

1 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

[MS-MQMP]:
Message Queuing (MSMQ):
Queue Manager Client Protocol Specification

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft's Open Specification Promise (available here:

http://www.microsoft.com/interop/osp) or the Community Promise (available here:

http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if
the technologies described in the Open Specifications are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

2 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Revision Summary

Date

Revision

History

Revision

Class Comments

05/11/2007 0.1 MCPP Milestone 4 Initial Availability

08/10/2007 1.0 Major Updated and revised the technical content.

09/28/2007 2.0 Major Updated and revised the technical content.

10/23/2007 3.0 Major Revised method error code return text and made

changes to cursor state diagrams.

11/30/2007 4.0 Major Updated and revised the technical content.

01/25/2008 4.0.1 Editorial Revised and edited the technical content.

03/14/2008 5.0 Major Updated and revised the technical content.

05/16/2008 6.0 Major Updated and revised the technical content.

06/20/2008 7.0 Major Updated and revised the technical content.

07/25/2008 7.0.1 Editorial Revised and edited the technical content.

08/29/2008 8.0 Major Updated and revised the technical content.

10/24/2008 9.0 Major Updated and revised the technical content.

12/05/2008 10.0 Major Updated and revised the technical content.

01/16/2009 10.1 Minor Updated the technical content.

02/27/2009 10.2 Minor Updated the technical content.

04/10/2009 11.0 Major Updated and revised the technical content.

05/22/2009 11.1 Minor Updated the technical content.

07/02/2009 12.0 Major Updated and revised the technical content.

08/14/2009 12.1 Minor Updated the technical content.

09/25/2009 12.2 Minor Updated the technical content.

11/06/2009 13.0 Major Updated and revised the technical content.

12/18/2009 14.0 Major Updated and revised the technical content.

01/29/2010 15.0 Major Updated and revised the technical content.

03/12/2010 15.1 Minor Updated the technical content.

04/23/2010 15.1.1 Editorial Revised and edited the technical content.

06/04/2010 16.0 Major Updated and revised the technical content.

3 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Date

Revision

History

Revision

Class Comments

07/16/2010 16.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/27/2010 17.0 Major Significantly changed the technical content.

10/08/2010 18.0 Major Significantly changed the technical content.

11/19/2010 18.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 18.0 No change No changes to the meaning, language, or formatting of

the technical content.

02/11/2011 19.0 Major Significantly changed the technical content.

4 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Contents

1 Introduction ... 7
1.1 Glossary ... 7
1.2 References .. 8

1.2.1 Normative References ... 8
1.2.2 Informative References ... 9

1.3 Overview .. 10
1.4 Relationship to Other Protocols .. 10
1.5 Prerequisites/Preconditions ... 10
1.6 Applicability Statement ... 10
1.7 Versioning and Capability Negotiation ... 11
1.8 Vendor-Extensible Fields ... 11
1.9 Standards Assignments .. 11

2 Messages.. 12
2.1 Transport .. 12
2.2 Common Data Types .. 12

2.2.1 Data Types .. 13
2.2.1.1 Handle Data Types .. 13

2.2.1.1.1 RPC_INT_XACT_HANDLE .. 13
2.2.1.1.2 RPC_QUEUE_HANDLE .. 13
2.2.1.1.3 PCTX_OPENREMOTE_HANDLE_TYPE .. 13

2.2.2 Enumerations .. 14
2.2.2.1 TRANSFER_TYPE... 14

2.2.3 Structures ... 14
2.2.3.1 XACTUOW.. 14
2.2.3.2 CACTransferBufferV1 .. 14
2.2.3.3 CACTransferBufferV2 .. 27
2.2.3.4 CACCreateRemoteCursor ... 28
2.2.3.5 OBJECT_FORMAT .. 28

2.3 Directory Service Schema Elements ... 28

3 Protocol Details .. 30
3.1 qmcomm and qmcomm2 Server Details.. 30

3.1.1 Abstract Data Model ... 30
3.1.1.1 Shared Data Elements ... 31
3.1.1.2 LocalQueueContextHandleTable .. 31
3.1.1.3 LocalQueueContextHandle ... 31
3.1.1.4 RemoteQueueProxyHandleTable ... 31
3.1.1.5 RemoteQueueProxyHandle ... 31
3.1.1.6 CursorProxy ... 32
3.1.1.7 RemoteQueueOpenContextHandleTable ... 32
3.1.1.8 RemoteQueueOpenContextHandle .. 32
3.1.1.9 TransactionHandleTable ... 33
3.1.1.10 TransactionHandle .. 33
3.1.1.11 Message to CACTransferBufferV2 Translation.. 33
3.1.1.12 Queue PROPID to Abstract Queue Property Translation 36

3.1.2 Timers .. 37
3.1.3 Initialization .. 37
3.1.4 Message Processing Events and Sequencing Rules for qmcomm 37

3.1.4.1 R_QMGetRemoteQueueName (Opnum 1) ... 40

5 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.4.2 R_QMOpenRemoteQueue (Opnum 2) .. 41
3.1.4.3 R_QMCloseRemoteQueueContext (Opnum 3) ... 44
3.1.4.4 R_QMCreateRemoteCursor (Opnum 4) .. 45
3.1.4.5 R_QMCreateObjectInternal (Opnum 6) .. 46
3.1.4.6 R_QMSetObjectSecurityInternal (Opnum 7) ... 48
3.1.4.7 R_QMGetObjectSecurityInternal (Opnum 8) ... 49
3.1.4.8 R_QMDeleteObject (Opnum 9) ... 51
3.1.4.9 R_QMGetObjectProperties (Opnum 10).. 51
3.1.4.10 R_QMSetObjectProperties (Opnum 11) .. 52
3.1.4.11 R_QMObjectPathToObjectFormat (Opnum 12) .. 54
3.1.4.12 R_QMGetTmWhereabouts (Opnum 14) .. 55
3.1.4.13 R_QMEnlistTransaction (Opnum 15) .. 56
3.1.4.14 R_QMEnlistInternalTransaction (Opnum 16) ... 57
3.1.4.15 R_QMCommitTransaction (Opnum 17) ... 58
3.1.4.16 R_QMAbortTransaction (Opnum 18) .. 59
3.1.4.17 rpc_QMOpenQueueInternal (Opnum 19) .. 60
3.1.4.18 rpc_ACCloseHandle (Opnum 20) ... 65
3.1.4.19 rpc_ACCloseCursor (Opnum 22) ... 66
3.1.4.20 rpc_ACSetCursorProperties (Opnum 23) .. 68
3.1.4.21 rpc_ACHandleToFormatName (Opnum 26) ... 69
3.1.4.22 rpc_ACPurgeQueue (Opnum 27) ... 71
3.1.4.23 R_QMQueryQMRegistryInternal (Opnum 28) .. 72
3.1.4.24 R_QMGetRTQMServerPort (Opnum 31) .. 74

3.1.5 Message Processing Events and Sequencing Rules for qmcomm2 75
3.1.5.1 QMSendMessageInternalEx (Opnum 0) .. 75
3.1.5.2 rpc_ACSendMessageEx (Opnum 1) ... 76
3.1.5.3 rpc_ACReceiveMessageEx (Opnum 2) ... 81
3.1.5.4 rpc_ACCreateCursorEx (Opnum 3) .. 89

3.1.6 Timer Events ... 91
3.1.7 Other Local Events ... 91

3.1.7.1 RPC_QUEUE_HANDLE Context Handle Rundown Routine 91
3.1.7.2 PCTX_OPENREMOTE_HANDLE_TYPE Context Handle Rundown Routine 92
3.1.7.3 RPC_INT_XACT_HANDLE Context Handle Rundown Routine 92

3.2 qmcomm and qmcomm2 Client Details ... 92
3.2.1 Abstract Data Model ... 92

3.2.1.1 LicenceGuid ... 92
3.2.1.2 OpenQueueContext ... 93
3.2.1.3 CursorIdentifier .. 93

3.2.2 Timers .. 93
3.2.3 Initialization .. 93
3.2.4 Message Processing Events and Sequencing Rules .. 93

3.2.4.1 Creating a Local Private Queue ... 94
3.2.4.2 Deleting a Local Private Queue ... 95
3.2.4.3 Updating Local Private Queue Security .. 95
3.2.4.4 Retrieving Local Private Queue Security ... 95
3.2.4.5 Updating Local Private Queue Properties .. 96
3.2.4.6 Retrieving Local Private Queue Properties .. 96
3.2.4.7 Opening a Queue .. 97
3.2.4.8 Creating a Cursor ... 99
3.2.4.9 Purging a Queue .. 100
3.2.4.10 Sending a Message .. 100
3.2.4.11 Peeking a Message ... 101
3.2.4.12 Receiving a Message .. 101

6 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.2.4.13 Retrieving a Format Name for a Queue Path Name 102
3.2.4.14 Retrieving a Format Name for a Queue Context Handle 102
3.2.4.15 Closing a Queue .. 102
3.2.4.16 Closing a Cursor .. 102

3.2.5 Timer Events .. 103
3.2.6 Other Local Events .. 103

4 Protocol Examples .. 104
4.1 Application Opening and Closing a Local Queue Example ... 104
4.2 Application Opening and Closing a Remote Queue Example 105
4.3 Application Creating and Closing a Local Cursor Example ... 107
4.4 Application Creating and Closing a Remote Cursor Example 107
4.5 Application Internal Transaction Example ... 109

5 Security .. 111
5.1 Security Considerations for Implementers .. 111
5.2 Index of Security Parameters ... 111

6 Appendix A: Full IDL ... 112

7 Appendix B: Product Behavior .. 121

8 Change Tracking... 136

9 Index ... 138

7 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1 Introduction

The Message Queuing (MSMQ): Queue Manager Client Protocol is an RPC-based protocol, which
enables communication between an application and an MSMQ supporting server or a remote
MSMQ queue manager. Operations that an MSMQ application performs using this protocol include:

Managing private queues that are local queues.

Opening and closing local queue handles and remote queue handles.

Enlisting, committing, and aborting internal transactions.

Enlisting the queue manager in external transactions.

Purging queues.

Creating cursors for local queues and remote queues.

Sending messages.

Reading messages.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

authentication level
client (1)

dynamic endpoint
endpoint
globally unique identifier (GUID)
Interface Definition Language (IDL)

Network Data Representation (NDR)
opnum

remote procedure call (RPC)
RPC protocol sequence
RPC transport
server
session
transaction
universally unique identifier (UUID)

UTC (Coordinated Universal Time)

The following terms are defined in [MS-DTCO]:

resource manager (RM)
work

The following terms are defined in [MS-MQMQ]:

administration queue
application

cursor
dead-letter queue
external transaction

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-MQMQ%5d.pdf

8 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

foreign queue
format name

internal transaction
local queue

message
Microsoft Message Queuing (MSMQ)
MSMQ
MSMQ 1.0 digital signature
MSMQ 2.0 digital signature
MSMQ 3.0 digital signature
MSMQ queue manager

MSMQ supporting server
order queue
outgoing queue
path name
private queue
queue

queue journal

queue property
remote queue
remote read
unit of work
XML digital signature

The following terms are specific to this document:

cryptographic service provider (CSP): A program that generates digital signatures.

legacy remote read sequence: The sequence of calls used to perform a remote read using
the qmcomm and qm2qm Message Queuing (MSMQ): Queue Manager to Queue Manager
Protocol ([MS-MQQP]) RPC interfaces. Applications always utilize the legacy remote read
sequence rather than the call sequence provided by the newer RemoteRead RPC interface
specified in [MS-MQRR].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as

described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,

http://www.opengroup.org/public/pubs/catalog/c706.htm

[FIPS180-2] Federal Information Processing Standards Publication, "Secure Hash Standard", FIPS
PUB 180-2, August 2002, http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[MS-DTCO] Microsoft Corporation, "MSDTC Connection Manager: OleTx Transaction Protocol
Specification", July 2007.

%5bMS-MQMQ%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-MQRR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89868
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf

9 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

[MS-DTYP] Microsoft Corporation, "Windows Data Types", January 2007.

[MS-ERREF] Microsoft Corporation, "Windows Error Codes", January 2007.

[MS-MQDMPR] Microsoft Corporation, "Message Queuing (MSMQ): Common Data Model and
Processing Rules", August 2008.

[MS-MQMQ] Microsoft Corporation, "Message Queuing (MSMQ): Data Structures", August 2007.

[MS-MQQB] Microsoft Corporation, "Message Queuing (MSMQ): Message Queuing Binary Protocol
Specification", August 2007.

[MS-MQQP] Microsoft Corporation, "Message Queuing (MSMQ): Queue Manager to Queue Manager
Protocol Specification", August 2007.

[MS-MQRR] Microsoft Corporation, "Message Queuing (MSMQ): Queue Manager Remote Read
Protocol Specification", June 2007.

[MS-MQSO] Microsoft Corporation, "Message Queuing System Overview", August 2008.

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions", January 2007.

[RC4] The RC4 Encryption Algorithm. RSA Data Security, Inc.,
http://www.rsa.com/node.aspx?id=1204

Note To obtain this stream cipher that is licensed by RSA Data Security, you need to contact this
company.

[RFC1319] Kaliski, B., "The MD2 Message-Digest Algorithm", RFC 1319, April 1992,
http://www.ietf.org/rfc/rfc1319.txt

[RFC1320] Rivest, R., "The MD4 Message-Digest Algorithm", RFC 1320, April 1992,
http://www.ietf.org/rfc/rfc1320.txt

[RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992,

http://www.ietf.org/rfc/rfc1321.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

[RFC2268] Rivest, R., "A Description of the RC2(r) Encryption Algorithm", RFC 2268, March 1998,
http://www.ietf.org/rfc/rfc2268.txt

[RFC3174] Eastlake III, D., and Jones, P., "US Secure Hash Algorithm 1 (SHA1)", RFC 3174,
September 2001, http://www.ietf.org/rfc/rfc3174.txt

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary", March 2007.

[MS-MQDSSM] Microsoft Corporation, "Message Queuing (MSMQ): Directory Service Schema

Mapping", August 2008.

[MSDN-MQEIC] Microsoft Corporation, "Message Queuing Error and Information Codes",
http://msdn.microsoft.com/en-us/library/ms700106.aspx

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-MQRR%5d.pdf
%5bMS-MQRR%5d.pdf
%5bMS-MQSO%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=93759
http://go.microsoft.com/fwlink/?LinkId=90273
http://go.microsoft.com/fwlink/?LinkId=90274
http://go.microsoft.com/fwlink/?LinkId=90275
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90330
http://go.microsoft.com/fwlink/?LinkId=90408
%5bMS-GLOS%5d.pdf
%5bMS-MQDSSM%5d.pdf
%5bMS-MQDSSM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90044

10 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1.3 Overview

The Message Queuing (MSMQ): Queue Manager Client Protocol provides a means for applications to
communicate with a supporting server. An MSMQ application uses this protocol to perform basic

message queuing operations on a supporting server, such as creating queues, altering queue
properties, sending messages, and receiving messages. An MSMQ application also uses this
protocol to communicate with a remote MSMQ queue manager to open and close remote queues.

1.4 Relationship to Other Protocols

This protocol is dependent upon RPC for its transport. This protocol uses RPC, as specified in section
2.1.

This protocol is tightly coupled with the Message Queuing (MSMQ) Queue Manager to Queue
Manager Protocol [MS-MQQP], and therefore if one protocol is implemented, the other one MUST be
implemented also. The processing rules for this protocol invoke methods on the qm2qm RPC
interface of the Message Queuing (MSMQ) Queue Manager to Queue Manager Protocol. Furthermore,
the arguments required for these methods are obtained from the qmcomm RPC interface of this

protocol. The following diagram illustrates the protocol relationships for this protocol.

Figure 1: Protocol relationships

Additionally, the MSDTC Connection Manager: OleTx Transaction Protocol [MS-DTCO] is used by
applications to orchestrate external transaction scenarios for this protocol.

This protocol uses shared state and processing rules defined in [MS-MQDMPR].

1.5 Prerequisites/Preconditions

The Message Queuing (MSMQ): Queue Manager Client Protocol is an RPC interface and, as a result,
has the prerequisites specified in [MS-RPCE] as being common to RPC interfaces.

It is assumed that a Message Queuing (MSMQ): Queue Manager Client Protocol client has obtained
the name of a remote computer that supports the Message Queuing (MSMQ): Queue Manager Client
Protocol before this protocol is invoked. This specification does not address how this information is

acquired. In the context of a remote read operation, this protocol provides the name of a remote
server, as described in sections 3.1.4.1 and 3.1.4.17.

1.6 Applicability Statement

This protocol provides functionality for message queuing applications to perform operations on a
remote supporting server.

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-GLOS%5d.pdf

11 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The server side of the Message Queuing (MSMQ): Queue Manager Client Protocol is applicable for
implementation by a queue manager providing supporting server services to applications. The client

side of this protocol is applicable for implementation by client libraries providing message queuing
services to applications, or by a queue manager delegating requests on behalf of a client.

Due to performance and security limitations, this protocol is deprecated and suitable only for
interoperability with existing legacy servers and clients.<1> Implementers of new message queuing
applications are encouraged to invoke the MSMQ COM API remotely via DCOM in preference to the
capabilities specified by the Message Queuing (MSMQ): Queue Manager Client Protocol.

1.7 Versioning and Capability Negotiation

This protocol supports a mechanism for explicitly negotiating the RPC endpoint to be used. For

more information, see section 3.1.4.24.

1.8 Vendor-Extensible Fields

This protocol uses HRESULT values as defined in [MS-ERREF] section 2.1.1. Vendors can define their

own HRESULT values, provided that they set the C bit (0x20000000) for each vendor-defined value,
indicating that the value is a customer code.

1.9 Standards Assignments

Parameter Value Reference

RPC Interface UUID for

qmcomm interface

fdb3a030-065f-11d1-bb9b-00a024ea5525 As specified in

[C706].

RPC Interface UUID for

qmcomm2 interface

76d12b80-3467-11d3-91ff-0090272f9ea3 As specified in

[C706].

Interface Version 1.0 As specified in

[C706].

Port Information This protocol uses RPC dynamic endpoints as specified in

[C706] Part 4, as well as a fixed endpoint as described in

section 2.1.

As specified in

[C706].

%5bMS-GLOS%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89831
http://go.microsoft.com/fwlink/?LinkId=89824

12 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2 Messages

2.1 Transport

This protocol SHOULD use the following RPC protocol sequence: RPC over TCP/IP (ncacn_ip_tcp),
as specified in [MS-RPCE].<2> This protocol MAY use the RPC over SPX (ncacn_spx) protocol
sequence if TCP/IP is unavailable.

This protocol SHOULD use RPC dynamic endpoints, as specified in [C706] part 4. This protocol MAY
use an RPC static endpoint, as specified in [C706] part 4.

This protocol allows any user to establish a connection to the RPC server. For each connection, the
server uses the underlying RPC protocol to retrieve the identity of the invoking client, as specified in
the second bullet point of [MS-RPCE] section 3.3.3.4.3. The server SHOULD use this identity to
perform method-specific access checks, as specified in section 3.1.4.

2.2 Common Data Types

All structures are defined in the IDL syntax and are marshaled as specified in [C706] part 3. The

IDL is specified in section 6.

Note that LPWSTR or WCHAR* types specified in an IDL structure that are annotated with the
[string] attribute MUST be null-terminated, as specified in [C706].

HRESULT: This specification uses the HRESULT type, as specified in [MS-ERREF] section 2.1.1.

Note that throughout this specification, the phrase "a failure HRESULT" means any HRESULT
where the Severity (S) bit is set, as specified by [MS-ERREF]. When this specification
mandates the return of "a failure HRESULT" from a method, the specific error code is not

relevant to the protocol, as long as the Severity bit is set. In this circumstance, the server can
return MQ_ERROR (0xC00E0001), or any other HRESULT value where the Severity bit is set,
such as a context-specific message queuing error code, as specified in [MS-MQMQ] section

2.4.

GUID and UUID: This type specifies a globally unique identifier, as specified in [MS-DTYP]
section 2.3.2.

QUEUE_FORMAT and OBJECTID: These structures are defined in [MS-MQMQ] section 2.2.

In addition to RPC base types and definitions specified in [C706] and [MS-RPCE], additional data
types are defined below.

The following table summarizes the types that are defined in this specification.

Data type name Description

RPC_INT_XACT_HANDLE A context handle representing an internal transaction.

RPC_QUEUE_HANDLE A context handle representing a queue object.

PCTX_OPENREMOTE_HANDLE_TYPE A context handle representing a remote queue object.

CACTransferBufferV1 A structure used for sending and receiving messages.

CACTransferBufferV2 A structure containing the CACTransferBufferV1 (section

2.2.3.2) structure used for sending and receiving messages

%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89831
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89831
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90950
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf

13 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Data type name Description

with additional transaction tracking capabilities.

CACCreateRemoteCursor A structure used for creating a cursor on a message queue.

OBJECT_FORMAT A structure containing a QUEUE_FORMAT structure (as

specified in [MS-MQMQ] section 2.2.7) and a specification as to

whether the QUEUE_FORMAT is local or remote.

XACTUOW Identifies the unit of work for a transactional operation.

2.2.1 Data Types

2.2.1.1 Handle Data Types

2.2.1.1.1 RPC_INT_XACT_HANDLE

The RPC_INT_XACT_HANDLE handle is a remote procedure call (RPC) context handle
representing an internal transaction, as specified in [C706] section 14.2.16.6. A client MUST call
R_QMEnlistInternalTransaction (section 3.1.4.14) to create an RPC_INT_XACT_HANDLE
handle, and it MUST call R_QMCommitTransaction (section 3.1.4.15) or

R_QMAbortTransaction (section 3.1.4.16) to delete an RPC_INT_XACT_HANDLE.

This type is declared as follows:

typedef [context_handle] void* RPC_INT_XACT_HANDLE;

2.2.1.1.2 RPC_QUEUE_HANDLE

The RPC_QUEUE_HANDLE handle is an RPC context handle representing a queue object, as

specified in [C706] section 14.2.16.6. A client MUST call rpc_QMOpenQueueInternal (section
3.1.4.17) to create an RPC_QUEUE_HANDLE handle and rpc_ACCloseHandle (section
3.1.4.18) to close an RPC_QUEUE_HANDLE.

This type is declared as follows:

typedef [context_handle] void* RPC_QUEUE_HANDLE;

2.2.1.1.3 PCTX_OPENREMOTE_HANDLE_TYPE

The PCTX_OPENREMOTE_HANDLE_TYPE handle is an RPC context handle representing a queue
object at a queue manager other than the supporting server, as specified in [C706] section

14.2.16.6. A client MUST call R_QMOpenRemoteQueue (section 3.1.4.2) to create a
PCTX_OPENREMOTE_HANDLE_TYPE handle, and R_QMCloseRemoteQueueContext (section
3.1.4.3) to close a PCTX_OPENREMOTE_HANDLE_TYPE.

This type is declared as follows:

%5bMS-GLOS%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90712
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90712
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90712

14 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

typedef [context_handle] void* PCTX_OPENREMOTE_HANDLE_TYPE;

2.2.2 Enumerations

The following enumerated type is defined in the following section:

TRANSFER_TYPE

2.2.2.1 TRANSFER_TYPE

The TRANSFER_TYPE enumeration specifies the valid cases for the unnamed union defined in the
CACTransferBufferV1 structure (section 2.2.3.2).

typedef enum

{

 CACTB_SEND = 0,

 CACTB_RECEIVE,

 CACTB_CREATECURSOR

} TRANSFER_TYPE;

CACTB_SEND: A send operation (that is, a message placed into a queue for delivery) is to be
performed.

CACTB_RECEIVE: A receive operation (that is, a message is to be read from a queue) is to be
performed.

CACTB_CREATECURSOR: A cursor creation is to be performed.

2.2.3 Structures

2.2.3.1 XACTUOW

The XACTUOW structure ([MS-MQMQ] section 2.2.18.1.8) uniquely identifies the unit of work
(UOW) for a transactional operation. For an external transaction, this value MUST be acquired from
the transaction coordinator. For an internal transaction, a client MUST create a unique random value
for each transaction.<3>

2.2.3.2 CACTransferBufferV1

The CACTransferBufferV1 structure is used to send and receive messages via MSMQ.

Following is the layout of the CACTransferBufferV1 structure with IDL annotations followed by
descriptions of the structure members.

typedef struct CACTransferBufferV1 {

 [range(0,2)] DWORD uTransferType;

 [switch_is(uTransferType)] union {

 [case(CACTB_SEND)]

 struct {

 struct QUEUE_FORMAT* pAdminQueueFormat;

 struct QUEUE_FORMAT* pResponseQueueFormat;

 } Send;

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

15 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 [case(CACTB_RECEIVE)]

 struct {

 DWORD RequestTimeout;

 DWORD Action;

 DWORD Asynchronous;

 DWORD Cursor;

 [range(0,1024)] DWORD ulResponseFormatNameLen;

 [size_is(,ulResponseFormatNameLen)]

 WCHAR** ppResponseFormatName;

 DWORD* pulResponseFormatNameLenProp;

 [range(0,1024)] DWORD ulAdminFormatNameLen;

 [size_is(,ulAdminFormatNameLen)]

 WCHAR** ppAdminFormatName;

 DWORD* pulAdminFormatNameLenProp;

 [range(0,1024)] DWORD ulDestFormatNameLen;

 [size_is(,ulDestFormatNameLen)]

 WCHAR** ppDestFormatName;

 DWORD* pulDestFormatNameLenProp;

 [range(0,1024)] DWORD ulOrderingFormatNameLen;

 [size_is(,ulOrderingFormatNameLen)]

 WCHAR** ppOrderingFormatName;

 DWORD* pulOrderingFormatNameLenProp;

 } Receive;

 [case(CACTB_CREATECURSOR)]

 struct CACCreateRemoteCursor CreateCursor;

 };

 unsigned short* pClass;

 OBJECTID** ppMessageID;

 [size_is(,20), length_is(,20)] unsigned char** ppCorrelationID;

 DWORD* pSentTime;

 DWORD* pArrivedTime;

 unsigned char* pPriority;

 unsigned char* pDelivery;

 unsigned char* pAcknowledge;

 unsigned char* pAuditing;

 DWORD* pApplicationTag;

 [size_is(,ulAllocBodyBufferInBytes), length_is(,ulBodyBufferSizeInBytes)]

 unsigned char** ppBody;

 DWORD ulBodyBufferSizeInBytes;

 DWORD ulAllocBodyBufferInBytes;

 DWORD* pBodySize;

 [size_is(,ulTitleBufferSizeInWCHARs), length_is(,ulTitleBufferSizeInWCHARs)]

 WCHAR** ppTitle;

 DWORD ulTitleBufferSizeInWCHARs;

 DWORD* pulTitleBufferSizeInWCHARs;

 DWORD ulAbsoluteTimeToQueue;

 DWORD* pulRelativeTimeToQueue;

 DWORD ulRelativeTimeToLive;

 DWORD* pulRelativeTimeToLive;

 unsigned char* pTrace;

 DWORD* pulSenderIDType;

 [size_is(,uSenderIDLen)] unsigned char** ppSenderID;

 DWORD* pulSenderIDLenProp;

 DWORD* pulPrivLevel;

 DWORD ulAuthLevel;

 unsigned char* pAuthenticated;

 DWORD* pulHashAlg;

 DWORD* pulEncryptAlg;

 [size_is(,ulSenderCertLen)] unsigned char** ppSenderCert;

16 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 DWORD ulSenderCertLen;

 DWORD* pulSenderCertLenProp;

 [size_is(,ulProvNameLen)] WCHAR** ppwcsProvName;

 DWORD ulProvNameLen;

 DWORD* pulAuthProvNameLenProp;

 DWORD* pulProvType;

 long fDefaultProvider;

 [size_is(,ulSymmKeysSize)] unsigned char** ppSymmKeys;

 DWORD ulSymmKeysSize;

 DWORD* pulSymmKeysSizeProp;

 unsigned char bEncrypted;

 unsigned char bAuthenticated;

 unsigned short uSenderIDLen;

 [size_is(,ulSignatureSize)] unsigned char** ppSignature;

 DWORD ulSignatureSize;

 DWORD* pulSignatureSizeProp;

 GUID** ppSrcQMID;

 XACTUOW* pUow;

 [size_is(,ulMsgExtensionBufferInBytes), length_is(,ulMsgExtensionBufferInBytes)]

 unsigned char** ppMsgExtension;

 DWORD ulMsgExtensionBufferInBytes;

 DWORD* pMsgExtensionSize;

 GUID** ppConnectorType;

 DWORD* pulBodyType;

 DWORD* pulVersion;

} ;

uTransferType: The uTransferType member specifies which of the Send, Receive, or

CreateCursor union members is present in the CACTransferBufferV1 structure. The
uTransferType member MUST be assigned a value from the TRANSFER_TYPE (section
2.2.2.1) enumeration.

Send: The Send structure is present in the CACTransferBufferV1 structure when the

value of the uTransferType member is 0x00000000 (CACTB_SEND). The Send

structure is defined inline to the CACTransferBufferV1 structure. The Send structure
members are defined as follows:

pAdminQueueFormat: The pAdminQueueFormat member is a QUEUE_FORMAT structure as
specified in [MS-MQMQ] section 2.2.7. If present, the pAdminQueueFormat member describes the
administration queue that is to be used for send operation acknowledgments.

pResponseQueueFormat: The pResponseQueueFormat member is a QUEUE_FORMAT

structure as specified in [MS-MQMQ] section 2.2.7. If present, the pResponseQueueFormat
member describes the queue that is to be used for application-specific responses. As an application-
specific value, this field SHOULD be ignored by the server.

Receive: The Receive structure is present in the CACTransferBufferV1 structure when
the value of the uTransferType member is 0x00000001 (CACTB_RECEIVE). The
Receive structure is defined inline to the CACTransferBufferV1 structure. The Receive

structure members are defined as follows:

RequestTimeout: The RequestTimeout member specifies the amount of time (in milliseconds) to
wait for a message to be returned before returning a failure.

