a Transaction ... 70

3.2.4.5 Reject a Message .. 71
3.2.4.6 Move a Message ... 71
3.2.4.7 Purging a Queue ... 72
3.2.4.8 Creating a Cursor ... 72
3.2.4.9 Peek a Message by Using a Cursor .. 72
3.2.4.10 Receive a Message by Using a Cursor .. 73

3.2.4.10.1 Receive a Message by Using a Cursor Without a Transaction 73
3.2.4.10.2 Receive a Message by Using a Cursor with a Transaction 74

3.2.4.11 Cancel a Pending Peek or Receive ... 75
3.2.4.12 Closing a Cursor ... 75
3.2.4.13 Closing a Queue ... 75

3.2.5 Timer Events ... 75
3.2.6 Other Local Events ... 76

4 Protocol Examples .. 77
4.1 Binding to a Server and Purging a Queue .. 77

6 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4.2 Receiving a Message .. 78
4.3 Receiving a Message in a Transaction ... 79

5 Security .. 82
5.1 Security Considerations for Implementers ... 82
5.2 Index of Security Parameters .. 82

6 Appendix A: Full IDL ... 83

7 Appendix B: Product Behavior .. 88

8 Change Tracking... 95

9 Index ... 101

7 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1 Introduction

This document specifies the Message Queuing (MSMQ): Queue Manager Remote Read Protocol, a
remote procedure call (RPC)-based protocol that is used by Microsoft Message Queuing
(MSMQ) clients to read or reject a message from a queue, to move a message between queues,
and to purge all messages from a queue.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

authentication level
dynamic endpoint
endpoint
globally unique identifier (GUID)
Interface Definition Language (IDL)

Internet host name

Network Data Representation (NDR)
opnum
remote procedure call (RPC)
RPC protocol sequence
RPC transport
universally unique identifier (UUID)

The following terms are defined in [MS-MQMQ]:

connector queue
cursor
dead-letter queue
direct format name
distribution list (DL)

message

message body
message packet
message packet header
message packet trailer
message property
message queuing
Microsoft Message Queuing (MSMQ)

MSMQ routing server
private queue
public queue
queue
queue journal
queue manager

remote queue
subqueue

transactional queue

The following terms are specific to this document:

%5bMS-GLOS%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-MQMQ%5d.pdf

8 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or

SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an

additional source.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
http://www.opengroup.org/public/pubs/catalog/c706.htm

[MC-MQSRM] Microsoft Corporation, "Message Queuing (MSMQ): SOAP Reliable Messaging Protocol

(SRMP) Specification", October 2007.

[MS-DTCO] Microsoft Corporation, "MSDTC Connection Manager: OleTx Transaction Protocol

Specification", July 2007.

[MS-DTYP] Microsoft Corporation, "Windows Data Types", January 2007.

[MS-ERREF] Microsoft Corporation, "Windows Error Codes", January 2007.

[MS-MQBR] Microsoft Corporation, "Message Queuing (MSMQ): Binary Reliable Message Routing
Algorithm", September 2007.

[MS-MQDMPR] Microsoft Corporation, "Message Queuing (MSMQ): Common Data Model and
Processing Rules", August 2008.

[MS-MQMQ] Microsoft Corporation, "Message Queuing (MSMQ): Data Structures", August 2007.

[MS-MQQB] Microsoft Corporation, "Message Queuing (MSMQ): Message Queuing Binary Protocol
Specification", August 2007.

[MS-MQQP] Microsoft Corporation, "Message Queuing (MSMQ): Queue Manager to Queue Manager
Protocol Specification", August 2007.

[MS-MQSO] Microsoft Corporation, "Message Queuing System Overview", August 2008.

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions", January 2007.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

[RFC2553] Gilligan, R., Thomson, S., Bound, J., and Stevens, W., "Basic Socket Interface Extensions
for IPv6", RFC 2553, March 1999, http://www.ietf.org/rfc/rfc2553.txt

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary", March 2007.

[MS-MQDSSM] Microsoft Corporation, "Message Queuing (MSMQ): Directory Service Schema
Mapping", August 2008.

http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMC-MQSRM%5d.pdf
%5bMC-MQSRM%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-MQBR%5d.pdf
%5bMS-MQBR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-MQSO%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90367
%5bMS-GLOS%5d.pdf
%5bMS-MQDSSM%5d.pdf
%5bMS-MQDSSM%5d.pdf

9 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

[MSDN-MMSCH] Microsoft Corporation, "Mixed Mode Serialization of Context Handles",
http://msdn.microsoft.com/en-us/library/aa367098(VS.85).aspx

1.3 Overview

Microsoft Message Queuing (MSMQ) is a communications service that provides asynchronous and
reliable message passing between client applications running on different hosts. In MSMQ, clients
send application messages to a queue and/or consume application messages from a queue. The
queue provides persistence of the messages, enabling them to survive across application restarts,
and allowing the sending and receiving client applications to send and receive messages
asynchronously from each other.

Queues are typically hosted by a communications service called a queue manager. By hosting the

queue manager in a separate service from the client applications, applications can communicate
even if they never execute at the same time by exchanging messages via a queue hosted by the
queue manager.

The queue manager may execute on a different node than the client applications. When this

scenario occurs, a protocol is required to insert messages into the queue and another protocol is
needed to consume messages from the queue. The Message Queuing (MSMQ): Queue Manager

Remote Read Protocol provides a protocol for consuming messages from a remote queue.

1.3.1 Messages

Each message exchanged in a MSMQ system typically has a set of message properties that
contain metadata about the message and a distinguished property, called a message body, that
contains the application payload. Message properties that are serialized in front of the message body
are referred to as message headers, and message properties serialized after the message body

property are referred to as message trailers.

Messages carried by this protocol are treated as payload. The format and structure of the application
messages are generally opaque to the protocol. However, the protocol does assume that such
messages map to the abstractions of message header, message body, and message trailer

mentioned above. This mapping enables a consumer to request that a subset of the message body
be returned while allowing all the message headers and message trailers to be returned. For more
details, see the SectionBuffer (section 2.2.6) structure.

The protocol also assumes that each message has a lookup identifier that is unique within the
queue. This identifier is not part of the message but is instead assigned by the server.

1.3.2 Queues

A queue is a logical data structure that contains an ordered list of zero or more messages. Queues,
like files, have names. This protocol uses the QUEUE_FORMAT (section 2.2.3) structure to identify
queues.

This protocol provides a mechanism to open a queue. Opening provides an opportunity to check for
the existence of the queue and to perform authorization checks. The protocol provides for the return
of an RPC context handle that is used by the client to specify the queue to operate on in subsequent

requests. The use of an RPC context handle provides a mechanism to ensure that server state is
cleaned up if the connection between the client and server is lost.

When opening a queue, the client can specify an access mode that determines the operations (Peek,

Receive, Move, Reject, and Purge) for which the returned handle can subsequently be used. The
client can specify a sharing mode that either allows other clients to concurrently access the queue,

http://go.microsoft.com/fwlink/?LinkId=151562
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

10 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

or ensures that the client has exclusive access to the queue. The latter can be used to avoid race
conditions caused by other clients operating on the queue at the same time.

1.3.3 Queue Operations

The protocol provides mechanisms for the following operations against an open queue.

A message can be consumed from an open queue through a destructive read operation referred to
as a Receive operation. This operation atomically reads the message and removes it from the
queue. Because this operation removes a message from a queue, a loss of network connection
during this operation could result in permanent loss of the message. To guard against this situation,
the protocol provides a mechanism for the client to positively or negatively acknowledge receipt of
the message. Upon receipt of positive acknowledgment from the client, the server can remove the

message from the queue. While the server is awaiting acknowledgment from the client, access to
the message by other clients is prevented.

A message can be read from an open queue through a nondestructive read operation referred to as
a Peek operation. This operation reads the message but does not remove it from the queue.

For both Receive and Peek operations, the client can limit the amount of the message body
payload returned. This enables efficient use of network resources when the client requires only a

portion of the message body or when the client needs just the message properties.

All the messages can be removed from a queue through a Purge mechanism. The messages
removed through this mechanism are not returned to the client.

A message can be moved from one queue to another queue hosted at the same server through an
atomic Move mechanism.

A client can inform the server that it has no need for a message via a Reject operation. The server
can use this indication to inform the sender that the client did not consume the message. How a

server does this is not addressed in this specification.

1.3.4 Access Patterns

Messages in a queue can be consumed in a first-in, first-out (FIFO) access pattern. Because
messages in a queue are ordered, there is a head that represents the front of the queue and a tail
that represents the end of the queue.

The protocol provides mechanisms to Peek or Receive the first message in the queue.

The protocol also allows the client to specify exactly which message to Peek or Receive, regardless
of its position in the queue, through a unique lookup identifier assigned to each message by the
server. A message can also be specified relative to the message identified by the lookup identifier;
that is, the message immediately preceding or following the message identified by the lookup
identifier.

Finally, the protocol provides a mechanism, referred to as a cursor, for sequential forward access

through the queue. A cursor logically represents a current pointer that lies between the head and
tail of the queue. A cursor can be specified to the Peek or Receive operation, which Peeks or

Receives the message at the current pointer represented by the cursor. The cursor current pointer
can be moved forward through a modified Peek operation called PeekNext. A Receive operation
intrinsically moves the cursor forward.

Because cursors are stateful, the protocol provides mechanisms to create a cursor to return a cursor
handle to the client and to close a cursor. Because a cursor represents a position within a queue, the

%5bMS-MQMQ%5d.pdf

11 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

protocol logically relates the cursor to the context handle associated with an open queue. The
protocol places no limit on the number of concurrent cursors associated with a queue context

handle.

1.3.5 Transactions

The protocol allows the queue operations Receive or Move to be performed within the context of a
distributed atomic transaction, as specified in [MS-DTCO]. When this is done, the state changes that
are related to the queue associated with the operation are performed provisionally, awaiting
asynchronous notification of the outcome of the transaction. If the transaction outcome is Commit,
the state changes become permanent. If the transaction outcome is Abort, the state changes are
rolled back.

The protocol does not require that all queues support this atomic transaction behavior. A queue that
supports transactional Receive must also support nontransactional Receive. The protocol returns
an error if a transacted operation is attempted against a non-transactional queue. The protocol does
not provide any other mechanism for determining whether a queue supports transactional behavior.

1.4 Relationship to Other Protocols

The Message Queuing (MSMQ): Queue Manager Remote Read Protocol is dependent upon RPC for its
transport. This protocol uses RPC as specified in section 2.1.

The protocol functionality is a superset of the functionality as specified in [MS-MQQP]. Implementers
are advised to choose this protocol over Message Queuing (MSMQ): Queue Manager to Queue
Manager Protocol except where compatibility necessitates using MSMQ: Queue Manager to Queue
Manager Protocol, as specified in [MS-MQQP].<1>

To orchestrate the transactional scenarios of this protocol, this protocol carries Propagation Tokens,

as specified in [MS-DTCO] section 2.

This protocol is capable of carrying the layout and internal structure of the message in the queue, as
specified in [MS-MQQP].

1.5 Prerequisites/Preconditions

The Message Queuing (MSMQ): Queue Manager Remote Read Protocol is an RPC interface and, as a
result, has prerequisites, as specified in [MS-RPCE], that are common to RPC interfaces.

It is assumed that the protocol client has obtained the name of a remote computer that supports
this protocol before this protocol is invoked.

This protocol uses authentication through RPC. The client must be in possession of valid credentials
recognized by the server. The server must be started and fully initialized before the protocol can
start.

1.6 Applicability Statement

This protocol provides functionality related to consumption of messages from a queue hosted at a

queue manager running on a remote computer. It does not provide functionality related to inserting
messages into a queue.

The server side of the Message Queuing (MSMQ): Queue Manager Remote Read Protocol is
applicable for implementation by a queue manager that provides message queuing communication
services to clients. The client side of this protocol is applicable for implementation by client libraries

%5bMS-DTCO%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-RPCE%5d.pdf

12 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

that provide message queuing services to applications, or by a client queue manager that delegates
requests on behalf of a client application.

This protocol could be used to reliably transfer messages from a queue hosted at one queue
manager (the server) to a queue hosted at another queue manager (the client). However, there are

other protocols that may be more suited to providing such reliable message transfer between
queues. Message Queuing (MSMQ): Binary Reliable Messaging Protocol Specification, as specified in
[MS-MQBR], is one such protocol that may provide the message transfer functionality more
efficiently and in a manner that provides end-to-end reliability through intermediate store-and-
forward hops.

1.7 Versioning and Capability Negotiation

Supported transports: This protocol uses the RPC over TCP/IP protocol sequence. However, it
supports a mechanism for explicitly negotiating the RPC endpoint to be used. Details are specified
in section 3.1.4.1.

Protocol versions: This protocol uses a single version of the RPC interface, but that interface has

been extended by adding the following additional methods at the end:

R_MoveMessage (Opnum 10) (section 3.1.4.10)

R_OpenQueueForMove (Opnum 11) (section 3.1.4.11)

R_QMEnlistRemoteTransaction (Opnum 12) (section 3.1.4.12)

R_StartTransactionalReceive (Opnum 13) (section 3.1.4.13)

R_SetUserAcknowledgementClass (Opnum 14) (section 3.1.4.14)

R_ EndTransactionalReceive (Opnum 15) (section 3.1.4.15)

Capability Negotiation: This protocol SHOULD<2> be used for receiving messages from a remote
queue manager. The queue manager SHOULD implement a capability negotiation mechanism as
described in the processing rules for Opening a Queue (section 3.2.4.1) to determine whether this

protocol is supported by the remote queue manager.

Security and authentication methods: This protocol supports the NTLM and Kerberos authentication
methods.<3>

1.8 Vendor-Extensible Fields

This protocol uses HRESULT values as defined in [MS-ERREF] section 2.1. Vendors can define their
own HRESULT values provided that they set the C bit (0x20000000) for each vendor-defined value,
indicating that the value is a customer code.

1.9 Standards Assignments

Parameter Value Reference

RPC interface Universally Unique Identifier

(UUID)

1A9134DD-7B39-45BA-AD88-

44D01CA47F28

[C706]

A.2.5

Interface version 1.0 [C706]

A.2.5

%5bMS-MQBR%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

13 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2 Messages

2.1 Transport

This protocol MUST use the following RPC protocol sequence: RPC over TCP/IP (ncacn_ip_tcp), as
specified in [MS-RPCE]. This protocol uses RPC dynamic endpoints as specified in [C706] section
4. This protocol MAY use an RPC static endpoint as specified in [C706] section 4.<4>

This protocol allows any user to establish a connection to the RPC server. For each connection, the
server uses the underlying RPC protocol to retrieve the identity of the invoking client, as specified in

[MS-RPCE] section 3.3.3.4.3. The server SHOULD use this identity to perform method-specific
access checks.

2.2 Common Data Types

This protocol MUST indicate to the RPC runtime that it is to support both the Network Data

Representation (NDR) and NDR64 transfer syntaxes and MUST provide a negotiation mechanism
for determining which transfer syntax will be used, as specified in [MS-RPCE] (section 3).

In addition to the RPC base types and definitions, as specified in [C706] and [MS-RPCE], additional
data types are defined in the following list that summarizes the types defined in this specification:

HRESULT

GUID

QUEUE_FORMAT

Queue Context Handles

Message Packet Structure

SectionBuffer

SectionType

2.2.1 HRESULT

This specification uses the HRESULT type as specified in [MS-ERREF].

2.2.2 GUID

This specification uses a globally unique identifier (GUID). Unless otherwise qualified, instances
of GUID in sections 2 and 3 refer to [MS-DTYP] section 2.3.2.

2.2.3 QUEUE_FORMAT

This structure is used to identify a queue. This structure is common to many Microsoft Message

Queuing (MSMQ) protocols. For more details, see [MS-MQMQ] section 2.2.7. Only a subset of the
QUEUE_FORMAT_TYPE enumeration is supported by this protocol. This subset is:

QUEUE_FORMAT_TYPE_UNKNOWN

QUEUE_FORMAT_TYPE_PUBLIC

%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89829
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89829
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

14 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

QUEUE_FORMAT_TYPE_PRIVATE

QUEUE_FORMAT_TYPE_DIRECT

QUEUE_FORMAT_TYPE_MACHINE

QUEUE_FORMAT_TYPE_SUBQUEUE

In addition, this protocol supports only a subset of the Protocol Address Specifications defined for
QUEUE_FORMAT in [MS-MQMQ] section 2.1.2 when the m_qft field of this structure is set to
QUEUE_FORMAT_TYPE_DIRECT. This subset is:

TCP

OS

2.2.4 Queue Context Handles

A queue context handle is an RPC context handle corresponding to an open queue. A client MUST

call R_OpenQueue (section 3.1.4.2) or R_OpenQueueForMove (section 3.1.4.11) to create a
queue context handle and R_CloseQueue (section 3.1.4.3) to delete a queue context handle.

Two IDL types are defined to represent these queue context handles, namely
QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) and
QUEUE_CONTEXT_HANDLE_SERIALIZE (section 2.2.4.2). These two types are identical on the
wire, but are defined separately so as to allow the serialization mode to be configured. Refer to
[MSDN-MMSCH] for details on modes of the context handles.

2.2.4.1 QUEUE_CONTEXT_HANDLE_NOSERIALIZE

QUEUE_CONTEXT_HANDLE_NOSERIALIZE is an RPC context handle representing an open
queue. Refer to [MSDN-MMSCH] for details on modes of the context handles. For the
QUEUE_CONTEXT_HANDLE_NOSERIALIZE context handle, there may be more than one pending
RPC call on the server. On the wire it is identical to QUEUE_CONTEXT_HANDLE_SERIALIZE

(section 2.2.4.2).

This type is declared as follows:

typedef [context_handle] void* QUEUE_CONTEXT_HANDLE_NOSERIALIZE;

The context handle MUST NOT be type_strict, but it MUST be strict. More details on RPC context

handles are specified in [C706] sections 4.2.16.6, 5.1.6, and 6.1 and [MS-RPCE] sections
3.1.1.5.3.2.2.2 and 3.3.1.4.1.

2.2.4.2 QUEUE_CONTEXT_HANDLE_SERIALIZE

QUEUE_CONTEXT_HANDLE_SERIALIZE is an RPC context handle representing an open queue.

Refer to [MSDN-MMSCH] for details on modes of the context handles. For this context handle, there
can be no more than one pending RPC call on the server. On the wire it is identical to
QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1).

This type is declared as follows:

%5bMS-MQMQ%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=151562
http://go.microsoft.com/fwlink/?LinkId=151562
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=151562

15 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

typedef [context_handle] QUEUE_CONTEXT_HANDLE_NOSERIALIZE QUEUE_CONTEXT_HANDLE_SERIALIZE;

The context handle MUST NOT be type_strict, but it MUST be strict. More details on RPC context
handles are specified in [C706] sections 4.2.16.6, 5.1.6, and 6.1 and [MS-RPCE] sections

3.1.1.5.3.2.2.2 and 3.3.1.4.1.

2.2.5 Message Packet Structure

The Message Packet Structure is the data structure that contains the UserMessage and other
headers that represent the payload that is transferred across the wire as a result of a remote read
operation. More details are specified in R_StartReceive (section 3.1.4.7) and
R_StartTransactionalReceive (section 3.1.4.13).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

UserMessage (variable)

...

ExtensionHeader

...

...

SubqueueHeader

...

...

...

...

...

...

...

(SubqueueHeader cont'd for 29 rows)

DeadLetterHeader (variable)

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

16 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

...

ExtendedAddressHeader

...

...

...

...

...

...

UserMessage (variable): A UserMessage (section 2.2.5.1) structure.

ExtensionHeader (12 bytes): An ExtensionHeader (section 2.2.5.2) structure.

SubqueueHeader (148 bytes): A SubqueueHeader (section 2.2.5.3) structure.

DeadLetterHeader (variable): A DeadLetterHeader (section 2.2.5.4) structure.

ExtendedAddressHeader (28 bytes): An ExtendedAddressHeader (section 2.2.5.5) structure.

2.2.5.1 UserMessage

The UserMessage structure can be either a Binary Message (section 2.2.5.1.1) or an SRMP Message
(section 2.2.5.1.2) depending on the transport over which the message was originally sent. A Binary

Message is sent over the MSMQ: Binary Reliable Messaging Protocol [MS-MQQB], while an SRMP

Message is sent over HTTP. The message type is indicated by the UserHeader.Flags.AH bit which is
set for SRMP Messages as described in the definition of UserHeader.UserHeaderEnd in this section.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

BaseHeader

...

...

...

UserHeader (variable)

...

%5bMS-MQQB%5d.pdf

17 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

TransactionHeader (variable)

...

SecurityHeader (variable)

...

MessagePropertiesHeader (variable)

...

DebugHeader (variable)

...

SRMPEnvelopeHeader (variable)

...

CompoundMessageHeader (variable)

...

SoapHeader (variable)

...

MultiQueueFormatHeader (variable)

...

SessionHeader (optional)

...

...

...

BaseHeader (16 bytes): A BaseHeader, as specified in [MS-MQMQ] section 2.2.19.1. The

TimeToReachQueue field has the same length and format as that specified in [MS-MQMQ],
but differs in that it represents the absolute expiration time of the message as the number of

seconds elapsed since midnight (00:00:00), January 1, 1970 (Coordinated Universal Time).

UserHeader (variable): A UserHeader (as specified in [MS-MQMQ] section 2.2.19.2) with the
following field overlays, which pertain when the UserHeader specifies that the destination

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

18 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

queue is a direct format name. In this case, the QueueManagerAddress specifies the host
address from which a message was received. If the UserHeader specifies that the destination

queue is anything other than a direct format name, the 16 bytes after the
SourceQueueManager are set to the GUID of the host from which the message was

received, as specified in [MS-MQMQ] section 2.2.19.2.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SourceQueueManager

...

...

...

AddressLength AddressType

AddressScope

Address

...

UserHeaderEnd (variable)

...

SourceQueueManager (16 bytes): A GUID, as specified in [MS-DTYP], that identifies
the sender of the message.

AddressLength (2 bytes): A USHORT, as specified in [MS-DTYP], that MUST be the
actual address length in the Address field.

AddressType (2 bytes): A USHORT, as specified in [MS-DTYP], that MUST be set to one
of the following values.

Value Meaning

IP_ADDRESS_TYPE

0x0001

The address specified in the Address field is an IPv4 address.

IPV6_ADDRESS_TYPE

0x0006

The address specified in the Address field is an IPv6 address.

AddressScope (4 bytes): A ULONG, as specified in [MS-DTYP], that MUST be set either
to the IPv6 address scope if AddressType is IPV6_ADDRESS_TYPE, or otherwise to 0.
More details are specified in [RFC2553] section 3.3.