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

17 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Action: The Action member specifies the type of receive operation that is to be performed. The
Action member MUST specify one of the values: 0x00000000 (MQ_ACTION_RECEIVE), 0x80000000

(MQ_ACTION_PEEK_CURRENT), or 0x80000001 (MQ_ACTION_PEEK_NEXT).

Name Value

MQ_ACTION_RECEIVE 0x00000000

MQ_ACTION_PEEK_CURRENT 0x80000000

MQ_ACTION_PEEK_NEXT 0x80000001

Asynchronous: The Asynchronous member is used as a Boolean variable to indicate if the receive
is to be performed asynchronously. An Asynchronous member value of 0x00000000 SHOULD be
interpreted as specifying FALSE (receive operation is not to be performed asynchronously) and all

other values SHOULD be interpreted as TRUE (receive operation is to be performed
asynchronously).<4>

Cursor: A cursor handle obtained from rpc_ACCreateCursorEx (section 3.1.5.4). A cursor can
be used to reference a specific position within the message queue, rather than the first message in
the queue, from which the message will be retrieved.

ulResponseFormatNameLen: The ulResponseFormatNameLen member specifies the size (in
count of Unicode characters) of the string allocated for the ppResponseFormatName member.

The ulResponseFormatNameLen member MUST have a value in the range of 0 to 1024, inclusive.

ppResponseFormatName: A null-terminated Unicode string containing a format name (as
specified in [MS-MQMQ]) which indicates an application-defined queue which can be used for
response messages. This value is used only by MSMQ applications, and it MUST be ignored by MSMQ
queue managers.

pulResponseFormatNameLenProp: The pulResponseFormatNameLenProp member specifies

the size (in count of Unicode characters) of the string contained in the ppResponseFormatName
member.

ulAdminFormatNameLen: The ulAdminFormatNameLen member specifies the size (in count of
Unicode characters) of the string allocated for the ppAdminFormatName member. The
ulAdminFormatNameLen member MUST have a value in the range of 0 to 1024, inclusive.

ppAdminFormatName: A null-terminated Unicode string containing a format name (as specified in
[MS-MQMQ]) which indicates an application-defined administration queue to which acknowledgment

messages will be directed.

pulAdminFormatNameLenProp: The pulAdminFormatNameLenProp member specifies the size
(in count of Unicode characters) of the string contained in the ppAdminFormatName member.

ulDestFormatNameLen: The ulDestFormatNameLen member specifies the size (in count of
Unicode characters) of the string allocated for the ppDestFormatName member. The
ulDestFormatNameLen member MUST have a value in the range of 0 to 1024, inclusive.

ppDestFormatName: A null-terminated Unicode string containing a format name (as specified in

[MS-MQMQ]) that indicates the name of a message's destination queue.

pulDestFormatNameLenProp: The pulDestFormatNameLenProp member specifies the size (in
count of Unicode characters) of the string contained in the ppDestFormatName member.

%5bMS-MQMQ%5d.pdf

18 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

ulOrderingFormatNameLen: The ulOrderingFormatNameLen member specifies the size (in
count of Unicode characters) of the string allocated for the ppOrderingFormatName member. The

ulOrderingFormatNameLen member MUST have a value in the range of 0 to 1024, inclusive.

ppOrderingFormatName: A null-terminated Unicode string containing a format name (as specified

in [MS-MQMQ]) that indicates the name of the MSMQ order queue that tracks the ordering of
transactional messages.

pulOrderingFormatNameLenProp: The pulOrderingFormatNameLenProp member specifies
the size (in count of Unicode characters) of the string contained in the ppOrderingFormatName
member.

CreateCursor: The CreateCursor member contains information for creating a cursor
which may be used when receiving messages from a queue. The CreateCursor member

is present in the CACTransferBufferV1 structure when the value of the
uTransferType member is 0x00000002 (CACTB_CREATECURSOR). The CreateCursor
member is not used by any of the methods defined by the qmcomm and qmcomm2
interfaces.

pClass: This field indicates the message classification, such as a positive acknowledgment, a
system-generated report message, or a normal application-generated message. It contains a

16-bit structure as defined below:

0 1 2 3 4 5 6 7 8 9 1 0 1 2 3 4 5

Class Code Reserved H R S

Value Meaning

Class Code

0x00 —

0xFF

Specifies the type of the acknowledgment. This field uniquely classifies the message

type within the groupings defined by the fields described above. If the H bit is set,

this field contains an HTTP status code.

Reserved

0x0000

MUST be set to all zeros. Clients and servers MUST ignore the Reserved member.

H

0x0000 —

0x0001

Specifies whether or not HTTP is being used. A value of 0 MUST be used to specify

that HTTP is not being used. A value of 1 MUST be used to specify that HTTP is being

used. If 1, the Class Code field contains an HTTP status code.

R

0x0000 —

0x0001

Specifies the stage at which the acknowledgment is to occur. A value of 0 MUST be

used to specify that the acknowledgment is for the delivery (arrival) stage. A value

of 1 MUST be used to specify that the acknowledgment is for the receive stage.

S

0x0000 —

0x0001

Specifies the type of acknowledgment. A value of 0 MUST be used to specify that

normal (positive acknowledgment) message processing has occurred. A value of 1

MUST be used to specify that abnormal (negative acknowledgment) message

processing has occurred.

The following table provides correspondence between the message class values defined in
[MS-MQMQ] section 2.2.18.1.6 with the abstract message class types defined in [MS-
MQDMPR] section 3.1.1.12.

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

19 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Message Class Value Message Class Type

MQMSG_CLASS_NORMAL

0x0000

Normal

MQMSG_CLASS_REPORT

0x0001

Report

MQMSG_CLASS_ACK_REACH_QUEUE

0x0002

AckReachQueue

MQMSG_CLASS_ACK_RECEIVE

0x4000

AckReceive

MQMSG_CLASS_NACK_BAD_DST_Q

0x8000

NackBadDestQueue

MQMSG_CLASS_NACK_DELETED

0x8001

NackPurged

MQMSG_CLASS_NACK_REACH_QUEUE_TIMEOUT

0x8002

NackReachQueueTimeout

MQMSG_CLASS_NACK_Q_EXCEED_QUOTA

0x8003

NackQueueExceedQuota

MQMSG_CLASS_NACK_ACCESS_DENIED

0x8004

NackAccessDenied

MQMSG_CLASS_NACK_HOP_COUNT_EXCEEDED

0x8005

NackHopCountExceeded

MQMSG_CLASS_NACK_BAD_SIGNATURE

0x8006

NackBadSignature

MQMSG_CLASS_NACK_BAD_ENCRYPTION

0x8007

NackBadEncryption

MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_Q

0x8009

NackNotTransactionalQueue

MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_MSG

0x800a

NackNotTransactionalMessage

MQMSG_CLASS_NACK_UNSUPPORTED_CRYPTO_PROVIDER

0x800b

NackUnsupportedCryptoProvider

MQMSG_CLASS_NACK_Q_DELETED

0xc000

NackQueueDeleted

MQMSG_CLASS_NACK_Q_PURGED

0xc001

NackQueuePurged

MQMSG_CLASS_NACK_RECEIVE_TIMEOUT

0xc002

NackReceiveTimeout

MQMSG_CLASS_NACK_RECEIVE_REJECTED

0xc004

NackReceiveRejected

20 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

ppMessageID: The ppMessageID member, if present, specifies a value that can be used to
correlate response messages to sent messages.

ppCorrelationID: If present, the ppCorrelationID member is an array of bytes containing an
OBJECTID structure (as specified in [MS-MQMQ] section 2.2.8). The ppCorrelationID

member, if present, contains a value copied from the ppMessageID member of a previous
request and can be used to correlate responses with previously sent messages. The size (in
count of bytes) of ppCorrelationID MUST NOT exceed 20.

pSentTime: The pSentTime member is formatted in UTC. The pSentTime member specifies
the time that the message was sent.

pArrivedTime: The pArrivedTime member is formatted in UTC. The pArrivedTime member
specifies the time the message was received.

pPriority: The pPriority member is a single byte. The pPriority member specifies the
processing priority for the message with larger values indicating a higher priority. The byte
value MUST be in the range of 0x00 to 0x07. If no priority is set, the default priority value of

0x03 is used. The pPriority member is ignored for transactional messages. Messages that are
not part of a transaction will be processed in arrival sequence within priority. The pPriority
member is ignored if the message is a part of a transaction.

pDelivery: The pDelivery member is a single byte. The pDelivery member MUST specify a
value of 0x00 or 0x01.

Value Meaning

0x00 A value of 0x00 specifies that the message is not recoverable. The message can remain in

volatile storage and is subject to loss in the event of a system crash. This value

corresponds to Message.DeliveryGuarantee.Express as defined in [MS-MQDMPR] section

3.1.1.12.

0x01 A value of 0x01 specifies that the message is recoverable and is to be written to non-

volatile storage as it moves through the network to its destination and can survive a

system crash. Recoverable messages do not have to be part of a transaction. This value

corresponds to Message.DeliveryGuarantee.Recoverable as defined in [MS-MQDMPR]

section 3.1.1.12.

pAcknowledge: The pAcknowledge member is a single byte. The pAcknowledge member
value specifies the types of acknowledgment messages that are to be generated for this
message. Acknowledgment messages are returned in the administration queue. The
pAcknowledge member value MUST be assigned from the following list:

Value Meaning

MQMSG_ACKNOWLEDGMENT_NONE

0x00

No acknowledgment needed. This value

corresponds to

Message.AcknowledgementsRequested.None as

defined in [MS-MQDMPR] section 3.1.1.12.

MQMSG_ACKNOWLEDGMENT_POS_ARRIVAL

0x01

Positive acknowledgment is to be sent when the

message is placed in the destination queue. This

value corresponds to

Message.AcknowledgementsRequested.AckPosArriv

al as defined in [MS-MQDMPR] section 3.1.1.12.

MQMSG_ACKNOWLEDGMENT_POS_RECEIVE Positive acknowledgment is to be sent when the

%5bMS-MQMQ%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

21 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

0x02 message is received from the destination queue.

This value corresponds to

Message.AcknowledgementsRequested.AckPosRecei

ve as defined in [MS-MQDMPR] section 3.1.1.12.

MQMSG_ACKNOWLEDGMENT_NEG_ARRIVAL

0x04

Negative acknowledgment is to be sent when the

message fails to arrive at the destination queue.

This value corresponds to

Message.AcknowledgementsRequested.AckNegArriv

al as defined in [MS-MQDMPR] section 3.1.1.12.

MQMSG_ACKNOWLEDGMENT_NACK_REACH_QU

EUE

0x04

Negative acknowledgment is to be sent when the

message fails to arrive at the destination queue.

This value corresponds to

Message.AcknowledgementsRequested.AckNegArriv

al as defined in [MS-MQDMPR] section 3.1.1.12.

MQMSG_ACKNOWLEDGMENT_FULL_REACH_QUE

UE

0x05

Positive acknowledgment is to be sent when the

message is placed in the destination queue and/or

negative acknowledgment is to be sent when the

message fails to arrive at the destination queue.

This value corresponds to a combination of

Message.AcknowledgementsRequested.AckPosArriv

al and AckNegArrival as defined in [MS-MQDMPR]

section 3.1.1.12.

MQMSG_ACKNOWLEDGMENT_NEG_RECEIVE

0x08

Negative acknowledgment is to be sent when the

message fails to be received from the destination

queue. This value corresponds to

Message.AcknowledgementsRequested.AckNegRece

ive as defined in [MS-MQDMPR] section 3.1.1.12.

MQMSG_ACKNOWLEDGMENT_NACK_RECEIVE

0x0C

Negative acknowledgment is to be sent when the

message fails to arrive at the destination queue or

when a receive for the message from the

destination queue fails. This value corresponds to a

combination of

Message.AcknowledgementsRequested.AckNegRece

ive and AckNegArrival as defined in [MS-MQDMPR]

section 3.1.1.12.

MQMSG_ACKNOWLEDGMENT_FULL_RECEIVE

0x0E

Positive acknowledgment is to be sent when the

message is received from the destination queue

and a negative acknowledgment is to be sent when

the message fails to arrive at the destination queue

or a negative acknowledgment is to be sent when a

receive for the message from the destination queue

fails. This value corresponds to a combination of

Message.AcknowledgementsRequested.AckNegRece

ive, AckNegArrival, and AckPosReceive as defined

in [MS-MQDMPR] section 3.1.1.12.

pAuditing: The pAuditing member is a single byte. The pAuditing member value specifies the
conditions under which copies of the message are to be stored as the message is routed to the
destination queue. The pAuditing member value MUST be assigned from the following list:

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

22 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

MQMSG_JOURNAL_NONE

0x00

Do not store copies. This value corresponds to a

Message.PositiveJournalingRequested value of

False and a Message.NegativeJournalingRequested

value of False, as defined in [MS-MQDMPR] section

3.1.1.12.

MQMSG_DEADLETTER

0x01

Store copy in dead-letter queue on failure. This value

corresponds to a

Message.PositiveJournalingRequested value of

False and a Message.NegativeJournalingRequested

value of True, as defined in [MS-MQDMPR] section

3.1.1.12.

MQMSG_JOURNAL

0x02

Store copy in queue journal upon successful delivery

to next computer. This value corresponds to a

Message.PositiveJournalingRequested value of

True and a Message.NegativeJournalingRequested

value of False, as defined in [MS-MQDMPR] section

3.1.1.12.

MQMSG_DEADLETTER|MQMSG_JOURNAL

0x03

Store copy in queue journal upon successful delivery to

next computer. Store copy in dead-letter queue on

failure. This value corresponds to a

Message.PositiveJournalingRequested value of

True and a Message.NegativeJournalingRequested

value of True, as defined in [MS-MQDMPR] section

3.1.1.12.

pApplicationTag: The pApplicationTag member value is a user-provided item that is passed
through unmodified to the message-receiving application. A common use of the
pApplicationTag member value is to indicate to the receiving application the type of data

contained in the ppMsgExtension member.

ppBody: The ppBody member is an array of bytes. When the ppBody member is present it
contains the user message payload.

ulBodyBufferSizeInBytes: The ulBodyBufferSizeInBytes member specifies the size (in
count of bytes) of the data present in the ppBody member. The value of the
ulBodyBufferSizeInBytes member MUST be less than or equal to the value in the

ulAllocBodyBufferInBytes member.

ulAllocBodyBufferInBytes: The ulAllocBodyBufferInBytes member specifies the size (in
count of bytes) of the buffer that is allocated to contain the ppBody member.

pBodySize: The pBodySize member specifies the size (in count of bytes) of the data present in
the ppBody member after an encryption or decryption operation has been performed on the
ppBody member. The value of the pBodySize member MUST be less than or equal to the
value in the ulAllocBodyBufferInBytes member.

ppTitle: The ppTitle member, when present, is a Unicode string. The ppTitle member specifies
a title associated with the message.

ulTitleBufferSizeInWCHARs: The ulTitleBufferSizeInWCHARs member specifies the size (in
count of Unicode characters) of the ppTitle member. The ulTitleBufferSizeInWCHARs
member MUST NOT exceed 250.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

23 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

pulTitleBufferSizeInWCHARs: The pulTitleBufferSizeInWCHARs member specifies the
actual size (in count of Unicode characters) of the string, if present, in the ppTitle member

Unicode string.

ulAbsoluteTimeToQueue: The ulAbsoluteTimeToQueue member value provided by the

client specifies the number of seconds within which the message MUST reach the destination
queue or be discarded. Internally, ulAbsoluteTimeToQueue is converted to a UTC time
using the clock of the system on which the queue manager is executing.

pulRelativeTimeToQueue: The pulRelativeTimeToQueue member specifies the number of
seconds within which the response message MUST reach the destination queue or be
discarded.

ulRelativeTimeToLive: The ulRelativeTimeToLive member value specifies the number of

seconds within which the message MUST be received from the destination queue or be
discarded. Internally, ulRelativeTimeToLive is converted to a UTC time using the clock of
the system on which the queue manager is executing.

pulRelativeTimeToLive: The pulRelativeTimeToLive member specifies the number of
seconds remaining before the response message will be discarded if it is not received from the
destination queue.

pTrace: The pTrace member MUST be a single byte and indicates whether or not tracing is
active.

Value Meaning

0x00 A value of 0x00 MUST be used to specify that tracing is not active. This value corresponds

to Message.TracingRequested value of False, as defined in [MS-MQDMPR] section

3.1.1.12.

0x01 A value of 0x01 MUST be used to specify that tracing is active. This value corresponds to

Message.TracingRequested value of True, as defined in [MS-MQDMPR] section

3.1.1.12.

pulSenderIDType: The pulSenderIDType member specifies the type of the ppSenderID
member contents. The pulSenderIDType member value MUST be assigned from the
following list:

Value Meaning

MQMSG_SENDERID_TYPE_NONE

0x00000000

No sender ID is present. This value corresponds to

Message.SenderIdentifierType value of None, as defined in

[MS-MQDMPR] section 3.1.1.12.

MQMSG_SENDERID_TYPE_SID

0x00000001

The sender ID is a SID. This value corresponds to

Message.SenderIdentifierType value of Sid, as defined in

[MS-MQDMPR] section 3.1.1.12.

MQMSG_SENDERID_TYPE_QM

0x00000002

The sender ID is the GUID assigned to a queue manager. This

value corresponds to Message.SenderIdentifierType value of

QueueManagerIdentifier, as defined in [MS-MQDMPR] section

3.1.1.12.

ppSenderID: The ppSenderID member MUST be an array of bytes. When the value of the

pulSenderIDType member is 0x00000000 (MQMSG_SENDERID_TYPE_NONE), the

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

24 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

ppSenderID member MUST NOT be present. If the value of the pulSenderIDType member
is 0x00000001 (MQMSG_SENDERID_TYPE_SID), the ppSenderID member MUST contain a

SID. If the value of the pulSenderIDType member is 0x00000002
(MQMSG_SENDERID_TYPE_QM), the ppSenderID member MUST contain a valid MSMQ Site

GUID.

pulSenderIDLenProp: The pulSenderIDLenProp member specifies the size (in count of
bytes) of the data present in the ppSenderID member.

pulPrivLevel: The pulPrivLevel member specifies the privacy level that is used for processing
the message. The pulPrivLevel member value MUST be assigned from the following list:

Value Meaning

MQMSG_PRIV_LEVEL_NONE

0x00000000

The message is not private. This value corresponds to

Message.PrivacyLevel value of None, as defined in

[MS-MQDMPR] section 3.1.1.12.

MQMSG_PRIV_LEVEL_BODY_BASE

0x00000001

The message is private and the Cryptographic Service

Provider (CSP) will use a 40-bit encryption key to

encrypt and decrypt the message body. This value

corresponds to Message.PrivacyLevel value of Base,

as defined in [MS-MQDMPR] section 3.1.1.12.

MQMSG_PRIV_LEVEL_BODY_ENHANCED

0x00000002

The message is private and the CSP will use a 128-bit

encryption key to encrypt and decrypt the message

body. This value corresponds to

Message.PrivacyLevel value of Enhanced, as defined

in [MS-MQDMPR] section 3.1.1.12.

ulAuthLevel: The ulAuthLevel member is used only in local interprocess communication and
therefore has no meaning when this protocol is used over a network. Servers MUST ignore this

field, and clients may specify any value.

pAuthenticated: The pAuthenticated member is a single byte. The pAuthenticated member
value is used to determine the level of authentication that has been performed on the
message. The pAuthenticated member value MUST be assigned from the following list:

Value Meaning

MQMSG_AUTHENTICATION_NOT_REQUESTED

0x00

Authentication has not been performed. This value

corresponds to Message.AuthenticationLevel

value of None, as defined in [MS-MQDMPR]

section 3.1.1.12.

MQMSG_AUTHENTICATED_SIG10

0x01

Authentication has been performed using an

MSMQ 1.0 digital signature. This value

corresponds to Message.AuthenticationLevel

value of Sig10, as defined in [MS-MQDMPR]

section 3.1.1.12.

MQMSG_AUTHENTICATED_SIG20

0x03

Authentication has been performed using an

MSMQ 2.0 digital signature. This value

corresponds to Message.AuthenticationLevel

value of Sig20, as defined in [MS-MQDMPR]

section 3.1.1.12.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf

25 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

MQMSG_AUTHENTICATED_SIG30

0x05

Authentication has been performed using an

MSMQ 3.0 digital signature. This value

corresponds to Message.AuthenticationLevel

value of Sig30, as defined in [MS-MQDMPR]

section 3.1.1.12.

MQMSG_AUTHENTICATED_SIGXML

0x09

Authentication has been performed using an XML

digital signature. This value corresponds to

Message.AuthenticationLevel value of XMLSig,

as defined in [MS-MQDMPR] section 3.1.1.12.

pulHashAlg: The pulHashAlg member specifies the hashing algorithm that is to be used in the
digital signing process and by the authentication process. The pulHashAlg member value
MUST be assigned from the following list:

Value Meaning

MQMSG_CALG_MD2

0x00008001

Use the MD2 algorithm as specified in [RFC1319]. This value

corresponds to the Message.HashAlgorithm value of MD2, as defined

in [MS-MQDMPR] section 3.1.1.12.

MQMSG_CALG_MD4

0x00008002

Use the MD4 algorithm as specified in [RFC1320]. This value

corresponds to the Message.HashAlgorithm value of MD4, as defined

in [MS-MQDMPR] section 3.1.1.12.

MQMSG_CALG_MD5

0x00008003

Use the MD5 algorithm as specified in [RFC1321]. This value

corresponds to the Message.HashAlgorithm value of MD5, as defined

in [MS-MQDMPR] section 3.1.1.12.

MQMSG_CALG_SHA1

0x00008004

Use the SHA-1 algorithm as specified in [RFC3174]. This value

corresponds to the Message.HashAlgorithm value of SHA1, as

defined in [MS-MQDMPR] section 3.1.1.12.

MQMSG_CALG_SHA_256

0x0000800C

Use the SHA-256 algorithm, as specified in [FIPS180-2]. This value

corresponds to the Message.HashAlgorithm value of SHA_256, as

defined in [MS-MQDMPR] section 3.1.1.12.

MQMSG_CALG_SHA_512

0x0000800E

Use the SHA-512 algorithm, as specified in [FIPS180-2]. This value

corresponds to the Message.HashAlgorithm value of SHA_512, as

defined in [MS-MQDMPR] section 3.1.1.12.

pulEncryptAlg: The pulEncryptAlg member specifies that the encryption algorithm is to be
used to encrypt and decrypt the message body. The pulEncryptAlg member value MUST be
assigned from the following list:

Value Meaning

MQMSG_CALG_RC2

0x00006602

Use the RC2 encryption algorithm as specified in [RFC2268]. This value

corresponds to Message.EncryptionAlgorithm value of RC2, as defined in

[MS-MQDMPR] section 3.1.1.12.

MQMSG_CALG_RC4

0x00006801

Use the RC4 encryption algorithm as specified in [RC4]. This value

corresponds to Message.EncryptionAlgorithm value of RC4, as defined in

[MS-MQDMPR] section 3.1.1.12.

%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90273
%5bMS-MQDMPR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90274
%5bMS-MQDMPR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90275
%5bMS-MQDMPR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90408
%5bMS-MQDMPR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89868
%5bMS-MQDMPR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89868
%5bMS-MQDMPR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90330
%5bMS-MQDMPR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=93759
%5bMS-MQDMPR%5d.pdf

26 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

ppSenderCert: The ppSenderCert member is an array of bytes. If not NULL, the
ppSenderCert member MUST contain the message sender's X509 certificate. The byte length

of the buffer MUST be indicated by ulSenderCertLen.

ulSenderCertLen: The ulSenderCertLen member specifies the byte length of the certificate

contained in ppSenderCert.

pulSenderCertLenProp: The pulSenderCertLenProp member specifies the length (in count of
bytes) of the certificate contained in ppSenderCert.

ppwcsProvName: The ppwcsProvName member is a Unicode string. If present, the
ppwcsProvName member specifies the name of the Cryptographic Service Provider (CSP)
that is used to generate digital signatures for the message.

ulProvNameLen: The ulProvNameLen member specifies the size (in count of Unicode

characters) of the buffer that was allocated to contain the ppwcsProvName string.

pulAuthProvNameLenProp: The pulAuthProvNameLenProp member specifies the size (in
count of Unicode characters) of the CSP name contained in ppwcsProvName, plus the size of

an enhanced signature appended to the ppSignature buffer. Rules for computing and
understanding values for this field are defined in sections 3.1.5.3 and 3.1.5.4.

pulProvType: The pulProvType member specifies the type of CSP that is named by

ppwcsProvName.

fDefaultProvider: The fDefaultProvider member specifies if the CSP named by
ppwcsProvName is a default CSP. A value of 0x00000000 MUST be used to specify that the
ppwcsProvName is not the default name and all other values MUST be interpreted as
specifying that the ppwcsProvName is the default name.

ppSymmKeys: The ppSymmKeys member is an array of bytes. The ppSymmKeys member, if
present, contains an encrypted symmetric key.

ulSymmKeysSize: The ulSymmKeysSize member specifies the size (in count of bytes) of the
buffer that was allocated to contain the ppSymmKeys member.

pulSymmKeysSizeProp: The pulSymmKeysSizeProp member specifies the size (in count of
bytes) of the ppSymmKeys member.

bEncrypted: The bEncrypted member is a single byte. The bEncrypted member specifies if
the message body is encrypted or is not encrypted. A bEncrypted member value of 0x00
MUST be interpreted as specifying that the message is not encrypted (FALSE) and all other

values MUST be interpreted as specifying that the message is encrypted (TRUE).

bAuthenticated: The bAuthenticated member is a single byte. The bAuthenticated member
specifies if the message has been authenticated or has not been authenticated. A
bAuthenticated member value of 0x00 MUST be used to specify that the message has not
been authenticated (FALSE) and all other values MUST be interpreted as specifying that the
message has been authenticated (TRUE).

uSenderIDLen: The uSenderIDLen member specifies the maximum size (in count of bytes)

that is available to contain data in the ppSenderID member.

ppSignature: The ppSignature member is an array of bytes. The ppSignature member
contains the signature(s) used to authenticate the message.<5>

27 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

ulSignatureSize: The ulSignatureSize member specifies the size (in count of bytes) allocated
to hold the ppSignature member.

pulSignatureSizeProp: The pulSignatureSizeProp member specifies the size (in count of
bytes) of the authentication signature(s) in the ppSignature member.

ppSrcQMID: The ppSrcQMID member is a GUID. The member contains the GUID assigned to
the MSMQ installation that is the source of the message.

pUow: The pUow member is an XACTUOW structure ([MS-MQMQ] section 2.2.18.1.8). If not
NULL, this field identifies a transaction for a Send or Receive operation.

ppMsgExtension: The ppMsgExtension member is an array of bytes. The ppMsgExtension
member, when present, contains application-specific data. The ppMsgExtension member is
primarily used to pass information to foreign queues.

ulMsgExtensionBufferInBytes: The ulMsgExtensionBufferInBytes member specifies the
size (in count of bytes) of the buffer allocated for the ppMsgExtension array.

pMsgExtensionSize: The pMsgExtensionSize member specifies the size (in count of bytes) of
the data contained in the ppMsgExtension array.

ppConnectorType: The ppConnectorType member, if present, is a GUID. The
ppConnectorType member specifies the identifier of a foreign queue that is used to

communicate with a foreign messaging system.

pulBodyType: The pulBodyType member value MUST be one of the valid values allowed for a
VARTYPE as specified in [MS-MQMQ] section 2.2.12.

pulVersion: The pulVersion member specifies the MSMQ packet version.<6>

2.2.3.3 CACTransferBufferV2

The CACTransferBufferV2 structure is used to send and receive messages via MSMQ.

Following is the layout of the CACTransferBufferV2 structure followed by descriptions of the
structure members.

typedef struct {

 struct CACTransferBufferV1 old;

 unsigned char* pbFirstInXact;

 unsigned char* pbLastInXact;

 OBJECTID** ppXactID;

} CACTransferBufferV2;

old: The CACTransferBufferOld MUST be a CACTransferBufferV1, as defined in section

2.2.3.2.

pbFirstInXact: The pbFirstInXact member MUST be a single byte. The pbFirstInXact

member MUST be set to a value of 0x00 (FALSE) when the associated message is not the first
message in a transaction. A value other than 0x00 MUST be interpreted as indicating (TRUE)
that the associated message is the first message in a transaction.

pbLastInXact: The pbLastInXact member MUST be a single byte. The pbLastInXact member

MUST be set to a value of 0x00 (FALSE) when the associated message is not the last message

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

28 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

in a transaction. A value other than 0x00 MUST be interpreted as indicating (TRUE) that the
associated message is the last message in a transaction.

ppXactID: The ppXactID member, if present, MUST be an OBJECTID structure, as specified in
[MS-MQMQ] section 2.2.8.

2.2.3.4 CACCreateRemoteCursor

The CACCreateRemoteCursor structure contains the elements necessary for creating a cursor on a
queue.

typedef struct {

 DWORD hCursor;

 DWORD srv_hACQueue;

 DWORD cli_pQMQueue;

} CACCreateRemoteCursor;

hCursor: The value for this field returned from rpc_ACCreateCursorEx (section 3.1.5.4)

contains a DWORD value representing an opened cursor.

srv_hACQueue: The value for this field returned from rpc_ACCreateCursorEx is passed to the
hQueue parameter of R_QMCreateRemoteCursor (section 3.1.4.4) when invoked as part

of a remote cursor creation call sequence.

cli_pQMQueue: The value for this field returned from rpc_ACCreateCursorEx is passed to the
pQueue parameter of R_QMGetRemoteQueueName (section 3.1.4.1) when invoked as
part of a remote cursor creation call sequence.