%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90367

19 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Address (8 bytes): An 8-byte array of UCHAR, as specified in [MS-DTYP], that MUST
contain the address of the host from which the message was received. The field MUST

contain as much of the address as can fit in the field. More details are specified in
[RFC2553] section 3.3.

UserHeaderEnd (variable): A variable-length buffer mapped by UserHeader (as
specified in [MS-MQMQ] section 2.2.19.2) beginning with the TimeToBeReceived field.
Within the Flags field, AH MUST be set only if both Message.SOAPEnvelope and
Message.SOAPCompoundMessage ([MS-MQDMPR] section 3.1.1.12) are populated.

TransactionHeader (variable): A TransactionHeader, as specified in [MS-MQMQ] section
2.2.20.5.

SecurityHeader (variable): A SecurityHeader, as specified in [MS-MQMQ] section 2.2.20.6.

MessagePropertiesHeader (variable): A MessagePropertiesHeader, as specified in [MS-
MQMQ] section 2.2.19.3.

DebugHeader (variable): A DebugHeader, as specified in [MS-MQMQ] section 2.2.20.8.

SRMPEnvelopeHeader (variable): An SRMPEnvelopeHeader (section 2.2.5.1.2.1).

CompoundMessageHeader (variable): A CompoundMessageHeader (section 2.2.5.1.2.2).

SoapHeader (variable): A SoapHeader, as specified in [MS-MQMQ] section 2.2.20.7.

MultiQueueFormatHeader (variable): A MultiQueueFormatHeader, as specified in [MS-
MQMQ] section 2.2.20.1.

SessionHeader (16 bytes): A SessionHeader, as specified in [MS-MQMQ] section 2.2.20.4.
The SessionHeader is used to acknowledge express and recoverable UserMessage packets
when they are sent on a session. This header MUST be present if and only if the
BaseHeader.Flags.SH bit of the UserMessage packet is set. This bit is set when the
SessionHeader is piggy-backed onto a UserMessage packet instead of sending it in a stand-

alone SessionAck packet.

More details about the following individual headers, with the exceptions of SRMPEnvelopeHeader
(section 2.2.5.1.2.1) and CompoundMessageHeader (section 2.2.5.1.2.2), are specified in [MS-
MQQB] section 2.2.20.

In addition, the following exceptions also exist on the field attributes as specified in [MS-MQQB].
The overall structure of the data is the same; however, particular fields have been overridden or
have different meaning in this protocol. The size of each overridden field is the same size as the

original field.

UserMessage.BaseHeader.TimeToReachQueue

The definition for TimeToReachQueue differs from what is specified in [MS-MQQB] section 2.2.20
in the following manner:

In [MS-MQQB], this field indicates the length of time, in seconds, that a UserMessage Packet has

to reach its destination queue manager.

In [MS-MQRR], this field indicates the absolute expiration time of the message defined as the

number of seconds elapsed since midnight (00:00:00), January 1, 1970 (Coordinated Universal
time).

%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90367
%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf

20 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.5.1.1 Binary Message

A binary message represents a message being received that was originally sent over the MSMQ:
Binary Reliable Messaging Protocol [MS-MQQB].The UserHeader.Flags.AH bit MUST NOT be set,

and the SRMPEnvelopeHeader (section 2.2.5.1.2.1) and the CompoundMessageHeader (section
2.2.5.1.2.2) MUST NOT be present in the UserMessage (section 2.2.5.1).

2.2.5.1.2 SRMP Message

An SRMP message represents a message being received that was originally sent over HTTP. The
UserHeader.Flags.AH bit MUST be set, and the SRMPEnvelopeHeader (section 2.2.5.1.2.1) and
the CompoundMessageHeader (section 2.2.5.1.2.2) MUST be present in the UserMessage (section

2.2.5.1).

2.2.5.1.2.1 SRMPEnvelopeHeader

The SRMPEnvelopeHeader contains information about the SOAP envelope used to send the original
message over HTTP. This header MUST be present only if UserHeader.Flags.AH is set.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

HeaderId Reserved

DataLength

Data (variable)

...

HeaderId (2 bytes): A USHORT, as specified in [MS-DTYP], that specifies the identification

number of the header.

Reserved (2 bytes): A USHORT, as specified in [MS-DTYP], that MUST be ignored.

DataLength (4 bytes): A ULONG, as specified in [MS-DTYP], that MUST be the length of the
data in the Data field.

Data (variable): Specifies the data in WCHAR, as specified in [MS-DTYP], including the NULL
terminator. The data is formatted as an SRMP Message structure, as specified in [MC-MQSRM]
section 2.2.2.

2.2.5.1.2.2 CompoundMessageHeader

The CompoundMessageHeader contains information about the SRMP compound message, as
specified in [MC-MQSRM] section 2.2.2. This header MUST be present only if UserHeader.Flags.AH
is set.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

HeaderId Reserved

%5bMS-MQQB%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMC-MQSRM%5d.pdf
%5bMC-MQSRM%5d.pdf

21 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

HTTPBodySize

MsgBodySize

MsgBodyOffset

Data (variable)

...

HeaderId (2 bytes): A USHORT, as specified in [MS-DTYP], that specifies the identification
number of the header.

Reserved (2 bytes): A USHORT, as specified in [MS-DTYP], that MUST be ignored.

HTTPBodySize (4 bytes): A ULONG, as specified in [MS-DTYP], that MUST be the size of the

Data field in bytes.

MsgBodySize (4 bytes): A ULONG, as specified in [MS-DTYP], that MUST be the size, in

bytes, of the message body within the Data field.

MsgBodyOffset (4 bytes): A ULONG, as specified in [MS-DTYP], that MUST be set to the
offset of the message body within the Data field.

Data (variable): Specifies an array of bytes that contains the SRMP message, including the
HTTP POST message that carried the SRMP message. More details are specified in [MC-
MQSRM] section 4.1.

2.2.5.2 ExtensionHeader

The ExtensionHeader contains information about the presence and size of other headers in the

Message Packet Structure (section 2.2.5), such as DeadLetterHeader (section 2.2.5.4),
SubqueueHeader (section 2.2.5.3), and ExtendedAddressHeader (section 2.2.5.5).<5>

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

HeaderSize

RemainingHeadersSize

Flags Reserved

HeaderSize (4 bytes): A ULONG, as specified in [MS-DTYP], that specifies the size in bytes of
the ExtensionHeader.

RemainingHeadersSize (4 bytes): A ULONG, as specified in [MS-DTYP], that MUST be the
sum of sizes in bytes of all headers that follow ExtensionHeader.

Flags (1 byte): Indicates the presence or absence of other headers in the Message Packet
Structure. Any combination of the following values is acceptable.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMC-MQSRM%5d.pdf
%5bMC-MQSRM%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

22 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

0

1

2

3

4

5

6

7

D

L

S

Q

X

2

D

I

E

A

X

5

X

6

X

7

Where the bits are defined as:

Value Description

DL MUST be set to 1 if the Message Packet Structure contains the DeadLetterHeader (section

2.2.5.4). MUST be set to 0 otherwise.

SQ Indicates whether the Message Packet Structure contains a SubqueueHeader. MUST be set

to 1.

X2 Unused bit field. MUST be ignored.

DI MUST be set to 1 if the dead-letter queue as specified by the DeadLetterHeader is

invalid. MUST be set to 0 otherwise. If the DeadLetterHeader is not included, this field

MUST be ignored when reading the message packet.

EA Indicates whether the Message Packet Structure contains an ExtendedAddressHeader.

MUST be set to 1.

X5 Unused bit field. MUST be ignored.

X6 Unused bit field. MUST be ignored.

X7 Unused bit field. MUST be ignored.

Reserved (3 bytes): MUST be ignored when reading the Message Packet Structure.

2.2.5.3 SubqueueHeader

The SubqueueHeader encapsulates information about the message as specified following.<6> This
header MUST be ignored if its SubqueueName field is an empty string.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

HeaderSize

TM AcknowledgementClass Reserved

AbortCounter

MoveCounter

LastMoveTime

SubqueueName

%5bMS-MQMQ%5d.pdf

23 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

...

...

...

...

...

...

...

(SubqueueName cont'd for 8 rows)

TargetSubqueueName

...

...

...

...

...

...

...

(TargetSubqueueName cont'd for 8 rows)

HeaderSize (4 bytes): A ULONG, as specified in [MS-DTYP], that specifies the size in bytes of
the SubqueueHeader.

TM (1 bit): A one-bit flag, as specified in [MS-DTYP], that MUST be 0.

AcknowledgementClass (2 bytes): A USHORT, as specified in [MS-DTYP], that MUST specify
the acknowledgment class of the message. See [MS-MQQB] section 2.2.18.1.6.

Reserved (15 bits): MUST be ignored.

AbortCounter (4 bytes): A ULONG, as specified in [MS-DTYP], that specifies the number of
sequentially failed attempts to read the message or to move the message. See sections
3.1.4.13, 3.1.4.10, and 3.1.6.1.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQQB%5d.pdf

24 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

MoveCounter (4 bytes): A ULONG, as specified in [MS-DTYP], that specifies the number of
times that the message has been moved. See section 3.1.4.10.

LastMoveTime (4 bytes): A ULONG, as specified in [MS-DTYP], that specifies the local time of
the most recent move of the message. The time is specified as the number of milliseconds

elapsed since midnight of January 1, 1970. If the message has never been moved, this value
is 0. See section 3.1.4.10.

SubqueueName (64 bytes): If the message belongs to a subqueue, the value MUST contain
the null-terminated Unicode string that specifies the subqueue name. If the subqueue name is
shorter than the field size, the remaining bytes MUST be set to 0. If the message does not
belong to the subqueue, all bytes MUST be set to 0.

TargetSubqueueName (64 bytes): If the message is participating in the transacted Move

operation that is not yet committed or aborted, this field MUST contain the null-terminated
Unicode string that specifies the target subqueue name. If the subqueue name is shorter than
the field size, the remaining bytes MUST be set to 0. If the message is not part of a transacted
Move operation, all bytes MUST be set to 0.

2.2.5.4 DeadLetterHeader

The DeadLetterHeader specifies the path of an application-specified dead-letter queue.<7>

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

HeaderSize

DeadLetterPathName (variable)

...

HeaderSize (4 bytes): A ULONG, as specified in [MS-DTYP], that MUST be set to the total size
in bytes of the DeadLetterHeader.

DeadLetterPathName (variable): MUST contain a null-terminated Unicode string that

specifies the application-specified dead-letter queue. The array MUST be aligned up to the
next 4-byte boundary by adding padding zeros if necessary.

2.2.5.5 ExtendedAddressHeader

The ExtendedAddressHeader specifies the host address from which a message was received.<8>
This header MUST be ignored if AddressType is 0x0000.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

HeaderSize

AddressLength AddressType

AddressScope

%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

25 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Address

...

...

...

HeaderSize (4 bytes): A ULONG, as specified in [MS-DTYP], that specifies the size, in bytes,
of the ExtendedAddressHeader.

AddressLength (2 bytes): A USHORT, as specified in [MS-DTYP], that MUST be the actual

address length in the Address field.

AddressType (2 bytes): A USHORT, as specified in [MS-DTYP], that MUST be set to one of
the following values.

Value Meaning

0x0000 This header MUST be ignored.

IP_ADDRESS_TYPE

0x0001

The address specified in the Address field is an IPv4 address.

IPV6_ADDRESS_TYPE

0x0006

The address specified in the Address field is an IPv6 address.

AddressScope (4 bytes): A ULONG, as specified in [MS-DTYP], that MUST be set either to the

IPv6 address scope if AddressType is IPV6_ADDRESS_TYPE, or otherwise to 0. See
[RFC2553] section 3.3.

Address (16 bytes): An array of UCHAR, as specified in [MS-DTYP], that MUST contain the
host address from which the message was received. If the AddressType is
IP_ADDRESS_TYPE, the address MUST be in IPv4 address format. If the AddressType is
IPV6_ADDRESS_TYPE, the address MUST be in IPv6 address format. See [RFC2553] section
3.3.

2.2.6 SectionBuffer

A SectionBuffer represents a fragment or section of a Message Packet. Operations
R_StartReceive (section 3.1.4.7) and R_StartTransactionalReceive (section 3.1.4.13)
fragment a Message Packet into an array of one or more SectionBuffer structures. The client
concatenates these fragments to reconstruct a valid Message Packet. There may be up to two
sections per message. A Message Packet is split into two sections only when a subset of the

distinguished message body property is returned. The first section always contains the message
body property up to the size requested.

typedef struct _SectionBuffer {

 SectionType SectionBufferType;

 DWORD SectionSizeAlloc;

 DWORD SectionSize;

 [unique, size_is(SectionSize)]

 byte* pSectionBuffer;

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90367
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90367

26 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

} SectionBuffer;

SectionBufferType: MUST specify a type for the SectionBuffer structure that indicates

whether the pSectionBuffer member contains the whole Message Packet or, if not, then it
indicates which of the two sections it does contain. The SectionType (section 2.2.7)
enumeration lists possible values. More details are specified in 2.2.7.

SectionSizeAlloc: MUST specify the original size (in bytes) of the part of the Message Packet
that this SectionBuffer represents. When the SectionBuffer represents the first section of
the message, this field specifies the size that the SectionBuffer would have been if the entire
message body property were included. The difference between SectionSizeAlloc and

SectionSize represents the size of the message body that was not transferred.

If the SectionBufferType is stFullPacket, stBinarySecondSection, or stSrmpSecondSection,
then SectionSizeAlloc MUST be equal to SectionSize.

If the SectionBufferType is stBinaryFirstSection or stSrmpFirstSection, then
SectionSizeAlloc MUST be equal to or greater than SectionSize.

SectionSize: MUST be the size (in bytes) of the buffer pointed to by pSectionBuffer.
SectionSize specifies the size of the part of the Message Packet contained in

pSectionBuffer.

pSectionBuffer: MUST be a pointer to an array of bytes containing a section of the Message
Packet.

2.2.7 SectionType

The SectionType enumeration defines the available SectionBuffer types.

typedef enum

{

 stFullPacket = 0,

 stBinaryFirstSection = 1,

 stBinarySecondSection = 2,

 stSrmpFirstSection = 3,

 stSrmpSecondSection = 4

} SectionType;

stFullPacket: The pSectionBuffer element of the SectionBuffer structure contains a

complete Message Packet. The UserMessage is either that specified in section 2.2.5.1.1 or in
section 2.2.5.1.2.

stBinaryFirstSection: The pSectionBuffer element of the SectionBuffer structure contains

the first section of the Binary Message packet up to, but not beyond, the
MessagePropertiesHeader in the UserMessage.

stBinarySecondSection: The pSectionBuffer element of the SectionBuffer structure
contains the second section of the Binary Message packet from beyond the end of the
MessagePropertiesHeader in the UserMessage to the end of the packet.

stSrmpFirstSection: The pSectionBuffer element of the SectionBuffer structure contains the
first section of the SRMP Message packet up to, but not beyond, the

CompoundMessageHeader in the UserMessage.

%5bMS-MQMQ%5d.pdf

27 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

stSrmpSecondSection: The pSectionBuffer element of the SectionBuffer structure contains
the second section of the SRMP Message packet from beyond the end of the

CompoundMessageHeader in the UserMessage to the end of the packet.

2.2.8 XACTUOW

The XACTUOW structure ([MS-MQMQ] section 2.2.18.1.8) uniquely identifies the unit of work
(UOW) for a transactional operation. For an external transaction, this value MUST be acquired from
the transaction coordinator. For an internal transaction, a client MUST create a unique random value
for each transaction.<9>

2.3 Directory Service Schema Elements

This protocol uses ADM elements specified in section 3.1.1. A subset of these elements can be
published in a directory. This protocol accesses the directory using the algorithm specified in [MS-
MQDSSM] and using LDAP [MS-ADTS]. The Directory Service schema elements for ADM elements
published in the directory are defined in [MS-MQDSSM] section 2.4.

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-MQDSSM%5d.pdf
%5bMS-MQDSSM%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-MQDSSM%5d.pdf

28 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3 Protocol Details

3.1 RemoteRead Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

The abstract data model for this protocol comprises elements that are private to this protocol and
others that are shared between multiple MSMQ protocols that are co-located at a common queue
manager. The shared abstract data model is defined in [MS-MQDMPR] section 3.1.1, and the
relationship between this protocol, a queue manager, and other protocols that share a common
queue manager is described in [MS-MQSO].

Section 3.1.1.1 details the elements from the shared data model that are manipulated by this
protocol, and sections 3.1.1.2 through 3.1.1.4 detail the data model elements that are private to
this protocol.

3.1.1.1 Shared Data Elements

This protocol manipulates the following abstract data model elements from the shared abstract data
model defined in [MS-MQDMPR] section 3.1.1.

QueueManager: as defined in [MS-MQDMPR] section 3.1.1.1.

Queue: as defined in [MS-MQDMPR] section 3.1.1.2.

Message: as defined in [MS-MQDMPR] section 3.1.1.12.

OpenQueueDescriptorCollection: as defined in [MS-MQDMPR] section 3.1.1.2.

OpenQueueDescriptor: as defined in [MS-MQDMPR] section 3.1.1.16.

Cursor: as defined in [MS-MQDMPR] section 3.2.

Transaction: as defined in [MS-MQDMPR] section 3.1.1.14.

3.1.1.2 PendingRequestEntry

The PendingRequestEntry data element encapsulates a pending request to peek or receive a
message from an open queue.

3.1.1.2.1 Attributes

RequestId: The request ID, supplied by the client.

LookupIdentifier: The lookup identifier of a Message associated with the request.

QueueContextHandle: An RPC context handle corresponding to an open queue, as defined by
QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1).

%5bMS-MQDMPR%5d.pdf
%5bMS-MQSO%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

29 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

TimeStamp: A 32-bit unsigned integer that represents the time, in milliseconds, at which the
client request was received.

3.1.1.3 PendingRequestTable

The PendingRequestTable data element represents a hash table that contains references to
instances of PendingRequestEntry data elements keyed on {PendingRequestEntry.RequestId,
PendingRequestEntry.QueueContextHandle}.

3.1.1.4 Message

The Message element extends the base Message element as defined in [MS-MQDMPR] section
3.1.1.10.

3.1.1.4.1 Attributes

The server MUST maintain private state for each Message object in addition to the state described
for the Message element in [MS-MQDMPR] section 3.1.1.10. The following additional attributes are

used to reference this private state:

Type: The type of the message packet, either binary or SRMP.

Offset: The offset and byte size of the message headers, message body, and message

trailers.

3.1.2 Timers

The Message Queuing (MSMQ): Queue Manager Remote Read protocol MUST maintain the following
timers, described in the following sections:

RPC Call Timeout Timer (section 3.1.2.1)

Pending Request Cleanup Timer (section 3.1.2.2)

3.1.2.1 RPC Call Timeout Timer

This protocol uses nondefault behavior for the RPC Call Timeout Timer, as specified in [MS-RPCE]
section 3.3.2.2.2. This protocol uses a timer value of 300,000 milliseconds,<10> which applies to
the following method calls:

R_OpenQueue (Opnum 2) (section 3.1.4.2)

R_OpenQueueForMove (Opnum 11) (section 3.1.4.11)

R_QMEnlistRemoteTransaction (Opnum 12) (section 3.1.4.12)

The server MUST maintain a per-call timer for each call to R_StartReceive (Opnum 7) (section
3.1.4.7) or R_StartTransactionalReceive (Opnum 13) (section 3.1.4.13) in which the

dwTimeout parameter is nonzero. The timer MUST be set to the dwTimeout parameter that is
specified on the call.

3.1.2.2 Pending Request Cleanup Timer

This timer regulates the amount of time that the protocol waits before removing expired entries
from the PendingRequestTable. The server MUST maintain a per-call timer for each call to
R_StartReceive (Opnum 7) (section 3.1.4.7) or R_StartTransactionalReceive (Opnum 13)

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-RPCE%5d.pdf

30 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

(section 3.1.4.13). This timer is set when a PendingRequestEntry object is added to the
PendingRequestTable. The duration of this timer MUST be set based on the system configuration,

which is implementation-dependent.<11>

3.1.3 Initialization

The server MUST listen on the RPC protocols, as specified in section 2.1.

3.1.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data consistency
check at target level 6.0, as specified in [MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime that it is to reject a NULL unique or full pointer with

nonzero conformant value, as specified in [MS-RPCE] section 3.

The RemoteRead interface includes the following methods.

Methods in RPC Opnum Order

Method Description

R_GetServerPort Returns an RPC endpoint port number to use in subsequent calls

on the interface.

Opnum: 0

Opnum1NotUsedOnWire Reserved for local use.

Opnum: 1

R_OpenQueue Opens a queue.

Opnum: 2

R_CloseQueue Closes a queue.

Opnum: 3

R_CreateCursor Opens a cursor on a queue.

Opnum: 4

R_CloseCursor Closes a cursor.

Opnum: 5

R_PurgeQueue Deletes all messages in a queue.

Opnum: 6

R_StartReceive Initiates a Receive or Peek request on the queue.

Opnum: 7

R_CancelReceive Cancels a pending Receive request.

Opnum: 8

R_EndReceive Finishes a Receive request.

Opnum: 9

R_MoveMessage Moves a message between two queues.

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

31 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Method Description

Opnum: 10

R_OpenQueueForMove Opens a queue to be a destination for a move operation.

Opnum: 11

R_QMEnlistRemoteTransaction Enlists in a transaction on a remote machine.

Opnum: 12

R_StartTransactionalReceive Initiates a transactional receive request on the queue.

Opnum: 13

R_SetUserAcknowledgementClass Changes the acknowledgment class for a message in a queue.

Opnum: 14

R_EndTransactionalReceive Finishes a transactional receive request.

Opnum: 15

Note In the preceding table, the term "Reserved for local use" means that the client MUST NOT
send the opnum and the server behavior is undefined since it does not affect interoperability.<12>

3.1.4.1 R_GetServerPort (Opnum 0)

The R_GetServerPort method returns the RPC endpoint port for the client to use in subsequent

method calls on the RemoteRead interface.

The server MUST return the TCP port number for the RemoteRead RPC interface. The default port
number used is 2103. If this port is already in use, the server SHOULD increment the port number
by 11 until an unused port is found.

The client MAY call this method prior to calling any other method on the protocol. The client MAY use
the returned value to obtain another RPC binding handle to use with the remaining methods on the

protocol.<13>

DWORD R_GetServerPort(

 [in] handle_t hBind

);

hBind: MUST specify an RPC binding handle parameter, as specified in [MS-RPCE] (section 2).

Return Values: On success, this method MUST return a nonzero TCP port value for the RPC
interface. If an error occurs, the server MUST return 0x00000000.