2.2.3.5 OBJECT_FORMAT

An OBJECT_FORMAT structure wraps a pointer to a QUEUE_FORMAT structure ([MS-MQMQ]

section 2.2.7).

typedef struct OBJECT_FORMAT {

 [range(1,2)] DWORD ObjType;

 [switch_is(ObjType)] union {

 [case(1)]

 struct QUEUE_FORMAT* pQueueFormat;

 };

} ;

ObjType: This value MUST be 0x00000001. The value 0x00000002 is defined for local-only use
and MUST NOT appear on the wire.

pQueueFormat: This MUST point to a QUEUE_FORMAT structure ([MS-MQMQ] section
2.2.7).

2.3 Directory Service Schema Elements

This protocol uses ADM elements specified in section 3.1.1. A subset of these elements can be
published in a directory. This protocol SHOULD<7> access the directory using the algorithm

%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQRR%5d.pdf
%5bMS-MQRR%5d.pdf
%5bMS-GLOS%5d.pdf

29 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

specified in [MS-MQDSSM] and using LDAP [MS-ADTS]. The Directory Service schema elements for
ADM elements published in the directory are defined in [MS-MQDSSM] section 2.4. <8>

%5bMS-MQDSSM%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-MQDSSM%5d.pdf

30 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3 Protocol Details

The client side of this protocol is simply a pass-through. That is, there are no additional timers or
other states required on the client side of this protocol. Calls made by the higher-layer protocol or
application are passed directly to the transport, and the results returned by the transport are passed
directly back to the higher-layer protocol or application.

3.1 qmcomm and qmcomm2 Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

The abstract data model for this protocol comprises elements that are private to this protocol and

others that are shared between multiple MSMQ protocols that are co-located at a common
QueueManager ([MS-MQDMPR] section 3.1.1.1) abstract data model (ADM) element instance. The
shared abstract data model is defined in [MS-MQDMPR] section 3.1.1. The relationship between this
protocol, a QueueManager ADM element instance, and other protocols that share a common
QueueManager ADM element instance is described in [MS-MQSO].

Section 3.1.1.1 details the elements from the shared data model that are manipulated by this
protocol. Sections 3.1.1.2 through 3.1.1.10 detail the data model elements that are private to this

protocol.

Servers MUST maintain instances of the following ADM elements described in the following sections:

Shared Data Elements (section 3.1.1.1)

LocalQueueContextHandleTable (section 3.1.1.2)

LocalQueueContextHandle (section 3.1.1.3)

RemoteQueueProxyHandleTable (section 3.1.1.4)

RemoteQueueProxyHandle (section 3.1.1.5)

CursorProxy (section 3.1.1.6)

RemoteQueueOpenContextHandleTable (section 3.1.1.7)

RemoteQueueOpenContextHandle (section 3.1.1.8)

TransactionHandleTable (section 3.1.1.9)

TransactionHandle (section 3.1.1.10)

Message to CACTransferBufferV2 Translation (section 3.1.1.11)

Queue PROPID to Abstract Queue Property Translations (section 3.1.1.12)

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQSO%5d.pdf

31 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.1.1 Shared Data Elements

This protocol manipulates instances of the following abstract data model elements from the shared
abstract data model defined in [MS-MQDMPR] section 3.1.1.

QueueManager: [MS-MQDMPR] section 3.1.1.1.

OpenQueueDescriptor: [MS-MQDMPR] section 3.1.1.16.

Queue: [MS-MQDMPR] section 3.1.1.2.

Message: [MS-MQDMPR] section 3.1.1.12.

Cursor: [MS-MQDMPR] section 3.2.

Transaction: [MS-MQDMPR] section 3.1.1.14.

3.1.1.2 LocalQueueContextHandleTable

The LocalQueueContextHandleTable ADM element contains a table of LocalQueueContextHandle
(section 3.1.1.3) ADM element instances, keyed by the Handle attribute of the
LocalQueueContextHandle ADM element. The server maintains a single

LocalQueueContextHandleTable ADM element instance, which is referred to as
iLocalQueueContextHandleTable.

3.1.1.3 LocalQueueContextHandle

The LocalQueueContextHandle ADM element associates an RPC_QUEUE_HANDLE (section
2.2.1.1.2) context handle with an OpenQueueDescriptor ([MS-MQDMPR] section 3.1.1.16) ADM

element instance that references a local queue. This ADM element MUST contain the following
attributes:

Handle: An RPC_QUEUE_HANDLE context handle that uniquely identifies the
LocalQueueContextHandle ADM element instance within its LocalQueueContextHandleTable

(section 3.1.1.2) ADM element instance.

OpenQueueDescriptorReference: A reference to an OpenQueueDescriptor ADM element
instance.

3.1.1.4 RemoteQueueProxyHandleTable

The RemoteQueueProxyHandleTable ADM element contains a table of RemoteQueueProxyHandle
(section 3.1.1.5) ADM element instances, keyed by the Handle attribute of the
RemoteQueueProxyHandle ADM element. The server maintains a single
RemoteQueueProxyHandleTable ADM element instance, which is referred to as
iRemoteQueueProxyHandleTable.

3.1.1.5 RemoteQueueProxyHandle

The RemoteQueueProxyHandle ADM element associates an RPC_QUEUE_HANDLE (section

2.2.1.1.2) context handle with information pertaining to an OpenQueueDescriptor ([MS-
MQDMPR] section 3.1.1.16) ADM element instance located at a remote QueueManager ([MS-
MQDMPR] section 3.1.1.1) ADM element instance other than the server. This ADM element MUST
contain the following attributes:

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

32 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Handle: An RPC_QUEUE_HANDLE context handle that uniquely identifies the
RemoteQueueProxyHandle ADM element instance within its

RemoteQueueProxyHandleTable (section 3.1.1.4) ADM element instance.

Context: A DWORD value that uniquely identifies the RemoteQueueProxyHandle ADM

element instance within the RemoteQueueProxyHandleTable ADM element instance.

RemoteHandle: A PCTX_RRSESSION_HANDLE_TYPE ([MS-MQQP] section 2.2.1.1) context
handle obtained from a remote QueueManager ADM element instance other than the server.

RemoteBindingHandle: An RPC binding handle established to obtain a RemoteHandle
attribute.

RemoteContext: A DWORD value that uniquely identifies an OpenQueueDescriptor ADM
element instance at the QueueManager ADM element instance from which a RemoteHandle

attribute was obtained.

PathName: A path name string, as defined in [MS-MQMQ] section 2.1.1, which contains the
name of the queue and the name of the QueueManager ADM element instance from which a

RemoteHandle attribute was obtained.

FormatName: Contains the format name string that was specified when the
OpenQueueDescriptor ADM element instance referenced by a RemoteContext attribute

was created.

CursorProxyCollection: A collection of CursorProxy (section 3.1.1.6) ADM element instances.

3.1.1.6 CursorProxy

The CursorProxy ADM element associates an identifier DWORD that is unique to the server with
the Handle attribute value of a Cursor ([MS-MQDMPR] section 3.2) ADM element instance for a
remote queue. This ADM element MUST contain the following attributes:

Handle: A DWORD value that uniquely identifies the CursorProxy ADM element instance within

the scope of the CursorProxyCollection attribute of the RemoteQueueProxyHandle ADM
element instance in which it is contained.

RemoteCursorHandle: If the IsRemoteCursorHandleInitialized attribute is true, this
attribute contains a DWORD value that uniquely identifies a Cursor ADM element instance for
a remote queue; otherwise, this attribute contains no relevant information.

IsRemoteCursorHandleInitialized: A Boolean value that indicates whether the

RemoteCursorHandle attribute has been initialized.

3.1.1.7 RemoteQueueOpenContextHandleTable

The RemoteQueueOpenContextHandleTable ADM element contains a table of
RemoteQueueOpenContextHandle (section 3.1.1.8) ADM element instances keyed by the Handle
attribute of the RemoteQueueOpenContextHandle ADM element. The server maintains a single

RemoteQueueOpenContextHandleTable ADM element instance, which is referenced as

iRemoteQueueOpenContextHandleTable.

3.1.1.8 RemoteQueueOpenContextHandle

The RemoteQueueOpenContextHandle ADM element associates a
PCTX_OPENREMOTE_HANDLE_TYPE (section 2.2.1.1.3) context handle with a reference to an

%5bMS-DTYP%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf

33 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

OpenQueueDescriptor ([MS-MQDMPR] section 3.1.1.16) ADM element instance created for
remote read. This ADM element MUST contain the following attributes:

Handle: A PCTX_OPENREMOTE_HANDLE_TYPE context handle that uniquely identifies the
RemoteQueueOpenContextHandle ADM element instance within its

RemoteQueueOpenContextHandleTable (section 3.1.1.7) ADM element instance.

OpenQueueDescriptorReference: A reference to an OpenQueueDescriptor ADM element
instance created for remote read.

3.1.1.9 TransactionHandleTable

The TransactionHandleTable ADM element contains a table of TransactionHandle (section
3.1.1.10) ADM element instances keyed by the Handle attribute of the TransactionHandle ADM

element. The server maintains a single TransactionHandleTable ADM element instance, which is
referenced as iTransactionHandleTable.

3.1.1.10 TransactionHandle

The TransactionHandle ADM element represents a handle that contains a reference to a
Transaction ([MS-MQDMPR] section 3.1.1.14) ADM element instance. This ADM element MUST

contain the following attributes:

Handle: An RPC_INT_XACT_HANDLE (section 2.2.1.1.1) that uniquely identifies the
TransactionHandleEntry within the TransactionHandleTable (section 3.1.1.9) ADM element.

TransactionReference: A reference to a Transaction ADM element instance.

3.1.1.11 Message to CACTransferBufferV2 Translation

A Message ([MS-MQDMPR] section 3.1.1.12) ADM element instance is placed in the

CACTransferBufferV2 (section 2.2.3.3) structure when conveyed via this protocol. The following
table defines the relationship(s) between a CACTransferBufferV2 structure member and its
corresponding Message ADM element attribute(s). The CACTransferBufferV2 structure members

that are absent from the table are specific to this protocol and have no direct relationship(s) with
Message ADM element attribute(s).

CACTransferBufferV2 Member

Corresponding Message ADM element

attribute(s)

 old.Send.pAdminQueueFormat AdministrationQueueFormatName

 old.Send.pResponseQueueFormat ResponseQueueFormatName

 old.Receive.ulResponseFormatNameLen Length of ResponseQueueFormatName

old.Receive.ppResponseFormatName ResponseQueueFormatName

old.Receive.pulResponseFormatNameLenProp Length of ResponseQueueFormatName

old.Receive.ulAdminFormatNameLen Length of AdministrationQueueFormatName

old.Receive.ppAdminFormatName AdministrationQueueFormatName

old.Receive.pulAdminFormatNameLenProp Length of AdministrationQueueFormatName

old.Receive.ulDestFormatNameLen Length of DestinationQueueFormatName

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

34 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

CACTransferBufferV2 Member

Corresponding Message ADM element

attribute(s)

old.Receive.ppDestFormatName DestinationQueueFormatName

old.Receive.pulDestFormatNameLenProp Length of DestinationQueueFormatName

old.Receive.ulOrderingFormatNameLen Length of TransactionStatusQueueFormatName

old.Receive.ppOrderingFormatName TransactionStatusQueueFormatName

old.Receive.pulOrderingFormatNameLenProp Length of TransactionStatusQueueFormatName

old.pClass Class

Mappings for individual

CACTransferBufferV2.old.pClass values to the

enumerated type defined for Message.Class are

specified in section 2.2.3.2.

old.ppMessageID Identifier

old.ppCorrelationID CorrelationIdentifier

old.pSentTime SentTime

old.pArrivedTime ArrivalTime

old.pPriority Priority

old.pDelivery DeliveryGuarantee

Mappings for the enumerated values are provided in

section 2.2.3.2.

old.pAcknowledge AcknowledgementsRequested

Mappings for the enumerated values are provided in

section 2.2.3.2.

old.pAuditing PositiveJournalingRequested,

NegativeJournalingRequested

Mappings for the enumerated values are provided in

section 2.2.3.2.

old.pApplicationTag ApplicationTag

old.ppBody Body

old.ulBodyBufferSizeInBytes Length of Body

old.ulAllocBodyBufferInBytes Length of Body

old.pBodySize Length of Body

old.ppTitle Label

old.ulTitleBufferSizeInWCHARs Length of Label

old.pulTitleBufferSizeInWCHARs Length of Label

old.ulAbsoluteTimeToQueue TimeToReachQueue

35 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

CACTransferBufferV2 Member

Corresponding Message ADM element

attribute(s)

old.pulRelativeTimeToQueue TimeToReachQueue

old.ulRelativeTimeToLive TimeToBeReceived

old.pulRelativeTimeToLive TimeToBeReceived

old.pTrace TracingRequested

Mappings for the enumerated values are provided in

section 2.2.3.2.

old.pulSenderIDType SenderIdentifierType

Mappings for the enumerated values are provided in

section 2.2.3.2.

old.ppSenderID SenderIdentifier

old.pulSenderIDLenProp Length of SenderIdentifier

old.pulPrivLevel PrivacyLevel

Mappings for the enumerated values are provided in

section 2.2.3.2.

old.pAuthenticated AuthenticationLevel

Mappings for the enumerated values are provided in

section 2.2.3.2.

old.pulHashAlg HashAlgorithm

Mappings for the enumerated values are provided in

section 2.2.3.2.

old.pulEncryptAlg EncryptionAlgorithm

Mappings for the enumerated values are provided in

section 2.2.3.2.

old.ppSenderCert SenderCertificate

old.ulSenderCertLen Length of SenderCertificate

old.pulSenderCertLenProp Length of SenderCertificate

old.ppwcsProvName AuthenticationProviderName

old.ulProvNameLen Length of AuthenticationProviderName

old.pulAuthProvNameLenProp Length of AuthenticationProviderName

old.pulProvType AuthenticationProviderType

old.ppSymmKeys SymmetricKey

old.ulSymmKeysSize Length of SymmetricKey

old.pulSymmKeysSizeProp Length of SymmetricKey

old.uSenderIDLen Length of SenderIdentifier

36 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

CACTransferBufferV2 Member

Corresponding Message ADM element

attribute(s)

old.ppSignature Signature

old.ulSignatureSize Length of Signature

old.pulSignatureSizeProp Length of Signature

old.ppSrcQMID SourceMachineIdentifier

old.ppMsgExtension Extension

old.ulMsgExtensionBufferInBytes Length of Extension

old.pMsgExtensionSize Length of Extension

old.ppConnectorType ConnectorTypeIdentifier

old.pulBodyType BodyType

pbFirstInXact FirstInTransaction

pbLastInXact LastInTransaction

ppXactID TransactionIdentifier

3.1.1.12 Queue PROPID to Abstract Queue Property Translation

The methods R_QMCreateObjectInternal (section 3.1.4.5), R_QMGetObjectProperties

(section 3.1.4.9) and R_QMSetObjectProperties (section 3.1.4.10) reference properties of the
Queue ([MS-MQDMPR] section 3.1.1.2) ADM element using numerical identifiers (PROPIDs)
defined in [MS-MQMQ] section 2.3. The following table provides correlation between the numerical
queue property identifiers and the abstract queue properties used by this protocol:

Queue Property Identifier (PROPID) Abstract Queue Property Applicable Method(s)

PROPID_Q_INSTANCE (101) Identifier Get

PROPID_Q_TYPE (102) Type Create, Set, Get

PROPID_Q_PATHNAME (103) Pathname Create, Get

PROPID_Q_JOURNAL (104) Journaling Create, Set, Get

PROPID_Q_QUOTA (105) Quota Create, Set, Get

PROPID_Q_BASEPRIORITY (106) BasePriority Create, Set, Get

PROPID_Q_JOURNAL_QUOTA (107) JournalQuota Create, Set, Get

PROPID_Q_LABEL (108) Label Create, Set, Get

PROPID_Q_CREATE_TIME (109) CreateTime Get

PROPID_Q_MODIFY_TIME (110) ModifyTime Get

PROPID_Q_AUTHENTICATE (111) Authentication Create, Set, Get

%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

37 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Queue Property Identifier (PROPID) Abstract Queue Property Applicable Method(s)

PROPID_Q_PRIV_LEVEL (112) PrivacyLevel Create, Set, Get

PROPID_Q_TRANSACTION (113) Transactional Create, Get

PROPID_Q_PATHNAME_DNS (124) QualifiedPathname Get

PROPID_Q_MULTICAST_ADDRESS (125) MulticastAddress Create, Set, Get

PROPID_Q_ADS_PATH (126) DirectoryPath Get

The protocol MUST NOT send property identifiers that are not applicable to the method to be
invoked, as defined in the preceding table.

3.1.2 Timers

None.

3.1.3 Initialization

The server MUST listen on the RPC protocols, as specified in section 2.1.

3.1.4 Message Processing Events and Sequencing Rules for qmcomm

This protocol SHOULD indicate to the RPC run time that it is to perform a strict NDR data
consistency check at target level 6.0, as specified in [MS-RPCE] section 3.<9>

Methods in RPC Opnum Order

Method Description

Opnum0NotUsedOnWire Reserved for local use.

Opnum: 0

R_QMGetRemoteQueueName Retrieves the name of the queue associated with the given

RPC_QUEUE_HANDLE (section 2.2.1.1.2).

Opnum: 1

R_QMOpenRemoteQueue Opens a queue for remote read.

Opnum: 2

R_QMCloseRemoteQueueContext Closes a PCTX_OPENREMOTE_HANDLE_TYPE (section

2.2.1.1.3).

Opnum: 3

R_QMCreateRemoteCursor Creates a cursor for a remote queue.

Opnum: 4

Opnum5NotUsedOnWire Reserved for local use.

Opnum: 5

R_QMCreateObjectInternal Creates a local private queue.

Opnum: 6

%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf

38 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Method Description

R_QMSetObjectSecurityInternal Updates the security configuration of a local private queue.

Opnum: 7

R_QMGetObjectSecurityInternal Retrieves the security configuration of a local private queue.

Opnum: 8

R_QMDeleteObject Deletes a local private queue.

Opnum: 9

R_QMGetObjectProperties Retrieves queue properties from local private queues.

Opnum: 10

R_QMSetObjectProperties Updates queue properties of local private queues.

Opnum: 11

R_QMObjectPathToObjectFormat Returns a complete format name for a private queue when only

the path name is known to the caller.

Opnum: 12

Opnum13NotUsedOnWire Reserved for local use.

Opnum: 13

R_QMGetTmWhereabouts Returns transaction manager whereabouts information.

Opnum: 14

R_QMEnlistTransaction Enlists the supporting server resource manager (RM) in an

external transaction.

Opnum: 15

R_QMEnlistInternalTransaction Enlists the supporting server resource manager (RM) in an internal

transaction.

Opnum: 16

R_QMCommitTransaction Commits an internal transaction.

Opnum: 17

R_QMAbortTransaction Aborts an internal transaction.

Opnum: 18

rpc_QMOpenQueueInternal Opens a queue for sending, reading, or purging messages.

Opnum: 19

rpc_ACCloseHandle Closes a queue handle.

Opnum: 20

Opnum21NotUsedOnWire Reserved for local use.

Opnum: 21

rpc_ACCloseCursor Closes a cursor.

Opnum: 22

rpc_ACSetCursorProperties Associates a remote cursor with a local cursor handle.

%5bMS-DTCO%5d.pdf

39 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Method Description

Opnum: 23

Opnum24NotUsedOnWire Reserved for local use.

Opnum: 24

Opnum25NotUsedOnWire Reserved for local use.

Opnum: 25

rpc_ACHandleToFormatName Retrieves a format name for a queue handle.

Opnum: 26

rpc_ACPurgeQueue Purges an opened queue.

Opnum: 27

R_QMQueryQMRegistryInternal Retrieves string values from a supporting server.

Opnum: 28

Opnum29NotUsedOnWire Reserved for local use.

Opnum: 29

Opnum30NotUsedOnWire Reserved for local use.

Opnum: 30

R_QMGetRTQMServerPort Returns the RPC server port for use in subsequent method calls.

Opnum: 31

Opnum32NotUsedOnWire Reserved for local use.

Opnum: 32

Opnum33NotUsedOnWire Reserved for local use.

Opnum: 33

Opnum34NotUsedOnWire Reserved for local use.

Opnum: 34

In the preceding table, the term "Reserved for local use" means that the client MUST NOT send the
opnum, and the server behavior is undefined<10> because it does not affect interoperability.

If LocalQueueManager.SupportingServer is False, the server MUST return an error if any of the
following methods is called.

Opnum Name

1 R_QMGetRemoteQueueName

6 R_QMCreateObjectInternal

7 R_QMSetObjectSecurityInternal

8 R_QMGetObjectSecurityInternal

9 R_QMDeleteObject

%5bMS-GLOS%5d.pdf

40 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Opnum Name

10 R_QMGetObjectProperties

11 R_QMSetObjectProperties

12 R_QMObjectPathToObjectFormat

14 R_QMGetTmWhereabouts

15 R_QMEnlistTransaction

16 R_QMEnlistInternalTransaction

17 R_QMCommitTransaction

18 R_QMAbortTransaction

19 rpc_QMOpenQueueInternal

20 rpc_ACCloseHandle

22 rpc_ACCloseCursor

23 rpc_ACSetCursorProperties

26 rpc_ACHandleToFormatName

27 rpc_ACPurgeQueue

28 R_QMQueryQMRegistryInternal

3.1.4.1 R_QMGetRemoteQueueName (Opnum 1)

During the process of creating a remote cursor, a client calls the R_QMGetRemoteQueueName
method to retrieve the name of the remote queue associated with a queue handle. This method is

obsolete and the server SHOULD take no action and immediately raise the exception

MQ_ERROR_ILLEGAL_OPERATION (0xc00e0064).<11>

HRESULT R_QMGetRemoteQueueName(

 [in] handle_t hBind,

 [in] DWORD pQueue,

 [in, out, ptr, string] WCHAR** lplpRemoteQueueName

);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pQueue: MUST be a DWORD that contains a queue context value obtained from the
cli_pQMQueue member of the structure returned by the rpc_ACCreateCursorEx method of
the qmcomm2 interface. See section 4.4 for an example illustrating this value being obtained.

lplpRemoteQueueName: A pointer to a buffer to receive the null-terminated name of the
remote queue associated with pQueue. On input, this value MUST be NULL.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the
server MUST return a failure HRESULT, and the client MUST treat all failure HRESULTs

%5bMS-RPCE%5d.pdf

41 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

identically. Additionally, if a failure HRESULT is returned, the client MUST disregard all out-
parameter values.

Exceptions Thrown: This method SHOULD take no action and SHOULD immediately raise the
exception MQ_ERROR_ILLEGAL_OPERATION (0xc00e0064).<12>

During the remote cursor creation sequence, the supporting server MAY indicate that the client
MUST contact a remote queue manager to proceed.<13> In response, this method is called by the
client to determine where to find the remote queue manager. Supporting servers SHOULD contact
the remote queue manager on behalf of the client, thus eliminating the purpose of this
method.<14>

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE

(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST do the following:

Locate the RemoteQueueProxyHandle (section 3.1.1.5) ADM element instance in the server's

iRemoteQueueProxyHandleTable where the Context attribute value of the
RemoteQueueProxyHandle ADM element instance equals pQueue.

If no such RemoteQueueProxyHandle ADM element instance exists, take no further action and

return a failure HRESULT.

Set lplpRemoteQueueName to the PathName attribute of the located

RemoteQueueProxyHandle ADM element instance.

Return MQ_OK (0x00000000).

3.1.4.2 R_QMOpenRemoteQueue (Opnum 2)

A client calls R_QMOpenRemoteQueue to obtain a valid queue handle on a remote queue as part
of the sequence of events involved in opening a remote queue as described in section 4.2.

HRESULT R_QMOpenRemoteQueue(

 [in] handle_t hBind,

 [out] PCTX_OPENREMOTE_HANDLE_TYPE* pphContext,

 [out] DWORD* pdwContext,

 [in, unique] struct QUEUE_FORMAT* pQueueFormat,

 [in] DWORD dwCallingProcessID,

 [in] DWORD dwDesiredAccess,

 [in] DWORD dwShareMode,

 [in] GUID* pLicGuid,

 [in] DWORD dwMQS,

 [out] DWORD* dwpQueue,

 [out] DWORD* phQueue

);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pphContext: A pointer to a variable to receive the PCTX_OPENREMOTE_HANDLE_TYPE
(section 2.2.1.1.3) context handle.

%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf

42 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

pdwContext: A pointer to a variable to receive the value of the Handle attribute for the new
OpenQueueDescriptor ([MS-MQDMPR] section 3.1.1.16) ADM element instance created by

this method. It MUST NOT be NULL.

pQueueFormat: A QUEUE_FORMAT structure as defined in [MS-MQMQ] section 2.2.7 that

identifies the queue to be opened. It MUST NOT be NULL and MUST conform to the format
name syntax rules defined in [MS-MQMQ]. It MUST NOT be a distribution list or multicast
format name. For direct format names, the protocol MUST NOT be HTTP.

dwCallingProcessID: MUST be ignored. Clients MAY pass 0x00000000.<15>

dwDesiredAccess: A DWORD that specifies the access mode requested for the queue. The
access mode defines the set of operations that can be invoked using the returned queue
handle. The value MUST be one of the following:

Value Meaning

MQ_RECEIVE_ACCESS

0x00000001

The returned queue handle MUST only permit message peek, message

receive (peek and delete), and queue purge operations.

MQ_PEEK_ACCESS

0x00000020

The returned queue handle MUST only permit message peek operations.

dwShareMode: Specifies the exclusivity level for the opened queue. The value MUST be one of
the following:

Value Meaning

MQ_DENY_NONE

0x00000000

The queue is not opened exclusively.

MQ_DENY_RECEIVE_SHARE

0x00000001

The queue is to be opened for exclusive read access. If the queue

has already been opened for read access, the server MUST return

STATUS_SHARING_VIOLATION (0xc0000043). If the queue is

opened successfully for exclusive read access, subsequent attempts

to open the same queue for read access MUST return

STATUS_SHARING_VIOLATION (0xc0000043) until the queue has

been closed.

pLicGuid: MUST be a pointer to a valid GUID that uniquely identifies the client.<16><17> The
server MAY ignore this parameter.<18>

dwMQS: MUST be set by clients to indicate the client operating system category. Servers MAY
ignore this value.<19> The following values are defined:

Value Are server connection licensing limitations enforced?/Meaning

0x00000000<20> None. The operating system (OS) version is not declared.

0x00000100 Yes. For supported operating systems.<21>

0x00000200 Yes. For supported operating systems.<22>

0x00000300 Yes. For supported operating systems.<23>

0x00000400 No. For supported operating systems.<24>

%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

43 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Are server connection licensing limitations enforced?/Meaning

0x00000500 No. For supported operating systems.<25>

dwpQueue: A pointer to a variable to receive a value that identifies the new
OpenQueueDescriptor ADM element instance created by this method, as specified in the
processing rules section for this method. It MUST NOT be NULL.

phQueue: A pointer to a variable to receive the value of the Handle attribute for the new

OpenQueueDescriptor ADM element instance created by this method. It MUST NOT be
NULL.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the
server MUST return a failure HRESULT<26>, and the client MUST treat all failure HRESULTs
identically. Additionally, if a failure HRESULT is returned, the client MUST disregard all out-
parameter values.

Exceptions Thrown: In addition to the exceptions thrown by the underlying RPC protocol [MS-RPCE],

the method can throw HRESULT failure codes as RPC exceptions. The client MUST treat all thrown
HRESULT codes identically. Additionally, the client MUST disregard all out-parameter values when
any failure HRESULT is thrown.

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

Determine if input parameter values violate constraints specified above. If an invalid parameter is

detected, the server MUST take no further action and return a failure HRESULT.

Generate an Open Queue ([MS-MQDMPR] section 3.1.7.1.5) event with the following argument

values:

iFormatName := pQueueFormat

iRequiredAccess :=dwDesiredAccess, according to the following values:

MQ_RECEIVE_ACCESS (0x00000001): ReceiveAccess

MQ_PEEK_ACCESS (0x00000020): PeekAccess

iSharedMode := dwShareMode, according to the following values:

MQ_DENY_NONE (0x00000000): DenyNone

MQ_DENY_RECEIVE_SHARE (0x00000001): DenyReceive

If the rStatus out-argument of the Open Queue event indicates failure, take no further action and

return the rStatus value.

The rOpenQueueDescriptor out-argument of the Open Queue event contains a reference to the

OpenQueueDescriptor ADM element instance created by the Open Queue event.

Set rOpenQueueDescriptor.RemoteReadState to Opened.

%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

44 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Declare iNewRemoteQueueOpenContextHandle as a RemoteQueueOpenContextHandle ADM

element instance and set its attributes to the following values:

Handle := PCTX_OPENREMOTE_HANDLE_TYPE reference to

rOpenQueueDescriptor.Handle.

OpenQueueDescriptorReference := The rOpenQueueDescriptor out-argument of the Open

Queue event generated preceding.

Add iNewRemoteQueueOpenContextHandle to iRemoteQueueOpenContextHandleTable.

Set the out-parameter values accordingly:

pphContext := iNewRemoteQueueOpenContextHandle.Handle

Additionally, the server SHOULD set the following out-parameter values accordingly:

Either to:<27>

pdwContext := rOpenQueueDescriptor.Handle

phQueue := rOpenQueueDescriptor.Handle

dwpQueue := iNewRemoteQueueOpenContextHandle. OpenQueueDescriptorReference

Or to:<28>

pdwContext := rOpenQueueDescriptor.Handle

phQueue := rOpenQueueDescriptor.Handle

dwpQueue := rOpenQueueDescriptor.Handle

Return MQ_OK (0x00000000).