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol, as specified in [MS-

RPCE].

As specified in section 3.1.3, this protocol configures a fixed listening endpoint at an RPC port
number which may vary. This method returns the RPC port number determined at server
initialization time.

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

32 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.4.2 R_OpenQueue (Opnum 2)

The R_OpenQueue method opens a queue in preparation for subsequent operations against it. This
method MUST be called prior to calling any of the following operations:

R_CreateCursor (section 3.1.4.4)

R_CloseCursor (section 3.1.4.5)

R_PurgeQueue (section 3.1.4.6)

R_StartReceive (section 3.1.4.7)

R_CancelReceive (section 3.1.4.8)

R_EndReceive (section 3.1.4.9)

R_MoveMessage (section 3.1.4.10), for the source queue only, as specified in section

3.1.4.10.

R_StartTransactionalReceive (section 3.1.4.13)

R_SetUserAcknowledgementClass (section 3.1.4.14)

R_EndTransactionalReceive (section 3.1.4.15)

This method returns a QUEUE_CONTEXT_HANDLE_SERIALIZE (section 2.2.4.2) that is
required as input in the operations listed above.

void R_OpenQueue(

 [in] handle_t hBind,

 [in] struct QUEUE_FORMAT* pQueueFormat,

 [in] DWORD dwAccess,

 [in] DWORD dwShareMode,

 [in] GUID* pClientId,

 [in] LONG fNonRoutingServer,

 [in] unsigned char Major,

 [in] unsigned char Minor,

 [in] USHORT BuildNumber,

 [in] LONG fWorkgroup,

 [out] QUEUE_CONTEXT_HANDLE_SERIALIZE* pphContext

);

hBind: MUST specify an RPC binding handle parameter, as specified in [MS-RPCE] (section 2).

pQueueFormat: MUST be a pointer to a QUEUE_FORMAT structure (section 2.2.7) that
identifies the queue to open. NULL is invalid for this parameter. The valid values for the
m_qft field are QUEUE_FORMAT_TYPE_PUBLIC, QUEUE_FORMAT_TYPE_PRIVATE,

QUEUE_FORMAT_TYPE_DIRECT, QUEUE_FORMAT_TYPE_MACHINE, and
QUEUE_FORMAT_TYPE_SUBQUEUE.

dwAccess: Specifies the requested type of access to the queue. The required dwAccess value for
each event is specified in each of the corresponding events. If no requirement is listed, any
dwAccess value is accepted.

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

33 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

RECEIVE_ACCESS

0x00000001

The returned QUEUE_CONTEXT_HANDLE_SERIALIZE can be used in the

R_StartReceive or R_StartTransactionalReceive methods with ulAction

set to either a Peek or Receive action type as defined in the table under the

ulAction parameter in R_StartReceive.

PEEK_ACCESS

0x00000020

The returned QUEUE_CONTEXT_HANDLE_SERIALIZE can be used in the

R_StartReceive method with ulAction set only to a Peek action type as

defined in the table under the ulAction parameter in R_StartReceive.

dwShareMode: Specifies whether the client needs exclusive access to the queue. The following

values are valid for this parameter:

Value Meaning

MQ_DENY_NONE

0x00000000

Permits multiple QUEUE_CONTEXT_HANDLE_SERIALIZE handles to the

queue to be opened concurrently.

MQ_DENY_SHARE

0x00000001

Permits a single QUEUE_CONTEXT_HANDLE_SERIALIZE to the queue at a

time, providing exclusive access to the queue.

pClientId: MUST be set by the client to a pointer to a valid GUID that uniquely identifies the
client. When the queue manager acts as the client, the queue manager sets this value to

QueueManager.Identifier. The server SHOULD ignore this parameter. The server MAY use
this parameter to impose a limit on the number of unique callers.<14> NULL is invalid for this
parameter.

fNonRoutingServer: If the client is configured to operate in the role of an MSMQ routing
server, this parameter MUST be set to FALSE (0x00000000); otherwise, it MUST be set to
TRUE (0x00000001).<15> If the value of the fNonRoutingServer parameter is FALSE
(0x00000000), the server MUST ignore pClientId.

Name Value

False 0x00000000

True 0x00000001

Major: MUST be set by the client to an implementation-specific Major Version number of the

client. SHOULD be ignored by the server.<16>

Minor: MUST be set by the client to an implementation-specific Minor Version number of the
client. SHOULD be ignored by the server.<17>

BuildNumber: MUST be set by the client to an implementation-specific Build Number of the
client. SHOULD be ignored by the server.<18>

fWorkgroup: MUST be set to TRUE (0x00000001) by the client if the client machine is not a

member of a Windows domain; otherwise, it MUST be set to FALSE (0x00000000). The RPC
authentication level required by the server MAY be based on this value in subsequent calls
on the interface.<19>

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-GLOS%5d.pdf

34 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Name Value

False 0x00000000

True 0x00000001

pphContext: MUST be set by the server to a QUEUE_CONTEXT_HANDLE_SERIALIZE.

Return Values: The method has no return values. If the method fails, an RPC exception is
thrown.

Exceptions Thrown:

In addition to the exceptions thrown by the underlying RPC protocol, as specified in [MS-RPCE], the

method throws HRESULT failure codes as RPC exceptions. The client MUST treat all thrown
HRESULT codes identically. The client MUST disregard all output-parameter values when any failure
HRESULT is thrown.

When processing this call, the server MUST do the following:

If any of the input parameter values is invalid, return MQ_ERROR_INVALID_PARAMETER

(0xC00E0006).

Look up the queue name in the QueueManager.QueueCollection. If not found, throw

MQ_ERROR_QUEUE_NOT_FOUND (0xC00E0003).

Generate an Open Queue event, as specified in [MS-MQDMPR] section 3.1.7.1.5, with the

following inputs:

iFormatName := pQueueFormat

iRequiredAccess := If dwAccess is RECEIVE_ACCESS then

QueueAccessType.ReceiveAccess else QueueAccessType.PeekAccess.

iSharedMode := If dwShareMode is MQ_DENY_NONE then QueueShareMode.DenyNone

else QueueShareMode.DenyReceive.

If rStatus is MQ_OK (0x00000000):

Set pphContext to rOpenQueueDescriptor.Handle

3.1.4.3 R_CloseQueue (Opnum 3)

The R_CloseQueue method closes a QUEUE_CONTEXT_HANDLE_SERIALIZE (section 2.2.4.2)
that was previously opened by using a call to the R_OpenQueue (section 3.1.4.2) method or the
R_OpenQueueForMove (section 3.1.4.11) method.

HRESULT R_CloseQueue(

 [in] handle_t hBind,

 [in, out] QUEUE_CONTEXT_HANDLE_SERIALIZE* pphContext

);

hBind: MUST specify an RPC binding handle parameter, as specified in [MS-RPCE] (section 2).

pphContext: MUST be set by the client to the QUEUE_CONTEXT_HANDLE_SERIALIZE to be
closed. The handle MUST have been returned by the server in the pphContext of a prior call to

%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

35 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

R_OpenQueue or R_OpenQueueForMove and MUST NOT have been closed through a prior
call to R_CloseQueue. This value MUST NOT be NULL. If the server returns MQ_OK, it MUST

set this value to NULL.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT and the client MUST treat all
failure HRESULTs identically.

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol, as specified in [MS-
RPCE].

When processing this call, the server MUST:

Find the corresponding OpenQueueDescriptor instance by comparing pphContext with

OpenQueueDescriptor.Handle for all OpenQueueDescriptor instances maintained by the
local QueueManager.

If not found, then return a failure HRESULT.

Generate a Close Queue event, as specified in [MS-MQDMPR] section 3.1.7.1.6, with the

following inputs:

iQueueDesc := The found OpenQueueDescriptor instance.

Find all entries in the PendingRequestTable that contain pphContext and remove these entries.

Set pphContext to NULL.

Return MQ_OK (0x00000000).

3.1.4.4 R_CreateCursor (Opnum 4)

The R_CreateCursor method creates a cursor and returns a handle to it. The handle can be used in
subsequent calls to R_StartReceive (section 3.1.4.7) or R_StartTransactionalReceive
(section 3.1.4.13) to specify a relative location in the queue from which to receive a message.

HRESULT R_CreateCursor(

 [in] handle_t hBind,

 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,

 [out] DWORD* phCursor

);

hBind: MUST specify an RPC binding handle parameter, as specified in [MS-RPCE] (section 2).

phContext: MUST be set by the client to the QUEUE_CONTEXT_HANDLE_NOSERIALIZE
(section 2.2.4.1) with which to associate the cursor. The handle MUST have been returned

by the server in the pphQueue output parameter of a prior call to R_OpenQueue (section

3.1.4.2) and MUST NOT have been closed through a prior call to R_CloseQueue (section
3.1.4.3). This value MUST NOT be NULL.

phCursor: MUST be set by the server to a handle for the created cursor.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

36 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

If an error occurs, the server MUST return a failure, and the client MUST treat all failure
HRESULTs identically.

The client MUST disregard all out-parameter values when any failure HRESULT is returned.

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol, as specified in [MS-
RPCE].

When processing this call, the server MUST:

Find the corresponding OpenQueueDescriptor instance by comparing pphContext with

OpenQueueDescriptor.Handle for all OpenQueueDescriptor instances maintained by the
local QueueManager.

If not found, return a failure HRESULT.

Generate an Open Cursor event, as specified in [MS-MQDMPR] section 3.1.7.1.1, with the

following inputs:

iQueueDesc := The found OpenQueueDescriptor instance.

Set phCursor to rCursor.Handle.

Return MQ_OK (0x00000000).

3.1.4.5 R_CloseCursor (Opnum 5)

The R_CloseCursor method closes the handle for a previously created cursor. The client MUST call
this method to reclaim resources on the server allocated by the R_CreateCursor (section
3.1.4.4) method.

HRESULT R_CloseCursor(

 [in] handle_t hBind,

 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,

 [in] DWORD hCursor

);

hBind: MUST specify an RPC binding handle parameter, as specified in [MS-RPCE] (section 2).

phContext: MUST be set by the client to the QUEUE_CONTEXT_HANDLE_NOSERIALIZE
(section 2.2.4.1) with which the cursor was associated in a call to R_CreateCursor. The
handle MUST have been returned by the server in the pphQueue output parameter of a prior
call to R_OpenQueue (section 3.1.4.2) and MUST NOT have been closed through a prior
call to R_CloseQueue (section 3.1.4.3). This value MUST NOT be NULL.

hCursor: MUST be set by the client to the handle of the cursor to be closed. The handle MUST

have been obtained by a prior call to the R_CreateCursor method and MUST NOT have been
closed through a prior call to R_CloseCursor.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT and the client MUST treat all
failure HRESULTs identically.

Exceptions Thrown:

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

37 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

No exceptions are thrown except those that are thrown by the underlying RPC protocol, as specified
in [MS-RPCE].

When processing this call, the server MUST:

Find the corresponding OpenQueueDescriptor instance by comparing phContext with

OpenQueueDescriptor.Handle for all OpenQueueDescriptor instances maintained by the
local QueueManager.

If the OpenQueueDescriptor instance is found, then find the corresponding Cursor instance by

comparing hCursor with Cursor.Handle in OpenQueueDescriptor.CursorCollection.

If not found, return a failure HRESULT.

Generate a Close Cursor event, as specified in [MS-MQDMPR] section 3.1.7.1.2, with the

following inputs:

iCursor := The found Cursor instance.

Return MQ_OK (0x00000000).

3.1.4.6 R_PurgeQueue (Opnum 6)

The R_PurgeQueue method removes all messages from the queue.

HRESULT R_PurgeQueue(

 [in] handle_t hBind,

 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext

);

hBind: MUST specify an RPC binding handle parameter, as specified in [MS-RPCE] (section 2).

phContext: MUST be set by the client to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE
(section 2.2.4.1) of the queue to be purged. The handle MUST have been returned by the

server in the pphQueue output parameter of a prior call to R_OpenQueue (section 3.1.4.2)
with the dwAccess parameter set to RECEIVE_ACCESS, and MUST NOT have been closed

through a prior call to R_CloseQueue (section 3.1.4.3). This value MUST NOT be NULL.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT, and the client MUST treat all
failure HRESULT identically.

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol, as specified in [MS-

RPCE].

When processing this call, the server MUST:

Find the corresponding OpenQueueDescriptor instance by comparing phContext with

OpenQueueDescriptor.Handle for all OpenQueueDescriptor instances maintained by the
local QueueManager.

If not found, return a failure HRESULT.

If found and OpenQueueDescriptor.AccessType is QueueAccessType.ReceiveAccess, then:

%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf

38 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Generate a Purge Queue event, as specified in [MS-MQDMPR] section 3.1.7.1.7, with the

following inputs:

iQueue := OpenQueueDescriptor.QueueReference

Return MQ_OK (0x00000000).

If found and OpenQueueDescriptor.AccessType is not QueueAccessType.ReceiveAccess,

then return STATUS_ACCESS_DENIED (0xC0000022).

3.1.4.7 R_StartReceive (Opnum 7)

The R_StartReceive method peeks or receives a message from an open queue.

If R_StartReceive is invoked with a Peek action type, as specified in the ulAction parameter, the
operation completes when R_StartReceive returns.

If R_StartReceive is invoked with a Receive action type, as specified in the ulAction parameter, the
client MUST pair each call to R_StartReceive with a call to R_EndReceive (section 3.1.4.9) to

complete the operation, or to R_CancelReceive (section 3.1.4.8) to cancel the operation. The call
to R_EndReceive or R_CancelReceive is correlated to a call to R_StartReceive through

matching dwRequestId parameters.

If the client specifies a nonzero ulTimeout parameter, and a message is not available in the queue at
the time of the call, the server waits up to the specified time-out for a message to become available
in the queue before responding to the call. The client can call R_CancelReceive with a matching
dwRequestId to cancel the pending R_StartReceive request.

The message to be returned can be specified in one of three ways:

LookupId: A nonzero LookupId value specifies the unique identifier for the message to be

returned. The ulAction parameter further specifies whether the message to be returned is the one
identified by LookupId or the first unlocked message immediately preceding or following it. For
more details, see the description of the ulAction parameter.

Cursor: A nonzero cursor handle specifies the cursor to be used to identify the message to be

returned. The cursor specifies a location in the queue. The ulAction parameter further specifies
whether the message to be returned is the one identified by the cursor or the first unlocked

message immediately following it. For more details, see the description of the ulAction
parameter.

First: if LookupId is set to zero and hCursor is set to zero, the first unlocked message in the

queue can be returned. The ulAction parameter further specifies whether the first message is to
be received or peeked.

The ppPacketSections field is the address of one or more pointers to one or more SectionBuffer

(section 2.2.6) structures. The pSectionBuffer field of the first SectionBuffer points to the
beginning of the message packet. If more than one SectionBuffer structure is present, then the
packet sections should be concatenated in the order in which they appear in the array to form the
entire packet. The size of each section is stored in the SectionSizeAlloc field of the SectionBuffer

structure.

HRESULT R_StartReceive(

 [in] handle_t hBind,

 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,

 [in] ULONGLONG LookupId,

 [in] DWORD hCursor,

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf

39 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 [in] DWORD ulAction,

 [in] DWORD ulTimeout,

 [in] DWORD dwRequestId,

 [in] DWORD dwMaxBodySize,

 [in] DWORD dwMaxCompoundMessageSize,

 [out] DWORD* pdwArriveTime,

 [out] ULONGLONG* pSequenceId,

 [out] DWORD* pdwNumberOfSections,

 [out, size_is(, *pdwNumberOfSections)]

 SectionBuffer** ppPacketSections

);

hBind: MUST specify an RPC binding handle parameter, as specified in [MS-RPCE] (section 2).

phContext: MUST be set by the client to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE
(section 2.2.4.1) of the queue from which to read a message. The handle MUST have been

returned by the server in the pphQueue output parameter of a prior call to R_OpenQueue
(section 3.1.4.2) and MUST NOT have been closed through a call prior to R_CloseQueue

(section 3.1.4.3). This value MUST NOT be NULL.

The handle MUST have been opened with a dwAccess value that permits the operation
specified by the ulAction parameter. For more details, see the dwAccess parameter in
R_OpenQueue.

LookupId: If nonzero, specifies the lookup identifier of the message to be acted on.

If the client sets the LookupId parameter to a nonzero value, the valid values for other
parameters are as follows:

ulTimeout set to 0x00000000.

hCursor set to 0x00000000.

ulAction set to one of the following:

MQ_LOOKUP_PEEK_PREV

MQ_LOOKUP_PEEK_CURRENT

MQ_LOOKUP_PEEK_NEXT

MQ_LOOKUP_RECEIVE_PREV

MQ_LOOKUP_RECEIVE_CURRENT

MQ_LOOKUP_RECEIVE_NEXT

If the LookupId parameter is set to 0x00000000, all of the preceding values of the ulAction
parameter are invalid.

hCursor: If nonzero, specifies a handle to a cursor that MUST have been obtained from a prior

call to the R_CreateCursor (section 3.1.4.4) method. The handle MUST NOT have been
closed through a prior call to R_CloseCursor (section 3.1.4.5).

If the client sets the hCursor parameter to a nonzero value, the valid values for other
parameters are as follows:

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

40 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

LookupId set to 0x0000000000000000

ulAction set to one of the following:

MQ_ACTION_RECEIVE

MQ_ACTION_PEEK_CURRENT

MQ_ACTION_PEEK_NEXT

ulAction: Specifies the action to perform. The following table lists possible actions.

Type / Value Meaning

MQ_ACTION_RECEIVE

0x00000000

If hCursor is nonzero, read and remove the message for the

current cursor location and advance the cursor to the next

position.

If hCursor is 0x00000000, read and remove the message from

the front of the queue.

The valid values for other parameters are as follows:

 LookupId set to 0x0000000000000000.

MQ_ACTION_PEEK_CURRENT

0x80000000

If hCursor is nonzero, read the message at the current cursor

location, but do not remove it from the queue.

If hCursor is 0x00000000, read the message at the front of the

queue but do not remove it from the queue.

The valid values for other parameters are as follows:

 LookupId set to 0x0000000000000000.

MQ_ACTION_PEEK_NEXT

0x80000001

If hCursor is nonzero, advance the cursor to the next position

and read the message, but do not remove it from the queue.

The valid values for other parameters are as follows:

 LookupId set to 0x0000000000000000.

 hCursor set to a nonzero cursor handle obtained from the

R_CreateCursor method.

MQ_LOOKUP_PEEK_CURRENT

0x40000010

Read the message specified by the LookupId parameter but do

not remove it from the queue.

The valid values for other parameters are as follows:

 LookupId set to a nonzero value.

 hCursor set to 0x00000000.

 ulTimeout set to 0x00000000.

MQ_LOOKUP_PEEK_NEXT

0x40000011

Read the message following the message specified by

LookupId but do not remove it.

The valid values for other parameters are as follows:

 LookupId set to a nonzero value.

41 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Type / Value Meaning

 hCursor set to 0x00000000.

 ulTimeout set to 0x00000000.

MQ_LOOKUP_PEEK_PREV

0x40000012

Read the message preceding the message specified by the

LookupId parameter but do not remove it from the queue.

The valid values for other parameters are as follows:

 LookupId set to a nonzero value.

 hCursor set to 0x00000000.

 ulTimeout set to 0x00000000.

MQ_LOOKUP_RECEIVE_CURRENT

0x40000020

Read the message specified by the LookupId parameter and

remove it from the queue.

The valid values for other parameters are as follows:

 LookupId set to a nonzero value.

 hCursor set to 0x00000000.

 ulTimeout set to 0x00000000.

MQ_LOOKUP_RECEIVE_NEXT

0x40000021

Read the message following the message specified by the

LookupId parameter and remove it from the queue.

The valid values for other parameters are as follows:

 LookupId set to a nonzero value.

 hCursor set to 0x00000000.

 ulTimeout set to 0x00000000.

MQ_LOOKUP_RECEIVE_PREV

0x40000022

Read the message preceding the message specified by the

LookupId parameter and remove it from the queue.

The valid values for other parameters are as follows:

 LookupId set to 0x0000000000000000.

 hCursor set to 0x00000000.

 ulTimeout set to 0x00000000.

If hCursor is 0x00000000 and LookupId is 0x0000000000000000, the valid values for the
ulAction parameter are as follows:

MQ_ACTION_RECEIVE

MQ_ACTION_PEEK_CURRENT

ulTimeout: Specifies the time-out, in milliseconds, to wait for a message to become available in
the queue. The valid value for this parameter is 0x00000000 if the LookupId parameter value

42 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

is nonzero or if the action is not MQ_ACTION_RECEIVE, MQ_ACTION_PEEK_CURRENT, or
MQ_ACTION_PEEK_NEXT.

dwRequestId: MUST be set by the client to a unique correlation identifier for the receive
request. This value MUST be used in a subsequent call to R_EndReceive or

R_CancelReceive to correlate that call with the call to R_StartReceive. The value MUST
NOT be used in another R_StartReceive call on the same
QUEUE_CONTEXT_HANDLE_NOSERIALIZE until a call to either R_EndReceive or
R_CancelReceive with the same dwRequestId value has been completed.

dwMaxBodySize: MUST be set by the client to the maximum size, in bytes, of the message
body to be returned. The server SHOULD ignore this parameter when the message is not a
Binary Message (section 2.2.5.1.1).

dwMaxCompoundMessageSize: MUST be set by the client to the maximum size, in bytes, of
the CompoundMessageHeader. The server SHOULD ignore this parameter when the message
is not an SRMP Message (section 2.2.5.1.2).

pdwArriveTime: The server MUST set this value to the time that the message was added to the
queue ([MS-MQDMPR] section 3.1.7.3.1), expressed as the number of seconds elapsed since
midnight 00:00:00.0, January 1, 1970 Coordinated Universal Time (UTC).

pSequenceId: The server MUST set this parameter to the least significant 7 bytes of the
Message.LookupIdentifier of the message that is received by this request.

pdwNumberOfSections: The server MUST set this parameter to the number of elements in the
array pointed to by the ppPacketSections parameter.

ppPacketSections: The server MUST set this parameter to an array of pointers to
SectionBuffer structures. The server MUST fill this array in the following manner:

Create two local variables of type DWORD called maxMessageSize and actualMessageSize.

Assign the following values to these variables:

If the message is a Binary Message:

maxMessageSize := dwMaxBodySize

actualMessageSize := message packet body size

If the message is an SRMP Message:

maxMessageSize := dwMaxCompoundMessageSize

actualMessageSize := size in bytes of CompoundMessageHeader

If the value of maxMessageSize is greater than or equal to actualMessageSize, the

ppPacketSections MUST contain a single element as follows:

SectionType (section 2.2.7) MUST be set to stFullPacket (0x00000000).