3.1.4.3 R_QMCloseRemoteQueueContext (Opnum 3)

The R_QMCloseRemoteQueueContext method closes a remote queue handle originally obtained
from R_QMOpenRemoteQueue (section 3.1.4.2).

void R_QMCloseRemoteQueueContext(

 [in, out] PCTX_OPENREMOTE_HANDLE_TYPE* pphContext

);

pphContext: An RPC context handle as defined in [MS-RPCE] section 2. This handle MUST have

been acquired from the pphContext parameter of the R_QMOpenRemoteQueue method.

Return Values: None.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort (section 3.1.4.24) method when IP_HANDSHAKE (0x00000000) or
IPX_HANDSHAKE (0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

45 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Locate the RemoteQueueOpenContextHandle (section 3.1.1.8) ADM element instance in the

iRemoteQueueOpenContextHandleTable (section 3.1.1.7) of the server where the value of the

Handle attribute of the RemoteQueueOpenContextHandle ADM element instance equals

pphContext.

If no such RemoteQueueOpenContextHandle ADM element instance exists, take no further

action and immediately return.

Declare iLocatedRemoteQueueOpenContextHandle and set it to a reference to the located

RemoteQueueOpenContextHandle ADM element instance.

If iLocatedRemoteQueueOpenContextHandle.

OpenQueueDescriptorReference.RemoteReadState is Opened:

Generate a Close Queue ([MS-MQDMPR] section 3.1.7.1.6) event with the following argument

value:

iQueueDesc :=

iLocatedRemoteQueueOpenContextHandle.OpenQueueDescriptorReference

Delete the iLocatedRemoteQueueOpenContextHandle from

iRemoteQueueOpenContextHandleTable.

Set the pphContext parameter to NULL.

3.1.4.4 R_QMCreateRemoteCursor (Opnum 4)

The R_QMCreateRemoteCursor method creates a cursor at the server for use during remote read.

HRESULT R_QMCreateRemoteCursor(

 [in] handle_t hBind,

 [in] struct CACTransferBufferV1* ptb1,

 [in] DWORD hQueue,

 [out] DWORD* phCursor

);

hBind: MUST be set to an RPC binding handle, as specified in [MS-RPCE] section 2.

ptb1: MUST be ignored. Clients SHOULD pass NULL.<29>

hQueue: A DWORD that contains the value of the Handle attribute of an
OpenQueueDescriptor ([MS-MQDMPR] section 3.1.1.16) ADM element instance. The client
obtains this value from either the pcc.srv_hACQueue out-parameter of
rpc_ACCreateCursorEx or the phQueue out-parameter of R_QMOpenRemoteQueue.

phCursor: A pointer to a DWORD to receive the value of the Handle attribute of the Cursor
([MS-MQDMPR] section 3.2) ADM element instance that references the created cursor. It

MUST NOT be NULL on input.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the

server MUST return a failure HRESULT, and the client MUST treat all failure HRESULTs
identically. Additionally, if a failure HRESULT is returned, the client MUST disregard all out-
parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

46 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE

(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

Search the OpenQueueDescriptorCollection attribute of each Queue ([MS-MQDMPR] section

3.1.1.2) ADM element instance that is contained in the server's
LocalQueueManager.QueueCollection attribute for an OpenQueueDescriptor ADM element
instance where the value of the Handle attribute of the OpenQueueDescriptor ADM element
instance equals hQueue.

If no such OpenQueueDescriptor ADM element instance exists, take no further action and

return a failure HRESULT.

Generate an Open Cursor ([MS-MQDMPR] section 3.1.7.1.1) event with the following argument

value:

iQueueDesc := The OpenQueueDescriptor ADM element instance found preceding.

The Open Cursor event returns a reference to the Cursor ADM element instance, rCursor.

Set the phCursor parameter to rCursor.Handle.

Return MQ_OK (0x00000000).

3.1.4.5 R_QMCreateObjectInternal (Opnum 6)

A client calls the R_QMCreateObjectInternal method to create a new private queue located on
the supporting server.

HRESULT R_QMCreateObjectInternal(

 [in] handle_t hBind,

 [in] DWORD dwObjectType,

 [in, string] const WCHAR* lpwcsPathName,

 [in, range(0, 524288)] DWORD SDSize,

 [in, unique, size_is(SDSize)] unsigned char* pSecurityDescriptor,

 [in, range(1, 128)] DWORD cp,

 [in, size_is(cp)] DWORD aProp[0],

 [in, size_is(cp)] PROPVARIANT apVar[0]

);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

dwObjectType: MUST be 0x00000001 in order to specify a queue.

lpwcsPathName: MUST be a pointer to a null-terminated string containing a path name for the
queue to be created. The path name MUST identify a private queue local to the supporting
server by including "." as the computer name or by using the supporting server computer

name.

SDSize: MUST be set to the byte length of the SECURITY_DESCRIPTOR buffer pointed to by
pSecurityDescriptor. If pSecurityDescriptor is NULL, this parameter MUST be 0x00000000.

pSecurityDescriptor: Must be a pointer to an array of bytes containing a
SECURITY_DESCRIPTOR structure. The SECURITY_DESCRIPTOR specifies the initial
security configuration for the queue to be created. This value can be NULL, in which case the

%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf

47 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

server MUST provide a default security configuration for the new queue. The
SECURITY_DESCRIPTOR structure is defined in [MS-DTYP] section 2.4.6.

cp: MUST be set to the size (in elements) of the arrays aProp and apVar. The arrays aProp and
apVar MUST have an identical number of elements and MUST contain at least one element.

aProp: MUST be an array of queue property identifiers that, together with the apVar array,
specify the initial queue property values for the new queue. Each element MUST specify a
value from the queue property identifiers table defined in [MS-MQMQ] section 2.3.1. Each
element MUST specify the property identifier for the corresponding property value at the same
element index in apVar and MUST contain at least one element. Each element MUST contain a
queue property identifier; identifiers for other properties are not permitted.

If the queue identified by lpwcsPathName already exists, the server MUST NOT alter the

existing queue.

apVar: MUST be an array that specifies the property values to associate with the new queue.
Each element MUST specify the property value for the corresponding property identifier at the

same element index in aProp and MUST contain at least one element.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the
server MUST return a failure HRESULT.<30> <31> If the returned HRESULT value is

MQ_ERROR_QUEUE_EXISTS (0xc00e0005), the client can treat it as a success and continue
with other operations. The client MUST treat all other failure HRESULTs identically.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

Determine if input parameter values violate the constraints specified above. If an invalid

parameter is detected, the server MUST take no further action and return a failure HRESULT
other than MQ_ERROR_QUEUE_EXISTS (0xc00e0005).

Locate a Queue ([MS-MQDMPR] section 3.1.1.2) ADM element instance in the QueueCollection

attribute of the server's LocalQueueManager ([MS-MQDMPR] section 3.1.1) ADM element

instance where the value of the Pathname attribute of the Queue ADM element instance
matches the lpwcsPathName parameter.

If found, take no further action, and return MQ_ERROR_QUEUE_EXISTS (0xc00e0005).

Generate a Create Queue ([MS-MQDMPR] section 3.1.7.1.3) event with the following argument

values:

iQueue := A new Queue ADM element instance with the following attribute values:

Set Pathname to lpwcsPathName. Path Name syntax is specified in [MS-MQMQ] section

2.1.1.

Set the QueueType attribute to Private.

Set the Security attribute to the value contained in the pSecurityDescriptor parameter.

%5bMS-DTYP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf

48 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Initialize the remaining attribute values using the aProp parameter and the apVar

parameter property arrays previously described. The queue property identifiers and their

relationship to the Queue ADM element are specified in section 3.1.1.12.

Return the rStatus of the Create Queue event.

3.1.4.6 R_QMSetObjectSecurityInternal (Opnum 7)

A client calls the R_QMSetObjectSecurityInternal method to update the security configuration of
a private queue located on the supporting server.

HRESULT R_QMSetObjectSecurityInternal(

 [in] handle_t hBind,

 [in] struct OBJECT_FORMAT* pObjectFormat,

 [in] DWORD SecurityInformation,

 [in, range(0, 524288)] DWORD SDSize,

 [in, unique, size_is(SDSize)] unsigned char* pSecurityDescriptor

);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pObjectFormat: MUST point to an OBJECT_FORMAT structure that identifies an existing local
private queue on the supporting server for which the security configuration will be updated.
This MUST NOT be NULL. The ObjType member of the structure MUST be 0x00000001. The

pQueueFormat member MUST NOT be NULL.

SecurityInformation: MUST contain a value from the SECURITY_INFORMATION enumeration
which indicates the portions of the provided SECURITY_DESCRIPTOR to be applied to the
queue identified by pObjectFormat. The SECURITY_INFORMATION enumeration is defined in
[MS-MQMQ] section 2.2.3.

SDSize: MUST be set to the byte length of the buffer pointed to by pSecurityDescriptor.

pSecurityDescriptor: MUST be a pointer to an array of bytes containing a

SECURITY_DESCRIPTOR structure (see [MS-DTYP] section 2.4.6).

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the
server MUST return a failure HRESULT,<32> and the client MUST treat all failure HRESULTs
identically.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

Determine if input parameter values violate constraints specified above. If an invalid parameter is

detected, the server MUST take no further action and return a failure HRESULT.

Locate a Queue in the QueueCollection of the server's QueueManager identified by

pObjectFormat.

%5bMS-RPCE%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

49 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Locate a Queue ([MS-MQDMPR] section 3.1.1.2) ADM element instance in the QueueCollection

attribute of the server's LocalQueueManager ([MS-MQDMPR] section 3.1.1) ADM element

instance identified by the pObjectFormat parameter.

If no entry is resolved, return a failure HRESULT.

Update the Security attribute of the Queue ADM element instance resolved preceding with the

information provided by SecurityInformation, SDSize, and pSecurityDescriptor.

Return MQ_OK (0x00000000).

3.1.4.7 R_QMGetObjectSecurityInternal (Opnum 8)

A client calls the R_QMGetObjectSecurityInternal method to retrieve the security configuration
of a private queue located on the supporting server.

HRESULT R_QMGetObjectSecurityInternal(

 [in] handle_t hBind,

 [in] struct OBJECT_FORMAT* pObjectFormat,

 [in] DWORD RequestedInformation,

 [out, size_is(nLength)] unsigned char* pSecurityDescriptor,

 [in, range(0, 524288)] DWORD nLength,

 [out] DWORD* lpnLengthNeeded

);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pObjectFormat: MUST point to an OBJECT_FORMAT structure which identifies an existing local
private queue on the supporting server for which the security configuration is to be retrieved.
It MUST NOT be NULL. The ObjType member of the structure MUST be 0x00000001, and the
pQueueFormat member MUST NOT be NULL.

RequestedInformation: MUST contain a value from the SECURITY_INFORMATION enumeration
which indicates the portions of the SECURITY_DESCRIPTOR ([MS-DTYP] section 2.4.6) to

be retrieved from the queue identified by pObjectFormat. The SECURITY_INFORMATION

enumeration is defined in [MS-MQMQ] section 2.2.3.

pSecurityDescriptor: MUST be a pointer to an array of bytes into which the server MUST write
a self-relative SECURITY_DESCRIPTOR structure. The server MUST NOT write more than
nLength bytes to the buffer. If the buffer provided by the client is too small (as indicated by
the nLength parameter) to contain the SECURITY_DESCRIPTOR for the queue identified by
pObjectFormat, the server MUST return MQ_ERROR_SECURITY_DESCRIPTOR_TOO_SMALL

(0xc00e0023). This parameter can be NULL if nLength is 0x00000000.

The SECURITY_DESCRIPTOR structure is defined in [MS-DTYP] section 2.4.6.

nLength: MUST indicate the byte length of the buffer pointed to by pSecurityDescriptor. This
value can be 0x00000000.

lpnLengthNeeded: MUST NOT be NULL. The server MUST set this DWORD to the byte length of

the SECURITY_DESCRIPTOR structure for the queue identified by pObjectFormat.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the

server MUST return a failure HRESULT,<33> and the client MUST treat all failure HRESULTs
identically. Additionally, if a failure HRESULT is returned, the client MUST disregard all out-
parameter values with the following exception:

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

50 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

If nLength is less than the byte length of the buffer required to contain the
SECURITY_DESCRIPTOR for the queue identified by pObjectFormat, the server MUST return

the byte length of the buffer required to contain the SECURITY_DESCRIPTOR in the
lpnLengthNeeded parameter and MUST return

MQ_ERROR_SECURITY_DESCRIPTOR_TOO_SMALL (0xc00e0023).

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

Determine if input parameter values violate constraints specified above. If an invalid parameter is

detected, the server MUST take no further action and return a failure HRESULT.

Raise a Get Queue Path event ([MS-MQDMPR] section 3.1.7.1.26) with the following argument:

iFormatName: pObjectFormat.pQueueFormat.m_qft

If the rStatus return argument value is not MQ_OK (0x00000000), take no further action and

return a failure HRESULT.

Locate a Queue ([MS-MQDMPR] section 3.1.1.2) ADM element instance in the QueueCollection

attribute of the server's LocalQueueManager ([MS-MQDMPR] section 3.1.1) ADM element
instance identified by the rPathName return argument value.

If no entry is resolved, return a failure HRESULT.

Let ReturnedDescriptor be a SECURITY_DESCRIPTOR initialized to be empty.

If the OWNER_SECURITY_INFORMATION bit is set in RequestedInformation:

Copy the contents of the Queue.Security.OwnerSid field ([MS-DTYP] section 2.4.6) to

ReturnedDescriptor.OwnerSid.

Else If the GROUP_SECURITY_INFORMATION bit is set in RequestedInformation:

Copy the contents of the Queue.Security.GroupSid field ([MS-DTYP] section 2.4.6) to

ReturnedDescriptor.GroupSid.

Else If the DACL_SECURITY_INFORMATION bit is set in RequestedInformation:

Copy the contents of the Queue.Security.Dacl field ([MS-DTYP] section 2.4.6) to

ReturnedDescriptor.Dacl.

Else If the SACL_SECURITY_INFORMATION bit is set in RequestedInformation:

Copy the contents of the Queue.Security.Sacl field ([MS-DTYP] section 2.4.6) to

ReturnedDescriptor.Sacl.

Set lpnLengthNeeded to the size in bytes of ReturnedDescriptor.

If lpnLengthNeeded is greater than nLength, return

MQ_ERROR_SECURITY_DESCRIPTOR_TOO_SMALL(0xc00e0023).

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

51 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Else copy ReturnedDescriptor into the pSecurityDescriptor buffer.

Return MQ_OK (0x00000000).

3.1.4.8 R_QMDeleteObject (Opnum 9)

A client calls R_QMDeleteObject to delete a private queue located on the supporting server.

HRESULT R_QMDeleteObject(

 [in] handle_t hBind,

 [in] struct OBJECT_FORMAT* pObjectFormat

);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pObjectFormat: MUST point to an OBJECT_FORMAT structure that identifies an existing local
private queue on the supporting server. MUST NOT be NULL. The ObjType member of the

structure MUST be 0x00000001. The pQueueFormat member MUST NOT be NULL.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the
server MUST return a failure HRESULT,<34><35> and the client MUST treat all failure
HRESULTs identically.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE

(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

Determine if input parameter values violate the constraints previously specified. If an invalid

parameter is detected, the server MUST take no further action and return a failure HRESULT.

Locate a Queue ([MS-MQDMPR] section 3.1.1.2) ADM element instance in the QueueCollection

attribute of the server's LocalQueueManager ([MS-MQDMPR] section 3.1.1) ADM element
instance that is identified by the pObjectFormat parameter.

If no entry is resolved, return a failure HRESULT.

Generate a Delete Queue ([MS-MQDMPR] section 3.1.7.1.4) event, specifying the Queue ADM

element instance located preceding for the iQueue argument.

Return the rStatus of the Delete Queue event.

3.1.4.9 R_QMGetObjectProperties (Opnum 10)

A client calls R_QMGetObjectProperties to retrieve properties from a private queue located on a
supporting server.

HRESULT R_QMGetObjectProperties(

 [in] handle_t hBind,

 [in] struct OBJECT_FORMAT* pObjectFormat,

 [in, range(1, 128)] DWORD cp,

 [in, size_is(cp)] DWORD aProp[0],

%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

52 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 [in, out, size_is(cp)] PROPVARIANT apVar[0]

);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pObjectFormat: MUST point to an OBJECT_FORMAT structure which identifies an existing local
private queue on the supporting server. MUST NOT be NULL. The ObjType member of the
structure MUST be 0x00000001. The pQueueFormat member MUST NOT be NULL.

cp: MUST be set to the size (in elements) of the arrays aProp and apVar. The arrays aProp and
apVar MUST have an identical number of elements and MUST contain at least one element.

aProp: MUST be an array of queue property identifiers of properties to retrieve. Each element
MUST specify a value from the queue property identifiers table defined in [MS-MQMQ] section

2.3.1. Each element MUST specify the queue property identifier for the corresponding queue
property value at the same element index in apVar. MUST contain at least one element.

apVar: MUST contain at least one element. On input, each element MUST be initialized to the
appropriate VARTYPE for the associated property specified by the same element in aProp, or
VT_NULL. Otherwise, the server SHOULD return the failure HRESULT MQ_ERROR_PROPERTY
(0xc00e0002).<36> On success, the server MUST populate the elements of this array with
property values for the properties identified by the corresponding elements of aProp.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the
server MUST return a failure HRESULT,<37> <38> and the client MUST treat all failure
HRESULTs identically. Additionally, if a failure HRESULT is returned, the client MUST
disregard all out-parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE

(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

Determine if input parameter values violate constraints specified above. If an invalid parameter is

detected, the server MUST take no further action and return a failure HRESULT.

Locate a Queue ([MS-MQDMPR] section 3.1.1.2) ADM element instance in the QueueCollection

attribute of the server's LocalQueueManager ([MS-MQDMPR] section 3.1.1) ADM element
instance identified by the pObjectFormat parameter.

If no entry is resolved, return a failure HRESULT.

Copy the values of the Queue ADM element instance attributes indicated by aProp into apVar.

Queue property identifiers and their associated Queue ADM element attributes are specified in

section 3.1.1.12.

Return MQ_OK (0x00000000).

3.1.4.10 R_QMSetObjectProperties (Opnum 11)

The R_QMSetObjectProperties method is called by a client to update properties of a local private
queue.

%5bMS-RPCE%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

53 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

HRESULT R_QMSetObjectProperties(

 [in] handle_t hBind,

 [in] struct OBJECT_FORMAT* pObjectFormat,

 [in, range(1, 128)] DWORD cp,

 [in, unique, size_is(cp)] DWORD aProp[],

 [in, unique, size_is(cp)] PROPVARIANT apVar[]

);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pObjectFormat: MUST point to an OBJECT_FORMAT structure which identifies an existing local
private queue on the supporting server. MUST NOT be NULL. The ObjType member of the
structure MUST be 0x00000001. The pQueueFormat member MUST NOT be NULL.

cp: MUST be set to the size (in elements) of the arrays aProp and apVar. The arrays aProp and
apVar MUST have an identical number of elements, and MUST contain at least one element.

aProp: MUST be an array of queue property identifiers for properties to be updated. Each

element MUST specify a value from the queue property identifiers table defined in [MS-MQMQ]
section 2.3.1. Each element MUST specify the queue property identifier for the corresponding
queue property value at the same element index in apVar. MUST contain at least one element.

apVar: MUST be an array that specifies the property values to update. Each element MUST
specify the property value for the corresponding property identifier at the same element index
in aProp. MUST contain at least one element. The vt (VARTYPE) member of each

PROPVARIANT element MUST be set to the appropriate type for the property being updated;
otherwise, the server SHOULD return the failure HRESULT MQ_ERROR_PROPERTY
(0xc00e0002).<39> Queue properties and their appropriate VARTYPEs are specified by [MS-
MQMQ] section 2.3.1.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the
server MUST return a failure HRESULT,<40> and the client MUST treat all failure HRESULTs
identically.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

Determine if input parameter values violate constraints specified above. If an invalid parameter is

detected, the server MUST take no further action and return a failure HRESULT.

Locate a Queue ([MS-MQDMPR] section 3.1.1.2) ADM element instance in the QueueCollection

attribute of the server's LocalQueueManager ([MS-MQDMPR] section 3.1.1.2) ADM element
instance identified by the pObjectFormat parameter.

If no entry is resolved, return a failure HRESULT.

Update the attributes of the Queue ADM element instance using the values contained in aProp

and apVar. Queue property identifiers and their associated Queue ADM element attributes are
specified in section 3.1.1.12.

%5bMS-RPCE%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

54 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Return MQ_OK (0x00000000).

3.1.4.11 R_QMObjectPathToObjectFormat (Opnum 12)

A client calls R_QMObjectPathToObjectFormat to determine a format name for a queue identified
by a given path name.

HRESULT R_QMObjectPathToObjectFormat(

 [in] handle_t hBind,

 [in, string] const WCHAR* lpwcsPathName,

 [in, out] struct OBJECT_FORMAT* pObjectFormat

);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

lpwcsPathName: MUST be a pointer to a null-terminated path name string, as defined by [MS-
MQMQ] section 2.1.1. The path name MUST identify an existing private queue located on a

supporting server.

pObjectFormat: MUST be a pointer to an OBJECT_FORMAT structure, as specified in section
2.2.3.5. On success, this structure MUST be populated with a direct format name or private

format name for the queue identified by lpwcsPathName. This specification does not mandate
the process through which a server produces a format name for a given path name.

On input, pObjectFormat MUST NOT be NULL, the ObjType member MUST be 0x00000001,
and the m_qft member MUST be QUEUE_FORMAT_TYPE_UNKNOWN (0x00000000).

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the
server MUST return a failure HRESULT,<41> <42> and the client MUST treat all failure

HRESULTs identically. Additionally, if a failure HRESULT is returned, the client MUST disregard
all out-parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,

as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

Determine if input parameter values violate constraints specified above. If an invalid parameter is

detected, the server MUST take no further action and return a failure HRESULT.

Locate a Queue ([MS-MQDMPR] section 3.1.1.2) ADM element instance in the QueueCollection

attribute of the server's LocalQueueManager ([MS-MQDMPR] section 3.1.1) ADM element
instance where the value of the Pathname attribute of the Queue ADM element instance

matches the lpwcsPathName parameter.

If no entry is located, return a failure HRESULT.

Set the pObjectFormat parameter to a private format name, as specified in [MS-MQMQ] section

2.1.4, which resolves to the Queue ADM element instance located preceding.

Return MQ_OK (0x00000000).

%5bMS-RPCE%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf

55 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.4.12 R_QMGetTmWhereabouts (Opnum 14)

A client calls R_QMGetTmWhereabouts to obtain transaction manager whereabouts, as specified
in [MS-DTCO], from the supporting server. The whereabouts enable callers to generate exported

transaction cookies, which are required to enlist the supporting server's resource manager (RM) in
an external transaction.

HRESULT R_QMGetTmWhereabouts(

 [in] handle_t hBind,

 [in, range(0,131072)] DWORD cbBufSize,

 [out, size_is(cbBufSize)] unsigned char* pbWhereabouts,

 [out] DWORD* pcbWhereabouts

);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

cbBufSize: MUST be set to the byte length of the buffer pointed to by pbWhereabouts. If this

value is 0x00000000, the server MUST ignore the pbWhereabouts parameter.

pbWhereabouts: On success, points to an array of bytes containing a Distributed Transaction
Coordinator (DTC) SWhereabouts structure, as specified in [MS-DTCO] section 2.2.5.11.

pcbWhereabouts: On success, or ifMQ_ERROR_USER_BUFFER_TOO_SMALL (0xc00e0028) is

returned, pcbWhereabouts points to a DWORD containing the byte length of the
SWhereabouts structure retrieved from the DTC; otherwise, this parameter MUST be
ignored.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the
server MUST return a failure HRESULT. The client MUST treat all failure HRESULTs identically
and disregard all out-parameter values, with the following exception:

If cbBufSize is less than the size of the SWhereabouts structure returned by the DTC, the

server MUST return MQ_ERROR_USER_BUFFER_TOO_SMALL (0xc00e0028).

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

If input parameter values violate the constraints specified above, the server MUST take no

further action and return a failure HRESULT.

Raise the Obtaining Extended Whereabouts Using

CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS event as specified in [MS-DTCO] section 3.3.4.10
to obtain an SWhereabouts structure from the DTC.

If the server successfully retrieves the SWhereabouts structure from the DTC, but the size of

the buffer provided by the caller (as indicated by the cbBufSize parameter) is too small to contain
the entire SWhereabouts structure, the server MUST take the following actions:

The server MUST ignore the pbWhereabouts pointer.

%5bMS-DTCO%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf

56 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The server MUST set the pcbWhereabouts parameter to the size of the SWhereabouts

structure retrieved from the DTC.

The server MUST return MQ_ERROR_USER_BUFFER_TOO_SMALL (0xc00e0028). This return

value indicates to the caller that a larger buffer is required for this function to succeed.

If any other error occurs, the server MUST return a failure HRESULT.

Place the entire SWhereabouts structure retrieved from the DTC into the pbWhereabouts buffer

provided by the caller. The server MUST also return the byte length of the SWhereabouts
structure in the pcbWhereabouts parameter.

Return MQ_OK (0x00000000).

3.1.4.13 R_QMEnlistTransaction (Opnum 15)

A client calls the R_QMEnlistTransaction method to enlist the supporting server's resource
manager (RM) in an external transaction.

HRESULT R_QMEnlistTransaction(

 [in] handle_t hBind,

 [in] struct XACTUOW* pUow,

 [in, range(0, 131072)] DWORD cbCookie,

 [in, size_is(cbCookie)] unsigned CHAR* pbCookie

);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pUow: MUST point to an XACTUOW structure ([MS-MQMQ] section 2.2.18.1.8) that identifies
the external transaction in which the server is to enlist, as specified in section 2.2.3.1.

cbCookie: MUST be set to the byte length of the buffer pointed to by pbCookie.

pbCookie: MUST be a pointer to an array of bytes containing an exported transaction cookie,

which can be obtained as specified in [MS-DTCO] section 3.3.4.14.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the
server MUST return a failure HRESULT,<43> and the client MUST treat all failure HRESULTs
identically.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,

as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

Look up a Transaction ([MS-MQDMPR] section 3.1.1.14) ADM element instance in the server's

LocalQueueManager.TransactionCollection where Transaction.Identifier matches the
pUow parameter.

If found:

The transaction has already been enlisted. Take no further action and return MQ_OK

(0x00000000).

%5bMS-RPCE%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-MQDMPR%5d.pdf

57 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Else:

Raise the Importing a Transaction event as specified in [MS-DTCO] section 3.3.4.6. Provide

pbCookie as the STxInfo structure.

Raise the Enlisting on a Specific Transaction event as specified in [MS-DTCO] section 3.5.4.3.

Provide the transaction object that was created while importing the transaction in the previous
step as the transaction object argument to this event.

Generate a Create Transaction ([MS-MQDMPR] section 3.1.7.1.8) event with the following

argument value:

iTransactionIdentifier := pUow

Return MQ_OK (0x00000000).

3.1.4.14 R_QMEnlistInternalTransaction (Opnum 16)

A client calls the R_QMEnlistInternalTransaction method to enlist the supporting server's

resource manager (RM) in an internal transaction. The server returns a transaction handle

associated with the given unit of work identifier (XACTUOW). The returned transaction handle is
used when calling R_QMCommitTransaction or R_QMAbortTransaction. The XACTUOW
structure ([MS-MQMQ] section 2.2.18.1.8) is provided for calls to rpc_ACSendMessageEx and
rpc_ACReceiveMessageEx of the qmcomm2 RPC interface.

HRESULT R_QMEnlistInternalTransaction(

 [in] handle_t hBind,

 [in] XACTUOW* pUow,

 [out] RPC_INT_XACT_HANDLE* phIntXact

);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pUow: MUST point to an XACTUOW structure that uniquely identifies the internal transaction in
which the server is to enlist.<44>

phIntXact: A pointer to receive the new RPC_INT_XACT_HANDLE which represents the new
internal transaction context.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the
server MUST return a failure HRESULT, and the client MUST treat all failure HRESULTs
identically. Additionally, if a failure HRESULT is returned, the client MUST disregard all out-
parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,

as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE

(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

Determine if input parameter values violate constraints specified above. If an invalid parameter is

detected, the server MUST take no further action and return a failure HRESULT.

%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf

58 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Look up a Transaction ([MS-MQDMPR] section 3.1.1.14) ADM element instance in the server's

LocalQueueManager.TransactionCollection where Transaction.Identifier matches the

pUow parameter.

If found:

Take no further action and return MQ_ERROR_TRANSACTION_SEQUENCE (0xC00E0051).

Else:

Generate a Create Transaction ([MS-MQDMPR] section 3.1.7.1.8) event with the following

argument value:

iTransactionIdentifier := pUow

The Create Transaction event returns a reference to a Transaction ADM element instance

rTransaction.

Declare iNewTransactionHandle as a TransactionHandle (section 3.1.1.10) ADM element

instance and set its attributes to the following values:

Handle := A new RPC_INT_XACT_HANDLE context handle.

TransactionReference := rTransaction

Add iNewTransactionHandle to iTransactionHandleTable.

Set the phIntXact parameter to iNewTransactionHandle.Handle.

Return MQ_OK (0x00000000).

3.1.4.15 R_QMCommitTransaction (Opnum 17)

A client calls the R_QMCommitTransaction method to commit an internal transaction.

HRESULT R_QMCommitTransaction(

 [in, out] RPC_INT_XACT_HANDLE* phIntXact

);

phIntXact: MUST be an RPC_INT_XACT_HANDLE (section 2.2.1.1.1) identifying the internal
transaction to commit. MUST NOT be NULL. The value of this handle MUST have been acquired

from R_QMEnlistInternalTransaction (section 3.1.4.14). On return, the server MUST set
this parameter to NULL.