The SectionSize and SectionSizeAlloc elements MUST be set to the message

packet size.

pSectionBuffer MUST contain the entire message packet.

If the value of maxMessageSize is less than actualMessageSize, the array MUST contain a

first element as follows:

%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf

43 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

SectionType MUST be set to one of the following:

stBinaryFirstSection if the message packet is a binary packet.

stSrmpFirstSection if the message packet is an SRMP packet.

pSectionBuffer MUST contain the message packet headers concatenated with the

first maxMessageSize bytes of the message body.

SectionSizeAlloc MUST be set to the message packet header size plus

actualMessageSize.

SectionSize MUST be set to the size of the pSectionBuffer.

If the value of maxMessageSize is less than actualMessageSize and the message packet

trailers are not empty, the array MUST contain a second element as follows:

SectionType MUST be set to one of the following:

stBinarySecondSection if the message packet is a binary packet.

stSrmpSecondSection if the message packet is an SRMP packet.

pSectionBuffer MUST contain the message packet trailers.

SectionSize and SectionSizeAlloc MUST be equal and set to the message packet

trailers size.

Return Values: If an error occurs, the server MUST return a failure HRESULT and the client
MUST treat all failure HRESULT identically.

The client MUST disregard all output parameter values when any failure HRESULT is returned.

Return value/code Description

0x00000000

MQ_OK

0xC00E0007

MQ_ERROR_INVALID_HANDLE

0xC00E001B

MQ_ERROR_IO_TIMEOUT

0xC00E0088

MQ_ERROR_MESSAGE_NOT_FOUND

0xC00E001D

MQ_ERROR_MESSAGE_ALREADY_RECEIVED

0xC00E0008

MQ_ERROR_OPERATION_CANCELLED

0xC00E0006

MQ_ERROR_INVALID_PARAMETER

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf

44 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol, as specified in [MS-

RPCE].

While processing this method, the server MUST:

If any of the input parameter values is invalid, return MQ_ERROR_INVALID_PARAMETER

(0xC00E0006).

Find the corresponding OpenQueueDescriptor instance by comparing phContext with

OpenQueueDescriptor.Handle for all OpenQueueDescriptor instances maintained by the
local QueueManager.

If not found, return a failure HRESULT.

If hCursor is a nonzero value, then find the corresponding Cursor instance by comparing hCursor

with Cursor.Handle for all Cursor instances maintained by the local QueueManager. If not
found, or the Cursor has previously been closed by a call to R_CloseCursor, then return

STATUS_INVALID_HANDLE (0xC0000008).

If the ulAction parameter is MQ_ACTION_RECEIVE, then perform the following steps:

Create a new PendingRequestEntry (section 3.1.1.2) with:

RequestId set to dwRequestId.

QueueContextHandle set to phContext.

LookupIdentifier set to 0.

Timestamp set to the current system time, in milliseconds, since the operating system

was started.

The server MUST create a new instance of the Pending Request Cleanup Timer (section

3.1.2.2), associated with the new PendingRequestEntry, and start it.

Add the new PendingRequestEntry to the PendingRequestTable (section 3.1.1.3).

Generate a Dequeue Message Begin event with the following inputs:

iQueueDesc := OpenQueueDescriptor

iTimeout := ulTimeout

iCursor := Cursor only if hCursor is a nonzero value

iTag := dwRequestId

If the rStatus value returned from the Dequeue Message Begin event is MQ_OK

(0x00000000), the server MUST set the LookupIdentifier field of the new
PendingRequestEntry to rMessage.LookupIdentifier.

If the ulAction parameter is MQ_ACTION_PEEK_CURRENT, then generate a Peek Message event,

as specified in [MS-MQDMPR] section 3.1.7.1.15, with the following inputs:

iQueueDesc := OpenQueueDescriptor

iTimeout := ulTimeout

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

45 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

iCursor := Cursor only if hCursor is a nonzero value

If the ulAction parameter is MQ_ACTION_PEEK_NEXT, then generate a Peek Next Message event,

as specified in [MS-MQDMPR] section 3.1.7.1.14, with the following inputs:

iQueueDesc := OpenQueueDescriptor

iTimeout := ulTimeout

iCursor := Cursor

If the ulAction parameter is MQ_LOOKUP_PEEK_CURRENT, then generate a Read Message By

Lookup Identifier event, as specified in [MS-MQDMPR] section 3.1.7.1.13, with the following

inputs:

iQueueDesc := OpenQueueDescriptor

iLookupId := LookupId

iPeekOperation := True

iLookupOperation := MessageSeekAction.SeekCurrent

If the ulAction parameter is MQ_LOOKUP_PEEK_NEXT, then generate a Read Message By Lookup

Identifier event, as specified in [MS-MQDMPR] section 3.1.7.1.13, with the following inputs:

iQueueDesc := OpenQueueDescriptor

iLookupId := LookupId

iPeekOperation := True

iLookupOperation := MessageSeekAction.SeekNext

If the ulAction parameter is MQ_LOOKUP_PEEK_PREV, then generate a Read Message By Lookup

Identifier event, as specified in [MS-MQDMPR] section 3.1.7.1.13, with the following inputs:

iQueueDesc := OpenQueueDescriptor

iLookupId := LookupId

iPeekOperation := True

iLookupOperation := MessageSeekAction.SeekPrev

If the ulAction parameter is MQ_LOOKUP_RECEIVE_CURRENT, then generate a Read Message By

Lookup Identifier event, as specified in [MS-MQDMPR] section 3.1.7.1.13, with the following

inputs:

iQueueDesc := OpenQueueDescriptor

iLookupId := LookupId

iPeekOperation := False

iLookupOperation := MessageSeekAction.SeekCurrent

iTwoPhaseRead := True

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

46 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

If the ulAction parameter is MQ_LOOKUP_RECEIVE_NEXT, then generate a Read Message By

Lookup Identifier event, as specified in [MS-MQDMPR] section 3.1.7.1.13, with the following

inputs:

iQueueDesc := OpenQueueDescriptor

iLookupId := LookupId

iPeekOperation := False

iLookupOperation := MessageSeekAction.SeekNext

iTwoPhaseRead := True

If the ulAction parameter is MQ_LOOKUP_RECEIVE_PREV, then generate a Read Message By

Lookup Identifier event, as specified in [MS-MQDMPR] section 3.1.7.1.13, with the following
inputs:

iQueueDesc := OpenQueueDescriptor

iLookupId := LookupId

iPeekOperation := False

iLookupOperation := MessageSeekAction.SeekPrev

iTwoPhaseRead := True

If the rStatus value returned from the above events is MQ_OK (Ox00000000), the server MUST:

Use rMessage to fill the ppPacketSections array as specified in the ppPacketSections parameter

description. If the ulAction type, as defined in the table under the ulAction parameter, is Receive,
the server MUST do the following:

Set pdwArriveTime to rMessage.ArrivalTime.

Return rStatus

3.1.4.8 R_CancelReceive (Opnum 8)

The R_CancelReceive method cancels a pending call to R_StartReceive (section 3.1.4.7) or
R_StartTransactionalReceive (section 3.1.4.13). Each of those methods takes a time-out
parameter that can cause the server to not return a response until a message becomes available or
the time-out expires. The R_CancelReceive (section 3.1.4.8) method provides a way for the client
to cancel a blocked request.

HRESULT R_CancelReceive(

 [in] handle_t hBind,

 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,

 [in] DWORD dwRequestId

);

hBind: MUST be an RPC binding handle parameter as described in [MS-RPCE] (section 2).

phContext: MUST be set by the client to the QUEUE_CONTEXT_HANDLE_NOSERIALIZE

(section 2.2.4.1) used in the corresponding call to R_StartReceive that is to be canceled.
The handle MUST have been returned by the server in the pphQueue output parameter of a

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

47 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

prior call to R_OpenQueue (section 3.1.4.2) and MUST NOT have been previously closed
through a call to R_CloseQueue (section 3.1.4.3). This value MUST NOT be NULL.

dwRequestId: MUST be set by the client to the same value as the dwRequestId parameter in
the corresponding call to R_StartReceive or R_StartTransactionalReceive. This parameter

acts as an identifier to correlate an R_CancelReceive call to an R_StartReceive or an
R_StartTransactionalReceive call.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT and the client MUST treat all
failure HRESULTs identically.

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol, as specified in [MS-

RPCE].

When processing this call, the server MUST:

Find the corresponding OpenQueueDescriptor instance by comparing phContext with

OpenQueueDescriptor.Handle for all OpenQueueDescriptor instances maintained by the
local QueueManager.

If not found, return a failure HRESULT.

Generate a Cancel Waiting Message Read Request event, as specified in [MS-MQDMPR] section

3.1.7.1.17, with the following inputs:

iQueue := OpenQueueDescriptor.QueueReference

iTag := dwRequestId

Remove the PendingRequestEntry from the PendingRequestTable by the {phContext,

dwRequestId} key pair.

Respond to the pending R_StartReceive or R_StartTransactionalReceive request with

MQ_ERROR_OPERATION_CANCELLED (0xC00E0008).

3.1.4.9 R_EndReceive (Opnum 9)

The client MUST invoke the R_EndReceive method to advise the server that the message packet
returned by the R_StartReceive (section 3.1.4.7) method has been received.

The combination of the R_StartReceive method and the positive acknowledgment of the
R_EndReceive (section 3.1.4.9) method ensures that a message packet is not lost in transit from
the server to the client due to a network outage during the call sequence.

Note that a call to R_StartTransactionalReceive (section 3.1.4.13) is ended through a
corresponding call to R_EndTransactionalReceive (section 3.1.4.15), not through a call to this

method.

HRESULT R_EndReceive(

 [in] handle_t hBind,

 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,

 [in, range(1,2)] DWORD dwAck,

 [in] DWORD dwRequestId

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

48 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

);

hBind: MUST be an RPC binding handle parameter for use by the server, as described in [MS-

RPCE] (section 2).

phContext: MUST be set by the client to the QUEUE_CONTEXT_HANDLE_NOSERIALIZE
(section 2.2.4.1) used in the corresponding call to R_StartReceive (section 3.1.4.7). The
handle MUST have been returned by the server in the pphQueue output parameter of a prior
call to R_OpenQueue (section 3.1.4.2), and MUST NOT have been closed through a prior
call to R_CloseQueue (section 3.1.4.3). This value MUST NOT be NULL.

dwAck: MUST be set to an Acknowledgment (ACK) or a Negative Acknowledgment (NACK) for
the message packet received from the server in an R_StartReceive request. The following
table lists possible values.

Value Meaning

RR_ACK

0x00000002

The client acknowledges that the message packet was received successfully.

The server MUST remove the message from the queue and make it unavailable for

subsequent consumption.

RR_NACK

0x00000001

The client acknowledges that the message packet was not received successfully.

The server MUST keep the message in the queue and make it available for

subsequent consumption.

dwRequestId: MUST be set by the client to the same value as the dwRequestId parameter in
the corresponding call to R_StartReceive. This parameter acts as an identifier to correlate an
R_EndReceive call to an R_StartReceive call.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT and the client MUST treat all

failure HRESULTs identically.

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol [MS-RPCE].

When processing this call, the server MUST:

If the queue referenced by the phContext handle has no PendingRequestEntry (section 3.1.1.2)

in its PendingRequestTable (section 3.1.1.3), return MQ_ERROR_INVALID_HANDLE
(0xC00E0007).

Look up the PendingRequestEntry by the {phContext, dwRequestId} key pair in the

PendingRequestTable. If a match is not found on the {phContext, dwRequestId} key pair, then
return MQ_ERROR_INVALID_PARAMETER (0xC00E0006). Otherwise, remove the

PendingRequestEntry from the PendingRequestTable and cancel the associated instance of

Pending Request Cleanup Timer (section 3.1.2.2).

Find the corresponding OpenQueueDescriptor instance by comparing phContext with

OpenQueueDescriptor.Handle for all OpenQueueDescriptor instances maintained by the
local QueueManager.

If not found, return a failure HRESULT.

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf

49 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Find the corresponding Message instance by searching

OpenQueueDescriptor.QueueReference.MessagePositionCollection for a

MessagePosition where MessagePosition.MessageReference.LookupIdentifier equals the

PendingRequestEntry.LookupIdentifier of the PendingRequestEntry referenced by
{phContext, dwRequestId}. The corresponding Message instance is referred to by the
MessagePosition.MessageReference of the MessagePosition where the match was found.

If not found, return MQ_ERROR_MESSAGE_NOT_FOUND (0xC00E0088).

Set rStatus to the result of a Dequeue Message End ([MS-MQDMPR] section 3.1.7.1.12) event

with the following inputs:

iQueueDesc := OpenQueueDescriptor.

iMessage := the found Message instance.

iDeleteMessage := True if dwAck is equal to RR_ACK and false if dwAck is equal to RR_NACK.

Return rStatus.

3.1.4.10 R_MoveMessage (Opnum 10)

The R_MoveMessage method moves a message from one queue to another.<20> The source and
destination queues MUST be related as follows:

The source is a queue and the destination is a subqueue of the source queue, or

The destination is a queue and the source is a subqueue of the destination queue, or

The source and destination are two subqueues of the same queue.

HRESULT R_MoveMessage(

 [in] handle_t hBind,

 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContextFrom,

 [in] ULONGLONG ullContextTo,

 [in] ULONGLONG LookupId,

 [in] XACTUOW* pTransactionId

);

hBind: MUST be an RPC binding handle parameter, as described in [MS-RPCE] (section 2).

phContextFrom: MUST be set by the client to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE
(section 2.2.4.1) representing the source queue. The handle MUST have been returned by
the server in the pphQueue output parameter of a prior call to R_OpenQueue (section
3.1.4.2) with the dwAccess parameter set to RECEIVE_ACCESS, and MUST NOT have been
closed through a prior call to R_CloseQueue (section 3.1.4.3). This value MUST NOT be
NULL.

ullContextTo: MUST be set by the client to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE

representing the destination queue. The handle MUST have been returned by the server in the

pMoveContext output parameter of a prior call to R_OpenQueueForMove (section
3.1.4.11), and MUST NOT have been closed through a prior call to R_CloseQueue. This
value MUST NOT be NULL.

LookupId: MUST be set by the client to the lookup identifier of the message to be moved.

%5bMS-MQDMPR%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

50 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

pTransactionId: MUST be set by the client as a pointer to a transaction identifier or to a zero
value XACTUOW. If the destination queue is not a transactional queue, this value MUST be a

pointer to a zero value XACTUOW. If the value of the field is not zero, the transaction
identifier MUST have been registered with the server through a prior call to the

R_QMEnlistRemoteTransaction (section 3.1.4.12) method. It MUST NOT be NULL.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure and the client HRESULT treat all failure
HRESULTs identically.

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol, as specified in [MS-
RPCE].

The R_MoveMessage method provides both transactional and non-transactional operations. When
using a transaction identifier, this method provisionally moves a message from the source queue to
the destination queue, pending notification of the transaction outcome. See section 3.1.6. The non-

transactional operation moves a message from the source queue to the destination queue without
enlisting in a transaction.

When processing this call, the server MUST:

Find the corresponding OpenQueueDescriptor instance for the source queue by comparing

phContextFrom with OpenQueueDescriptor.Handle for all OpenQueueDescriptor instances
maintained by the local QueueManager and then declare and set iSourceQueueDescriptor to
the instance.

If not found, return a failure HRESULT.

Find the corresponding OpenQueueDescriptor instance for the destination queue by comparing

ullContextTo with OpenQueueDescriptor.Handle for all OpenQueueDescriptor instances
maintained by the local QueueManager and then declare and set
iDestinationQueueDescriptor to the instance.

If not found or if iDestinationQueueDescriptor.AccessType is not

QueueAccessType.MoveAccess, then return MQ_ERROR_INVALID_HANDLE (0xC00E0007).

If none of the following conditions are met, return STATUS_INVALID_PARAMETER

(0xC000000D):

iSourceQueueDescriptor is part of the collection

iDestinationQueueDescriptor.QueueReference.SubqueueCollection.

iDestinationQueueDescriptor is part of collection

iSourceQueueDescriptor.QueueReference.SubqueueCollection.

iSourceQueueDescriptor.QueueReference.Pathname and

iDestinationQueueDescriptor.QueueReference.Pathname have the same parent queue
pathname. The parent queue pathname MUST be formed by removing the subqueue portion

from the pathname and the preceding ";", as defined in [MS-MQMQ] section 2.1.1.

If the method is provided with a nonzero pTransactionId and if

iDestinationQueueDescriptor.QueueReference.Transactional is False, return
MQ_ERROR_TRANSACTION USAGE (0xC00E0050).

%5bMS-MQMQ%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQMQ%5d.pdf

51 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Find the corresponding Message instance by comparing

PendingRequestEntry.LookupIdentifier with

MessagePosition.MessageReference.Identifier in the

iSourceQueueDescriptor.QueueReference.MessagePositionCollection and then declare
and set iFoundMessage to the instance.

If not found, then return MQ_ERROR_MESSAGE_NOT_FOUND (0xC00E0088).

If the message is already part of another transaction, return

MQ_ERROR_MESSAGE_LOCKED_UNDER_TRANSACTION (0xC00E009C).

If the method is provided with a nonzero pTransactionId, find the corresponding Transaction

instance by comparing pTransactionId with Transaction.Identifier for all Transaction
instances in QueueManager.TransactionCollection and then declare and set
iFoundTransaction to the instance.

If not found, return MQ_ERROR_TRANSACTION_SEQUENCE (0xC00E0051).

Generate a Move Message event, as specified in [MS-MQDMPR] section 3.1.7.1.16, with the

following inputs:

iMessagePos := iFoundMessage.MessagePositionReference.

iTargetQueue := iDestinationQueueDescriptor.QueueReference.

If there is a transaction, iTransaction := iFoundTransaction.

Return MQ_OK (0x00000000).

3.1.4.11 R_OpenQueueForMove (Opnum 11)

The R_OpenQueueForMove method opens the queue and returns a
QUEUE_CONTEXT_HANDLE_SERIALIZE (section 2.2.4.2) that can subsequently be used as the
ullContextTo (destination queue) parameter of a call to R_MoveMessage (section 3.1.4.10). This
method MUST be called before the R_MoveMessage operation.<21>

void R_OpenQueueForMove(

 [in] handle_t hBind,

 [in] struct QUEUE_FORMAT* pQueueFormat,

 [in] DWORD dwAccess,

 [in] DWORD dwShareMode,

 [in] GUID* pClientId,

 [in] LONG fNonRoutingServer,

 [in] unsigned char Major,

 [in] unsigned char Minor,

 [in] USHORT BuildNumber,

 [in] LONG fWorkgroup,

 [out] ULONGLONG* pMoveContext,

 [out] QUEUE_CONTEXT_HANDLE_SERIALIZE* pphContext

);

hBind: MUST specify an RPC binding handle parameter, as specified in [MS-RPCE] (section 2).

pQueueFormat: MUST be a pointer to a QUEUE_FORMAT structure that identifies the queue to
open. This value MUST NOT be NULL. The value of the m_qft field MUST be one of

QUEUE_FORMAT_TYPE_PUBLIC, QUEUE_FORMAT_TYPE_PRIVATE,

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-MQMQ%5d.pdf

52 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

QUEUE_FORMAT_TYPE_DIRECT, QUEUE_FORMAT_TYPE_MACHINE, or
QUEUE_FORMAT_TYPE_SUBQUEUE.

dwAccess: Specifies the required type of access to the queue. MUST be set by the client to
MQ_MOVE_ACCESS (0x00000004).

dwShareMode: Specifies whether the client needs exclusive access to the queue. MUST be set
by the client to MQ_DENY_NONE (0x00000000), which permits multiple
QUEUE_CONTEXT_HANDLE_SERIALIZE handles to the queue to be opened concurrently.

pClientId: MUST be set by the client to a pointer to a valid GUID that uniquely identifies the
client. When the queue manager acts as the client, the queue manager sets this value to
QueueManager.Identifier. The server SHOULD ignore this parameter. This value MUST
NOT be NULL.

fNonRoutingServer: If the client is configured to operate in the role of an MSMQ routing server,
this parameter MUST be set to FALSE (0x00000000); otherwise, it MUST be set to TRUE
(0x00000001).<22> If the value of the fNonRoutingServer parameter is FALSE

(0x00000000), the server MUST ignore pClientId.

Name Value

FALSE 0x00000000

TRUE 0x00000001

Major: MUST be set by the client to an implementation-specific Major Version number of the
client. SHOULD be ignored by the server.<23>

Minor: MUST be set by the client to an implementation-specific Minor Version number of the

client. SHOULD be ignored by the server.<24>

BuildNumber: MUST be set by the client to an implementation-specific Build Number of the
client. SHOULD be ignored by the server.<25>

fWorkgroup: MUST be set to TRUE (0x00000001) by the client if the client machine is not a
member of a Windows domain; otherwise, it MUST be set to FALSE (0x00000000). The RPC
authentication level required by the server MAY be based on this value in subsequent calls on
the interface.<26>

Name Value

FALSE 0x00000000

TRUE 0x00000001

pMoveContext: The server MUST set this parameter to a pointer to a

QUEUE_CONTEXT_HANDLE_SERIALIZE and MUST set the value of this parameter to the
same value as the contents of pphContext. The server MUST set this value to a context that

can be used as the dwContextTo in a subsequent call to the R_MoveMessage method.
Logically, it represents a reference to the QUEUE_CONTEXT_HANDLE_SERIALIZE returned
in pphContext.

pphContext: MUST be set by the server to a QUEUE_CONTEXT_HANDLE_SERIALIZE. A
QUEUE_CONTEXT_HANDLE_SERIALIZE opened through a call to this method can be

closed through a subsequent call to R_CloseQueue (section 3.1.4.3).

53 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Return Values: The method has no return values. If the method fails, an RPC exception is
thrown.

Exceptions Thrown:

In addition to the exceptions thrown by the underlying RPC protocol [MS-RPCE], the method throws

HRESULT failure codes as RPC exceptions. The client MUST treat all thrown HRESULT codes
identically.

The client MUST disregard all out-parameter values when any failure HRESULT is thrown.

When processing this call, the server MUST do the following:

Look up the queue name in the QueueManager.QueueCollection. If not found, throw

MQ_ERROR_QUEUE_NOT_FOUND (0xC00E0003).

Generate an Open Queue event, as specified in [MS-MQDMPR] section 3.1.7.1.5, with the

following inputs:

iFormatName := pQueueFormat

iRequiredAccess := QueueAccessType.MoveAccess

iSharedMode := If dwShareMode is MQ_DENY_NONE then QueueShareMode.DenyNone

else QueueShareMode.DenyReceive.

If rStatus is MQ_OK (0x00000000) then

Set pphContext to rOpenQueueDescriptor.Handle.

Set pMoveContext to pphContext.

3.1.4.12 R_QMEnlistRemoteTransaction (Opnum 12)

The R_QMEnlistRemoteTransaction method propagates a distributed atomic transaction context

to the server. The server MUST enlist in the transaction context. The client MUST call this method
prior to the R_StartTransactionalReceive (section 3.1.4.13) or the R_MoveMessage (section
3.1.4.10) calls.<27> Subsequent calls to R_StartTransactionalReceive and R_MoveMessage
that use the same transaction identifier are coordinated such that they either all occur or none of
them occur, depending on whether the transaction outcome is Commit or Rollback.

HRESULT R_QMEnlistRemoteTransaction(

 [in] handle_t hBind,

 [in] XACTUOW* pTransactionId,

 [in, range(0, 131072)] DWORD cbPropagationToken,

 [in, size_is(cbPropagationToken)]

 unsigned char* pbPropagationToken,

 [in] struct QUEUE_FORMAT* pQueueFormat

);

hBind: MUST be an RPC binding handle parameter, as specified in [MS-RPCE] (section 2).

pTransactionId: MUST be a pointer to a transaction identifier obtained, as specified in [MS-
DTCO] section 3.3.4.1. This value MUST NOT be NULL.

cbPropagationToken: MUST be the size, in bytes, of pbPropagationToken.

%5bMS-RPCE%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf

54 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

pbPropagationToken: MUST be a transaction propagation token, as specified in [MS-DTCO]
section 2.2.5.4, that represents the transaction identified by the pTransactionId parameter.

This parameter MUST NOT be NULL.

pQueueFormat: MUST be a pointer to a QUEUE_FORMAT structure that identifies the queue

which will be passed to the R_StartTransactionalReceive method. SHOULD be ignored by
the server.<28>

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT and the client MUST treat all
failure HRESULTs identically.

MQ_OK (0x00000000)

Exceptions Thrown:

No exceptions are thrown except those that are thrown by the underlying RPC protocol, as specified

in [MS-RPCE].

While processing this operation, the server MUST:

Enlist into the transaction as specified in [MS-DTCO] section 3.5.4.3.

Generate a Create Transaction event ([MS-MQDMPR] section 3.1.7.1.8) with the following inputs:

iTransactionIdentifier := pTransactionId

Return MQ_OK (0x00000000).

3.1.4.13 R_StartTransactionalReceive (Opnum 13)

The R_StartTransactionalReceive method peeks or receives a message from the opened

queue.<29> If a transaction identifier is provided, it receives a message inside the specified

transaction.

If R_StartTransactionalReceive is invoked with a Peek action type, as specified in the ulAction
parameter, the operation completes when R_StartTransactionalReceive returns.

If R_StartTransactionalReceive is invoked with a Receive action type, as specified in the ulAction
parameter, the client MUST pair each call to R_StartTransactionalReceive with a call to
R_EndTransactionalReceive (section 3.1.4.15) to complete the operation or to

R_CancelReceive (section 3.1.4.8) to cancel the operation. The call to
R_EndTransactionalReceive or R_CancelReceive is correlated to a call to
R_StartTransactionalReceive through matching dwRequestId parameters.

If the client specifies a nonzero ulTimeout parameter and a message is not available in the queue at
the time of the call, the server waits up to the specified time-out for a message to become available
in the queue before responding to the call. The client can call R_CancelReceive with matching

dwRequestId to cancel the pending R_StartTransactionalReceive request.

The message to be returned can be specified in one of three ways.

LookupId: A nonzero LookupId value that specifies the unique identifier for the message to be

returned. The ulAction parameter further specifies whether the message to be returned is the one

%5bMS-DTCO%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-MQDMPR%5d.pdf

55 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

identified by LookupId or the first unlocked message immediately preceding or following it. For
more details, see the description of the ulAction parameter.

Cursor: A nonzero cursor handle that specifies the cursor to be used to identify the message to

be returned. The cursor specifies a location in the queue. The ulAction parameter further specifies
whether the message to be returned is the one identified by the cursor or the first unlocked
message immediately following it. For more details, see the description of the ulAction
parameter.

First: If LookupId is set to 0 and hCursor is set to 0, the first unlocked message in the queue can

be returned. For more details, see the description of the ulAction parameter.

The ppPacketSections parameter is the address of one or more pointers to one or more

SectionBuffer (section 2.2.6) structures. The pSectionBuffer field of the first SectionBuffer
points to the beginning of the message packet. If more than one SectionBuffer structure is
present, the packet sections should be concatenated in the order in which they appear in the array
to form the entire packet. The size of each section is stored in the SectionSizeAlloc field of the
SectionBuffer structure.

HRESULT R_StartTransactionalReceive(

 [in] handle_t hBind,

 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,

 [in] ULONGLONG LookupId,

 [in] DWORD hCursor,

 [in] DWORD ulAction,

 [in] DWORD ulTimeout,

 [in] DWORD dwRequestId,

 [in] DWORD dwMaxBodySize,

 [in] DWORD dwMaxCompoundMessageSize,

 [in] XACTUOW* pTransactionId,

 [out] DWORD* pdwArriveTime,

 [out] ULONGLONG* pSequenceId,

 [out] DWORD* pdwNumberOfSections,

 [out, size_is(, *pdwNumberOfSections)]

 SectionBuffer** ppPacketSections

);

hBind: MUST be an RPC binding handle parameter, as specified in [MS-RPCE] section 2.

phContext: MUST be set by the client to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE of the
queue from which to read a message. The handle MUST have been returned by the server in
the pphQueue output parameter of a prior call to R_OpenQueue (section 3.1.4.2) with the
dwAccess parameter set to RECEIVE_ACCESS, and MUST NOT have been closed through a
prior call to R_CloseQueue (section 3.1.4.3). This value MUST NOT be NULL.

LookupId: If nonzero, specifies the lookup identifier of the message to be acted on.

If the client sets the LookupId to nonzero, the parameter ulTimeout MUST be set to
0x00000000, the hCursor parameter MUST be set to 0, and the ulAction parameter MUST be
set to one of the following:

MQ_LOOKUP_PEEK_PREV (pTransactionId MUST be NULL)

MQ_LOOKUP_PEEK_CURRENT (pTransactionId MUST be NULL)

MQ_LOOKUP_PEEK_NEXT (pTransactionId MUST be NULL)

%5bMS-RPCE%5d.pdf

56 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

MQ_LOOKUP_RECEIVE_PREV

MQ_LOOKUP_RECEIVE_CURRENT

MQ_LOOKUP_RECEIVE_NEXT

If the LookupId is 0x00000000, the ulAction parameter MUST NOT be set to any of the above
values.

hCursor: If nonzero, specifies a handle to a cursor that MUST have been obtained from a prior
call to the R_CreateCursor (section 3.1.4.4) method. The handle MUST NOT have been
closed through a prior call to R_CloseCursor (section 3.1.4.5).

If the client sets this parameter to nonzero, the parameter LookupId MUST be 0 and the

ulAction parameter MUST be set to one of the following:

MQ_ACTION_RECEIVE

MQ_ACTION_PEEK_CURRENT (pTransactionId MUST be NULL)

MQ_ACTION_PEEK_NEXT (pTransactionId MUST be NULL)

ulAction: Specifies the action to perform on the message. The following table lists possible

actions.

Value Meaning

MQ_ACTION_RECEIVE

0x00000000

If hCursor is nonzero, read and remove the message at the

current cursor location from the queue and advance the cursor.

If hCursor is 0, read and remove the message from the front of

the queue.

The LookupId parameter MUST be set to 0.

MQ_ACTION_PEEK_CURRENT

0x80000000

If hCursor is nonzero, read the message at the current cursor

location but do not remove it from the queue.

If hCursor is 0, read the message at the front of the queue, but

do not remove it from the queue.

The LookupId parameter MUST be set to 0.

The pTransactionId parameter MUST be NULL.

MQ_ACTION_PEEK_NEXT

0x80000001

If hCursor is nonzero, advance the cursor to the next position

and read the message but do not remove it from the queue.

The LookupId parameter MUST be set to 0.

The hCursor parameter MUST be set to a nonzero cursor

handle obtained from the R_CreateCursor method.

The pTransactionId parameter MUST be NULL.

MQ_LOOKUP_PEEK_CURRENT

0x40000010

Read the message specified by the LookupId parameter but do

not remove it from the queue.

The hCursor parameter MUST be set to 0.

The LookupId parameter MUST NOT be set to 0.

The ulTimeout parameter MUST be set to 0x00000000.

The LookupId parameter MUST be NULL.

The pTransactionId parameter MUST be NULL.

57 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

MQ_LOOKUP_PEEK_NEXT

0x40000011

Read the message following the message specified by

LookupId but do not remove it.

The hCursor parameter MUST be set to 0.

The LookupId parameter MUST NOT be set to 0.

The ulTimeout parameter MUST be set to 0x00000000.

The pTransactionId parameter MUST be NULL.

MQ_LOOKUP_PEEK_PREV

0x40000012

Read the message preceding the message specified by the

LookupId parameter but do not remove it from the queue.

The hCursor parameter MUST be set to 0.

The LookupId parameter MUST NOT be set to 0.

The LookupId parameter MUST be set to 0x00000000.

The pTransactionId parameter MUST be NULL.

MQ_LOOKUP_RECEIVE_CURRENT

0x40000020

Read the message specified by LookupId and remove it from

the queue.

The hCursor parameter MUST be set to 0.

The LookupId parameter MUST NOT be set to 0.

The ulTimeout parameter MUST be set to 0x00000000.

MQ_LOOKUP_RECEIVE_NEXT

0x40000021

Read the message following the message specified by

LookupId and remove it from the queue.

The hCursor parameter MUST be set to 0.

The LookupId parameter MUST NOT be set to 0.

The ulTimeout parameter MUST be set to 0x00000000.

MQ_LOOKUP_RECEIVE_PREV

0x40000022

Read the message preceding the message specified by

LookupId and remove it from the queue.

The hCursor parameter MUST be set to 0.

The LookupId parameter MUST NOT be set to 0.

The ulTimeout parameter MUST be set to 0x00000000.

If hCursor is 0 and LookupId is 0, ulAction MUST be set to:

MQ_ACTION_RECEIVE

MQ_ACTION_PEEK_CURRENT (pTransactionId MUST be NULL)

ulTimeout: Specifies the time-out, in milliseconds, to wait for a message to become available in
the queue. The client MUST set this parameter to 0x00000000 if the LookupId parameter

value is not 0. The client MUST set this parameter to 0x00000000 if the action is not
MQ_ACTION_RECEIVE, MQ_ACTION_PEEK_CURRENT, or MQ_ACTION_PEEK_NEXT.

dwRequestId: MUST be set by the client to a unique correlation identifier for the receive

request. This value MUST be used in a subsequent call to R_EndTransactionalReceive or
R_CancelReceive to correlate that call with the call to R_StartTransactionalReceive. The
value MUST NOT be used in another R_StartTransactionalReceive call on the same
QUEUE_CONTEXT_HANDLE_NOSERIALIZE until a call to either

R_EndTransactionalReceive or R_CancelReceive with the same dwRequestId value has
been completed.

58 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

dwMaxBodySize: MUST be set by the client to the maximum size, in bytes, of the message
body to be returned. The server SHOULD ignore this parameter when the message is not a

Binary Message (section 2.2.5.1.1).

dwMaxCompoundMessageSize: MUST be set by the client to the maximum size, in bytes, of

the CompoundMessageHeader. The server SHOULD ignore this parameter when the message
is not an SRMP Message (section 2.2.5.1.2).

pTransactionId: MUST be NULL or set by the client to a transaction identifier that was
registered with the server through a prior call to the R_QMEnlistRemoteTransaction
(section 3.1.4.12) method.

pdwArriveTime: The server MUST set this value to the time that the message was added to the
queue ([MS-MQDMPR] section 3.1.7.3.1), expressed as the number of seconds elapsed since

midnight 00:00:00.0, January 1, 1970 Coordinated Universal Time (UTC).

pSequenceId: The server MUST set this parameter to the lower 7 bytes of the
Message.LookupIdentifier of the message that is received by this request.

pdwNumberOfSections: MUST be set by the server to the number of elements in the array that
are pointed to by the ppPacketSections parameter.

ppPacketSections: MUST be set by the server to an array of pointers to SectionBuffer (section

2.2.6) structures. The server MUST fill this array in the following manner:

Create two local variables of type DWORD called maxMessageSize and actualMessageSize.

Assign the following values to these variables:

If the message is a Binary Message:

maxMessageSize := dwMaxBodySize

actualMessageSize := message packet body size

If the message is an SRMP Message:

maxMessageSize := dwMaxCompoundMessageSize

actualMessageSize := size in bytes of CompoundMessageHeader

If the value of maxMessageSize is greater than or equal to actualMessageSize, the

ppPacketSections MUST contain a single element as follows:

SectionType MUST be set to stFullPacket (0x00000000).

The SectionSize and SectionSizeAlloc elements MUST be set to the message

packet size.

pSectionBuffer MUST contain the entire message packet.

If the value of maxMessageSize is less than actualMessageSize, the array MUST contain a

first element as follows:

SectionType MUST be set to one of the following:

stBinaryFirstSection if the message packet is a binary packet.

stSrmpFirstSection if the message packet is an SRMP packet.

%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf

59 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

pSectionBuffer MUST contain the message packet headers concatenated with the first

maxMessageSize bytes of the message body.

SectionSizeAlloc MUST be set to the message packet headers plus

actualMessageSize.

SectionSize MUST be set to the size of the pSectionBuffer.

If the value of maxMessageSize is less than actualMessageSize and the message packet

trailers are not empty, the array MUST contain a second element as follows:

SectionType MUST be set to one of the following:

stBinarySecondSection if the message packet is a binary packet.

stSrmpSecondSection if the message packet is an SRMP packet.

pSectionBuffer MUST contain the message packet trailers.

SectionSize and SectionSizeAlloc MUST be equal and set to the message packet

trailers size.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT and the client MUST treat all
failure HRESULTs identically.

The client MUST disregard all out-parameter values when any failure HRESULT is returned.

MQ_OK (0x00000000)
MQ_ERROR_INVALID_HANDLE (0xC00E0007)
MQ_ERROR_MESSAGE_NOT_FOUND (0xC00E0088)

MQ_ERROR_IO_TIMEOUT (0xC00E001B)
MQ_ERROR_TRANSACTION_USAGE (0xC00E0050)
MQ_ERROR_OPERATION_CANCELLED (0xC00E0008)

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol, as specified in [MS-
RPCE].

While processing this method, the server MUST:

If pTransactionId is NULL:

Call R_StartReceive (section 3.1.4.7) with the following parameters:

hBind := hBind

phContext := phContext

LookupId := LookupId

hCursor := hCursor

ulAction := ulAction

ulTimeout := ulTimeout

%5bMS-DTYP%5d.pdf

60 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

dwRequestId := dwRequestId

dwMaxBodySize := dwMaxBodySize

dwMaxCompoundMessageSize := dwMaxCompoundMessageSize

pdwArriveTime := pdwArriveTime

pSequenceId := pSequenceId

pdwNumberOfSections := pdwNumberOfSections

ppPacketSections := ppPacketSections

Return the result rStatus from R_StartReceive and take no further action.

Find the corresponding OpenQueueDescriptor instance by comparing phContext with

OpenQueueDescriptor.Handle for all OpenQueueDescriptor instances maintained by the
local QueueManager.

If not found, return a failure HRESULT.

If hCursor is a nonzero value, then find the corresponding Cursor instance by comparing hCursor

with Cursor.Handle for all Cursor instances maintained by the local QueueManager. If not
found, or the Cursor has previously been closed by a call to R_CloseCursor, then return
STATUS_INVALID_HANDLE (0xC0000008).

If the corresponding OpenQueueDescriptor.QueueReference.Transactional is FALSE, the

queue does not support transactional operations. Return MQ_ERROR_TRANSACTION_USAGE

(0xC00E0050).

If the ulAction parameter is MQ_ACTION_PEEK_CURRENT, MQ_ACTION_PEEK_NEXT,

MQ_LOOKUP_PEEK_CURRENT, MQ_LOOKUP_PEEK_NEXT, or MQ_LOOKUP_PEEK_PREV, then
return MQ_ERROR_TRANSACTION_USAGE.

Find the corresponding Transaction instance, referred to as lpTransaction, by comparing

pTransactionId with Transaction.Identifier for all Transaction instances in

QueueManager.TransactionCollection.

If a Transaction instance cannot be found:

Generate a Create Transaction event ([MS-MQDMPR] section 3.1.7.1.8) with the following

input:

iTransactionIdentifier := NULL

On return, set lpTransaction to rTransaction.

If the ulAction parameter is MQ_ACTION_RECEIVE, then perform the following steps:

Create a new PendingRequestEntry (section 3.1.1.2) with:

RequestId set to dwRequestId.

QueueContextHandle set to phContext.

LookupIdentifier set to 0.

%5bMS-MQDMPR%5d.pdf

61 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Timestamp set to the current system time, in milliseconds, since the operating system

was started.

The server MUST create a new instance of the Pending Request Cleanup Timer (section

3.1.2.2), associated with the new PendingRequestEntry, and start it.

Add the new PendingRequestEntry to the PendingRequestTable (section 3.1.1.3).

Generate a Dequeue Message Begin event ([MS-MQDMPR] section 3.1.7.1.11) with the

following inputs:

iQueueDesc := OpenQueueDescriptor

iTimeout := ulTimeout

iCursor := Cursor only if hCursor is a nonzero value

iTag := dwRequestId

iTransaction := lpTransaction

If the rStatus value returned from the Dequeue Message Begin event is MQ_OK

(0x00000000), the server MUST set the LookupIdentifier field of the new
PendingRequestEntry to rMessage.LookupIdentifier.

If the ulAction parameter is MQ_LOOKUP_RECEIVE_CURRENT, then generate a Read Message By

Lookup Identifier event ([MS-MQDMPR] section 3.1.7.1.13) with the following inputs:

iQueueDesc := OpenQueueDescriptor

iLookupId := LookupId

iPeekOperation := False

iLookupOperation := MessageSeekAction.SeekCurrent

iTransaction := lpTransaction

iTwoPhaseRead := True

If the ulAction parameter is MQ_LOOKUP_RECEIVE_NEXT, then generate a Read Message By

Lookup Identifier event, as specified in [MS-MQDMPR] section 3.1.7.1.13, with the following
inputs:

iQueueDesc := OpenQueueDescriptor

iLookupId := LookupId

iPeekOperation := False

iLookupOperation := MessageSeekAction.SeekNext

iTransaction := lpTransaction

iTwoPhaseRead := True

If the ulAction parameter is MQ_LOOKUP_RECEIVE_PREV, then generate a Read Message By

Lookup Identifier event, as specified in [MS-MQDMPR] section 3.1.7.1.13, with the following
inputs:

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

62 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

iQueueDesc := OpenQueueDescriptor

iLookupId := LookupId

iPeekOperation := False

iLookupOperation := MessageSeekAction.SeekPrev

iTransaction := lpTransaction

iTwoPhaseRead := True

If the rStatus value returned from the above events is MQ_OK (Ox00000000), the server MUST:

Use rMessage to fill the ppPacketSections array as specified in the ppPacketSections

parameter description.

Set pdwArriveTime to Message.ArrivalTime.

Return rStatus.

3.1.4.14 R_SetUserAcknowledgementClass (Opnum 14)

The R_SetUserAcknowledgementClass method sets the acknowledgment class property of a
message in the queue. This allows marking the message as rejected.<30> This method MUST be
called subsequent to calls to R_StartTransactionalReceive and R_EndTransactionalReceive,
and before the transaction is committed or aborted.

HRESULT R_SetUserAcknowledgementClass(

 [in] handle_t hBind,

 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,

 [in] ULONGLONG LookupId,

 [in] USHORT usClass

);

hBind: MUST be an RPC binding handle parameter, as described in [MS-RPCE] (section 2).

phContext: MUST be set by the client to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE
representing the queue containing the message on which to set the acknowledgment class.

The handle MUST have been returned by the server in the pphQueue output parameter of a
prior call to R_OpenQueue (section 3.1.4.2) with dwAccess set to MQ_RECEIVE_ACCESS,
and MUST NOT have been closed through a prior call to R_CloseQueue (section 3.1.4.3).
This value MUST NOT be NULL.

LookupId: MUST be set by the client to the lookup identifier of the message on which to set the
acknowledgment class.

usClass: The acknowledgment class to set. It MUST be set by the client to one of the following

values.

Value Meaning

0x0000 No-op. No change is made to the acknowledgment

class.

MQMSG_CLASS_NACK_RECEIVE_REJECTED Marks the message as rejected.

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

63 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

0xC004

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT and the client MUST treat all
failure HRESULTs identically.

MQ_OK (0x00000000)

MQ_ERROR_INVALID_HANDLE (0xC00E0007)
MQ_ERROR_TRANSACTION_USAGE (0xC00E0050)
MQ_ERROR_MESSAGE_NOT_FOUND (0xC00E0088)

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol, as specified in [MS-

RPCE].

When processing this call, the server MUST do the following:

Find the corresponding OpenQueueDescriptor instance by comparing phContext with

OpenQueueDescriptor.Handle for all OpenQueueDescriptor instances maintained by the
local QueueManager.

If not found, return a failure HRESULT.

Find the corresponding MessagePosition instance by comparing LookupId with

MessagePosition.MessageReference.Identifier in the
OpenQueueDescriptor.QueueReference.MessagePositionCollection.

If not found, then return MQ_ERROR_MESSAGE_NOT_FOUND (0xC00E0088).

Find the corresponding TransactionOperation instance by comparing the MessagePosition

with Transaction.TransactionalOperationCollection.MessagePositionReference in
QueueManager.TransactionCollection.

If not found, then return MQ_ERROR_TRANSACTION_USAGE (0xC00E0050).

If usClass is not 0x0000, set Message.MessageReference.Class to the value of usClass.

Return MQ_OK (0x00000000).

3.1.4.15 R_EndTransactionalReceive (Opnum 15)

The client MUST invoke the R_EndTransactionalReceive method to advise the server that the
message packet returned by the R_StartTransactionalReceive (section 3.1.4.13) method has
been received by the client.<31>

The combination of the R_StartTransactionalReceive method and the positive acknowledgment of
the R_EndTransactionalReceive method ensures that a message packet is not lost in transit from

the server to the client due to a network outage during the call sequence.