Return Values: On success, this method MUST return MQ_OK (0x00000000) and set phIntXact
to NULL; otherwise, the server MUST return a failure HRESULT, and the client MUST treat all
failure HRESULTs identically.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,

as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort (section 3.1.4.24) method when IP_HANDSHAKE (0x00000000) or
IPX_HANDSHAKE (0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-RPCE%5d.pdf

59 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Locate the TransactionHandle (section 3.1.1.10) ADM element instance in the server's

iTransactionHandleTable (section 3.1.1.9) where the value of the Handle attribute of the

TransactionHandle ADM element instance equals the phIntXact parameter.

If no such TransactionHandle ADM element instance exists, take no further action and return a

failure HRESULT.

Declare iLocatedTransactionHandle and set it to a reference to the located TransactionHandle

ADM element instance.

Generate a Transaction Commit ([MS-MQDMPR] section 3.1.4.4) event with the following

argument value:

iTransactionIdentifier := iLocatedTransactionHandle.TransactionReference.Identifier

Remove the iLocatedTransactionHandle from the iTransactionHandleTable.

Set the phIntXact parameter to NULL.

Return MQ_OK (0x00000000).

3.1.4.16 R_QMAbortTransaction (Opnum 18)

A client calls the R_QMAbortTransaction method to abort an internal transaction.

HRESULT R_QMAbortTransaction(

 [in, out] RPC_INT_XACT_HANDLE* phIntXact

);

phIntXact: MUST be an RPC_INT_XACT_HANDLE identifying the internal transaction to abort.
MUST NOT be NULL. The value of this handle MUST have been acquired from
R_QMEnlistInternalTransaction. On return, the server MUST set this parameter to NULL.

Return Values: On success, this method MUST return MQ_OK (0x00000000) and MUST set

phIntXact to NULL; otherwise, the server MUST return a failure HRESULT, and the client
MUST treat all failure HRESULTs identically.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the

R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

Locate the TransactionHandle (section 3.1.1.10) ADM element instance in the server's

iTransactionHandleTable where the value of the Handle attribute of the TransactionHandle
ADM element instance equals the phIntXact parameter.

If no such TransactionHandle ADM element instance exists, take no further action and return a

failure HRESULT.

Declare iLocatedTransactionHandle and set it to a reference to the located TransactionHandle

ADM element instance.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf

60 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Generate a Transaction Abort ([MS-MQDMPR] section 3.1.4.5) event with the following argument

value:

iTransactionIdentifier := iLocatedTransactionHandle.TransactionReference.Identifier

Remove the iLocatedTransactionHandle from the iTransactionHandleTable.

Set the phIntXact parameter to NULL.

Return MQ_OK (0x00000000).

3.1.4.17 rpc_QMOpenQueueInternal (Opnum 19)

A client calls rpc_QMOpenQueueInternal to obtain a local queue context handle, to determine if a
queue is located at a remote queue manager (section 4.2), or to obtain a local context handle for an
opened remote queue. If the call to RemoteQMOpenQueue ([MS-MQQP] section 3.1.4.3) fails, the
result MUST be returned to the client, and the remote open queue sequence is discontinued. In the
case of failure, any state changes need to be rolled back.

HRESULT rpc_QMOpenQueueInternal(

 [in] handle_t hBind,

 [in] struct QUEUE_FORMAT* pQueueFormat,

 [in] DWORD dwDesiredAccess,

 [in] DWORD dwShareMode,

 [in] DWORD hRemoteQueue,

 [in, out, ptr, string] WCHAR** lplpRemoteQueueName,

 [in] DWORD* dwpQueue,

 [in] GUID* pLicGuid,

 [in, string] WCHAR* lpClientName,

 [out] DWORD* pdwQMContext,

 [out] RPC_QUEUE_HANDLE* phQueue,

 [in] DWORD dwRemoteProtocol,

 [in] DWORD dwpRemoteContext

);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pQueueFormat: MUST be a pointer to a QUEUE_FORMAT structure as specified in [MS-MQMQ]
section 2.2.7, which identifies an existing queue to be opened. MUST NOT be NULL and MUST
conform to the format name syntax rules defined in [MS-MQMQ].

dwDesiredAccess: A DWORD that specifies the access mode requested for the queue. The

access mode defines the set of operations which can be invoked using the returned queue
handle. The value MUST be one of the following:

Value Meaning

MQ_RECEIVE_ACCESS

0x00000001

The server MUST permit only the following

operations using the returned queue handle:

 Message peek

 Message receive (peek and delete)

 Queue purge

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf

61 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

MQ_SEND_ACCESS

0x00000002

The server MUST permit only message send

operations using the returned queue handle.

MQ_PEEK_ACCESS

0x00000020

The server MUST permit only message peek

operations using the returned queue handle.

MQ_RECEIVE_ACCESS|MQ_ADMIN_ACCESS

0x00000081

The returned queue handle MUST perform

operations on the outgoing queue associated with

the queue identified by pQueueFormat. Additionally,

the server MUST permit only the following

operations using the returned queue handle:

 Message peek

 Message receive (peek and delete)

 Queue purge

MQ_PEEK_ACCESS|MQ_ADMIN_ACCESS

0x000000a0

The returned queue handle MUST perform

operations on the outgoing queue associated with

the queue identified by pQueueFormat. Additionally,

the server MUST permit only message peek

operations using the returned queue handle.

If pQueueFormat contains an HTTP or multicast format name, R_QMOpenRemoteQueue
(section 3.1.4.2) MUST be MQ_SEND_ACCESS (0x00000002).

If pQueueFormat identifies a sub-queue, dwDesiredAccess MUST NOT be MQ_SEND_ACCESS

(0x00000002).

If pQueueFormat identifies a system, journal, machine, or connector queue, dwDesiredAccess
MUST be MQ_RECEIVE_ACCESS (0x00000001) or MQ_PEEK_ACCESS (0x00000020).

If pQueueFormat identifies a remote queue, dwDesiredAccess MUST be MQ_RECEIVE_ACCESS
(0x00000001) or MQ_PEEK_ACCESS (0x00000020).

dwShareMode: Specifies the exclusivity level for the opened queue. The value MUST be one of
the following:

Value Meaning

MQ_DENY_NONE

0x00000000

The queue is not opened exclusively.

MQ_DENY_RECEIVE_SHARE

0x00000001

The queue is opened for exclusive read access. If the queue has

already been opened for read access, the server MUST return a

failure HRESULT. If the queue is opened successfully for exclusive

read access, subsequent attempts to open the same queue for read

access MUST return a failure HRESULT until the queue has been

closed.

If dwDesiredAccess is MQ_SEND_ACCESS (0x00000002), dwShareMode MUST be

MQ_DENY_NONE (0x00000000).

%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf

62 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

hRemoteQueue: MUST be 0x00000000, or MUST contain a DWORD value obtained from the
phQueue out-parameter of the R_QMOpenRemoteQueue method invoked at a remote

queue manager.

lplpRemoteQueueName: On input, the server MUST ignore lplpRemoteQueueName. If

hRemoteQueue is 0x00000000 and the queue identified by pQueueFormat is located at a
remote queue manager, the server MUST set this string to a null-terminated path name, from
which the client can determine the computer name of the remote queue manager, as specified
in [MS-MQMQ] section 2.1.1.

If pQueueFormat identifies a queue local to the supporting server, the server MUST set
lplpRemoteQueueName to NULL.

dwpQueue: If hRemoteQueue is 0x00000000, dwpQueue MUST be NULL; otherwise, dwpQueue

MUST contain a DWORD value obtained from the dwpQueue out-parameter of the
R_QMOpenRemoteQueue method invoked at a remote queue manager.

pLicGuid: MUST be a pointer to a valid GUID which uniquely identifies the client.<45> <46> The

server MAY ignore this parameter.<47>

lpClientName: MUST be a null-terminated string containing the client's computer name.<48>
Servers MAY use this parameter in concert with the pLicGuid parameter to implement limits on

the number of unique clients which may open queue handles.<49> Implementing connection
limits is optional and not recommended.

pdwQMContext: A pointer to a variable to receive a DWORD value that identifies either an
OpenQueueDescriptor ([MS-MQDMPR] section 3.1.1.16) ADM element instance at the
server or a RemoteQueueProxyHandle (section 3.1.1.5) ADM element instance that contains
information pertaining to an OpenQueueDescriptor ADM element instance at a remote
server. When the client calls rpc_ACReceiveMessageEx (section 3.1.5.3), it specifies a

queue by providing the value that is returned by this parameter. On return, the client MUST
ignore pdwQMContext if the value returned via lplpRemoteQueueName is non-NULL.

phQueue: A pointer to a variable to receive a new RPC_QUEUE_HANDLE (section 2.2.1.1.2)

context handle. On return, the client MUST ignore phQueue if the value returned via
lplpRemoteQueueName is non-NULL.

dwRemoteProtocol: Clients MUST set this parameter to 0x00000000. Servers SHOULD ignore
this parameter.<50>

Value Meaning

0x00000000 The TCP/IP protocol sequence is to be used.

0x00000003 The IPX/SPX protocol sequence is to be used.

dwpRemoteContext: If hRemoteQueue is 0x00000000, dwpRemoteContext MUST contain

0x000000000; otherwise, dwpRemoteContext MUST contain a DWORD value obtained from
the pdwContext out-parameter of the R_QMOpenRemoteQueue (section 3.1.4.2) method

invoked at a remote queue manager.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, if an
error occurs, the server MUST return a failure HRESULT,<51> and the client MUST treat all
failure HRESULTs identically. Additionally, if a failure HRESULT is returned, the client MUST

disregard all out-parameter values.

%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf

63 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Exceptions Thrown: In addition to the exceptions thrown by the underlying RPC protocol, as
specified in [MS-RPCE], the method can throw HRESULT failure codes as RPC exceptions. The client

MUST treat all thrown HRESULT codes identically. Additionally, the client MUST disregard all out-
parameter values when any failure HRESULT is thrown.

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort (section 3.1.4.24) method when IP_HANDSHAKE (0x00000000) or
IPX_HANDSHAKE (0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST do the following:

Determine if input parameter values violate constraints specified above. If an invalid parameter is

detected, the server MUST take no further action and return a failure HRESULT.

If hRemoteQueue is nonzero:

By providing a nonzero value for hRemoteQueue, the client indicates that it has successfully

obtained a PCTX_OPENREMOTE_HANDLE_TYPE (section 2.2.1.1.3) by invoking
R_QMOpenRemoteQueue (section 3.1.4.2) at a remote server. In response, this server

attempts to contact the remote server to validate the provided handle, and to return a new
RPC_QUEUE_HANDLE to the client.

Raise a Get Queue Path ([MS-MQDMPR] section 3.1.7.1.26) event with the input argument

iFormatName set to pQueueFormat. If the rStatus returned by the event is not MQ_OK
(0x00000000), take no further action and return a failure HRESULT. Otherwise, set
remoteServer to the rMachineName return argument value.

Declare the iPathName variable and set its value to the rPathName return argument value

obtained from the Get Queue Path event.

Invoke the MSMQ: Queue Manager to Queue Manager Protocol to open the queue, as specified

in [MS-MQQP] section 3.2.4.1, and provide the following inputs:

RemoteServer set to remoteServer

QueueHandle set to hRemoteQueue

QueueDescriptor set to dwpQueue

OpenContext set to the value pointed to by dwpRemoteContext

If the method is unsuccessful for any reason, including transport failures, errors raised by
[MS-MQQP], timeouts, and unbind, take no further action, and return a failure HRESULT.

Declare iNewRemoteQueueProxyHandle as a RemoteQueueProxyHandle ADM element

instance and set its attributes to the following values:

Handle := New RPC_QUEUE_HANDLE context handle.

Context := A new DWORD value that uniquely identifies the

RemoteQueueProxyHandle ADM element instance within

iRemoteQueueProxyHandleTable.

RemoteHandle := The phContext out-parameter value received from

RemoteQMOpenQueue.

RemoteBindingHandle := The binding handle established preceding.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQQP%5d.pdf

64 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

RemoteContext := hRemoteQueue

FormatName := pQueueFormat

PathName := iPathName

Add iNewRemoteQueueProxyHandle to iRemoteQueueProxyHandleTable (section 3.1.1.4).

Set lplpRemoteQueueName to NULL.

Set phQueue to iNewRemoteQueueProxyHandle.Handle.

Set pdwQMContext to iNewRemoteQueueProxyHandle.Context.

Take no further action and return MQ_OK (0x00000000).

Else: hRemoteQueue is 0x00000000.

Generate an Open Queue ([MS-MQDMPR] section 3.1.7.1.5) event with the following

argument values:

iFormatName := pQueueFormat

iRequiredAccess := dwDesiredAccess, according to the following values:

MQ_RECEIVE_ACCESS (0x00000001): ReceiveAccess

MQ_SEND_ACCESS (0x00000002): SendAccess

MQ_PEEK_ACCESS (0x00000020): PeekAccess

iSharedMode := dwShareMode, according to the following values:

MQ_DENY_NONE (0x00000000): DenyNone

MQ_DENY_RECEIVE_SHARE (0x00000001): DenyReceive

If the rStatus out-argument of the Open Queue event indicates success:

Add a new LocalQueueContextHandle (section 3.1.1.3) ADM element instance to the

server's iLocalQueueContextHandleTable (section 3.1.1.2) with the following values:

Handle := New RPC_QUEUE_HANDLE context handle.

OpenQueueDescriptorReference := The rOpenQueueDescriptor out-argument of the

Open Queue event.

Set lplpRemoteQueueName to NULL.

Set phQueue to the iLocalQueueContextHandleTable.Handle.

Set pdwQMContext to rOpenQueueDescriptor.Handle.

Take no further action and return MQ_OK (0x00000000).

Else, if rStatus indicates MQ_ERROR_QUEUE_NOT_FOUND, and dwDesiredAccess is not

MQ_SEND_ACCESS (0x00000002):

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

65 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Attempt to resolve the format name in pQueueFormat to a path name by raising a Get

Queue Path event ([MS-MQDMPR] section 3.1.7.1.26) with the input argument

iFormatName set to pQueueFormat.

If rStatus returned in the preceding step is not MQ_OK (0x00000000), take no further

action and return a failure HRESULT.

Set lplpRemoteQueueName to the resolved path name.

Set phQueue to NULL.

Set pdwQMContext to zero (0x00000000).

Take no further action and return MQ_OK (0x00000000).

Else:

Return rStatus.

3.1.4.18 rpc_ACCloseHandle (Opnum 20)

A client calls the rpc_ACCloseHandle method to close context handles acquired from
rpc_QMOpenQueueInternal (section 3.1.4.17).

HRESULT rpc_ACCloseHandle(

 [in, out] RPC_QUEUE_HANDLE* phQueue

);

phQueue: MUST be a context handle acquired from the phQueue out-parameter of the

rpc_QMOpenQueueInternal method. On success, the server MUST set this parameter to
NULL.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the

server MUST return a failure HRESULT,<52> and the client MUST treat all failure HRESULTs

identically. Additionally, if a failure HRESULT is returned, the client MUST disregard all out-
parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the

R_QMGetRTQMServerPort (section 3.1.4.24) method when IP_HANDSHAKE (0x00000000) or
IPX_HANDSHAKE (0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

Locate a LocalQueueContextHandle (section 3.1.1.3) ADM element instance in the server's

iLocalQueueContextHandleTable (section 3.1.1.2) where the value of the Handle attribute of the
LocalQueueContextHandle ADM element instance equals phQueue.

If such a LocalQueueContextHandle ADM element instance exists:

Declare iLocatedLocalQueueContextHandle and set it to a reference to the located

LocalQueueContextHandle ADM element instance.

Generate a Close Queue ([MS-MQDMPR] section 3.1.7.1.2) event with the following argument

value:

%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

66 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

iQueueDesc := iLocatedLocalQueueContextHandle.OpenQueueDescriptorReference

Delete iLocatedLocalQueueContextHandle from the server's iLocalQueueContextHandleTable.

Set phQueue to NULL.

Take no further action and return MQ_OK (0x00000000).

Else:

Locate a RemoteQueueProxyHandle (section 3.1.1.5) ADM element instance in the server's

iRemoteQueueProxyHandleTable (section 3.1.1.4) where the value of the Handle attribute of
the RemoteQueueProxyHandle ADM element instance equals phQueue.

If no such RemoteQueueProxyHandle ADM element instance exists, take no further action

and return a failure HRESULT.

Declare iLocatedRemoteQueueProxyHandle and set it to a reference to the located

RemoteQueueProxyHandle ADM element instance.

Invoke the RemoteQMCloseQueue method of the qm2qm RPC interface as specified in [MS-

MQQP] section 3.1.4.4 using the binding handle in
iLocatedRemoteQueueProxyHandle.RemoteBindingHandle and the following parameter
value:

pphContext := iLocatedRemoteQueueProxyHandle.RemoteHandle

Upon completion of the RemoteQMCloseQueue method, successful or not, dispose of the

iLocatedRemoteQueueProxyHandle.RemoteBindingHandle as appropriate.

Note: This method SHOULD<53> start a parallel process to perform the above operations

and return S_OK without waiting for the process to complete. Since S_OK is returned to
the client without regard for the activities in the parallel process, failures that occur in the
parallel process will not be conveyed to the client, which will delay reclamation of resources
in the [MS-MQQP] server.

Delete iLocatedRemoteQueueProxyHandle from iRemoteQueueProxyHandleTable.

Set phQueue to NULL.

Return MQ_OK (0x00000000).

3.1.4.19 rpc_ACCloseCursor (Opnum 22)

A client calls the rpc_ACCloseCursor method to close a cursor acquired from the

rpc_ACCreateCursorEx (section 3.1.5.4) method of the qmcomm2 RPC interface.

HRESULT rpc_ACCloseCursor(

 [in] RPC_QUEUE_HANDLE hQueue,

 [in] DWORD hCursor

);

hQueue: MUST contain the RPC_QUEUE_HANDLE (section 2.2.1.1.2) context handle passed

to rpc_ACCreateCursorEx when the cursor specified by hCursor was created.

hCursor: MUST contain a DWORD value obtained from the pcc.hCursor out-parameter of
rpc_ACCreateCursorEx, or the reserved value 0x0000000b.

%5bMS-MQQP%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-MQQP%5d.pdf

67 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the
server MUST return a failure HRESULT,<54> and the client MUST treat all failure HRESULTs

identically.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,

as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort (section 3.1.4.24) method when IP_HANDSHAKE (0x00000000) or
IPX_HANDSHAKE (0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

If hCursor is 0x0000000b, take no further action and return MQ_OK (0x00000000).

Locate a LocalQueueContextHandle (section 3.1.1.3) ADM element instance in the server's

iLocalQueueContextHandleTable (section 3.1.1.2) where the value of the Handle attribute of the
LocalQueueContextHandle ADM element instance equals hQueue.

If such a LocalQueueContextHandle ADM element instance exists:

Declare iLocatedLocalQueueContextHandle and set it to a reference to the located

LocalQueueContextHandle ADM element instance.

Locate a Cursor ([MS-MQDMPR] section 3.2) ADM element instance in

iLocatedLocalQueueContextHandle.OpenQueueDescriptorReference.CursorCollection
where the Handle attribute of the Cursor ADM element instance equals hCursor.

If no such Cursor ADM element instance exists, take no further action and return a failure

HRESULT.

Generate a Close Cursor ([MS-MQDMPR] section 3.1.7.1.2) event with the following argument

value:

iCursor := The Cursor ADM element instance located preceding.

Take no further action and return MQ_OK (0x00000000).

Else:

Locate a RemoteQueueProxyHandle (section 3.1.1.5) ADM element instance in the server's

iRemoteQueueProxyHandleTable (section 3.1.1.4) where the value of the Handle attribute of
the RemoteQueueProxyHandle ADM element instance equals hQueue.

If no such RemoteQueueProxyHandle ADM element instance exists, take no further action

and return a failure HRESULT.

Declare iLocatedRemoteQueueProxyHandle and set it to a reference to the located

RemoteQueueProxyHandle ADM element instance.

Locate a CursorProxy (section 3.1.1.6) ADM element instance in

iLocatedRemoteQueueProxyHandle.CursorProxyCollection where the value of the Handle
attribute of the CursorProxy ADM element instance equals hCursor.

If no such CursorProxy ADM element instance exists, take no further action and return a

failure HRESULT.

%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

68 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Declare iLocatedCursorProxy and set it to a reference to the located CursorProxy ADM

element instance.

Using the binding handle contained in

iLocatedRemoteQueueProxyHandle.RemoteBindingHandle, invoke the
RemoteQMCloseCursor method of the qm2qm RPC interface specified in [MS-MQQP] section
3.1.4.5 using the following parameter values:

hQueue := iLocatedRemoteQueueProxyHandle.RemoteContext

hCursor := iLocatedCursorProxy.RemoteCursorHandle

Delete iLocatedCursorProxy from iLocatedRemoteQueueProxyHandle.CursorProxyCollection.

Return the result from RemoteQMCloseCursor and take no further action.

3.1.4.20 rpc_ACSetCursorProperties (Opnum 23)

A client calls the rpc_ACSetCursorProperties method to associate a remote cursor created via

R_QMCreateRemoteCursor (section 3.1.4.4) with a local CursorProxy (section 3.1.1.6) created

using rpc_ACCreateCursorEx (section 3.1.5.4).

Note This method is obsolete. The server SHOULD take no action and return
MQ_ERROR_ILLEGAL_OPERATION (0xc00e0064).<55>

HRESULT rpc_ACSetCursorProperties(

 [in] RPC_QUEUE_HANDLE hProxy,

 [in] DWORD hCursor,

 [in] DWORD hRemoteCursor

);

hProxy: MUST contain the RPC_QUEUE_HANDLE (section 2.2.1.1.2) context handle passed

to rpc_ACCreateCursorEx when the cursor specified by hCursor was created.

hCursor: MUST contain a CursorProxy.Handle obtained from the pcc.hCursor out-parameter of
rpc_ACCreateCursorEx.

hRemoteCursor: MUST contain a Cursor.Handle for a remote cursor acquired from the
phCursor out-parameter of R_QMCreateRemoteCursor invoked at a remote queue
manager.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the
server MUST return a failure HRESULT, and the client MUST treat all failure HRESULTs
identically.

This method is obsolete. Servers SHOULD take no action and return

MQ_ERROR_ILLEGAL_OPERATION (0xc00e0064). Servers SHOULD contact the remote queue
manager on behalf of the client when rpc_ACCreateCursorEx is called to create a remote
cursor.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

During the client cursor creation sequence, the supporting server MAY indicate that the client MUST
contact a remote queue manager to proceed.<56> In response, the client MUST call

R_QMGetRemoteQueueName (section 3.1.4.1) to determine the remote queue manager name

%5bMS-MQQP%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf

69 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

and MUST then invoke R_QMCreateRemoteCursor at the remote queue manager. Next, the client
MUST call this method to associate the Cursor.Handle obtained from R_QMCreateRemoteCursor

with the original CursorProxy.Handle obtained from rpc_ACCreateCursorEx.

This method is invoked at the dynamically assigned endpoint returned by the

R_QMGetRTQMServerPort (section 3.1.4.24) method when IP_HANDSHAKE (0x00000000) or
IPX_HANDSHAKE (0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

Locate a RemoteQueueProxyHandle (section 3.1.1.5) in the server's

RemoteQueueProxyHandleTable (section 3.1.1.4) where RemoteQueueProxyHandle.Handle
equals hProxy.

If no such RemoteQueueProxyHandle exists, take no further action and return a failure

HRESULT.

Locate a CursorProxy in RemoteQueueProxyHandle.CursorProxyCollection where

CursorProxy.Handle equals hCursor.

If no such CursorProxy exists, take no further action and return a failure HRESULT.

Set CursorProxy.RemoteCursorHandle := hRemoteCursor.

Set CursorProxy.IsRemoteCursorHandleInitialized := True.

Return MQ_OK (0x00000000).

3.1.4.21 rpc_ACHandleToFormatName (Opnum 26)

A client calls the rpc_ACHandleToFormatName method to retrieve a format name for a queue

handle.

HRESULT rpc_ACHandleToFormatName(

 [in] RPC_QUEUE_HANDLE hQueue,

 [in, range(0, 524288)] DWORD dwFormatNameRPCBufferLen,

 [in, out, unique, size_is(dwFormatNameRPCBufferLen), length_is(dwFormatNameRPCBufferLen)]

 WCHAR* lpwcsFormatName,

 [in, out] DWORD* pdwLength

);

hQueue: MUST be an RPC_QUEUE_HANDLE (section 2.2.1.1.2) acquired from the phQueue

parameter of rpc_QMOpenQueueInternal (section 3.1.4.17). Prior to this method being
invoked, the queue MUST NOT have been deleted, and the queue handle MUST NOT have
been closed.

dwFormatNameRPCBufferLen: Length of the buffer (in Unicode characters) provided for the
lpwcsFormatName parameter.

lpwcsFormatName: Pointer to a Unicode character buffer into which the server writes the

format name (as specified in [MS-MQMQ]) for the queue identified by the hQueue parameter.

The character buffer MUST be null-terminated by the server prior to returning, even if the
provided buffer is not large enough to contain the entire format name string. Can be NULL if
dwFormatNameRPCBufferLen is 0x00000000. MUST NOT be NULL if
dwFormatNameRPCBufferLen is nonzero.

%5bMS-MQMQ%5d.pdf

70 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

pdwLength: On input, the maximum number of Unicode characters to write to the
lpwcsFormatName buffer. This value MUST be equal to the dwFormatNameRPCBufferLen

parameter. On return, the server MUST update the value of this parameter to indicate the
complete length of the format name string for the queue identified by hQueue, without regard

for the size of the provided buffer.

Return Values: If the provided buffer is long enough to contain the null-terminated format
name for the queue identified by hQueue, the server MUST take the following actions:

Copy the null-terminated format name into the lpwcsFormatName buffer.

Set pdwLength to the length (in Unicode characters) of the format name, including the

terminating null character.

Return MQ_OK (0x00000000).

If the provided buffer is too small to contain the complete format name for the queue
identified by hQueue (including the terminating null character), the server MUST take the
following actions:

If the buffer length (indicated by pdwLength) is greater than 0x00000000, and if

lpwcsFormatName is non-NULL, copy the format name to the lpwcsFormatName buffer,
truncated to fit the length indicated by the input value for pdwLength. The string MUST be
null-terminated post-truncation.

Set pdwLength to the length of the untruncated format name, including the terminating

null character.

Take no further action and return MQ_ERROR_FORMATNAME_BUFFER_TOO_SMALL

(0xc00e001f).

If input parameter values violate constraints specified above, the server MUST take no further
action and return a failure HRESULT.

If any other error occurs, the server MUST return a failure HRESULT,<57> and the client

MUST treat all other failure HRESULTs identically. Additionally, if any other failure HRESULT
is returned, the client MUST disregard all out-parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,

as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort (section 3.1.4.24) method when IP_HANDSHAKE (0x00000000) or
IPX_HANDSHAKE (0x00000002) is the interface specified by the fIP parameter.

The format name to be returned to the client (using the rules defined above) is determined as
follows:

Locate a LocalQueueContextHandle (section 3.1.1.3) ADM element instance in the server's

iLocalQueueContextHandleTable (section 3.1.1.2) where the value of the Handle attribute of the
LocalQueueContextHandle ADM element instance equals hQueue.

If such a LocalQueueContextHandle ADM element instance exists:

Declare iLocatedLocalQueueContextHandle and set it to a reference to the located

LocalQueueContextHandle ADM element instance.

%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf

71 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The format name to be returned to the client is

iLocatedLocalQueueContextHandle.OpenQueueDescriptorReference.FormatName.

Else:

Locate a RemoteQueueProxyHandle (section 3.1.1.5) ADM element instance in the server's

iRemoteQueueProxyHandleTable (section 3.1.1.4) where the value of the Handle attribute of
the RemoteQueueProxyHandle ADM element instance equals hQueue.

If no such RemoteQueueProxyHandle ADM element instance exists, take no further action

and return a failure HRESULT.

Declare iLocatedRemoteQueueProxyHandle and set it to a reference to the located

RemoteQueueProxyHandle ADM element instance.

The format name to be returned to the client is

iLocatedRemoteQueueProxyHandle.FormatName.

3.1.4.22 rpc_ACPurgeQueue (Opnum 27)

The rpc_ACPurgeQueue method is called by a client to purge an opened queue.

HRESULT rpc_ACPurgeQueue(

 [in] RPC_QUEUE_HANDLE hQueue

);

hQueue: MUST be an RPC_QUEUE_HANDLE (section 2.2.1.1.2) obtained from the phQueue

parameter of the rpc_QMOpenQueueInternal (section 3.1.4.17) method. Prior to this
method being invoked, the queue MUST NOT have been deleted, and the queue handle MUST
NOT have been closed.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the

server MUST return a failure HRESULT,<58> and the client MUST treat all failure HRESULTs

identically.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort (section 3.1.4.24) method when IP_HANDSHAKE (0x00000000) or

IPX_HANDSHAKE (0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

Locate a LocalQueueContextHandle (section 3.1.1.3) ADM element instance in the server's

iLocalQueueContextHandleTable (section 3.1.1.2) where the Handle attribute of the
LocalQueueContextHandle ADM element instance equals hQueue.

If such a LocalQueueContextHandle ADM element instance exists:

Declare iLocatedLocalQueueContextHandle and set it to a reference to the located

LocalQueueContextHandle ADM element instance.

Generate a Purge Queue ([MS-MQDMPR] section 3.1.7.1.7) event with the following argument

value:

%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

72 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

iQueue :=

iLocatedLocalQueueContextHandle.OpenQueueDescriptorReference.QueueReference

Take no further action and return MQ_OK (0x00000000).