HRESULT R_EndTransactionalReceive(

 [in] handle_t hBind,

 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,

%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

64 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 [in, range(1,2)] DWORD dwAck,

 [in] DWORD dwRequestId

);

hBind: MUST be an RPC binding handle parameter, as specified in [MS-RPCE] section 2.

phContext: MUST be set by the client to the QUEUE_CONTEXT_HANDLE_NOSERIALIZE used

in the corresponding call to R_StartTransactionalReceive. The handle MUST have been
returned by the server in the pphQueue output parameter of a prior call to R_OpenQueue
(section 3.1.4.2), and MUST NOT have been closed through a prior call to R_CloseQueue
(section 3.1.4.3). This value MUST NOT be NULL.

dwAck: MUST be set to an Acknowledgment (ACK) or a Negative Acknowledgment (NACK) for
the message packet received from the server in an R_StartTransactionalReceive request.
The following table lists possible values.

Value Meaning

RR_ACK

0x00000002

The client acknowledges that the message packet was received successfully.

The server MUST remove the packet from the queue and make it unavailable for

subsequent consumption.

RR_NACK

0x00000001

The client acknowledges that the message packet was not received successfully.

The server MUST keep the message packet and make it available for subsequent

consumption.

dwRequestId: MUST be set by the client to the same value as the dwRequestId parameter in
the corresponding call to R_StartTransactionalReceive. This parameter acts as an identifier
to correlate an R_EndTransactionalReceive call to an R_StartTransactionalReceive call.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT and the client MUST treat all
failure HRESULTs identically.

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol, as specified in [MS-
RPCE].

When processing this call, the server MUST do the following:

If the queue referenced by the phContext handle has no PendingRequestEntry (section 3.1.1.2)

in its PendingRequestTable (section 3.1.1.3), then return MQ_ERROR_INVALID_HANDLE

(0xC00E0007).

Look up the PendingRequestEntry by the {phContext, dwRequestId} key pair in the

PendingRequestTable. If a match is not found on the {phContext, dwRequestId} key pair,
return MQ_ERROR_INVALID_PARAMETER (0xC00E0006). Otherwise, remove the

PendingRequestEntry from the PendingRequestTable and cancel the associated instance of
Pending Request Cleanup Timer (section 3.1.2.2).

Find the corresponding OpenQueueDescriptor instance by comparing phContext with

OpenQueueDescriptor.Handle for all OpenQueueDescriptor instances maintained by the
local QueueManager.

%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf

65 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

If not found, return a failure HRESULT.

Find the corresponding Message instance by searching

OpenQueueDescriptor.QueueReference.MessagePositionCollection for a

MessagePosition where MessagePosition.MessageReference.LookupIdentifier equals the
PendingRequestEntry.LookupIdentifier of the PendingRequestEntry referenced by
{phContext, dwRequestId}. The corresponding Message instance is referred to by the
MessagePosition.MessageReference of the MessagePosition where the match was found.

If not found, return MQ_ERROR_MESSAGE_NOT_FOUND (0xC00E0088).

Set rStatus to the result of a Dequeue Message End ([MS-MQDMPR] section 3.1.7.1.12) event

with the following inputs:

iQueueDesc := OpenQueueDescriptor.

iMessage := the found Message instance.

iDeleteMessage := True if dwAck is equal to RR_ACK and false if dwAck is equal to RR_NACK.

iTransactional := True.

Return rStatus.

3.1.5 Timer Events

3.1.5.1 Pending Request Cleanup Timer Event

When the Pending Request Cleanup Timer expires, for the PendingRequestEntry associated with this

timer, the server MUST:

Find the OpenQueueDescriptor instance by comparing

PendingRequestEntry.QueueContextHandle with OpenQueueDescriptor.Handle for all
OpenQueueDescriptor instances maintained by the local QueueManager.

Find the corresponding Message instance by comparing

PendingRequestEntry.LookupIdentifier with
MessagePosition.MessageReference.Identifier in the
OpenQueueDescriptor.QueueReference.MessagePositionCollection.

Generate a Dequeue Message End event as specified in [MS-MQDMPR] section 3.1.7.1.12, with

the following inputs:

iQueueDesc := OpenQueueDescriptor.

iMessage := Message.

iDeleteMessage := false.

Remove the PendingRequestEntry from the PendingRequestTable and cancel the timer.

3.1.6 Other Local Events

3.1.6.1 RPC Failure Event

The event is received when RPC detects a connection failure with a client identified by a specific
QUEUE_CONTEXT_HANDLE_SERIALIZE (section 2.2.4.2).

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

66 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

While processing this event, the server MUST:

Find the corresponding OpenQueueDescriptor instance by comparing the

QUEUE_CONTEXT_HANDLE_SERIALIZE with OpenQueueDescriptor.Handle for all

OpenQueueDescriptor instances maintained by the local QueueManager.

If found then:

Find all Cursor instances maintained by the local QueueManager where

Cursor.OpenQueueDescriptorReference equals the found OpenQueueDescriptor.

For each found Cursor instance:

Generate a Close Cursor event, as specified in [MS-MQDMPR] section 3.1.7.1.2, with the

following inputs:

iCursor := Cursor.

Generate a Close Queue event, as specified in [MS-MQDMPR] section 3.1.7.1.6, with the

following inputs:

iQueueDesc := OpenQueueDescriptor.

3.1.6.2 Queue Context Handles Rundown Routine

This event occurs on rundown of queue context handles of type
QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) and
QUEUE_CONTEXT_HANDLE_SERIALIZE (section 2.2.4.2), as specified in [C706] section 5.1.6.
The queue context handle being rundown is referred to as lpQueueContextHandle.

When processing this event, the server MUST:

Find the corresponding OpenQueueDescriptor instance by comparing the

lpQueueContextHandle being rundown with OpenQueueDescriptor.Handle for all
OpenQueueDescriptor instances maintained by the local QueueManager.

If not found, then return a failure HRESULT.

Generate a Close Queue event, as specified in [MS-MQDMPR] section 3.1.7.1.6, with the

following inputs:

iQueueDesc := the found OpenQueueDescriptor instance.

For each PendingRequestEntry in PendingRequestTable where the

PendingRequestEntry.QueueContextHandle is equal to the lpQueueContextHandle being
rundown:

Search the OpenQueueDescriptor.QueueReference.MessagePositionCollection of the

found OpenQueueDescriptor instance for a MessagePosition instance where
MessagePosition.MessageReference.Identifier equals the
PendingRequestEntry.LookupIdentifier of the current PendingRequestEntry instance.

Generate a Dequeue Message End event, as specified in [MS-MQDMPR] section 3.1.7.1.12,

with the following inputs:

iQueueDesc := the found OpenQueueDescriptor instance.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

67 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

iMessage := the Message referred to by the MessagePosition.MessageReference of the

found MessagePosition instance.

iDeleteMessage := false.

Remove the PendingRequestEntry from the PendingRequestTable

Set lpQueueContextHandle to NULL.

Return MQ_OK (0x00000000).

3.2 RemoteRead Client Details

3.2.1 Abstract Data Model

Clients MUST maintain the following data elements:

A QUEUE_CONTEXT_HANDLE_SERIALIZE (section 2.2.4.2) associated with a queue.

A table of cursor handles associated with a QUEUE_CONTEXT_HANDLE_NOSERIALIZE

(section 2.2.4.1).

3.2.2 Timers

No protocol timers are required except those that are used internally by RPC to implement resiliency
to network outages, as specified in [MS-RPCE].

3.2.3 Initialization

The client MUST create an RPC connection to the remote computer by using the details specified in

section 2.1.

3.2.4 Message Processing Events and Sequencing Rules

The operation of the protocol is initiated and subsequently driven by the following higher-layer
triggered events.

The message queuing application opens a queue.

The message queuing application enlists in a transaction.

The message queuing application Peeks or Receives a message.

The message queuing application rejects a received message.

The message queuing application cancels a pending Peek or Receive.

The message queuing application moves a message between the queue and its subqueue or

between two subqueues of the same queue.

The message queuing application purges a queue.

The message queuing application creates a cursor.

The message queuing application uses the cursor to Peek or Receive messages.

The message queuing application closes the cursor.

%5bMS-RPCE%5d.pdf

68 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The message queuing application closes the queue.

3.2.4.1 Opening a Queue

The client MUST supply a queue name, an access mode, and a share mode. Opening a queue
consists of the following sequence of operations:

The client MUST construct an RPC binding handle to the server, as specified in [C706-Ch2Intro]

section 2.3.

The client MAY<32> call the R_GetServerPort (section 3.1.4.1) method by using the

RPChandle from the previous step. This method returns the RPC endpoint port on which

subsequent method calls to this interface are to be invoked.

The client MAY<33> construct a new RPC binding handle to the server by using the RPC endpoint

port determined in the previous step and replacing it with it the initial RPC binding handle to the
server.

The client MUST call the R_OpenQueue (section 3.1.4.2) method and MUST specify the

following parameter values:

The RPC binding handle constructed in previous steps.

pQueueFormat set to the queue format name.

dwAccess mode set to the access mode.

dwShareMode set to the share mode.

Other parameters are as specified in section 3.1.4.2.

If the previous step returns an error code of EPT_S_NOT_REGISTERED (0x000006D9), the client

SHOULD try instead to use the Message Queuing (MSMQ): Queue Manager to Queue Manager
Protocol.

The client MUST record the returned QUEUE_CONTEXT_HANDLE_SERIALIZE (section

2.2.4.2).

3.2.4.2 Enlisting in a Transaction

The message queuing application MUST generate an Enlisting in a Transaction event before
generating a Receive a Message (section 3.2.4.4) event, Move a Message (section 3.2.4.6) event, or
Receive a Message by Using a Cursor (section 3.2.4.10) event, if the message is to be received or
moved in a transaction context.

The message queuing application MUST specify the transaction identifier, and subsequent

invocations of the Receive a Message event, Move a Message event, or Receive a Message by Using
a Cursor event MUST be generated with the same transaction identifier.

The client MUST enlist the server in the transaction through a call to the

R_QMEnlistRemoteTransaction (section 3.1.4.12) method with:

pTransactionId set to the transaction identifier.

A transaction propagation token, obtained as specified in [MS-DTCO] section 3.3.4.3.

http://go.microsoft.com/fwlink/?LinkId=89828
%5bMS-MQQP%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-DTCO%5d.pdf

69 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.2.4.3 Peek a Message

The message queuing application MUST specify the QUEUE_CONTEXT_HANDLE_NOSERIALIZE
(section 2.2.4.1) RPC context handle of the queue from which to be read, the time-out parameter

for the operation, a LookupId, a maximum message body size, and an action from the table in the
description of the ulAction parameter of the R_StartReceive (section 3.1.4.7) method with action
type of Peek.

The client MUST call the R_StartReceive method and MUST specify the following parameter

values:

phContext set to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE handle that has been

returned by the server in the pphQueue output parameter of a prior call to the
R_OpenQueue (section 3.1.4.2) method, which MUST NOT have been previously closed
through a call to the R_CloseQueue (section 3.1.4.3) method. This value MUST NOT be
NULL.

hCursor set to NULL.

LookupId set to the value specified by the message queuing application.

ulAction set to the action specified by the message queuing application.

ulTimeout set to the time-out value specified by the message queuing application.

dwMaxBodySize set to the value specified by the message queuing application.

A dwRequestId value that uniquely identifies this call from all other pending calls to this

protocol.

The client MUST reconstruct the message from the SectionBuffers (section 2.2.6) structure

received in the ppPacketSections parameter, as specified in section 3.1.4.7.

The client MUST return the message to the message queuing application.

3.2.4.4 Receive a Message

The message queuing application MUST specify the QUEUE_CONTEXT_HANDLE_NOSERIALIZE
(section 2.2.4.1) of the queue from which to be read, a transaction identifier, the time-out
parameter for the operation, a LookupId, a maximum message body size, and an action from the
table in the description of the ulAction parameter in R_StartReceive (section 3.1.4.7) with action
type of Receive.

If the transaction identifier specified by the message queuing application is NULL, follow the

sequencing rules as specified in section 3.2.4.4.1.

If the transaction identifier specified by the message queuing application is non-NULL, follow the

sequencing rules as specified in section 3.2.4.4.2.

3.2.4.4.1 Receive a Message Without a Transaction

The client MUST call the R_StartReceive (section 3.1.4.7) method and MUST specify the

following parameter values:

phContext set to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) RPC

context handle that has been returned by the server in the pphQueue output parameter of a
prior call to the R_OpenQueue (section 3.1.4.2) method, which MUST NOT have been

70 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

previously closed through a call to the R_CloseQueue (section 3.1.4.3) method. This value
MUST NOT be NULL.

hCursor set to NULL.

ulAction set to the value specified by the message queuing application.

LookupId set to the value specified by the message queuing application.

ulTimeout set to the time-out value specified by the message queuing application.

dwMaxBodySize set to the value specified by the message queuing application.

dwRequestId set to a value that uniquely identifies this call from all other pending calls to this

protocol.

Let readAck be a DWORD value initialized to RR_ACK (0x00000002).

The client MUST reconstruct the message from the SectionBuffers (section 2.2.6) structure

received in the ppPacketSections parameter, as specified in section 3.1.4.7. If the message
cannot be reconstructed, the client MUST set readAck to RR_NACK (0x00000001).

If R_StartReceive was invoked with a Receive action type, as specified in the ulAction

parameter, then the client MUST advise the server that the message has been received by the
client by calling the R_EndReceive (section 3.1.4.9) method with the following parameter
values.

phContext as in the call to R_StartReceive.

dwAck := readAck

dwRequestId set to the same value as in the call to R_StartReceive.

If MQ_OK (0x00000000) is returned

The client MUST return the reconstructed message to the message queuing application.

Else if the return value is not MQ_OK

The client MAY<34> return MQ_OK to the message queuing application.

3.2.4.4.2 Receive a Message with a Transaction

The message queuing application MUST specify a transaction identifier for a Receive a Message

With a Transaction event. If the message queuing application has not previously done so, it
MUST enlist the server in a transaction by generating an Enlisting in a Transaction (section

3.2.4.2) event.

The client MUST call the R_StartTransactionalReceive (section 3.1.4.13) method and MUST

specify the following parameter values:

phContext set to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) RPC

context handle that has been returned by the server in the pphQueue output parameter of a
prior call to the R_OpenQueue (section 3.1.4.2) method, which MUST NOT have been

previously closed through a call to the R_CloseQueue (section 3.1.4.3) method. This value
MUST NOT be NULL.

hCursor set to NULL.

71 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

ulAction set to the value specified by the message queuing application.

LookupId set to the value specified by the message queuing application.

ulTimeout set to the time-out value specified by the message queuing application.

dwMaxBodySize set to the value specified by the message queuing application.

dwRequestId set to a value that uniquely identifies this call from all other pending calls to this

protocol.

pTransactionId set to the transaction identifier specified by the message queuing application.

Let readAck be a DWORD value initialized to RR_ACK (0x00000002).

The client MUST reconstruct the message from the SectionBuffers (section 2.2.6) structure

received in the ppPacketSections parameter, as specified in R_StartReceive (section 3.1.4.7).
If the message cannot be reconstructed, the client MUST set readAck to RR_NACK (0x00000001).

If R_StartTransactionalReceive was invoked with a Receive action type, as specified in the

ulAction parameter, then the client MUST advise the server that the message has been received

by the client by calling the R_EndTransactionalReceive (section 3.1.4.15) method with:

The same phContext parameter as in the call to R_StartTransactionalReceive.

dwAck := readAck.

The same dwRequestId as in the call to R_StartTransactionalReceive.

If MQ_OK (0x00000000) is returned:

The client MUST return the reconstructed message to the message queuing application.

Else if the return value is not MQ_OK:

The client MUST return the value to the message queuing application.

3.2.4.5 Reject a Message

The message queuing application MUST specify the QUEUE_CONTEXT_HANDLE_NOSERIALIZE
(section 2.2.4.1) and the LookupId of the message to be rejected.

The client MUST call the R_SetUserAcknowledgementClass (section 3.1.4.14) method and

MUST specify the following parameter values:

phContext set to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle

that has been returned by the server in the pphQueue output parameter of a prior call to

R_OpenQueue (section 3.1.4.2) and MUST NOT have been previously closed through a call to
R_CloseQueue (section 3.1.4.3). This value MUST NOT be NULL.

LookupId set to the value passed by the client.

ulClass set to MQMSG_CLASS_NACK_RECEIVE_REJECTED.

3.2.4.6 Move a Message

The message queuing application MUST specify the QUEUE_CONTEXT_HANDLE_NOSERIALIZE
(section 2.2.4.1) of the source queue and the QUEUE_CONTEXT_HANDLE_NOSERIALIZE of

72 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

the destination queue. The message queuing application MUST specify the LookupId of the message
to be moved. The message queuing application MUST specify the transaction identifier if the

destination queue is a transactional queue.

If the destination queue is a transactional queue, the message queuing application MUST have

enlisted the server in the transaction as specified in section 3.2.4.2, and it MUST specify the
same transaction identifier for the Move a Message event.

The client MUST call the R_MoveMessage (section 3.1.4.10) method and MUST specify the

following parameter values:

phContextFrom set to the QUEUE_CONTEXT_HANDLE_NOSERIALIZE handle of the source

queue, which was returned by the server in the pphQueue output parameter of a prior call to
R_OpenQueue (section 3.1.4.2), and which MUST NOT have been previously closed
through a call to R_CloseQueue (section 3.1.4.3). This value MUST NOT be NULL.

ulContextTo set to the QUEUE_CONTEXT_HANDLE_NOSERIALIZE handle of the

destination queue, which was returned by the server in the pphQueue output parameter of a

prior call to R_OpenQueue, and which MUST NOT have been previously closed through a call

to R_CloseQueue. This value MUST NOT be NULL.

pTransactionId set to the transaction identifier specified by the message queuing application if

the destination queue is a transactional queue; otherwise, to a zero-value XACTUOW ([MS-
MQMQ] section 2.2.18.1.8).

LookupId set to the value specified by the message queuing application.

3.2.4.7 Purging a Queue

The message queuing application MUST specify the QUEUE_CONTEXT_HANDLE_NOSERIALIZE
(section 2.2.4.1) of the queue. The client MUST call the R_PurgeQueue (section 3.1.4.6)
method with phContext set to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1)
handle that has been returned by the server in the pphQueue output parameter of a prior call to
R_OpenQueue (section 3.1.4.2) and MUST NOT have been previously closed through a call to

R_CloseQueue (section 3.1.4.3). This value MUST NOT be NULL.

3.2.4.8 Creating a Cursor

The message queuing application MUST specify the QUEUE_CONTEXT_HANDLE_NOSERIALIZE
(section 2.2.4.1) to associate with the created cursor. The client MUST call the R_CreateCursor
(section 3.1.4.4) method with phContext set to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE
(section 2.2.4.1) handle that has been returned by the server in the pphQueue output parameter of
a prior call to R_OpenQueue (section 3.1.4.2) and MUST NOT have been previously closed through a

call to R_CloseQueue (section 3.1.4.3). This value MUST NOT be NULL. The client MUST record the
returned cursor handle and return it to the message queuing application.

3.2.4.9 Peek a Message by Using a Cursor

The message queuing application MUST specify the QUEUE_CONTEXT_HANDLE_NOSERIALIZE

(section 2.2.4.1) RPC context handle of the queue to be read from, the cursor handle, the time-

out parameter for the operation, a maximum message body size, and an action from the table in the
description of the ulAction parameter of the R_StartReceive (section 3.1.4.7) method with an
action type of Peek.

The client MUST call the R_StartReceive method and MUST specify the following parameter

values:

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

73 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

hCursor set to the value specified by the message queuing application.

LookupId set to NULL.

ulAction set to the action specified by the message queuing application.

ulTimeout set to the time-out value specified by the message queuing application.

dwMaxBodySize set to the value specified by the message queuing application.

dwRequestId set to a value that uniquely identifies this call from all other pending calls to this

protocol.

The client MUST reconstruct the message from the SectionBuffers (section 2.2.6) structure

received in the ppPacketSections parameter, as specified in section 3.1.4.7.

The client MUST return the message to the message queuing application.

3.2.4.10 Receive a Message by Using a Cursor

The message queuing application MUST specify the QUEUE_CONTEXT_HANDLE_NOSERIALIZE

(section 2.2.4.1) of the queue to be read from, the cursor handle, a transaction identifier, the
time-out parameter for the operation, a maximum message body size, and an action from the table
in the description of the ulAction parameter (as specified in section 3.1.4.7) with action type of
Receive.

If the transaction identifier specified by the message queuing application is NULL, follow the
sequencing rules as specified in section 3.2.4.10.1.

If the transaction identifier specified by the message queuing application is non-NULL, follow the

sequencing rules as specified in section 3.2.4.10.2.

3.2.4.10.1 Receive a Message by Using a Cursor Without a Transaction

The client MUST call the R_StartReceive (section 3.1.4.7) method and MUST specify the

following parameter values:

phContext set to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle

that has been returned by the server in the pphQueue output parameter of a prior call to
R_OpenQueue (section 3.1.4.2) and MUST NOT have been previously closed through a call to
R_CloseQueue (section 3.1.4.3). This value MUST NOT be NULL.

hCursor set to the value specified by the message queuing application.

ulAction set to the value specified by the message queuing application.

ulTimeout set to the time-out value.

dwMaxBodySize set to the value specified by the message queuing application.

dwRequestId set to a value that uniquely identifies this call from all other pending calls to this

protocol.

LookupId set to 0.

The client MUST reconstruct the message from the SectionBuffers (section 2.2.6) received in

ppPacketSections, as specified in section R_StartReceive (section 3.1.4.7).

74 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The client MUST advise the server that the message was received by the message queuing

application by calling the R_EndReceive (section 3.1.4.9) method with:

The same phContext parameter as in the call to R_StartReceive.

The same dwRequestId as in the call to R_StartReceive (section 3.1.4.7).

If MQ_OK (0x00000000) is returned:

The client MUST return the reconstructed message to the message queuing application.

Else if the return value is not MQ_OK

The client MAY<35> return MQ_OK to the message queuing application.

3.2.4.10.2 Receive a Message by Using a Cursor with a Transaction

The message queuing application MUST have previously enlisted the server in the transaction as

specified in section 3.2.4.2.

The client MUST call the R_StartTransactionalReceive (section 3.1.4.13) method and MUST

specify the following parameter values:

phContext set to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle,

which was returned by the server in the pphQueue output parameter of a prior call to
R_OpenQueue (section 3.1.4.2) and which MUST NOT have been previously closed through
a call to R_CloseQueue (section 3.1.4.3). This value MUST NOT be NULL.

hCursor set to the cursor handle specified by the message queuing application.

ulAction parameter set to the value specified by the message queuing application.

ulTimeout set to the time-out value.

dwMaxBodySize set to the value specified by the message queuing application.

A dwRequestId parameter value that uniquely identifies this call from all other pending calls to

this protocol.

pTransactionId set to the transaction identifier specified by the message queuing application.

LookupId set to 0x0000000000000000.

The client MUST reconstruct the message from the SectionBuffers (section 2.2.6) received in

ppPacketSections, as specified in section 3.1.4.7.

The client MUST advise the server that the message was received by the message queuing

application by calling the R_EndTransactionalReceive (section 3.1.4.15) method with:

The same phContext parameter as in the call to R_StartTransactionalReceive.

The same dwRequestId as in the call to R_StartTransactionalReceive.

If MQ_OK (0x00000000) is returned:

The client MUST return the reconstructed message to the message queuing application.

Else if the return value is not MQ_OK:

75 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The client MUST return the value to the message queuing application.

3.2.4.11 Cancel a Pending Peek or Receive

The message queuing application MUST specify the QUEUE_CONTEXT_HANDLE_NOSERIALIZE
(section 2.2.4.1) and the dwRequestId of the operation to be canceled.

The client MUST call the R_CancelReceive (section 3.1.4.8) method and MUST specify the

following parameter values:

phContext set to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle

that has been returned by the server in the pphQueue output parameter of a prior call to

R_OpenQueue (section 3.1.4.2) and MUST NOT have been previously closed through a call to
R_CloseQueue (section 3.1.4.3). This value MUST NOT be NULL.

dwRequestId set to the dwRequestId passed by the message queuing application.

3.2.4.12 Closing a Cursor

The message queuing application MUST specify the QUEUE_CONTEXT_HANDLE_NOSERIALIZE
(section 2.2.4.1) and the cursor handle to be closed.

If there are any pending requests associated with the cursor handle, the client SHOULD cancel

them as specified in section 3.2.4.11.<36>

The client MUST call the R_CloseCursor (section 3.1.4.5) method with the following:

phContext set to a QUEUE_CONTEXT_HANDLE_NOSERIALIZE (section 2.2.4.1) handle

that has been returned by the server in the pphQueue output parameter of a prior call to

R_OpenQueue (section 3.1.4.2) and MUST NOT have been previously closed through a call to
R_CloseQueue (section 3.1.4.3). This value MUST NOT be NULL.

phCursor set to the cursor handle.

The client MUST remove the cursor handle from its state.

3.2.4.13 Closing a Queue

The message queuing application MUST specify the QUEUE_CONTEXT_HANDLE_NOSERIALIZE
(section 2.2.4.1) handle, that is to be closed, that has been returned by the server in the
pphQueue output parameter of a prior call to R_OpenQueue (section 3.1.4.2) and MUST NOT have
been previously closed through a call to R_CloseQueue (section 3.1.4.3). This value MUST NOT be
NULL. If there are any pending requests associated with the
QUEUE_CONTEXT_HANDLE_SERIALIZE, the client SHOULD cancel them as specified in section

3.2.4.11. If any open cursor handles are associated with the
QUEUE_CONTEXT_HANDLE_SERIALIZE, the client SHOULD close them as specified in section
3.2.4.12. The client MUST call the R_CloseQueue (section 3.1.4.3) method with pphContext set to
the QUEUE_CONTEXT_HANDLE_SERIALIZE. The client MUST remove the
QUEUE_CONTEXT_HANDLE_SERIALIZE from its state.<37>

3.2.5 Timer Events

None.

76 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.2.6 Other Local Events

None.

77 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4 Protocol Examples

The following sections describe several operations that are used in common scenarios in order to
illustrate the function of the Message Queuing (MSMQ): Queue Manager Remote Read Protocol.

4.1 Binding to a Server and Purging a Queue

The sequence diagram that follows illustrates a scenario when the client purges a queue. In
addition, it shows how the static RPC endpoint port is acquired by the client to create an RPC
binding handle.

1. The client begins the sequence by creating an RPC binding for the server. Next, the client calls
the R_GetServerPort (section 3.1.4.1) method, which returns an RPC endpoint port number
with which the client creates a new binding. The client uses the new binding for all subsequent
calls to the server.

2. Using the binding from the previous step, the client calls the R_OpenQueue (section 3.1.4.2)
method, requesting the MQ_RECEIVE_ACCESS (0x00000001) access mode and a share mode, in

addition to client-specific values for the following parameters. pClientId, fNonRoutingServer,

Major, Minor, BuildNumber, and fWorkgroup. On success, the server returns a new
QUEUE_CONTEXT_HANDLE_SERIALIZE (section 2.2.4.2).

3. The client calls the R_PurgeQueue (section 3.1.4.6) method. The server confirms that the
queue was opened with the MQ_RECEIVE_ACCESS (0x00000001) access mode, and then
removes all messages from the queue.

4. Finally, the client closes the QUEUE_CONTEXT_HANDLE_SERIALIZE with a call to

R_CloseQueue (section 3.1.4.3).

78 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Figure 1: The client binds to a server and purges a queue

4.2 Receiving a Message

This sequence diagram illustrates a client receiving a message from a queue at the server. The call
to R_StartReceive (section 3.1.4.7) includes a ulAction value of MQ_ACTION_RECEIVE
(0x00000000) and a unique dwRequestId value chosen by the client. In response, the server
associates a pending request with the passed dwRequestId, which is used to correlate a subsequent
call to R_EndReceive (section 3.1.4.9) or R_CancelReceive (section 3.1.4.8) with the same
value for dwRequestId. Additionally, the server returns a SectionBuffer (section 2.2.6) array that

contains the message.

Next, the client indicates that the message was successfully received by calling R_EndReceive,
specifying RR_ACK (0x00000002) for dwAck. The server completes the corresponding pending
request created by the call to R_StartReceive and, because RR_ACK is specified, removes the
message from the queue.

79 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Figure 2: The client receives a message

4.3 Receiving a Message in a Transaction

This sequence diagram demonstrates a scenario in which a client receives a message from a queue
within the context of a transaction. Although four roles are used to illustrate the participants in this

scenario, the protocol that is described by this specification is used only between the client and
server roles. The "Client Distributed Transaction Coordinator (DTC)" role (as specified in [MS-
DTCO]) and the "Server DTC" role are included to illustrate a typical end-to-end sequence of a
transactional receive request.

The diagram includes reference numbers on the left side that identify operations of interest, which
are explained in detail below.

%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf

80 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Figure 3: The client receives a message within a transaction

1. The client communicates with the local DTC to create a new transaction, as specified in [MS-
DTCO] (section 3.3.4.1).

2. The client constructs a propagation token to be marshaled to the server's transaction manager,
as specified in [MS-DTCO] (section 2.2.5.4).

3. The client calls the R_QMEnlistRemoteTransaction (section 3.1.4.12) method, specifying the

transaction identifier and the transaction propagation token.

4. The server marshals the transaction propagation token to its local transaction manager and

enlists its local resource manager in the transaction, as specified in [MS-DTCO] sections 3.3.4.12
and 3.5.4.3.

%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf

81 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

5. The client calls the R_StartTransactionalReceive (section 3.1.4.13) method to receive a
message in the context of the transaction. The client specifies the transaction identifier to

associate the receive operation with the transaction enlisted in the prior steps. The server returns
a message in the SectionBuffer (section 2.2.6) array.

6. The client advises the server that the message was received correctly by calling the
R_EndTransactionalReceive (section 3.1.4.15) method, specifying RR_ACK (0x00000002)
for dwAck.

7. The client commits the transaction, as specified in [MS-DTCO] section 3.3.4.8.2. The client DTC
transaction manager notifies the server DTC transaction manager of the commit request.

8. The server deletes the message from the queue after it receives notification of the commit, by
the DTC Transaction Commit event ([MS-MQDMPR] section 3.1.4.7), from the server DTC.

%5bMS-DTCO%5d.pdf
%5bMS-MQDMPR%5d.pdf

82 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

5 Security

The following sections specify security considerations for implementers of the Message Queuing
(MSMQ): Queue Manager Remote Read Protocol.

5.1 Security Considerations for Implementers

The server SHOULD impose the minimum RPC authentication level on the RPC handle for incoming
calls. The server MAY<38> require a different minimum RPC authentication level from the client,
depending on whether the client is a member of a Microsoft Windows® domain, as specified by the

fWorkgroup parameter in the R_OpenQueue (section 3.1.4.2) and the R_OpenQueueForMove
(section 3.1.4.11) methods.

5.2 Index of Security Parameters

Security parameter Section

fWorkgroup R_OpenQueue (Opnum 2) (section 3.1.4.2)

R_OpenQueueForMove (Opnum 11) (section 3.1.4.11)

83 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided in this section, where "ms-dtyp.idl" is the IDL as
specified in [MS-DTYP] Appendix A, and "ms-mqmq.idl" is the IDL as specified in [MS-MQMQ]
Appendix A.

import "ms-dtyp.idl";

import "ms-mqmq.idl";

[

 uuid(1a9134dd-7b39-45ba-ad88-44d01ca47f28),

 version(1.0),

 pointer_default(unique)

]

interface RemoteRead

{

 typedef [context_handle] void* QUEUE_CONTEXT_HANDLE_NOSERIALIZE;

 typedef [context_handle]

 QUEUE_CONTEXT_HANDLE_NOSERIALIZE QUEUE_CONTEXT_HANDLE_SERIALIZE;

 typedef enum

 {

 QUEUE_FORMAT_TYPE_UNKNOWN = 0,

 QUEUE_FORMAT_TYPE_PUBLIC = 1,

 QUEUE_FORMAT_TYPE_PRIVATE = 2,

 QUEUE_FORMAT_TYPE_DIRECT = 3,

 QUEUE_FORMAT_TYPE_MACHINE = 4,

 QUEUE_FORMAT_TYPE_CONNECTOR = 5,

 QUEUE_FORMAT_TYPE_DL = 6,

 QUEUE_FORMAT_TYPE_MULTICAST = 7,

 QUEUE_FORMAT_TYPE_SUBQUEUE = 8

 } QUEUE_FORMAT_TYPE;

 typedef enum

 {

 QUEUE_SUFFIX_TYPE_NONE = 0,

 QUEUE_SUFFIX_TYPE_JOURNAL=1,

 QUEUE_SUFFIX_TYPE_DEADLETTER=2,

 QUEUE_SUFFIX_TYPE_DEADXACT=3,

 QUEUE_SUFFIX_TYPE_XACTONLY=4,

 QUEUE_SUFFIX_TYPE_SUBQUEUE=5

 } QUEUE_SUFFIX_TYPE;

 typedef struct _OBJECTID

 {

 GUID Lineage;

 unsigned long Uniquifier;

 } OBJECTID;

 typedef struct _DL_ID

 {

 GUID m_DlGuid;

 wchar_t* m_pwzDomain;

 } DL_ID;

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

84 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 typedef struct _MULTICAST_ID

 {

 unsigned long m_address;

 unsigned long m_port;

 } MULTICAST_ID;

 typedef struct QUEUE_FORMAT

 {

 unsigned char m_qft;

 unsigned char m_SuffixAndFlags;

 unsigned short m_reserved;

 [switch_is(m_qft)] union {

 [case(QUEUE_FORMAT_TYPE_PUBLIC)]

 GUID m_gPublicID;

 [case(QUEUE_FORMAT_TYPE_PRIVATE)]

 OBJECTID m_oPrivateID;

 [case(QUEUE_FORMAT_TYPE_DIRECT)]

 wchar_t * m_pDirectID;

 [case(QUEUE_FORMAT_TYPE_MACHINE)]

 GUID m_gMachineID;

 [case(QUEUE_FORMAT_TYPE_CONNECTOR)]

 GUID m_GConnectorID;

 [case(QUEUE_FORMAT_TYPE_DL)]

 DL_ID m_DlID;

 [case(QUEUE_FORMAT_TYPE_MULTICAST)]

 MULTICAST_ID m_MulticastID;

 [case(QUEUE_FORMAT_TYPE_SUBQUEUE)]

 wchar_t * m_pDirectSubqueueID;

 };

 } __QUEUE_FORMAT;

 typedef enum

 {

 stFullPacket = 0,

 stBinaryFirstSection = 1,

 stBinarySecondSection = 2,

 stSrmpFirstSection = 3,

 stSrmpSecondSection = 4

 } SectionType;

 typedef struct _SectionBuffer {

 SectionType SectionBufferType;

 DWORD SectionSizeAlloc;

 DWORD SectionSize;

 [unique, size_is(SectionSize)] byte* pSectionBuffer;

 } SectionBuffer;

 DWORD R_GetServerPort(

 [in] handle_t hBind

);

 void Opnum1NotUsedOnWire(void);

 void R_OpenQueue(

 [in] handle_t hBind,

 [in] struct QUEUE_FORMAT* pQueueFormat,

 [in] DWORD dwAccess,

85 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 [in] DWORD dwShareMode,

 [in] GUID* pClientId,

 [in] LONG fNonRoutingServer,

 [in] unsigned char Major,

 [in] unsigned char Minor,

 [in] USHORT BuildNumber,

 [in] LONG fWorkgroup,

 [out] QUEUE_CONTEXT_HANDLE_SERIALIZE* pphContext

);

 HRESULT R_CloseQueue(

 [in] handle_t hBind,

 [in, out] QUEUE_CONTEXT_HANDLE_SERIALIZE* pphContext

);

 HRESULT R_CreateCursor(

 [in] handle_t hBind,

 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,

 [out] DWORD* phCursor

);

 HRESULT R_CloseCursor(

 [in] handle_t hBind,

 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,

 [in] DWORD hCursor

);

 HRESULT R_PurgeQueue(

 [in] handle_t hBind,

 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext

);

 HRESULT R_StartReceive(

 [in] handle_t hBind,

 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,

 [in] ULONGLONG LookupId,

 [in] DWORD hCursor,

 [in] DWORD ulAction,

 [in] DWORD ulTimeout,

 [in] DWORD dwRequestId,

 [in] DWORD dwMaxBodySize,

 [in] DWORD dwMaxCompoundMessageSize,

 [out] DWORD* pdwArriveTime,

 [out] ULONGLONG* pSequenceId,

 [out] DWORD* pdwNumberOfSections,

 [out, size_is(, *pdwNumberOfSections)]

 SectionBuffer** ppPacketSections

);

 HRESULT R_CancelReceive(

 [in] handle_t hBind,

 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,

 [in] DWORD dwRequestId

);

 HRESULT R_EndReceive(

 [in] handle_t hBind,

 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,

 [in, range(1,2)] DWORD dwAck,

86 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 [in] DWORD dwRequestId

);

 HRESULT R_MoveMessage(

 [in] handle_t hBind,

 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContextFrom,

 [in] ULONGLONG ullContextTo,

 [in] ULONGLONG LookupId,

 [in] XACTUOW *pTransactionId

);

 void R_OpenQueueForMove(

 [in] handle_t hBind,

 [in] struct QUEUE_FORMAT* pQueueFormat,

 [in] DWORD dwAccess,

 [in] DWORD dwShareMode,

 [in] GUID* pClientId,

 [in] LONG fNonRoutingServer,

 [in] unsigned char Major,

 [in] unsigned char Minor,

 [in] USHORT BuildNumber,

 [in] LONG fWorkgroup,

 [out] ULONGLONG *pMoveContext,

 [out] QUEUE_CONTEXT_HANDLE_SERIALIZE* pphContext

);

 HRESULT R_QMEnlistRemoteTransaction(

 [in] handle_t hBind,

 [in] XACTUOW* pTransactionId,

 [in, range(0, 131072)] DWORD cbPropagationToken,

 [in, size_is (cbPropagationToken)]

 unsigned char* pbPropagationToken,

 [in] struct QUEUE_FORMAT* pQueueFormat

);

 HRESULT R_StartTransactionalReceive(

 [in] handle_t hBind,

 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,

 [in] ULONGLONG LookupId,

 [in] DWORD hCursor,

 [in] DWORD ulAction,

 [in] DWORD ulTimeout,

 [in] DWORD dwRequestId,

 [in] DWORD dwMaxBodySize,

 [in] DWORD dwMaxCompoundMessageSize,

 [in] XACTUOW* pTransactionId,

 [out] DWORD* pdwArriveTime,

 [out] ULONGLONG* pSequenceId,

 [out] DWORD* pdwNumberOfSections,

 [out, size_is(, *pdwNumberOfSections)]

 SectionBuffer** ppPacketSections

);

 HRESULT R_SetUserAcknowledgementClass(

 [in] handle_t hBind,

 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,

 [in] ULONGLONG LookupId,

 [in] USHORT usClass

);

87 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 HRESULT R_EndTransactionalReceive(

 [in] handle_t hBind,

 [in] QUEUE_CONTEXT_HANDLE_NOSERIALIZE phContext,

 [in, range(1,2)] DWORD dwAck,

 [in] DWORD dwRequestId

);

}

88 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows Server® 2003 operating system

Windows Vista® operating system

Windows Server® 2008 operating system

Windows® 7 operating system

Windows Server® 2008 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product

edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 1.4: If the originating MSMQ application receives messages from a remote queue
through a supporting server, the Queue Manager on the supporting server uses MSMQ: Queue
Manager to Queue Manager Protocol (as specified in [MS-MQQP]) but does not support the MSMQ:
Queue Manager Remote Read Protocol.

<2> Section 1.7: Windows NT, Windows 2000, and Windows XP do not support this protocol.

<3> Section 1.7: Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and
Windows Server 2008 R2 use Kerberos when the computer is a member of a Windows domain;

otherwise, they use NTLM.

<4> Section 2.1: The Windows Server 2003 protocol client uses RPC dynamic endpoints to obtain
the initial RPC binding handle. The client calls the R_GetServerPort method with the initial RPC
binding handle and uses the returned value to obtain a new RPC binding handle to be used for all
subsequent RPC method calls on the protocol. The Windows Vista, Windows Server 2008,

Windows 7, and Windows Server 2008 R2 protocol clients use RPC dynamic endpoints to obtain the
RPC binding handle. This handle is used for all RPC method calls on the protocol. The
R_GetServerPort method is not called by the Windows Vista, Windows Server 2008, Windows 7,
and Windows Server 2008 R2 client.

<5> Section 2.2.5.2: The ExtensionHeader is not supported on Windows Server 2003.

<6> Section 2.2.5.3: The SubqueueHeader is not supported on Windows Server 2003.

<7> Section 2.2.5.4: The DeadLetterHeader is not supported on Windows Server 2003.

<8> Section 2.2.5.5: The ExtendedAddressHeader is not supported on Windows Server 2003.

<9> Section 2.2.8: All Windows clients produce new XACTUOW values by calling the Windows RPC
function UuidCreate.

%5bMS-MQQP%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-MQMQ%5d.pdf

89 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<10> Section 3.1.2.1: If the registry key
HKLM\SOFTWARE\Microsoft\MSMQ\Parameters\RpcCancelTimeout is defined and is set to a nonzero

DWORD value, the protocol servers on Windows Server 2003, Windows Vista, Windows Server 2008,
Windows 7, and Windows Server 2008 R2 interpret this value as the RPC Call Timeout value in

minutes.

<11> Section 3.1.2.2: The Windows default timeout is 5 * 60 * 1000 milliseconds (5 minutes). This
default value can be overridden by setting the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters\RpcCancelTimeout to the desired
value, in minutes. This value MUST not be set to 0.

<12> Section 3.1.4: Opnums reserved for local use apply to Windows as follows.

Opnum Description

1 Not used by Windows

<13> Section 3.1.4.1: The Windows Server 2003 protocol client uses RPC dynamic endpoints to

obtain the initial RPC binding handle. The client calls the R_GetServerPort (section 3.1.4.1)
method with the initial RPC binding handle and uses the returned value to obtain a new RPC binding
handle to be used for all subsequent RPC method calls on the protocol.

 The Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 protocol
clients use RPC dynamic endpoints to obtain the RPC binding handle. This handle is used for all RPC
method calls on the protocol. The R_GetServerPort method is not called by the Windows Vista,
Windows Server 2008, Windows 7, and Windows Server 2008 R2 client.

<14> Section 3.1.4.2: Windows Server 2003 protocol servers limit the number of unique concurrent
clients if the following DWORD registry key exists and its value is 0x00000001:
HKLM\SYSTEM\CurrentControlSet\Services\LicenseInfo\FilePrint. The maximum number of unique

concurrent clients permitted is taken from the DWORD registry key
HKLM\System\CurrentControlSet\Services\LicenseInfo\FilePrint\ConcurrentLimit. If the number of
existing unique callers is equal to this value, R_OpenQueue throws an RPC exception

MQ_ERROR_DEPEND_WKS_LICENSE_OVERFLOW (0xc00e0067).

Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 protocol servers do
not enforce limits on the number of unique concurrent clients. The pClientId parameter is ignored.

<15> Section 3.1.4.2: Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7,
and Windows Server 2008 R2 protocol clients set the fNonRoutingServer value based on the registry
key HKLM\Software\Windows\MSMQ\Parameters\MachineCache\MQS_Routing.

If this key exists and is set to the DWORD value 0x00000001, the parameter is set to FALSE
(0x00000000); otherwise it is set to TRUE (0x00000001).

<16> Section 3.1.4.2: Windows Server 2003 protocol client sets the message queuing Major
Version to 5. The Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2

protocol clients set the message queuing Major version to 6.

Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows

Server 2008 R2 protocol servers ignore the message queuing Major Version parameter.

<17> Section 3.1.4.2: Windows Server 2003 protocol client sets the message queuing Minor
Version to 2.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

90 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The Windows Vista and Windows Server 2008 protocol clients set the message queuing Minor
Version to 0. The Windows 7 and Windows Server 2008 R2 protocol clients set the message queuing

Minor Version to 1.

Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows

Server 2008 R2 protocol servers ignore the message queuing Minor Version parameter.

<18> Section 3.1.4.2: Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7,
and Windows Server 2008 R2 protocol clients set the message queuing BuildNumber to a build-
specific number.

Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 protocol servers ignore the message queuing BuildNumber parameter.

<19> Section 3.1.4.2: The Windows Server 2003 protocol server minimum RPC authentication level

is determined as follows:

RPC_C_AUTHN_LEVEL_NONE, if any of the following conditions is true

The fWorkgroup parameter is TRUE.

The registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerAllowNoneSecuri

tyClient exists and is set to any DWORD value other than 0x00000000, and the Anonymous
Logon account is granted Peek or Receive permissions on the queue being accessed.

The registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerDenyWorkgroup
Client is set to the DWORD value 0x00000000 or does not exist.

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY, if the registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\DebugRpc exists and is set to any DWORD
value other than 0x00000000.

RPC_C_AUTHN_LEVEL_PKT_PRIVACY otherwise.