Else:

Locate a RemoteQueueProxyHandle (section 3.1.1.5) ADM element instance in the server's

iRemoteQueueProxyHandleTable (section 3.1.1.4) where the value of the Handle attribute of
the RemoteQueueProxyHandle ADM element instance equals hQueue.

If no such RemoteQueueProxyHandle ADM element instance exists, take no further action

and return a failure HRESULT.

Declare iLocatedRemoteQueueProxyHandle and set it to a reference to the located

RemoteQueueProxyHandle ADM element instance.

Using the binding handle contained in

iLocatedRemoteQueueProxyHandle.RemoteBindingHandle, invoke the method

RemoteQMPurgeQueue of the qm2qm interface defined in [MS-MQQP] section 3.1.4.7 with

the following argument value:

hQueue := iLocatedRemoteQueueProxyHandle.RemoteContext

Return the return code produced by RemoteQMPurgeQueue.

3.1.4.23 R_QMQueryQMRegistryInternal (Opnum 28)

A client calls the R_QMQueryQMRegistryInternal method to retrieve various string values from

the supporting server.

HRESULT R_QMQueryQMRegistryInternal(

 [in] handle_t hBind,

 [in] DWORD dwQueryType,

 [out, string] WCHAR** lplpMQISServer

);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

dwQueryType: Specifies the type and format of the data to return to the caller via the
lplpMQISServer parameter. MUST be one of the values in the following table:

Value Meaning

0x00000000 A comma-delimited list of MQIS server names configured on the supporting server.

This value is retrieved from the DirectoryServerList attribute of the server's

LocalQueueManager ADM element instance.

0x00000001 The server's default time-to-reach-queue message property value, expressed in

seconds, converted to a string.<59><60>

0x00000002 The GUID that represents the entire MSMQ forest.<61> See following for the curly

braced GUID string representation to use. The string uses the "braceless" format.

0x00000003 A string representation of the supporting server version.<62>

%5bMS-MQQP%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-RPCE%5d.pdf

73 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

0x00000004 The content of the Identifier attribute of the server's LocalQueueManager ADM

element instance. The curly braced GUID string representation uses a "braceless"

format given following.<63><64>

The format for the comma-delimited list of MQIS server names (0x00000000) is given by the
following augmented BNF:

list = [list ","] computer-name

computer-name = 1*15digit

digit = num-digit / uppercase-alpha-digit / lowercase-alpha-digit

 / special-digit

num-digit = %x30-39

uppercase-alpha-digit = %x41-5Alowercase-alpha-digit = %x61-7A

special-digit = "!" / "@" / "#" / "$" / "%" / "^" / "&" / "'"

 / ")" / "(" / "." / "-" / "_" / "{" / "}" / "~"

The GUID string for the MSMQ forest (0x00000002) uses the "braceless" format depicted in
the following augmented BNF:

braceless-guid = dword-part "-" word-part "-" word-part "-"

 2byte-part "-" 6byte-part

dword-part = 2word-part

word-part = 2byte-part

byte-part = 2hex-digit

hex-digit = %x30-39 / %x41-46 / %x61-66

The string format used for the supporting server version (0x00000003), depicted in

augmented BNF, is as follows:

version = version-part "." version-part "." version-part

version-part = 1*4num-digit

num-digit = %x30-39

The GUID for the server queue manager (0x00000004) uses the following "braceless" format,

depicted in augmented BNF:

braceless-guid = dword-part "-" word-part "-" word-part "-"

 2byte-part "-" 6byte-part

dword-part = 2word-part

word-part = 2byte-part

byte-part = 2hex-digit

hex-digit = %x30-39 / %x41-46 / %x61-66

lplpMQISServer: On success, the server returns the string indicated by dwQueryType through
this parameter. The server can set this parameter to NULL in the event of an error.

74 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If input parameter values violate constraints specified above, the server MUST take no further

action and return a failure HRESULT.

If any other error occurs, the server MUST return a failure HRESULT, and the client MUST

treat all other failure HRESULTs identically. Additionally, if any other failure HRESULT is
returned, the client MUST disregard all out-parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

3.1.4.24 R_QMGetRTQMServerPort (Opnum 31)

The R_QMGetRTQMServerPort method returns an RPC port number, as specified in [MS-RPCE],
for the requested combination of interface and protocol. The returned RPC port number can be used
for all qmcomm and qmcomm2 methods.

DWORD R_QMGetRTQMServerPort(

 [in] handle_t hBind,

 [in] DWORD fIP

);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

fIP: Specifies the interface for which a port value is to be returned. One of the following values
MUST be specified; otherwise, this method MUST return 0x00000000 to indicate failure.

Value Meaning

IP_HANDSHAKE

0x00000000

Requests that the server return the RPC port number for the qmcomm and

qmcomm2 interfaces bound to TCP/IP. The default port number is 2103.

IP_READ

0x00000001

Requests that the server return the RPC port number for the qm2qm interface,

as specified in [MS-MQQP], bound to TCP/IP. The default port number is 2105.

IPX_HANDSHAKE

0x00000002

Requests that the server return the RPC port number for the qmcomm and

qmcomm2 interfaces bound to SPX.<65> The default port number is 2103.

IPX_READ

0x00000003

Requests that the server return the RPC port number for the qm2qm interface,

as specified in [MS-MQQP], bound to SPX.<66> The default port number is

2105.

Return Values: On success, this method returns a non-zero IP port value for the RPC interface
specified by the fIP parameter. If an invalid value is specified for fIP, this method MUST return

0x00000000.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

As specified in section 3.1.3, this protocol configures a fixed listening endpoint at an RPC port
number. For the interface and protocol specified by the fIP parameter, this method returns the RPC

%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-MQQP%5d.pdf

75 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

port number determined at server initialization time. If the default port is already in use, the server
SHOULD increment the port number by 11 until an unused port is found.

Security consideration: Servers MUST NOT enforce security limitations for this method, since clients
can call this method before configuring RPC binding security. See section 5.1 for details.

3.1.5 Message Processing Events and Sequencing Rules for qmcomm2

The following methods comprise the Message Queuing (MSMQ): Queue Manager Client Protocol
version 2 (qmcomm2) interface. If LocalQueueManager.SupportingServer is False, the server
MUST return an error if any of the following methods is called.

Methods in RPC Opnum Order

Method Description

QMSendMessageInternalEx Sends a message to the specified queue.

Opnum: 0

rpc_ACSendMessageEx Sends a message to the specified queue.

Opnum: 1

rpc_ACReceiveMessageEx Receives a message from the specified queue.

Opnum: 2

rpc_ACCreateCursorEx Creates a cursor for accessing the specified queue.

Opnum: 3

3.1.5.1 QMSendMessageInternalEx (Opnum 0)

A client invokes QMSendMessageInternalEx if the server returns STATUS_RETRY (0xc000022d)
from a prior call to rpc_ACSendMessageEx. Implementations of this protocol SHOULD NOT return

STATUS_RETRY from rpc_ACSendMessageEx, rendering this method unnecessary. Such
implementations MUST take no action when QMSendMessageInternalEx is invoked and return
MQ_ERROR_ILLEGAL_OPERATION (0xc00e0064).

HRESULT QMSendMessageInternalEx(

 [in] handle_t hBind,

 [in] struct QUEUE_FORMAT* pQueueFormat,

 [in] struct CACTransferBufferV2* ptb,

 [in, out, unique] OBJECTID* pMessageID

);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pQueueFormat: MUST be a pointer to a QUEUE_FORMAT structure, as specified in [MS-
MQMQ] section 2.2.7, which identifies an existing queue to be opened. MUST NOT be NULL,

and MUST conform to the format name syntax rules defined in [MS-MQMQ]. The queue

identified by pQueueFormat MUST be local to the supporting server, and MUST be successfully
openable via a call to rpc_QMOpenQueueInternal with a dwDesiredAccess level of
MQ_SEND_ACCESS (0x00000002).

ptb: A CACTransferBufferV2 structure pointer as described in section 2.2.3.3. See the identical
parameter in section 3.1.5.2 for details on this parameter.

%5bMS-RPCE%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

76 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

pMessageID: An OBJECTID as defined in [MS-MQMQ] section 2.2.8. See the identical parameter
in section 3.1.5.2 for details on this parameter.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the
server MUST return a failure HRESULT,<67> and the client MUST treat all failure HRESULTs

identically. Additionally, if a failure HRESULT is returned, the client MUST disregard all out-
parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

Determine if input parameter values violate constraints specified above. If an invalid parameter is

detected, the server MUST take no further action and return a failure HRESULT.

Open the queue identified by pQueueFormat by invoking rpc_QMOpenQueueInternal with

dwDesiredAccess of MQ_SEND_ACCESS (0x00000002).

If this process is successful:

With the queue handle obtained from rpc_QMOpenQueueInternal, invoke

rpc_ACSendMessageEx as specified in section 3.1.5.2.

Invoke rpc_ACCloseHandle to dispose the handle obtained above. Return the result of

rpc_ACSendMessageEx.

Else:

Return a failure HRESULT.

3.1.5.2 rpc_ACSendMessageEx (Opnum 1)

A client calls the rpc_ACSendMessageEx method to place a message into a message queue for
delivery.

HRESULT rpc_ACSendMessageEx(

 [in] RPC_QUEUE_HANDLE hQueue,

 [in] struct CACTransferBufferV2* ptb,

 [in, out, unique] OBJECTID* pMessageID

);

hQueue: MUST be an RPC_QUEUE_HANDLE (section 2.2.1.1.2) obtained from the phQueue

parameter of the rpc_QMOpenQueueInternal (section 3.1.4.17) method called with the
dwDesiredAccess parameter set to MQ_SEND_ACCESS. Prior to this method being invoked,
the queue MUST NOT have been deleted, and the queue handle MUST NOT have been closed.

ptb: MUST NOT be NULL. ptb points to a CACTransferBufferV2 (section 2.2.3.3) structure.
Refer to section 2.2.3.3 for definitions of the CACTransferBufferV2 member fields.
Constraints for the member fields are defined below. In the section below, "ptb.old" is used as

shorthand to refer to the CACTransferBufferOld member of the CACTransferBufferV2
structure.

%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf

77 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

ptb.old.uTransferType MUST be CACTB_SEND (0x00000000).

ptb.old.Send.pAdminQueueFormat can be NULL, in which case no administration queue

format name is associated with the message. If not NULL, ptb.old.Send.pAdminQueueFormat
MUST point to a QUEUE_FORMAT structure as defined in [MS-MQMQ] section 2.2.7.

ptb.old.Send.pResponseQueueFormat can be NULL, in which case no response queue format
name is associated with the message. If not NULL, ptb.old.Send.pResponseQueueFormat
MUST point to a QUEUE_FORMAT structure as defined in [MS-MQMQ] section 2.2.7.

If the queue identified hQueue was opened using a direct format name, as specified in [MS-
MQMQ] section 2.1.2, ptb.old.pulPrivLevel MUST be NULL or, if not NULL, MUST point to the
value MQMSG_PRIV_LEVEL_NONE (0x00000000). Encryption MUST NOT be requested for
queues opened with direct format name.

If the queue identified by hQueue is not an outgoing queue (rather, it is a queue which is local
to the supporting server), and ptb.bEncrypted is not 0x00, the server MAY return
STATUS_RETRY (0xc000022d) and take no action.<68>

ptb.old.pPriority can be NULL; otherwise, the value MUST be from 0x00 to 0x07 inclusive. If
the value is NULL, the server MUST substitute the default value of 0x03.

ptb.old.pTrace can be NULL, in which case the server MUST substitute the default value of

0x00.

If ptb.old.ulAbsoluteTimeToQueue is 0x00000000, the server MUST substitute the default
value of 0xffffffff.

ptb.old.ppMessageID can be NULL. If not NULL, the server MUST ignore the in-value.

ptb.old.ppConnectorType can be NULL. If NULL, then no connector type value is associated
with the message.

ptb.old.pDelivery can be NULL, in which case the server MUST substitute the default value of

0x00. However, if ptb.old.pUow contains a nonzero value, the server MUST substitute the

value 0x01 for ptb.old.pDelivery, since transactional messages are by definition stored as
recoverable.

ptb.old.pAuditing can be NULL, in which case the server MUST substitute the default value of
0x00.

ptb.old.pClass can be NULL, in which case the server MUST substitute the default value of
0x0000. This field may be used by connector applications to produce acknowledgment

messages. Typical applications will always specify MQMSG_CLASS_NORMAL (0x0000).

ptb.old.ppCorrelationID can be NULL, in which case the server MUST substitute the default
value by filling the array of bytes with hexadecimal zeros (0x00).

ptb.old.pAcknowledge can be NULL, in which case the server MUST substitute the default
value of 0x00.

ptb.old.pApplicationTag can be NULL, in which case the server MUST substitute the default

value of 0x00000000.

ptb.old.ppTitle can be NULL, in which case the server MUST treat the value as an empty string
and MUST ignore the value of ptb.old.ulTitleBufferSizeInWCHARs. If ptb.old.ppTitle is NOT
NULL, the server MUST take the number of Unicode characters indicated by

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

78 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

ptb.old.ulTitleBufferSizeInWCHARs. If ptb.old.ulTitleBufferSizeInWCHARs is greater than 250,
the value MUST be truncated to 250. The server MUST null-terminate the resulting character

array.

ptb.old.ppMsgExtension can be NULL, in which case no extension array is associated with the

message and the server MUST ignore the value of ptb.old.ulMsgExtensionBufferInBytes. If
ptb.old.ppMsgExtension is NOT NULL, the server MUST take the number of bytes indicated by
ptb.old.ulMsgExtensionBufferInBytes. The buffer is an opaque array of bytes and a
terminating null character is not required.

ptb.old.ppBody can be NULL, in which case no body array is associated with the message and
the server MUST ignore the values of ptb.old.ulBodyBufferSizeInBytes and
ptb.old.ulAllocBodyBufferInBytes. If ptb.old.ppBody is NOT NULL, the server MUST take the

number of bytes indicated by ptb.old.ulBodyBufferSizeInBytes, and allocate body storage for
the number of bytes indicated by ptb.old.ulAllocBodyBufferInBytes. The message body is an
opaque array of bytes and a terminating null character is not required.

ptb.old.pulPrivLevel can be NULL, in which case the server MUST substitute the default value

of 0x00000000.

ptb.old.pulHashAlg can be NULL if ptb.old.ulSignatureSize is 0x00000000; otherwise, it MUST

be set to the hash algorithm used to produce the signature of the message, as specified in
section 2.2.3.2.<69> If it is set to NULL, the server MUST substitute the value of
0x00000000.

ptb.old.pulEncryptAlg can be NULL if ptb.old.pulPrivLevel is set to NULL; otherwise, it MUST
be set to the encryption algorithm associated with ptb.old.pulPrivLevel, as specified in section
2.2.3.2.<70> If it is set to NULL, the server MUST substitute the value of 0x00000000.

ptb.old.pulBodyType can be NULL, in which case the server MUST substitute the default value

of 0x00000000.

ptb.old.ppSenderCert can be NULL if ptb.old.ulSenderCertLen is 0x00000000, in which case
an X509 certificate for the sender is not associated with the message.

ptb.old.pulSenderIDType MUST NOT be NULL if ptb.old.uSenderIDLen is nonzero.

ptb.old.pSenderID can be NULL if ptb.old.uSenderIDLen is zero and ptb.old.pulSenderIDType
is MQMSG_SENDERID_TYPE_NONE (0x00000000), in which case a SID is not associated with
the message.

ptb.old.ppSymmKeys can be NULL if ptb.old.ulSymmKeysSize is zero (0x00000000), in which
case an encrypted symmetric key is not associated with the message. Otherwise,
ptb.old.ppSymKeys MUST contain the symmetric key used to encrypt the message body. The
symmetric key MUST be encrypted with the public key of the recipient QM. The manner by
which the public key for the recipient QM is obtained is beyond the scope of this network
protocol.

If ptb.old.ulSignatureSize is 0x00000000: no digital signature is associated with the message.

Else, if ptb.old.ulSignatureSize is not 0x00000000:

If ptb.old.fDefaultProvider is 0x00000000, ptb.old.ppwcsProvName MUST NOT be NULL. If

ptb.old.pulProvType is NOT NULL, it MUST specify the provider type of the CSP named by
ptb.old.ppwcsProvName; otherwise, the server MUST substitute the value of 0x00000000.
Note that ptb.old.ulProvNameLen is used only to affect RPC marshaling of the

%5bMS-DTYP%5d.pdf

79 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

ptb.old.ppwcsProvName buffer. The server MUST otherwise ignore ptb.old.ulProvNameLen
and treat ptb.old.ppwcsProvName as a null-terminated string.

If ptb.old.fDefaultProvider is not 0x00000000, ptb.old.pulProvType MUST NOT be NULL,

and MUST contain PROV_RSA_FULL (0x00000001).

If ptb.old.pulAuthProvNameLenProp is NULL:

If not NULL, the ptb.old.ppSignature buffer contains a simple array of bytes

containing the MSMQ 1.0 digital signature. The byte length of the buffer is indicated
by ptb.old.ulSignatureSize.

Else, if ptb.old.pulAuthProvNameLenProp is NOT NULL:

If not NULL, the ptb.old.ppSignature buffer contains two distinct byte array parts. The

first part MUST be ignored by the server. The second part contains an MSMQ 2.0
digital signature.

The byte length of the first part is indicated by subtracting the length of the second

part from ptb.old.ulSignatureSize. (Thus, length([first part]) + length([second part]

) = ptb.old.ulSignatureSize.)

The byte length of the second part is indicated by subtracting ptb.old.ulProvNameLen

from ptb.old.pulAuthProvNameLenProp.

The second part begins immediately after the first.

The following fields MUST be ignored by the server:

ptb.old.Receive

ptb.old.CreateCursor

ptb.old.pSentTime

ptb.old.pArrivedTime

ptb.old.pBodySize

ptb.old.pulTitleBufferSizeInWCHARs

ptb.old.pulRelativeTimeToQueue

ptb.old.pulRelativeTimeToLive

ptb.old.pulSenderIDLenProp

ptb.old.ulAuthLevel

ptb.old.pAuthenticated

ptb.old.bAuthenticated

ptb.old.pulSenderCertLenProp

ptb.old.pulSymmKeysSizeProp

ptb.old.pulSignatureSizeProp

80 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

ptb.old.ppSrcQMID

ptb.old.pMsgExtensionSize

ptb.old.pulVersion

ptb.pbFirstInXact

ptb.pbLastInXact

ptb.ppXactID

The ptb.old.pulAuthProvNameLenProp field SHOULD be interpreted as specified in section
3.1.5.2.<71>

pMessageID: An OBJECTID as defined in [MS-MQMQ] section 2.2.8. This value can be NULL. If
not NULL, the server MUST return a message identifier for the new message if this method
succeeds.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the
server MUST return a failure HRESULT,<72> and the client MUST treat all failure HRESULTs
identically. Additionally, if a failure HRESULT is returned, the client MUST disregard all out-

parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort (section 3.1.4.24) method when IP_HANDSHAKE (0x00000000) or
IPX_HANDSHAKE (0x00000002) is the interface specified by the fIP parameter.

Security Considerations: The caller may request that the server perform security related operations

such as signing and encrypting the message. These operations are requested by setting members of
the ptb.CACTransferBufferOld structure.

When processing this call, the server MUST:

Determine if the input parameter values violate the constraints previously specified. If an invalid

parameter is detected, the server MUST take no further action and return a failure HRESULT.

Locate a LocalQueueContextHandle (section 3.1.1.3) ADM element instance in the server's

iLocalQueueContextHandleTable (section 3.1.1.2) where the value of the Handle attribute of the
LocalQueueContextHandle ADM element instance equals hQueue.

If no such LocalQueueContextHandle ADM element instance exists, take no further action and

return a failure HRESULT.

Declare iLocatedLocalQueueContextHandle and set it to a reference to the located

LocalQueueContextHandle ADM element instance.

If ptb.old.pUow is non-NULL:

Look up a Transaction ([MS-MQDMPR] section 3.1.1.14) ADM element instance in the

server's LocalQueueManager.TransactionCollection with an identifier matching
ptb.old.pUow. If no such entry exists, the client did not enlist the transaction before
attempting to perform a transactional send operation. In this event, return a failure

HRESULT.

%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-MQDMPR%5d.pdf

81 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Create a new Message ([MS-MQDMPR] section 3.1.1.12) ADM element instance with contents

from ptb using the defined translation table.

If the message body is encrypted (ptb.old.bEncrypted is not 0x00, ppSymmKeys is not NULL, and

ppSymmKeysSize is not 0x00000000) and the destination queue is located on the supporting
server, the message body MUST be decrypted. Using the algorithm indicated by
ptb.old.pulEncryptAlg, decrypt the symmetric key that is contained in ppSymmKeysSize with the
server's private key. Finally, use the decrypted symmetric key to decrypt the message body.

Generate an Enqueue Message ([MS-MQDMPR] section 3.1.7.1.9) event with the following

argument values:

iQueue :=

iLocatedLocalQueueContextHandle.OpenQueueDescriptorReference.QueueReference

iMessage := The Message ADM element instance previously created.

iTransaction := The Transaction ADM element instance previously resolved; or, if

ptb.old.pUow is NULL, this optional argument is not specified.

If the rStatus result of the Enqueue Message event is zero, return MQ_OK (0x00000000);

otherwise, return a failure HRESULT.

3.1.5.3 rpc_ACReceiveMessageEx (Opnum 2)

A client calls rpc_ACReceiveMessageEx to peek or receive a message from a message queue.

HRESULT rpc_ACReceiveMessageEx(

 [in] handle_t hBind,

 [in] DWORD hQMContext,

 [in, out] struct CACTransferBufferV2* ptb

);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

hQMContext: A queue context value obtained from the pdwQMContext parameter of

rpc_QMOpenQueueInternal. The queue MUST have been opened with MQ_PEEK_ACCESS
or MQ_RECEIVE_ACCESS as the dwDesiredAccess parameter when
rpc_QMOpenQueueInternal was called. Prior to this method being invoked, the queue
MUST NOT have been deleted, and the queue handle for the open queue MUST NOT have
been closed.

ptb: MUST NOT be NULL. The ptb parameter points to a CACTransferBufferV2 (section
2.2.3.3) structure. Constraints for the member fields are defined following. In the sections

following, "ptb.old" is used as shorthand to refer to the CACTransferBufferOld member of
the CACTransferBufferV2 structure.

ptb.old.uTransferType MUST be CACTB_RECEIVE (0x00000001).

ptb.old.Receive.Action MUST contain one of the following values: 0x00000000
(MQ_ACTION_RECEIVE), 0x80000000 (MQ_ACTION_PEEK_CURRENT) or 0x80000001
(MQ_ACTION_PEEK_NEXT).

On input, ptb.old.Receive.Cursor can be 0x00000000, in which case no cursor is associated
with the receive operation. Otherwise, ptb.old.Receive.Cursor MUST contain a Cursor Handle
obtained from the pcc.hCursor parameter of rpc_ACCreateCursorEx. The cursor MUST have

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-RPCE%5d.pdf

82 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

been created using the queue handle associated with the queue context value provided for the
hQMContext parameter, and the cursor MUST NOT have been closed prior to this call. On

output, the value of ptb.old.Receive.Cursor MUST be the same as it was on input.

ptb.old.Receive.ulResponseFormatNameLen is used for RPC marshaling of the

ppResponseFormatName buffer. On input, the client MUST set this value to the minimum of
pulResponseFormatNameLenProp and 1024 bytes. If ptb.old.Receive.ppResponseFormatName
is NULL, this value MUST be 0x00000000. On output, the server MUST set this value to the
minimum of ulResponseFormatNameLen and pulResponseFormatNameLenProp.

On input, ptb.old.Receive.pulResponseFormatNameLenProp indicates the Unicode character
length of the buffer contained in ppResponseFormatName. On output, the server MUST set
this value to indicate the full length of the response queue format name associated with the

message being retrieved.

On input, ptb.old.Receive.ppResponseFormatName can be NULL, in which case it MUST be
NULL on output. Otherwise, on successful retrieval of a message and prior to filling the buffer,
the server MUST verify that the pulResponseFormatNameLenProp field indicates that the

buffer is large enough to contain the response queue format name for the retrieved message.

ptb.old.Receive.ulAdminFormatNameLen is used for RPC marshaling of the

ppAdminFormatName buffer. On input, the client MUST set this value to the minimum of
pulAdminFormatNameLenProp and 1024 bytes. If ptb.old.Receive.ppAdminFormatName is
NULL, this value MUST be 0x00000000. On output, the server MUST set this value to the
minimum of ulAdminFormatNameLen and pulAdminFormatNameLenProp.

On input, ptb.old.Receive.pulAdminFormatNameLenProp indicates the Unicode character
length of the buffer contained in ppAdminFormatName. On output, the server MUST set this
value to indicate the full length of the administration queue format name associated with the

message being retrieved.

On input, ptb.old.Receive.ppAdminFormatName can be NULL, in which case it MUST be NULL
on output. Otherwise, on successful retrieval of a message and prior to filling the buffer, the
server MUST verify that the pulAdminFormatNameLenProp field indicates that the buffer is

large enough to contain the administration queue format name for the retrieved message.

ptb.old.Receive.ulDestFormatNameLen is used for RPC marshaling of the ppDestFormatName
buffer. On input, the client MUST set this value to the minimum of

pulDestFormatNameLenProp and 1024 bytes. If ptb.old.Receive.ppDestFormatName is NULL,
this value MUST be 0x00000000. On output, the server MUST set this value to the minimum
of ulDestFormatNameLen and pulDestFormatNameLenProp.

On input, ptb.old.Receive.pulDestFormatNameLenProp indicates the Unicode character length
of the buffer contained in ppDestFormatName. On output, the server MUST set this value to
indicate the full length of the destination queue format name associated with the message

being retrieved.

On input, ptb.old.Receive.ppDestFormatName can be NULL, in which case it MUST be NULL on
output. Otherwise, on successful retrieval of a message and prior to filling the buffer, the
server MUST verify that the pulDestFormatNameLenProp field indicates that the buffer is large

enough to contain the destination queue format name for the retrieved message.

ptb.old.Receive.ulOrderingFormatNameLen is used for RPC marshaling of the
ppOrderingFormatName buffer. On input, the client MUST set this value to the minimum of

pulOrderingFormatNameLenProp and 1024 bytes. If ptb.old.Receive.ppOrderingFormatName

83 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

is NULL, this value MUST be 0x00000000. On output, the server MUST set this value to the
minimum of ulOrderingFormatNameLen and pulOrderingFormatNameLenProp.

On input, ptb.old.Receive.pulOrderingFormatNameLenProp indicates the Unicode character
length of the buffer contained in ppOrderingFormatName. On output, the server MUST set this

value to indicate the full length of the order queue format name associated with the message
being retrieved.

On input, ptb.old.Receive.ppOrderingFormatName can be NULL, in which case it MUST be
NULL on output. Otherwise, on successful retrieval of a message and prior to filling the buffer,
the server MUST verify that the pulOrderingFormatNameLenProp field indicates that the buffer
is large enough to contain the order queue format name for the retrieved message.

On input, ptb.old.ppBody can be NULL, in which case it MUST be NULL on output. Otherwise,

on successful retrieval of a message, prior to filling the buffer, the server MUST verify that the
ulBodyBufferSizeInBytes field indicates that the buffer is large enough to contain the message
body for the retrieved message. On output, the byte length of the complete body for the
retrieved message MUST be returned in the pBodySize field, if it is not NULL.

On input, ptb.old.ulBodyBufferSizeInBytes MUST be 0x00000000 if ptb.old.ppBody is NULL.
On output, the value of ptb.old.ulBodyBufferSizeInBytes MUST be the same as it was on

input.

ptb.old.ulAllocBodyBufferInBytes is used for RPC marshaling of the ppBody buffer. If ppBody
is NULL, this value MUST be 0x00000000.

On input, ptb.old.pBodySize can be NULL, in which case it MUST be NULL on output.
Otherwise, on successful retrieval of a message, the server MUST set this value to the byte
length of the message body.

ptb.old.ulTitleBufferSizeInWCHARs is used for RPC marshaling of the ptb.old.ppTitle buffer. On

input, the client MUST set this value to the minimum of pulTitleBufferSizeInWCHARs and 250.
If ptb.old.ppTitle is NULL, this value MUST be 0x00000000. On output, the server MUST set
this value to the minimum of ulTitleBufferSizeInWCHARs and pulTitleBufferSizeInWCHARs.

On input, ptb.old.pulTitleBufferSizeInWCHARs indicates the Unicode character length of the
buffer contained in ppTitle. On output, the server MUST set this value to indicate the full
length of the message label associated with the message being retrieved.

On input, ptb.old.ppTitle can be NULL, in which case it MUST be NULL on output. Otherwise,

on successful retrieval of a message, prior to filling the buffer, the server MUST verify that the
pulTitleBufferSizeInWCHARs field indicates that the buffer is large enough to contain the
message label for the retrieved message.

On input, ptb.old.ppMsgExtension can be NULL, in which case it MUST be NULL on output.
Otherwise, on successful retrieval of a message, prior to filling the buffer, the server MUST
verify that the ptb.old.ulMsgExtensionBufferInBytes field indicates that the buffer is large

enough to contain the message extension array for the retrieved message.

On input, ptb.old.ulMsgExtensionBufferInBytes MUST be 0x00000000 if

ptb.old.ppMsgExtension is NULL. On output, the value of ptb.old.ulMsgExtensionBufferInBytes
MUST be the same as it was on input.

On input, ptb.old.pMsgExtensionSize can be NULL, in which case it MUST be NULL on output.
Otherwise, the server MUST return the full length of the retrieved message extension array in
ptb.old.pMsgExtensionSize.

84 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

On input, ptb.old.pUow can be NULL, in which case the Receive operation is not associated
with a transaction. Otherwise, ptb.old.pUow MUST contain a 16-byte transaction identifier

which has been enlisted by a prior call to R_QMEnlistTransaction or
R_QMEnlistInternalTransaction. On output, the value of ptb.old.pUow MUST be the same

as it was on input.

On input, ptb.old.ppSenderID can be NULL, in which case it MUST be NULL on output.
Otherwise, on successful retrieval of a message and prior to filling the buffer, the server MUST
verify that the ptb.old.uSenderIDLen field indicates that the buffer is large enough to contain
the sender ID buffer for the retrieved message.

On input, ptb.old.pulSenderIDLenProp can be NULL; otherwise, on output, the server MUST
return the full length of the sender ID buffer for the retrieved message in

ptb.old.pulSenderIDLenProp, or 0x00000000 if the value was not included in the retrieved
message.

On input, ptb.old.ppwcsProvName can be NULL, in which case it MUST be NULL on output.
Otherwise, prior to filling the buffer, the server MUST verify that the ptb.old.ulProvNameLen

field indicates that the buffer is large enough to contain the null-terminated CSP name string.
If the retrieved message does not include a CSP name buffer, the server MUST return

0x00000000 for ptb.old.pulAuthProvNameLenProp if the pulAuthProvNameLenProp pointer is
not NULL.

On input, ptb.old.pulAuthProvNameLenProp can be NULL, in which case it MUST be NULL on
output. Otherwise, the server MUST return the length of the CSP name buffer for the retrieved
message in ptb.old.pulAuthProvNameLenProp, or 0x00000000 if the value was not included in
the retrieved message.

On input, ptb.old.ppSenderCert can be NULL, in which case it MUST be NULL on output.

Otherwise, prior to filling the buffer, the server MUST verify that the ptb.old.ulSenderCertLen
field indicates that the buffer is large enough to contain the sender certificate buffer. If the
retrieved message does not include a sender certificate, the server MUST return 0x00000000
for ptb.old.pulSenderCertLenProp if the pulSenderCertLenProp pointer is not NULL.

On input, ptb.old.pulSenderCertLenProp can be NULL, in which case it MUST be NULL on
output. Otherwise, the server MUST return the length of the sender certificate buffer for the
retrieved message in ptb.old.pulSenderCertLenProp, or 0x00000000 if the value is not

included in the retrieved message.

On input, ptb.old.ppSymmKeys can be NULL, in which case it MUST be NULL on output.
Otherwise, prior to filling the buffer, the server MUST verify that the ptb.old.ulSymmKeysSize
field indicates that the buffer is large enough to contain the symmetric key buffer. If the
retrieved message does not include a symmetric key, the server MUST return 0x00000000 for
ptb.old.pulSymmKeysSizeProp if the pulSymmKeysSizeProp pointer is not NULL.

On input, ptb.old.pulSymmKeysSizeProp can be NULL, in which case it MUST be NULL on
output. Otherwise, the server MUST return the length of the symmetric key buffer for the
retrieved message in ptb.old.pulSymmKeysSizeProp or 0x00000000 if the value is not
included in the retrieved message.

On input, ptb.old.ppSignature can be NULL, in which case it MUST be NULL on output.
Otherwise, prior to filling the buffer, the server MUST verify that the ptb.old.ulSignatureSize
field indicates that the buffer is large enough to contain the signed hash buffer. If the

retrieved message does not include a signed hash, the server MUST return 0x00000000 for
ptb.old.pulSignatureSizeProp if the pulSignatureSizeProp pointer is not NULL.

85 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

On input, ptb.old.pulSignatureSizeProp can be NULL, in which case it MUST be NULL on
output. Otherwise, the server MUST return the length of the signed hash buffer for the

retrieved message in ptb.old.pulSignatureSizeProp, or 0x00000000 if the value is not included
in the retrieved message.

The following fields can be NULL, in which case the server MUST ignore them. On successful
retrieval of a message, the server MUST return the appropriate message property value into
each non-NULL field. See section 2.2.3.2 for definitions of these fields:

ptb.old.pClass

ptb.old.ppMessageID

ptb.old.ppCorrelationID

ptb.old.pSentTime

ptb.old.pArrivedTime

ptb.old.pPriority

ptb.old.pDelivery

ptb.old.pAcknowledge

ptb.old.pAuditing

ptb.old.pApplicationTag

ptb.old.pulRelativeTimeToQueue

ptb.old.pulRelativeTimeToLive

ptb.old.pTrace

ptb.old.pulPrivLevel

ptb.old.pAuthenticated

ptb.old.pulHashAlg

ptb.old.pulEncryptAlg

ptb.old.pulProvType

ptb.old.pulSenderIDType

ptb.old.ppSrcQMID

ptb.old.ppConnectorType

ptb.old.pulBodyType

ptb.old.pulVersion

ptb.pbFirstInXact

ptb.pbLastInXact

86 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

ptb.ppXactID

The following fields MUST be ignored by the server:

ptb.old.Send

ptb.old.CreateCursor

ptb.old.Receive.Asynchronous

ptb.old.ulAbsoluteTimeToQueue

ptb.old.ulRelativeTimeToLive

ptb.old.ulAuthLevel

ptb.old.bEncrypted

ptb.old.bAuthenticated

ptb.old.fDefaultProvider

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the

server MUST return a failure HRESULT,<73> <74> and the client MUST treat all failure
HRESULTs identically. Additionally, if a failure HRESULT is returned, the client MUST
disregard all out-parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE

(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

Determine if the input parameter values violate the constraints previously specified. If an invalid

parameter is detected, the server MUST take no further action and return a failure HRESULT.

If ptb.old.pUow is non-NULL:

Look up a Transaction ([MS-MQDMPR] section 3.1.1.14) ADM element instance in the

server's LocalQueueManager.TransactionCollection where ptb.old.pUow matches
Transaction.Identifier.

If no such Transaction ADM element instance exists, take no further action and return a

failure HRESULT.

Locate a RemoteQueueProxyHandle (section 3.1.1.5) ADM element instance in the server's

iRemoteQueueProxyHandleTable (section 3.1.1.4) where the Context attribute of the
RemoteQueueProxyHandle ADM element instance equals hQMContext.

If such a RemoteQueueProxyHandle ADM element instance exists:

Declare iLocatedRemoteQueueProxyHandle and set it to a reference to the located

RemoteQueueProxyHandle ADM element instance.

If ptb.old.pUow is non-NULL, take no further action and return a failure HRESULT.

%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf

87 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

If ptb.old.Receive.Cursor is not zero (0x00000000):

Locate a CursorProxy ADM element instance in

iLocatedRemoteQueueProxyHandle.CursorProxyCollection where the value of the

Handle attribute of the CursorProxy ADM element instance equals
ptb.old.Receive.Cursor.

If no such CursorProxy ADM element instance exists, take no further action and return a

failure HRESULT.

Declare iLocatedCursorProxy and set it to a reference to the located CursorProxy ADM

element instance.

Using iLocatedRemoteQueueProxyHandle.RemoteBindingHandle, invoke the

RemoteQMStartReceive method of the qm2qm RPC interface specified in [MS-MQQP]
section 3.1.4.1. Specify the following input values in the REMOTEREADDESC structure ([MS-
MQQP] section 2.2.2.1):

hRemoteQueue := iLocatedRemoteQueueProxyHandle.RemoteContext

hCursor := If ptb.old.Receive.Cursor is not zero (0x00000000),

iLocatedCursorProxy.RemoteCursorHandle; otherwise, zero (0x00000000).

ulAction := ptb.old.Receive.Action

ulTimeout := ptb.old.Receive.RequestTimeout

dwpQueue := iLocatedRemoteQueueProxyHandle.RemoteContext

dwRequestID := Create a DWORD value to uniquely identify this invocation of the

RemoteQMStartReceive method among any other simultaneous invocations occurring
between this RPC client (the Message Queuing (MSMQ): Queue Manager Client Protocol
server) and the Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
server. This DWORD value is used to correlate the call to RemoteQMStartReceive with
an associated call to RemoteQMEndReceive following.

Reserved := 0x00000000

eAckNack := RR_UNKNOWN (0x0000)

If RemoteQMStartReceive did not return MQ_OK (0x00000000), take no further action and

return the value returned by RemoteQMStartReceive.

Generate the Get Message Data Element From Buffer event ([MS-MQQB] section 3.1.7.10)

with the following argument:

iBuffer: MUST be set to REMOTEREADDESC.lpBuffer

Copy the contents of the returned rMessage into the ptb structure using the defined

translation rules.

Using iLocatedRemoteQueueProxyHandle.RemoteBindingHandle, invoke the

RemoteQMEndReceive method of the qm2qm RPC interface specified in [MS-MQQP] section
3.1.4.2. Specify the following parameter values:

pphContext := Set to the value returned from the pphContext out-parameter of

RemoteQMStartReceive previously invoked.

%5bMS-MQQP%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQP%5d.pdf

88 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

dwAck := If the process of converting the content of REMOTEREADDESC.lpBuffer to a

Message ([MS-MQDMPR] section 3.1.1.12) ADM element instance and then to ptb was

successful, specify RR_ACK (0x00000002); otherwise, specify RR_NACK (0x00000001).

Take no further action and return the result of RemoteQMEndReceive.

Else (hQMContext did not match a RemoteQueueProxyHandle ADM element instance):

Locate a LocalQueueContextHandle (section 3.1.1.3) ADM element instance in the server's

iLocalQueueContextHandleTable where the value of the Handle attribute of the
LocalQueueContextHandle ADM element instance equals hQueue.

If no such LocalQueueContextHandle ADM element instance exists, take no further action

and return a failure HRESULT.

Declare iLocalQueueContextHandle and set it to a reference to the located

LocalQueueContextHandle ADM element instance.

If the iLocalQueueContextHandle.OpenQueueDescriptorReference.AccessMode value is

SendAccess, take no further action and return a failure HRESULT.

If the iLocalQueueContextHandle.OpenQueueDescriptorReference.AccessMode value is

PeekAccess, confirm that ptb.old.Receive.Action is not MQ_ACTION_RECEIVE (0x00000000);
otherwise, return a failure HRESULT.

If ptb.old.Receive.Cursor is not zero (0x00000000):

Locate a Cursor ([MS-MQDMPR] section 3.2) ADM element instance in

iLocalQueueContextHandle.OpenQueueDescriptorReference.CursorCollection where
the value of the Handle attribute of the Cursor ADM element instance equals
ptb.old.Receive.Cursor.

If no such Cursor ADM element instance exists, take no further action and return a failure

HRESULT.

If ptb.old.Receive.Action is MQ_ACTION_RECEIVE (0x00000000):

Generate a Dequeue Message ([MS-MQDMPR] section 3.1.7.1.10) event with the following

argument values:

iQueueDesc := iLocalQueueContextHandle.OpenQueueDescriptorReference

iTimeout := ptb.old.Receive.RequestTimeout

iCursor := If ptb.old.Receive.Cursor is not zero, the Cursor ADM element instance

resolved preceding; otherwise, this optional argument is not specified.

iTransaction := If ptb.old.pUow is non-NULL, the Transaction ADM element instance

resolved preceding; otherwise, this optional argument is not specified.

iTag := Optional argument not specified.

iTwoPhaseRead := False

If the rStatus return value from the Dequeue Message event is not MQ_OK (0x00000000),

take no further action and return rStatus.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

89 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Copy the contents of the rMessage return value from the Dequeue Message event to the

ptb structure using the defined translation rules.

Take no further action and return MQ_OK (0x00000000).

Else, if ptb.old.Receive.Action is MQ_ACTION_PEEK_CURRENT (0x80000000):

Generate a Peek Message ([MS-MQDMPR] section 3.1.7.1.15) event with the following

argument values:

iQueueDesc := iLocalQueueContextHandle.OpenQueueDescriptorReference

iTimeout := ptb.old.Receive.RequestTimeout

iCursor := If ptb.old.Receive.Cursor is not zero, the Cursor ADM element instance

resolved preceding; otherwise, this optional argument is not specified.

If the rStatus return value from the Peek Message event is not MQ_OK (0x00000000), take

no further action and return rStatus.

Copy the contents of the rMessage return value from the Peek Message event to the ptb

structure using the defined translation rules.

Take no further action and return MQ_OK (0x00000000).

Else, if ptb.old.Receive.Action is MQ_ACTION_PEEK_NEXT (0x80000001):

Generate a Peek Next Message ([MS-MQDMPR] section 3.1.7.1.14) event with the following

argument values:

iQueueDesc := iLocalQueueContextHandle.OpenQueueDescriptorReference

iTimeout := ptb.old.Receive.RequestTimeout

iCursor := If ptb.old.Receive.Cursor is not zero, the Cursor ADM element instance

resolved preceding; otherwise, this optional argument is not specified.

If the rStatus return value from the Peek Next Message event is not MQ_OK (0x00000000),

take no further action and return rStatus.

Copy the contents of the rMessage return value from the Peek Next Message event to the

ptb structure using the defined translation rules.

3.1.5.4 rpc_ACCreateCursorEx (Opnum 3)

A client calls rpc_ACCreateCursorEx to create a cursor for use when peeking and receiving from a

message queue.

HRESULT rpc_ACCreateCursorEx(

 [in] RPC_QUEUE_HANDLE hQueue,

 [in, out] struct CACCreateRemoteCursor* pcc

);

hQueue: MUST be an RPC_QUEUE_HANDLE (section 2.2.1.1.2) acquired from the phQueue

parameter of rpc_QMOpenQueueInternal (section 3.1.4.17). Prior to this method being
invoked, the queue MUST NOT have been deleted, and the queue handle MUST NOT have
been closed.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

90 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

pcc: A pointer to a CACCreateRemoteCursor (section 2.2.3.4) structure. MUST NOT be NULL.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the

server MUST return a failure HRESULT,<75> and the client MUST treat all failure HRESULTs
identically. Additionally, if a failure HRESULT is returned, the client MUST disregard all out-

parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort (section 3.1.4.24) method when IP_HANDSHAKE (0x00000000) or
IPX_HANDSHAKE (0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server SHOULD:<76>

Determine whether the input parameter values violate the constraints previously specified. If an

invalid parameter is detected, the server MUST take no further action and return a failure
HRESULT.

Locate a LocalQueueContextHandle (section 3.1.1.3) ADM element instance in the server's

iLocalQueueContextHandleTable (section 3.1.1.2) where the value of the Handle attribute of the

LocalQueueContextHandle ADM element instance equals hQueue.

If such a LocalQueueContextHandle ADM element instance exists:

Declare iLocatedLocalQueueContextHandle and set it to a reference to the located

LocalQueueContextHandle ADM element instance.

Generate an Open Cursor ([MS-MQDMPR] section 3.1.7.1.1) event with the following

argument value:

iQueueDesc := iLocatedLocalQueueContextHandle.OpenQueueDescriptorReference.

The Open Cursor event returns rCursor, a reference to a Cursor ADM element instance.

Set pcc.hCursor to rCursor.Handle.

Take no further action and return MQ_OK (0x00000000).

Else:

Locate a RemoteQueueProxyHandle (section 3.1.1.5) ADM element instance in the server's

iRemoteQueueProxyHandleTable (section 3.1.1.4) where the value of the Handle attribute of
the RemoteQueueProxyHandle ADM element instance equals hQueue.

If no such RemoteQueueProxyHandle ADM element instance exists, take no further action

and return a failure HRESULT.

Declare iLocatedRemoteQueueProxyHandle and set it to a reference to the located

RemoteQueueProxyHandle ADM element instance.

Bind to the remote server indicated by iLocatedRemoteQueueProxyHandle.PathName and

invoke the R_QMCreateRemoteCursor (Opnum 4) (section 3.1.4.4) method. Specify the
following parameter values:

hQueue := iLocatedRemoteQueueProxyHandle.RemoteContext.

%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

91 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The phCursor out-parameter.

If the R_QMCreateRemoteCursor (Opnum 4) method fails for any reason, return a failure

HRESULT.

Declare iNewCursorProxy as a CursorProxy ADM element instance and set its attributes using

the following values:

Identifier := A new DWORD value unique to

iLocatedRemoteQueueProxyHandle.CursorProxyCollection.

RemoteCursorHandle := phCursor.

IsRemoteCursorHandleInitialized := True.

Add iNewCursorProxy to iLocatedRemoteQueueProxyHandle.CursorProxyCollection.

Set pcc.hCursor := iNewCursorProxy.Handle.

Return MQ_OK (0x00000000).

3.1.6 Timer Events

None.

3.1.7 Other Local Events

3.1.7.1 RPC_QUEUE_HANDLE Context Handle Rundown Routine

This event occurs on rundown of a context handle of type RPC_QUEUE_HANDLE (section

2.2.1.1.2), as specified in [C706] section 5.1.6.

When processing this event, the server MUST:

Locate a LocalQueueContextHandle (section 3.1.1.3) ADM element instance in the server's

iLocalQueueContextHandleTable (section 3.1.1.2) where the value of the Handle attribute of the
LocalQueueContextHandle ADM element instance equals hQueue.

If such a LocalQueueContextHandle ADM element instance exists:

Declare iLocatedLocalQueueContextHandle and set it to a reference to the located

LocalQueueContextHandle ADM element instance.

Generate a Close Queue ([MS-MQDMPR] section 3.1.7.1.6) event with the following argument

value:

iQueueDesc := iLocatedLocalQueueContextHandle.OpenQueueDescriptorReference

Delete iLocatedLocalQueueContextHandle from iLocalQueueContextHandleTable.

Take no further action and return MQ_OK (0x00000000).

Else:

Locate a RemoteQueueProxyHandle (section 3.1.1.5) ADM element instance in the server's

iRemoteQueueProxyHandleTable (section 3.1.1.4) where the value of the Handle attribute of

the RemoteQueueProxyHandle ADM element instance equals hQueue.

%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

92 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

If no such RemoteQueueProxyHandle ADM element instance exists, take no further action.

Declare iLocatedRemoteQueueProxyHandle and set it to a reference to the located

RemoteQueueProxyHandle ADM element instance.

Invoke the RemoteQMCloseQueue method of the qm2qm RPC interface as specified in [MS-

MQQP] section 3.1.4.4 using the binding handle in
iLocatedRemoteQueueProxyHandle.RemoteBindingHandle and the following parameter
value:

pphContext := iLocatedRemoteQueueProxyHandle.RemoteHandle

Upon completion of RemoteQMCloseQueue, successful or not, dispose of the

iLocatedRemoteQueueProxyHandle.RemoteBindingHandle as appropriate.

Delete iLocatedRemoteQueueProxyHandle from iRemoteQueueProxyHandleTable.

3.1.7.2 PCTX_OPENREMOTE_HANDLE_TYPE Context Handle Rundown Routine

This event occurs on rundown of a context handle of type PCTX_OPENREMOTE_HANDLE_TYPE,

as specified in [C706] section 5.1.6.

When processing this event, the server MUST:

Execute the steps defined for the method R_QMCloseRemoteQueueContext.

3.1.7.3 RPC_INT_XACT_HANDLE Context Handle Rundown Routine

This event occurs on rundown of a context handle of type RPC_INT_XACT_HANDLE, as specified
in [C706] section 5.1.6.

When processing this event, the server MUST:

Execute the steps defined for the method R_QMAbortTransaction.

3.2 qmcomm and qmcomm2 Client Details

3.2.1 Abstract Data Model

The client MUST maintain instances of the following ADM elements:

LicenceGuid (section 3.2.1.1)

OpenQueueContext (section 3.2.1.2)

CursorIdentifier (section 3.2.1.3)

3.2.1.1 LicenceGuid

A GUID that serves as an identifier for the client's computer for the purpose of enabling the server

to uniquely identify the client's computer. This value MUST be generated on first access and MUST
remain unchanged thereafter. The ADM element instance generated on first access is referred to as
iLicenceGuid.

%5bMS-MQQP%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-MQQP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

93 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.2.1.2 OpenQueueContext

The attributes of this ADM element represent a queue that has been opened for message operations
by the client.

This ADM element contains the following attributes:

Handle: An RPC_QUEUE_HANDLE context handle. This value is obtained from the phQueue
out-parameter of rpc_QMOpenQueueInternal.

Context: A DWORD. This value is obtained form the pdwQMContext out-parameter of
rpc_QMOpenQueueInternal.

When the client successfully invokes rpc_QMOpenQueueInternal, the two output
parameters MUST be maintained by the client in association with one another; and the

OpenQueueContext ADM element provides this association.

The client maintains an instance of the OpenQueueContext ADM element associating the queue
opened for message operations, which is referred to as iOpenQueueContext.

3.2.1.3 CursorIdentifier

A DWORD value representing an opened cursor. This ADM element instance is obtained by

successfully invoking the rpc_ACCreateCursorEx (section 3.1.5.4) method with the hQueue
parameter set to iOpenQueueContext.Handle.

3.2.2 Timers

No protocol timers are required beyond those used internally by RPC to implement resiliency to
network outages. For more information, see [MS-RPCE].

3.2.3 Initialization

The client MUST create an RPC connection to the remote computer, using the details specified in

section 2.1.

3.2.4 Message Processing Events and Sequencing Rules

The operation of the protocol is initiated and subsequently driven by the following higher-layer
triggered events:

An MSMQ application creates a local private queue.

An MSMQ application deletes a local private queue.

An MSMQ application updates the security configuration of a local private queue.

An MSMQ application retrieves the security configuration of a local private queue.

An MSMQ application updates the properties of a local private queue.

An MSMQ application retrieves the properties of a local private queue.

An MSMQ application opens a queue.

An MSMQ application creates a cursor.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf

94 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

An MSMQ application purges a queue.

An MSMQ application sends a message.

An MSMQ application peeks a message.

An MSMQ application receives a message.

An MSMQ application sends or receives a message in the context of an external transaction.

An MSMQ application sends or receives messages in the context of an internal transaction.

An MSMQ application peeks a message using a cursor.

An MSMQ application requests a format name for a queue path name.

An MSMQ application requests a format name for a queue context handle.

An MSMQ application closes a queue handle.

An MSMQ application closes a cursor.

Prior to performing any operations over this protocol, the client MUST first construct an RPC binding

handle to the server, as specified in [C706] section 2.3. The client can call the
R_QMGetRTQMServerPort method using the RPC handle described above. This method returns an
RPC port number with which subsequent method calls to this interface can be invoked. The client
can construct a new RPC binding handle using the RPC port number acquired from
R_QMGetRTQMServerPort and use the new binding handle for subsequent method invocations.

The client MUST call the R_QMQueryQMRegistryInternal method to retrieve various string values

from the supporting server as specified in section 3.1.4.23. The strings returned by this call are
required as input to other methods.

3.2.4.1 Creating a Local Private Queue

The MSMQ application MUST supply a queue name and can supply a SECURITY_DESCRIPTOR and
queue properties for the new queue. Creating a new local private queue consists of the following
operations:

The client MUST call R_QMCreateObjectInternal, supplying the following parameter values:

dwObjectType MUST 0x00000001.

 lpwcsPathName MUST contain the null-terminated queue name string.

An initial SECURITY_DESCRIPTOR can be specified for the new queue using the

pSecurityDescriptor and SDSize parameters as specified in section 3.1.4.5.

Initial property values can be supplied for the new queue using the cp, aProp, and apVar

parameters as specified in section 3.1.4.5. The property identifiers in aProp MUST be in the
table in section 3.1.1.12 and MUST be marked as applicable for a Create operation. To not

specify any initial property values for the new queue, yet meet the requirement of specifying
at least one property value, the client can supply the queue property PROPID_Q_PATHNAME
using the same value specified for lpwcsPathName. MSMQ queue property values are defined

in [MS-MQMQ] section 2.3.1.

To receive or send messages to the new queue, the client application MUST first open the queue,

as specified in section 3.2.4.7. Opening a queue requires a format name, which is either

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89828
%5bMS-MQMQ%5d.pdf

95 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

constructed by the MSMQ application or acquired from the server, as specified in section
3.2.4.13.

3.2.4.2 Deleting a Local Private Queue

The MSMQ application MUST supply a format name for the local private queue to be deleted.

The given format name MUST be of the "private" or "direct" variety, as specified in [MS-MQMQ]

section 2.1.

The client MUST call R_QMDeleteObject, supplying the following parameter value:

A pointer to an OBJECT_FORMAT structure containing the format name of the queue to be

deleted, as specified in section 3.1.4.8.

3.2.4.3 Updating Local Private Queue Security

The MSMQ application MUST supply a format name for a local private queue for which the security

configuration is to be updated, a new SECURITY_DESCRIPTOR for the queue, and a
SECURITY_DESCRIPTOR value indicating which portions of the SECURITY_DESCRIPTOR are to be
applied to the queue. SECURITY_DESCRIPTOR is specified in [MS-DTYP] section 2.4.6 and

SECURITY_INFORMATION is specified in [MS-MQMQ] section 2.2.3.

The given format name MUST be of the "private" or "direct" variety, as specified in [MS-MQMQ]

section 2.1.

The given SECURITY_DESCRIPTOR MUST be in self-relative form.

The client MUST call R_QMSetObjectSecurityInternal, supplying the following parameter

values:

A pointer to an OBJECT_FORMAT structure containing the format name of the queue, as

specified in section 3.1.4.6.

The SecurityInformation, SDSize, and pSecurityDescriptor parameters MUST be supplied as

specified in section 3.1.4.6.

3.2.4.4 Retrieving Local Private Queue Security

The MSMQ application MUST supply a format name for a local private queue and a
SECURITY_INFORMATION value indicating which portions of the security configuration to retrieve.
The client can provide a buffer into which the server returns a SECURITY_DESCRIPTOR.
SECURITY_DESCRIPTOR is specified in [MS-DTYP] section 2.4.6 and SECURITY_INFORMATION as
specified in [MS-MQMQ] section 2.1.

The given format name MUST be of the "private" or "direct" variety, as specified in [MS-MQMQ]

section 2.1.2.

The client MUST call R_QMGetObjectSecurityInternal, specifying the following parameter

values:

A pointer to an OBJECT_FORMAT structure containing the format name of the queue, as

specified in section 3.1.4.7.

pSecurityDescriptor can be NULL, in which case nLength MUST be NULL. If pSecurityDescriptor

is not NULL, it points to an array of bytes and nLength MUST specify the byte length of the
array.

%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

96 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

lpnLengthNeeded MUST point to a DWORD that receives the actual byte length of the

requested SECURITY_DESCRIPTOR.

If the server returns MQ_OK (0x00000000), the buffer pointed to by pSecurityDescriptor contains

the requested SECURITY_DESCRIPTOR. The length of the SECURITY_DESCRIPTOR is pointed to
by lpnLengthNeeded.

If the server returns MQ_ERROR_SECURITY_DESCRIPTOR_TOO_SMALL (0xc00e0023),

lpnLengthNeeded points to a DWORD containing the byte length required to contain the
requested SECURITY_DESCRIPTOR. A subsequent call to R_QMGetObjectSecurityInternal
using a buffer of the byte length indicated by lpnLengthNeeded can succeed.

3.2.4.5 Updating Local Private Queue Properties

The MSMQ application MUST supply a format name for a local private queue for which property
values are to be updated and one or more new queue property values for the indicated queue.
MSMQ queue property values are defined in [MS-MQMQ] section 2.3.1.

The given format name MUST be of the "private" or "direct" variety, as specified in [MS-MQMQ]

section 2.1.

The client MUST call R_QMSetObjectProperties, supplying the following parameter values:

A pointer to an OBJECT_FORMAT structure containing the format name of the queue, as

specified in section 3.1.4.10.

Updated property values for the queue are provided using the cp, aProp, and apVar

parameters as described in section 3.1.4.10. The property identifiers in aProp MUST be in the

table in section 3.1.1.12 and MUST be marked as applicable for a Set operation.

3.2.4.6 Retrieving Local Private Queue Properties

The MSMQ application MUST supply a format name for a local private queue from which to retrieve
property values and a set of property identifiers for which values are to be retrieved. Additionally,

the client MUST provide a set of PROPVARIANTs into which the server will place the requested

property values. MSMQ queue property values and the PROPVARIANT structure are defined in
[MS-MQMQ] section 2.2.13.2.

The given format name MUST be of the "private" or "direct" variety, as specified in [MS-MQMQ]

section 2.1.

The client MUST call R_QMGetObjectProperties, supplying the following parameter values:

A pointer to an OBJECT_FORMAT structure containing the format name of the queue, as

specified in section 3.1.4.9.

cp MUST contain the number of properties to be retrieved.

aProp MUST contain an array of queue property identifiers requested by the MSMQ

application. The array MUST contain cp elements. The property identifiers in aProp MUST be in

the table in section 3.1.1.12 and MUST be marked as applicable for a Get operation.

apVar MUST contain an array of PROPVARIANT structures to be populated by the server.

The array MUST contain cp elements.

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

97 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.2.4.7 Opening a Queue

To open a queue, the client application is expected to provide the following inputs:

FormatName: A string containing a format name.

AccessMode: A DWORD value corresponding to the values defined for the dwDesiredAccess

parameter of the rpc_QMOpenQueueInternal method.

ShareMode: A DWORD value corresponding to the values defined for the dwShareMode

parameter of the rpc_QMOpenQueueInternal method.

The client MUST execute the following steps:

The client MUST call the rpc_QMOpenQueueInternal method, supplying the following

parameter values:

pQueueFormat := FormatName.

dwDesiredAccess := AccessMode.

dwShareMode := ShareMode.

hRemoteQueue := 0x00000000.

lplpRemoteQueueName := in/out parameter:

In: NULL.

Out: Retrieve this value from the server.

dwpQueue := NULL.

pLicGuid :=iLicenceGuid.

lpClientName := This client's computer name.

pdwQMContext := Output parameter. Retrieve this value from the server.

phQueue := Output parameter. Retrieve this value from the server.

dwRemoteProtocol := 0x00000000.

dwpRemoteContext := 0x00000000.