The protocol servers on Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 have their minimum RPC authentication level determined as follows:

RPC_C_AUTHN_LEVEL_NONE, if the registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\AllowNonauthenticatedRpc exists and is set
to any DWORD value other than 0x00000000 and any of the following conditions is true:

The fWorkgroup parameter is TRUE.

The registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerDenyWorkgroup

Client is set to the DWORD value 0x00000000 or does not exist.

RPC_C_AUTHN_LEVEL_NONE, if the registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerAllowNoneSecurityC

lient exists and is set to any DWORD value other than 0x00000000, and the Anonymous Logon
account is granted Peek or Receive permissions on the queue being accessed.

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY, if the registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\DebugRpc exists and is set to any DWORD
value other than 0x00000000.

91 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

RPC_C_AUTHN_LEVEL_PKT_PRIVACY otherwise.

<20> Section 3.1.4.10: R_MoveMessage is not implemented on Windows Server 2003.

<21> Section 3.1.4.11: R_OpenQueueForMove (section 3.1.4.11) is not implemented on

Windows Server 2003.

<22> Section 3.1.4.11: Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7,
and Windows Server 2008 R2 protocol clients set the fNonRoutingServer value based on the registry
key HKLM\Software\Windows\MSMQ\Parameters\MachineCache\MQS_Routing.

If this key exists and is set to the DWORD value 0x00000001, the parameter is set to FALSE
(0x00000000); otherwise it is set to TRUE (0x00000001).

<23> Section 3.1.4.11: Windows Server 2003 protocol client sets the message queuing Major

Version to 5. The Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2
protocol clients set the message queuing Major version to 6.

Windows Server 2003, Windows Vista, and Windows Server 2008 protocol servers ignore the

message queuing Major Version parameter.Windows Server 2003, Windows Vista, Windows
Server 2008, Windows 7, and Windows Server 2008 R2 protocol servers ignore the message
queuing Major Version parameter.

<24> Section 3.1.4.11: Windows Server 2003 protocol client sets the message queuing Minor

Version to 2.

The Windows Vista and Windows Server 2008 protocol clients set the message queuing Minor
Version to 0.

The Windows 7 and Windows Server 2008 R2 protocol clients set the message queuing Minor
Version to 1.

Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows

Server 2008 R2 protocol servers ignore the message queuing Minor Version parameter.

<25> Section 3.1.4.11: Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7,
and Windows Server 2008 R2 protocol clients set the message queuing BuildNumber to a build-
specific number.

Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows
Server 2008 R2 protocol servers ignore the message queuing BuildNumber parameter.

<26> Section 3.1.4.11: The Windows Server 2003 protocol server minimum RPC authentication

level is determined as follows:

RPC_C_AUTHN_LEVEL_NONE, if any of the following conditions is true.

The fWorkgroup parameter is TRUE.

The registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerAllowNoneSecuri

tyClient exists and is set to any DWORD value other than 0x00000000, and the Anonymous
Logon account is granted Peek or Receive permissions on the queue being accessed.

The registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerDenyWorkgroup
Client is set to the DWORD value 0x00000000 or does not exist.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

92 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY, if the registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\DebugRpc exists and is set to any DWORD

value other than 0x00000000.

RPC_C_AUTHN_LEVEL_PKT_PRIVACY otherwise.

The Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 protocol
servers minimum RPC authentication level is determined as follows:

RPC_C_AUTHN_LEVEL_NONE, if the registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\AllowNonauthenticatedRpc exists and is set
to any DWORD value other than 0x00000000 and any of the following conditions is true:

The fWorkgroup parameter is TRUE.

The registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerDenyWorkgroup
Client is set to the DWORD value 0x00000000 or does not exist.

RPC_C_AUTHN_LEVEL_NONE, if the registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerAllowNoneSecurityC
lient exists and is set to any DWORD value other than 0x00000000, and the Anonymous Logon
account is granted Peek or Receive permissions on the queue being accessed.

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY, if the registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\DebugRpc exists and is set to any DWORD
value other than 0x00000000.

RPC_C_AUTHN_LEVEL_PKT_PRIVACY otherwise.

<27> Section 3.1.4.12: R_QMEnlistRemoteTransaction (section 3.1.4.12) is not implemented
on Windows Server 2003.

<28> Section 3.1.4.12: A server running Windows Vista, Windows Server 2008, Windows 7, or
Windows Server 2008 R2 ignores the pQueueFormat parameter.

<29> Section 3.1.4.13: R_StartTransactionalReceive is not implemented on Windows
Server 2003.

<30> Section 3.1.4.14: R_SetUserAcknowledgementClass (section 3.1.4.14) is not
implemented on Windows Server 2003.

<31> Section 3.1.4.15: R_EndTransactionalReceive (section 3.1.4.15) is not implemented on
Windows Server 2003.

<32> Section 3.2.4.1: The Windows Server 2003 protocol client uses RPC dynamic endpoints to
obtain the initial RPC binding handle. The client calls the R_GetServerPort (section 3.1.4.1)

method with the initial RPC binding handle and uses the returned value to obtain a new RPC binding
handle to be used for all subsequent RPC method calls on the protocol. The Windows Vista and
Windows Server 2008 protocol clients use RPC dynamic endpoints to obtain the RPC binding handle.
This handle is used for all RPC method calls on the protocol. The R_GetServerPort method is not

called by the Windows Vista or Windows Server 2008 client.

<33> Section 3.2.4.1: The Windows Server 2003 protocol client uses RPC dynamic endpoints to
obtain the initial RPC binding handle. The client calls the R_GetServerPort (section 3.1.4.1)

method with the initial RPC binding handle and uses the returned value to obtain a new RPC binding
handle to be used for all subsequent RPC method calls on the protocol. The Windows Vista and

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

93 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Windows Server 2008 clients use RPC dynamic endpoints to obtain the RPC binding handle. This
handle is used for all RPC method calls on the protocol. The R_GetServerPort method is not called

by the Windows Vista or Windows Server 2008 client.

<34> Section 3.2.4.4.1: Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7,

and Windows Server 2008 R2 clients return the message to the message queuing application with
an MQ_OK (0x00000000) status even if the call to R_EndReceive (section 3.1.4.9) fails.

<35> Section 3.2.4.10.1: Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7,
and Windows Server 2008 R2 clients return the message to the message queuing application with
an MQ_OK (0x00000000) status even if the call to R_EndReceive (section 3.1.4.9) fails.

<36> Section 3.2.4.12: Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7,
and Windows Server 2008 R2 clients do not cancel pending requests associated with open cursor

handles.

<37> Section 3.2.4.13: Windows Server 2003, Windows Vista, Windows Server 2008, and
Windows 7 clients do not cancel pending requests or close associated cursor handles.

<38> Section 5.1: The minimum RPC authentication level for Windows Server 2003 protocol server
is determined as follows:

RPC_C_AUTHN_LEVEL_NONE, if any of the following conditions is true.

The fWorkgroup parameter is TRUE.

The registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerAllowNoneSecuri
tyClient exists and is set to any DWORD value other than 0x00000000, and the Anonymous
Logon account is granted Peek or Receive permissions on the queue being accessed.

The registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerDenyWorkgroup
Client is set to the DWORD value 0x00000000 or does not exist.

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY, if the registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\DebugRpc exists and is set to any DWORD
value other than 0x00000000.

RPC_C_AUTHN_LEVEL_PKT_PRIVACY otherwise.

 The Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 protocol
servers minimum RPC authentication level is determined as follows:

RPC_C_AUTHN_LEVEL_NONE, if the registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\AllowNonauthenticatedRpc exists and is set
to any DWORD value other than 0x00000000 and any of the following conditions is true.

The fWorkgroup parameter is TRUE.

The registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerDenyWorkgroup
Client is set to the DWORD value 0x00000000 or does not exist.

RPC_C_AUTHN_LEVEL_NONE, if the registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\NewRemoteReadServerAllowNoneSecurityC

94 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

lient exists and is set to any DWORD value other than 0x00000000, and the Anonymous Logon
account is granted Peek or Receive permissions on the queue being accessed.

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY, if the registry key

HKLM\Software\Microsoft\MSMQ\Parameters\security\DebugRpc exists and is set to any DWORD
value other than 0x00000000.

RPC_C_AUTHN_LEVEL_PKT_PRIVACY otherwise.

95 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

8 Change Tracking

This section identifies changes that were made to the [MS-MQRR] protocol document between the
January 2011 and February 2011 releases. Changes are classified as New, Major, Minor, Editorial, or
No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A document revision that incorporates changes to interoperability requirements or functionality.

An extensive rewrite, addition, or deletion of major portions of content.

The removal of a document from the documentation set.

Changes made for template compliance.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are

updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the language and formatting in the technical content was
changed. Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical or language changes were introduced.
The technical content of the document is identical to the last released version, but minor editorial
and formatting changes, as well as updates to the header and footer information, and to the revision

summary, may have been made.

Major and minor changes can be described further using the following change types:

New content added.

Content updated.

Content removed.

New product behavior note added.

Product behavior note updated.

Product behavior note removed.

New protocol syntax added.

Protocol syntax updated.

Protocol syntax removed.

New content added due to protocol revision.

Content updated due to protocol revision.

Content removed due to protocol revision.

New protocol syntax added due to protocol revision.

96 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Protocol syntax updated due to protocol revision.

Protocol syntax removed due to protocol revision.

New content added for template compliance.

Content updated for template compliance.

Content removed for template compliance.

Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please

contact protocol@microsoft.com.

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

1.1

Glossary

58376

Added the terms "message queuing" and

"transactional queue" from [MS-MQMQ].

N Content

updated.

3.1.4.2

R_OpenQueue (Opnum 2)

58027

Expanded the definition for the parameter

dwAccess.

Y Content

updated.

3.1.4.2

R_OpenQueue (Opnum 2)

Added a conditional requirement to return

MQ_ERROR_INVALID_PARAMETER

(0xC00E0006) when invalid input parameters

are detected.

N Content

updated.

3.1.4.3

R_CloseQueue (Opnum 3)

60026

Updated the description of the pphContext

parameter to clarify when the value MUST be set

to NULL.

Y Content

updated.

3.1.4.7

R_StartReceive (Opnum 7)

Added consistency checks for invalid parameter

values and a conditional requirement to return

MQ_ERROR_INVALID_PARAMETER

(0xC00E0006) when at least one is detected.

N Content

updated.

3.1.4.9

R_EndReceive (Opnum 9)

58465

Updated processing rules for rStatus and for

when a match is not found on the {phContext,

dwRequestId} key pair.

N Content

updated.

3.1.4.9 58029 Y Content

mailto:protocol@microsoft.com

97 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

R_EndReceive (Opnum 9) Updated the descriptions of the RR_ACK and

RR_NACK values by changing "delivered" to

"received".

updated.

3.1.4.10

R_MoveMessage (Opnum 10)

57973

Described when the

STATUS_INVALID_PARAMETER is returned.

N Content

updated.

3.1.4.15

R_EndTransactionalReceive

(Opnum 15)

58465

Updated processing rules for when a match is

not found on the {phContext, dwRequestId} key

pair.

N Content

updated.

3.1.4.15

R_EndTransactionalReceive

(Opnum 15)

58421

Changed the iTransactional argument value from

true to True in the invocation of the [MS-

MQDMPR] Dequeue Message End event.

Y Content

updated.

3.1.4.15

R_EndTransactionalReceive

(Opnum 15)

58029

Updated the RR_ACK and RR_NACK values by

changing "delivered" to "received".

Y Content

updated.

3.2.4.2

Enlisting in a Transaction

58376

Added conditional processing rules for messages

to be received or moved in transaction contexts.

Y Content

updated.

3.2.4.3

Peek a Message

58026

Expanded the definition for phContext.

Y Content

updated.

3.2.4.3

Peek a Message

58028

Expanded the definition for phContext.

Y Content

updated.

3.2.4.3

Peek a Message

58377

Specified the time-out value used for the

ulTimeout parameter. Added qualifiers for

programming items.

N Content

updated.

3.2.4.4.1

Receive a Message Without a

Transaction

58026

Expanded the definition for phContext.

Y Content

updated.

3.2.4.4.1

Receive a Message Without a

Transaction

58027

Expanded the definition for phContext.

Y Content

updated.

3.2.4.4.1

Receive a Message Without a

Transaction

58028

Expanded the definition for phContext.

Y Content

updated.

3.2.4.4.1

Receive a Message Without a

Transaction

58377

Specified the time-out value used for the

ulTimeout parameter. Added qualifiers for

programming items.

N Content

updated.

3.2.4.4.1 58398 N Content

98 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

Receive a Message Without a

Transaction

Clarified when the client must advise the server

by calling the R_EndReceive method.

updated.

3.2.4.4.1

Receive a Message Without a

Transaction

58029

Updated the processing rules for receiving a

message when the transaction identifier is NULL.

Y Content

updated.

3.2.4.4.2

Receive a Message with a

Transaction

58026

Expanded the definition for phContext.

Y Content

updated.

3.2.4.4.2

Receive a Message with a

Transaction

58028

Expanded the definition for phContext.

Y Content

updated.

3.2.4.4.2

Receive a Message with a

Transaction

58029

Updated the processing rules for receiving a

message when the transaction identifier is not

NULL.

Y Content

updated.

3.2.4.4.2

Receive a Message with a

Transaction

58376

Specified that the message queuing application

must specify the transaction identifier for the

"enlisting in transaction" event.

N Content

updated.

3.2.4.4.2

Receive a Message with a

Transaction

58376

Added a conditional requirement to enlist the

server in a transaction.

Y Content

updated.

3.2.4.4.2

Receive a Message with a

Transaction

58377

Specified the time-out value used for the

ulTimeout parameter. Added qualifiers for

programming items. Changed the reference to

the ppSectionBuffers parameter to

ppPacketSections.

N Content

updated.

3.2.4.4.2

Receive a Message with a

Transaction

58397

Clarified when the client must advise the server

by calling the R_EndTransactionalReceive

method.

N Content

updated.

3.2.4.5

Reject a Message

58026

Expanded the definition for phContext.

Y Content

updated.

3.2.4.5

Reject a Message

58028

Expanded the definition for phContext.

Y Content

updated.

3.2.4.6

Move a Message

58026

Expanded the definition for phContext, and

changed parameter phContextFrom to

ulContextTo and added its definition.

Y Content

updated.

3.2.4.6

Move a Message

58028

Expanded the definition for phContext, and

changed parameter phContextFrom to

Y Content

updated.

99 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

ulContextTo and added its definition.

3.2.4.6

Move a Message

58376

Added conditional processing rules for messages

to be moved to transactional queues.

Y Content

updated.

3.2.4.7

Purging a Queue

58026

Expanded the definition for phContext.

Y Content

updated.

3.2.4.7

Purging a Queue

58028

Expanded the definition for phContext.

Y Content

updated.

3.2.4.8

Creating a Cursor

58026

Expanded the definition for phContext.

Y Content

updated.

3.2.4.8

Creating a Cursor

58028

Expanded the definition for phContext.

Y Content

updated.

3.2.4.9

Peek a Message by Using a

Cursor

58377

Specified the time-out value used for the

ulTimeout parameter. Added qualifiers for

programming items.

N Content

updated.

3.2.4.10.1

Receive a Message by Using a

Cursor Without a Transaction

58026

Expanded the definition for phContext.

Y Content

updated.

3.2.4.10.1

Receive a Message by Using a

Cursor Without a Transaction

58028

Expanded the definition for phContext.

Y Content

updated.

3.2.4.10.2

Receive a Message by Using a

Cursor with a Transaction

58026

Expanded the definition for phContext.

Y Content

updated.

3.2.4.10.2

Receive a Message by Using a

Cursor with a Transaction

58028

Expanded the definition for phContext.

Y Content

updated.

3.2.4.10.2

Receive a Message by Using a

Cursor with a Transaction

58376

Clarified that the processing rules apply to the

message queuing application.

Y Content

updated.

3.2.4.11

Cancel a Pending Peek or

Receive

58026

Expanded the definition for phContext.

Y Content

updated.

3.2.4.11

Cancel a Pending Peek or

Receive

58028

Expanded the definition for phContext.

Y Content

updated.

3.2.4.12

Closing a Cursor

58026

Expanded the definition for phContext.

Y Content

updated.

3.2.4.12 58028 Y Content

100 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

Closing a Cursor Expanded the definition for phContext. updated.

3.2.4.13

Closing a Queue

58026

Expanded the definition for message queuing.

Y Content

updated.

3.2.4.13

Closing a Queue

58028

Expanded the definition for message queuing.

Y Content

updated.

101 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

9 Index

A

Abstract data model
client 67
server 28

Access patterns 10
Applicability 11

B

Binding to server and purging queue example 77

C

Capability negotiation 12
Change tracking 95
Client

abstract data model 67
initialization 67
local events 76
message processing 67
sequencing rules 67
timer events 75
timers 67

CompoundMessageHeader packet 20

D

Data model - abstract
client 67
server 28

Data types 13
DeadLetterHeader packet 24

E

Examples
binding to server and purging queue example 77
overview 77
receiving message example 78
receiving message in transaction example 79

ExtendedAddressHeader packet 24
ExtensionHeader packet 21

F

Fields - vendor-extensible 12
Full IDL 83

G

Glossary 7

I

IDL 83
Implementers - security considerations 82
Informative references 8

Initialization
client 67
server 30

Introduction 7

L

Local events
client 76
server 65

M

Message processing
client 67
server 30

Message_Packet_Structure packet 15
Messages - transport 13

N

Normative references 8

O

Overview (synopsis)
access patterns 10
messages 9
overview 9

queue operations 10
queues 9
transactions 11

P

Parameters - security 82
Preconditions 11
Prerequisites 11
Product behavior 88

Q

Queue operations 10
Queues 9

R

R_CancelReceive method 46
R_CloseCursor method 36
R_CloseQueue method 34
R_CreateCursor method 35
R_EndReceive method 47
R_EndTransactionalReceive method 63
R_GetServerPort method 31
R_MoveMessage method 49
R_OpenQueue method 32
R_OpenQueueForMove method 51
R_PurgeQueue method 37

102 / 102

[MS-MQRR] — v20110204
 Message Queuing (MSMQ): Queue Manager Remote Read Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

R_QMEnlistRemoteTransaction method 53
R_SetUserAcknowledgementClass method 62
R_StartReceive method 38
R_StartTransactionalReceive method 54
Receiving message example 78
Receiving message in transaction example 79
References

informative 8
normative 8

Relationship to other protocols 11

S

SectionBuffer structure 25
SectionType enumeration 26
Security 82
Sequencing rules

client 67
server 30

Server
abstract data model 28
initialization 30
local events 65
message processing 30
sequencing rules 30
timers 29

SRMPEnvelopeHeader packet 20
Standards assignments 12
SubqueueHeader packet 22

T

Timer events - client 75
Timers

client 67
server 29

Tracking changes 95
Transactions 11
Transport - message 13

U

UserMessage packet 16

V

Vendor-extensible fields 12
Versioning 12

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Messages
	1.3.2 Queues
	1.3.3 Queue Operations
	1.3.4 Access Patterns
	1.3.5 Transactions

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 HRESULT
	2.2.2 GUID
	2.2.3 QUEUE_FORMAT
	2.2.4 Queue Context Handles
	2.2.4.1 QUEUE_CONTEXT_HANDLE_NOSERIALIZE
	2.2.4.2 QUEUE_CONTEXT_HANDLE_SERIALIZE

	2.2.5 Message Packet Structure
	2.2.5.1 UserMessage
	2.2.5.1.1 Binary Message
	2.2.5.1.2 SRMP Message
	2.2.5.1.2.1 SRMPEnvelopeHeader
	2.2.5.1.2.2 CompoundMessageHeader

	2.2.5.2 ExtensionHeader
	2.2.5.3 SubqueueHeader
	2.2.5.4 DeadLetterHeader
	2.2.5.5 ExtendedAddressHeader

	2.2.6 SectionBuffer
	2.2.7 SectionType
	2.2.8 XACTUOW

	2.3 Directory Service Schema Elements

	3 Protocol Details
	3.1 RemoteRead Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 Shared Data Elements
	3.1.1.2 PendingRequestEntry
	3.1.1.2.1 Attributes

	3.1.1.3 PendingRequestTable
	3.1.1.4 Message
	3.1.1.4.1 Attributes

	3.1.2 Timers
	3.1.2.1 RPC Call Timeout Timer
	3.1.2.2 Pending Request Cleanup Timer

	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 R_GetServerPort (Opnum 0)
	3.1.4.2 R_OpenQueue (Opnum 2)
	3.1.4.3 R_CloseQueue (Opnum 3)
	3.1.4.4 R_CreateCursor (Opnum 4)
	3.1.4.5 R_CloseCursor (Opnum 5)
	3.1.4.6 R_PurgeQueue (Opnum 6)
	3.1.4.7 R_StartReceive (Opnum 7)
	3.1.4.8 R_CancelReceive (Opnum 8)
	3.1.4.9 R_EndReceive (Opnum 9)
	3.1.4.10 R_MoveMessage (Opnum 10)
	3.1.4.11 R_OpenQueueForMove (Opnum 11)
	3.1.4.12 R_QMEnlistRemoteTransaction (Opnum 12)
	3.1.4.13 R_StartTransactionalReceive (Opnum 13)
	3.1.4.14 R_SetUserAcknowledgementClass (Opnum 14)
	3.1.4.15 R_EndTransactionalReceive (Opnum 15)

	3.1.5 Timer Events
	3.1.5.1 Pending Request Cleanup Timer Event

	3.1.6 Other Local Events
	3.1.6.1 RPC Failure Event
	3.1.6.2 Queue Context Handles Rundown Routine

	3.2 RemoteRead Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 Opening a Queue
	3.2.4.2 Enlisting in a Transaction
	3.2.4.3 Peek a Message
	3.2.4.4 Receive a Message
	3.2.4.4.1 Receive a Message Without a Transaction
	3.2.4.4.2 Receive a Message with a Transaction

	3.2.4.5 Reject a Message
	3.2.4.6 Move a Message
	3.2.4.7 Purging a Queue
	3.2.4.8 Creating a Cursor
	3.2.4.9 Peek a Message by Using a Cursor
	3.2.4.10 Receive a Message by Using a Cursor
	3.2.4.10.1 Receive a Message by Using a Cursor Without a Transaction
	3.2.4.10.2 Receive a Message by Using a Cursor with a Transaction

	3.2.4.11 Cancel a Pending Peek or Receive
	3.2.4.12 Closing a Cursor
	3.2.4.13 Closing a Queue

	3.2.5 Timer Events
	3.2.6 Other Local Events

	4 Protocol Examples
	4.1 Binding to a Server and Purging a Queue
	4.2 Receiving a Message
	4.3 Receiving a Message in a Transaction

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