If MQ_OK (0x00000000) is returned, and the out-parameter value for lplpRemoteQueueName is

NULL:

Assign values to the iOpenQueueContext attributes as follows:

iOpenQueueContext.Handle := phQueue

iOpenQueueContext.Context := pdwQMContext

Take no further action. The queue has been successfully opened. Use iOpenQueueContext for

subsequent message operations against the queue.

Else, if MQ_OK (0x00000000) is returned, and the out-parameter value for

lplpRemoteQueueName is non-NULL:

%5bMS-DTYP%5d.pdf

98 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Using the RPC binding procedure as specified in section 3.2.4, bind to the remote server

indicated by the path name contained in lplpRemoteQueueName.

At the remote server, invoke the R_QMOpenRemoteQueue method, supplying the following

parameter values:

pphContext := Output parameter. Retrieve this value from the server.

pdwContext := Output parameter. Retrieve this value from the server.

pQueueFormat := FormatName.

dwCallingProcessID := 0x00000000. (Details of this parameter are described in section

3.1.4.2.)

dwDesiredAccess := AccessMode.

dwShareMode := ShareMode.

pLicGuid := iLicenceGuid.

dwMQS := A value indicating the client operating system, as defined in section 3.1.4.2.

dwpQueue := Output parameter. Retrieve this value from the server.

phQueue := Output parameter. Retrieve this value from the server.

At the original server, invoke the rpc_QMOpenQueueInternal method once more,

specifying the following parameter values:

pQueueFormat := FormatName.

dwDesiredAccess := AccessMode.

dwShareMode := ShareMode.

hRemoteQueue := phQueue (out-parameter value obtained from the

R_QMOpenRemoteQueue method).

lplpRemoteQueueName := in/out parameter:

In: NULL.

Out: MUST be ignored.

dwpQueue := dwpQueue (out-parameter value obtained from the

R_QMOpenRemoteQueue method).

pLicGuid := iLicenceGuid.

lpClientName := This client's computer name.

pdwQMContext := Output parameter. Retrieve this value from the server.

phQueue := Output parameter. Retrieve this value from the server.

dwRemoteProtocol := 0x00000000.

99 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

dwpRemoteContext := pdwContext (out-parameter value obtained from the

R_QMOpenRemoteQueue method).

At the remote server where the R_QMOpenRemoteQueue method was invoked, invoke the

R_QMCloseRemoteQueueContext method with the following parameter value:

pphContext := pphContext (out-parameter value obtained from the

R_QMOpenRemoteQueue method).

Assign values to the iOpenQueueContext attributes as follows:

iOpenQueueContext.Handle := phQueue (out-parameter value obtained from the last call

to the rpc_QMOpenQueueInternal method).

iOpenQueueContext.Context := pdwQMContext (out-parameter value obtained from the

last call to the rpc_QMOpenQueueInternal method).

Take no further action. The queue has been successfully opened. Use iOpenQueueContext for

subsequent message operations against the queue.

Else, or if any of the preceding method invocations failed:

The queue could not be opened.

3.2.4.8 Creating a Cursor

The client MUST execute the following steps:

Invoke the rpc_ACCreateCursorEx method with the following parameter values:

hQueue := iOpenQueueContext.Handle

pcc := In/Out structure. The member input values are ignored by the server. Retrieve the

output values from the server.

If the rpc_ACCreateCursorEx method returns a failure HRESULT, the cursor cannot be

created. Take no further action.

Else, if the rpc_ACCreateCursorEx method returns MQ_OK (0x00000000):

Store the CursorIdentifier (section 3.2.1.3) ADM element instance returned by pcc.hCursor

for subsequent operations on the cursor.

Take no further action. The cursor was created successfully.

Else, if the rpc_ACCreateCursorEx method returns MQ_INFORMATION_REMOTE_OPERATION

(0x400E03E8):

Invoke the R_QMGetRemoteQueueName method with the following parameter values:

pQueue := pcc.cli_pQMQueue (out-parameter value from the rpc_ACCreateCursorEx

method)

lplpRemoteQueueName := in/out parameter:

In: NULL.

Out: Retrieve this value from the server.

100 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Using the RPC binding procedure as specified in section 3.2.4, bind to the remote server

indicated by the path name contained in lplpRemoteQueueName.

At the remote server, invoke the R_QMCreateRemoteCursor method, supplying the

following parameter values:

hQueue := pcc.srv_hACQueue (out-parameter value from the rpc_ACCreateCursorEx

method)

phCursor := Retrieve this out-parameter value from the server.

At the original server (where the rpc_ACCreateCursorEx method was invoked), invoke the

rpc_ACSetCursorProperties method with the following parameter values:

hProxy := iOpenQueueContext.Handle

hCursor := pcc.hCursor (out-parameter value from the rpc_ACCreateCursorEx method)

hRemoteCursor := phCursor (out-parameter value from the R_QMCreateRemoteCursor

method)

If any of the R_QMGetRemoteQueueName, R_QMCreateRemoteCursor, or

rpc_ACSetCursorProperties method invocations fails for any reason:

Invoke the rpc_ACCloseCursor method with the following parameter values:

hQueue := iOpenQueueContext.Handle

hCursor := pcc.hCursor (out-parameter value from the rpc_ACCreateCursorEx

method)

Take no further action. The cursor cannot be created.

Else:

Store the CursorIdentifier ADM element instance returned by pcc.hCursor for

subsequent operations on the cursor.

The cursor was created successfully.

3.2.4.9 Purging a Queue

The client MUST execute the following steps:

Invoke the rpc_ACPurgeQueue method with the following parameter value:

hQueue := iOpenQueueContext.Handle

3.2.4.10 Sending a Message

To perform the send operation in the context of a transaction, the client first MUST call

R_QMGetTmWhereabouts to obtain transaction manager whereabouts and then enlist the
transaction by calling R_QMEnlistTransaction or R_QMEnlistInternalTransaction, as described
in sections 3.1.4.13 and 3.1.4.14.

The client MUST execute the following steps:

Invoke the rpc_ACSendMessageEx method with the following parameter values:

101 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

hQueue := iOpenQueueContext.Handle

ptb := CACTransferBufferV2 structure:

ptb.old.uTransferType := CACTB_SEND (0x00000000)

ptb.old.pUow := A transaction identifier, or NULL.

The remainder of the fields MUST be populated according to the limitations and definitions

in section 3.1.5.2.

pMessageID := A 20-byte buffer to receive the message identifier, or NULL.

3.2.4.11 Peeking a Message

The client MUST execute the following steps:

Invoke the rpc_ACReceiveMessageEx method with the following parameter values:

hQMContext := iOpenQueueContext.Context

ptb := CACTransferBufferV2 structure:

ptb.old.uTransferType := CACTB_RECEIVE (0x00000001)

ptb.old.Receive.Action := MQ_ACTION_PEEK_CURRENT (0x80000000); or, if a

CursorIdentifier (section 3.2.1.3) ADM element instance is provided for
ptb.old.Receive.Cursor, MQ_ACTION_PEEK_NEXT (0x80000001) is also acceptable. The
behavior for these values is described in section 3.1.5.3.

The remainder of the fields MUST be populated according to the limitations and definitions

in section 3.1.5.3.

3.2.4.12 Receiving a Message

To perform the receive operation in the context of a transaction, the client first MUST call the
R_QMGetTmWhereabouts method to obtain transaction manager whereabouts and then enlist the
transaction by calling the R_QMEnlistTransaction method or the

R_QMEnlistInternalTransaction method, as described in sections 3.1.4.13 and 3.1.4.14.

The client MUST execute the following steps:

Invoke the rpc_ACReceiveMessageEx method with the following parameter values:

hQMContext := iOpenQueueContext.Context

ptb := CACTransferBufferV2 structure:

ptb.old.uTransferType := CACTB_RECEIVE (0x00000001)

ptb.old.pUow := A transaction identifier, or NULL.

ptb.old.Receive.Action := MQ_ACTION_RECEIVE (0x00000000)

The remainder of the fields MUST be populated according to the limitations and definitions

in section 3.1.5.3.

102 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.2.4.13 Retrieving a Format Name for a Queue Path Name

The MSMQ application MUST supply a queue path for which a format name is to be retrieved by the
server.

The client MUST call R_QMObjectPathToObjectFormat (section 3.1.4.11), supplying the

following parameter values:

lpwcsPathName MUST contain a path name.

pObjectFormat MUST point to an QUEUE_FORMAT structure to be populated by the server.

The QUEUE_FORMAT structure is specified in [MS-MQMQ] section 2.2.7.

3.2.4.14 Retrieving a Format Name for a Queue Context Handle

The client application is required to provide a buffer into which the format name string is to be
placed.

The client MUST execute the following steps:

Invoke the rpc_ACHandleToFormatName method with the following parameter values:

hQueue := iOpenQueueContext.Handle

lpwcsFormatName := A Unicode character array into which the server copies a format name,

or NULL.

dwFormatNameRPCBufferLen := The length of the lpwcsFormatName buffer; or, if

lpwcsFormatName is NULL, 0x00000000.

pdwLength := The length of the lpwcsFormatName buffer; or, if lpwcsFormatName is NULL,

0x00000000. In the event that the buffer provided for the lpwcsFormatName parameter is not
large enough to contain the resulting format name, the server sets the value of this parameter
to the length of the entire format name.

If the rpc_ACHandleToFormatName method returns MQ_OK (0x00000000), lpwcsFormatName

contains a null-terminated format name.

Else, if

MQ_ERROR_FORMATNAME_BUFFER_TOO_SMALL (0xc00e001f) is returned, the server could not
copy the entire format name into the buffer provided by the lpwcsFormatName parameter. The
pdwLength out-parameter contains the length of the full format name including the terminating
null character, in Unicode characters. Repeat the call to the rpc_ACHandleToFormatName
method with a sufficiently large lpwcsFormatName buffer to retrieve the entire format name
result.

3.2.4.15 Closing a Queue

Close a queue by invoking the rpc_ACCloseHandle method with the phQueue parameter set to

iOpenQueueContext.Handle.

3.2.4.16 Closing a Cursor

Close a cursor by invoking the rpc_ACCloseCursor method specifying the following parameter

values:

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

103 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

hQueue := iOpenQueueContext.Handle

hCursor := The CursorIdentifier ADM element instance previously obtained in section 3.2.4.8.

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

104 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4 Protocol Examples

The following sections describe several operations as used in common scenarios to illustrate the
function of the Message Queuing (MSMQ): Queue Manager Client Protocol.

4.1 Application Opening and Closing a Local Queue Example

The following sequence diagram illustrates an application interacting with a supporting server to
open a queue handle for a queue located at the supporting server.

Figure 2: Queue opening

1. The application begins the RPC session by invoking R_QMGetRTQMServerPort to query the
RPC port number for subsequent method invocations.

2. The application invokes rpc_QMOpenQueueInternal, specifying a format name identifying the
queue to open.

3. The Supporting server determines that the queue identified by the format name is located locally.
A local queue handle is returned. lplpRemoteQueueName is NULL, to indicate that a remote
queue open sequence (demonstrated in section 4.2) is not necessary.

%5bMS-GLOS%5d.pdf

105 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4. The application performs operations utilizing the local queue handle, such as send, receive, peek,
or purge.

5. The application closes the local queue handle when it is no longer required.

4.2 Application Opening and Closing a Remote Queue Example

The following sequence diagram illustrates an application interacting with a supporting server to
create a queue handle for a queue located at a remote queue manager.

Figure 3: Creating a queue handle

106 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1. The application invokes the rpc_QMOpenQueueInternal method, providing a format name for
a queue to open. NULL is specified for hRemoteQueue.

2. The supporting server determines that the queue identified by the format name is a remote
queue. A path name for the remote queue is returned via lplpRemoteQueueName. All returned

handles are NULL.

3. The application uses the path name returned by the rpc_QMOpenQueueInternal method to
determine the computer name of the remote queue manager, as specified in [MS-MQMQ] section
2.1.1. The application then establishes an RPC connection with the remote queue manager and
begins the session by invoking the R_QMGetRTQMServerPort method.

4. The remote queue manager returns the RPC port number requested by the application.

5. The application invokes the R_QMOpenRemoteQueue method at the remote queue manager,

using the RPC port returned by the R_QMGetRTQMServerPort method and specifying the
format name of the queue to be opened.

6. The remote queue manager opens the requested queue and returns a context handle and an

OpenQueueDescriptor ADM element instance with its Handle attribute set to the application.

7. The application invokes the rpc_QMOpenQueueInternal method on the supporting server once
again. For this invocation, the client provides the value of the Handle attribute of the

OpenQueueDescriptor ADM element instance returned from the R_QMOpenRemoteQueue
method.

8. The supporting server binds to the remote queue manager and utilizes the qm2qm RPC protocol,
as defined by [MS-MQQP], to create a remote read session. The client passes the value of the
Handle attribute of the OpenQueueDescriptor ADM element instance returned at step 6, which
the server uses to correlate the requests.

9. The qm2qm protocol exchange between the supporting server and the remote queue manager

produces a remote read session handle, as specified in [MS-MQQP].

10.The supporting server internally associates the qm2qm session handle with a new local queue

handle and returns the local queue handle to the application.

11.The application, having successfully acquired a local queue handle, closes the intermediate
context handle using the R_QMCloseRemoteQueueContext method.

12.The application utilizes the local queue handle to execute remote read message operations via
the qmcomm2 interface. The supporting server uses the remote read session handle to contact

the remote queue manager as necessary to carry out the message operations. This process is
defined by [MS-MQQP].

13.The application is finished utilizing the local queue handle and closes it with a call to the
rpc_ACCloseHandle method.

14.The supporting server closes the remote read session handle (via the qm2qm protocol, as
specified in [MS-MQQP]) that was associated with the local queue handle passed by the

application at step 13. Note that the supporting server invokes the qm2qm protocol in parallel

and does not block the rpc_ACCloseHandle method invocation while the session handle is being
closed.

%5bMS-MQMQ%5d.pdf
%5bMS-MQQP%5d.pdf

107 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4.3 Application Creating and Closing a Local Cursor Example

The following sequence diagram illustrates an application interacting with a supporting server to
create and close a cursor for a queue located at the supporting server.

Figure 4: Creating and closing a local cursor

1. The application creates a local cursor using the qmcomm2 interface.

2. The application utilizes the local cursor to perform messaging operations.

3. The application closes the cursor via the rpc_ACCloseCursor method.

4.4 Application Creating and Closing a Remote Cursor Example

The following sequence diagram illustrates an application interacting with a supporting server to

create a cursor for a queue located at a remote queue manager.<77>

108 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Figure 5: Creating and closing a remote cursor

1. The application begins the process of creating a cursor by calling the rpc_ACCreateCursorEx
(Opnum 3) (section 3.1.5.4) method of the qmcomm2 interface. A queue handle is specified,
which identifies the queue with which to associate the cursor.

2. The supporting server, having determined that the queue is located remotely, returns the
following information to the client:

1. A new local CursorProxy (section 3.1.1.6) ADM element instance with its Handle attribute set.

2. Queue context identifiers with meaning to the supporting server and remote queue manager.

3. A special return code: MQ_INFORMATION_REMOTE_OPERATION (0x400e03e8).

3. The application detects the special return code MQ_INFORMATION_REMOTE_OPERATION
(0x400e03e8), which indicates that the cursor must be created at a remote queue manager. In
order to bind to the remote queue manager, the application must determine the computer name

109 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

of the remote queue manager. The application invokes the R_QMGetRemoteQueueName
(section 3.1.4.1) method using the context identifier described at step 2.2.

4. The supporting server returns the path name for the remote queue.

5. The application determines the remote queue manager computer name using the path name

returned at step 4. An RPC binding is established, and port number is queried via the
R_QMGetRTQMServerPort (section 3.1.4.24) method. The application then invokes the
R_QMCreateRemoteCursor (section 3.1.4.4) method at the remote queue manager,
specifying the context identifier returned at step 2.2.

6. The remote queue manager creates and returns a remote cursor identifier to the application.

7. The application invokes the rpc_ACSetCursorProperties (section 3.1.4.20) method,
specifying the original context handle from step 1, the value of the Handle attribute of the

CursorProxy ADM element instance for the local cursor from step 3.1, and the value of the
Handle attribute of the Cursor ([MS-MQDMPR] section 3.2) ADM element instance for the
remote cursor from step 6. The supporting server associates these values for future reference.

8. The application can now utilize the value of the Handle attribute of the CursorProxy ADM
element instance returned at step 2.1 to perform messaging operations via the qmcomm2
interface. The supporting server delegates the operations to the remote queue manager via the

qm2qm interface, as specified in [MS-MQQP].

9. The application closes the CursorProxy ADM element instance.

10.The supporting server closes the remote cursor created at step 7 via the qm2qm interface, as
specified in [MS-MQQP]. Note that this is performed in parallel and need not block the return
from the rpc_ACCloseCursor (section 3.1.4.19) method invocation.

4.5 Application Internal Transaction Example

The following sequence diagram illustrates an application interacting with a supporting server to
enlist the supporting server's resource manager (RM) in an internal transaction, perform operations

in the scope of the internal transaction, and finally commit the transaction.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQQP%5d.pdf

110 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Figure 6: Using server resource manager for internal transaction

1. Prior to invoking R_QMEnlistInternalTransaction (section 3.1.4.14), the application MUST

create a new unique transactional unit of work identifier XACTUOW ([MS-MQMQ] section
2.2.18.1.8).<78>

2. The application invokes R_QMEnlistInternalTransaction to create an internal transaction
handle for the XACTUOW.

3. The application utilizes the XACTUOW identifier created at step 1 to perform operations in the
scope of the transaction via the qmcomm2 interface.

4. The application finally commits the transaction by calling R_QMCommitTransaction (section

3.1.4.15), specifying the internal transaction handle obtained at step 2.

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

111 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

5 Security

The following sections describe security considerations for implementers of the Message Queuing
(MSMQ): Queue Manager Client Protocol.

5.1 Security Considerations for Implementers

Clients MAY invoke methods of this interface at the "none" authentication level as defined by [MS-
RPCE]. Server implementations SHOULD be designed with careful consideration given to the security
implications of accepting method calls from unauthenticated clients. Server implementations

SHOULD reject methods invoked by unauthenticated clients by returning RPC_S_ACCESS_DENIED
(0x00000005).

The R_QMGetRTQMServerPort method is an exception to the above consideration since clients
can invoke R_QMGetRTQMServerPort prior to configuring security for the RPC binding. For this
reason, server implementations MUST NOT restrict access to the R_QMGetRTQMServerPort
method.

5.2 Index of Security Parameters

None.

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

112 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided below, where "ms-dtyp.idl" is the IDL found in
[MS-DTYP] Appendix A (section 5), "ms-mqrr.idl" is the IDL found in [MS-MQRR] Appendix A
(section 6), and "ms-mqmq.idl" is the IDL found in [MS-MQMQ] Appendix A (section 3).

// Please refer to [MS-MQMQ] for definitions of the

// following types:

// PROPVARIANT

// MULTICAST_ID

// OBJECTID

// XACTUOW

import "ms-mqmq.idl";

// Please refer to [MS-MQRR] for definitions of the

// following types:

// QUEUE_FORMAT

// DL_ID

import "ms-mqrr.idl";

// Please refer to [MS-DTYP] for definitions of the

// following types:

// DWORD

// GUID

[

 uuid(fdb3a030-065f-11d1-bb9b-00a024ea5525),

 version(1.0),

 pointer_default(unique)

]

interface qmcomm

{

struct CACCreateRemoteCursor {

 DWORD hCursor;

 DWORD srv_hACQueue;

 DWORD cli_pQMQueue;

};

enum TRANSFER_TYPE {

 CACTB_SEND = 0,

 CACTB_RECEIVE,

 CACTB_CREATECURSOR,

};

struct CACTransferBufferV1 {

 [range(0,2)] DWORD uTransferType;

 [switch_is(uTransferType)]

 union {

 [case(CACTB_SEND)]

 struct {

 struct QUEUE_FORMAT* pAdminQueueFormat;

 struct QUEUE_FORMAT* pResponseQueueFormat;

 } Send;

 [case(CACTB_RECEIVE)]

 struct {

 DWORD RequestTimeout;

 DWORD Action;

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQRR%5d.pdf
%5bMS-MQRR%5d.pdf
%5bMS-MQRR%5d.pdf
%5bMS-MQRR%5d.pdf
%5bMS-MQRR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

113 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 DWORD Asynchronous;

 DWORD Cursor;

 [range(0,1024)] DWORD ulResponseFormatNameLen ;

 [size_is(,ulResponseFormatNameLen)]

 WCHAR** ppResponseFormatName;

 DWORD* pulResponseFormatNameLenProp;

 [range(0,1024)] DWORD ulAdminFormatNameLen ;

 [size_is(,ulAdminFormatNameLen)]

 WCHAR** ppAdminFormatName;

 DWORD* pulAdminFormatNameLenProp;

 [range(0,1024)] DWORD ulDestFormatNameLen;

 [size_is(,ulDestFormatNameLen)]

 WCHAR** ppDestFormatName;

 DWORD* pulDestFormatNameLenProp;

 [range(0,1024)] DWORD ulOrderingFormatNameLen;

 [size_is(,ulOrderingFormatNameLen)]

 WCHAR** ppOrderingFormatName;

 DWORD* pulOrderingFormatNameLenProp;

 } Receive;

 [case(CACTB_CREATECURSOR)]

 struct CACCreateRemoteCursor CreateCursor;

 };

 unsigned short* pClass;

 OBJECTID** ppMessageID;

 [size_is(,20), length_is(,20)]

 unsigned char** ppCorrelationID;

 DWORD* pSentTime;

 DWORD* pArrivedTime;

 unsigned char* pPriority;

 unsigned char* pDelivery;

 unsigned char* pAcknowledge;

 unsigned char* pAuditing;

 DWORD* pApplicationTag;

 [size_is(,ulAllocBodyBufferInBytes),

 length_is(,ulBodyBufferSizeInBytes)]

 unsigned char** ppBody;

 DWORD ulBodyBufferSizeInBytes;

 DWORD ulAllocBodyBufferInBytes;

 DWORD* pBodySize;

 [size_is(,ulTitleBufferSizeInWCHARs),

 length_is(,ulTitleBufferSizeInWCHARs)]

 WCHAR** ppTitle;

 DWORD ulTitleBufferSizeInWCHARs;

 DWORD* pulTitleBufferSizeInWCHARs;

 DWORD ulAbsoluteTimeToQueue;

 DWORD* pulRelativeTimeToQueue;

 DWORD ulRelativeTimeToLive;

 DWORD* pulRelativeTimeToLive;

 unsigned char* pTrace;

 DWORD* pulSenderIDType;

 [size_is(,uSenderIDLen)]

 unsigned char** ppSenderID;

 DWORD* pulSenderIDLenProp;

 DWORD* pulPrivLevel;

 DWORD ulAuthLevel;

 unsigned char* pAuthenticated;

 DWORD* pulHashAlg;

 DWORD* pulEncryptAlg;

 [size_is(,ulSenderCertLen)]

114 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 unsigned char** ppSenderCert;

 DWORD ulSenderCertLen;

 DWORD* pulSenderCertLenProp;

 [size_is(,ulProvNameLen)] WCHAR** ppwcsProvName;

 DWORD ulProvNameLen;

 DWORD* pulAuthProvNameLenProp;

 DWORD* pulProvType;

 long fDefaultProvider;

 [size_is(,ulSymmKeysSize)] unsigned char** ppSymmKeys;

 DWORD ulSymmKeysSize;

 DWORD* pulSymmKeysSizeProp;

 unsigned char bEncrypted;

 unsigned char bAuthenticated;

 unsigned short uSenderIDLen;

 [size_is(,ulSignatureSize)] unsigned char** ppSignature;

 DWORD ulSignatureSize;

 DWORD* pulSignatureSizeProp;

 GUID** ppSrcQMID;

 XACTUOW* pUow;

 [size_is(,ulMsgExtensionBufferInBytes),

 length_is(,ulMsgExtensionBufferInBytes)]

 unsigned char** ppMsgExtension;

 DWORD ulMsgExtensionBufferInBytes;

 DWORD* pMsgExtensionSize;

 GUID** ppConnectorType;

 DWORD* pulBodyType;

 DWORD* pulVersion;

}; // CACTransferBufferV1

struct CACTransferBufferV2 {

 struct CACTransferBufferV1 old;

 unsigned char * pbFirstInXact;

 unsigned char * pbLastInXact;

 OBJECTID** ppXactID;

}; // CACTransferBufferV2

struct OBJECT_FORMAT {

 [range(1,2)] DWORD ObjType;

 [switch_is(ObjType)] union

 {

 [case(1)]

 struct QUEUE_FORMAT* pQueueFormat;

 };

};

typedef [context_handle] void* PCTX_OPENREMOTE_HANDLE_TYPE;

typedef [context_handle] void* RPC_QUEUE_HANDLE;

typedef [context_handle] void* RPC_INT_XACT_HANDLE;

// opnum 0

void

Opnum0NotUsedOnWire (void);

// opnum 1

HRESULT

R_QMGetRemoteQueueName(

 [in] handle_t hBind,

 [in] DWORD pQueue,

 [in, out, ptr, string] WCHAR** lplpRemoteQueueName

115 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

);

// opnum 2

HRESULT

R_QMOpenRemoteQueue(

 [in] handle_t hBind,

 [out] PCTX_OPENREMOTE_HANDLE_TYPE *pphContext,

 [out] DWORD *pdwContext,

 [in, unique] struct QUEUE_FORMAT *pQueueFormat,

 [in] DWORD dwCallingProcessID,

 [in] DWORD dwDesiredAccess,

 [in] DWORD dwShareMode,

 [in] GUID* pLicGuid,

 [in] DWORD dwMQS,

 [out] DWORD *dwpQueue,

 [out] DWORD *phQueue

);

// opnum 3

void

R_QMCloseRemoteQueueContext(

 [in, out] PCTX_OPENREMOTE_HANDLE_TYPE *pphContext

);

// opnum 4

HRESULT

R_QMCreateRemoteCursor(

 [in] handle_t hBind,

 [in] struct CACTransferBufferV1 * ptb1,

 [in] DWORD hQueue,

 [out] DWORD * phCursor

);

// opnum 5

void

Opnum5NotUsedOnWire (void);

// opnum 6

HRESULT

R_QMCreateObjectInternal(

 [in] handle_t hBind,

 [in] DWORD dwObjectType,

 [in, string] const WCHAR* lpwcsPathName,

 [in, range(0, 524288)] DWORD SDSize,

 [in, unique, size_is (SDSize)]

 unsigned char *pSecurityDescriptor,

 [in, range(1, 128)] DWORD cp,

 [in, size_is (cp)] DWORD aProp[],

 [in, size_is (cp)] PROPVARIANT apVar[]

);

// opnum 7

HRESULT

R_QMSetObjectSecurityInternal(

 [in] handle_t hBind,

 [in] struct OBJECT_FORMAT* pObjectFormat,

 [in] DWORD SecurityInformation,

 [in, range(0, 524288)] DWORD SDSize,

 [in, unique, size_is (SDSize)]

116 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 unsigned char *pSecurityDescriptor);

// opnum 8

HRESULT

R_QMGetObjectSecurityInternal(

 [in] handle_t hBind,

 [in] struct OBJECT_FORMAT* pObjectFormat,

 [in] DWORD RequestedInformation,

 [out, size_is (nLength)] unsigned char *pSecurityDescriptor,

 [in, range(0, 524288)] DWORD nLength,

 [out] DWORD* lpnLengthNeeded

);

// opnum 9

HRESULT

R_QMDeleteObject(

 [in] handle_t hBind,

 [in] struct OBJECT_FORMAT* pObjectFormat

);

// opnum 10

HRESULT

R_QMGetObjectProperties(

 [in] handle_t hBind,

 [in] struct OBJECT_FORMAT* pObjectFormat,

 [in, range(1, 128)] DWORD cp,

 [in, size_is (cp)] DWORD aProp[],

 [in, out, size_is(cp)] PROPVARIANT apVar[]

);

// opnum 11

HRESULT

R_QMSetObjectProperties(

 [in] handle_t hBind,

 [in] struct OBJECT_FORMAT* pObjectFormat,

 [in, range(1, 128)] DWORD cp,

 [in, unique, size_is (cp)] DWORD aProp[],

 [in, unique, size_is(cp)] PROPVARIANT apVar[]

);

// opnum 12

HRESULT

R_QMObjectPathToObjectFormat(

 [in] handle_t hBind,

 [in, string] const WCHAR* lpwcsPathName,

 [in, out] struct OBJECT_FORMAT *pObjectFormat

);

// opnum 13

void

Opnum13NotUsedOnWire (void);

// opnum 14

HRESULT

R_QMGetTmWhereabouts(

 [in] handle_t hBind,

 [in, range(0, 131072)] DWORD cbBufSize,

117 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 [out, size_is (cbBufSize)] unsigned char* pbWhereabouts,

 [out] DWORD *pcbWhereabouts

);

// opnum 15

HRESULT

R_QMEnlistTransaction(

 [in] handle_t hBind,

 [in] XACTUOW* pUow,

 [in, range(0, 131072)] DWORD cbCookie,

 [in, size_is (cbCookie)] unsigned char* pbCookie

);

// opnum 16

HRESULT

R_QMEnlistInternalTransaction(

 [in] handle_t hBind,

 [in] XACTUOW* pUow,

 [out] RPC_INT_XACT_HANDLE* phIntXact

);

// opnum 17

HRESULT

R_QMCommitTransaction(

 [in, out] RPC_INT_XACT_HANDLE* phIntXact

);

// opnum 18

HRESULT

R_QMAbortTransaction(

 [in, out] RPC_INT_XACT_HANDLE* phIntXact

);

// opnum 19

HRESULT

rpc_QMOpenQueueInternal(

 [in] handle_t hBind,

 [in] struct QUEUE_FORMAT* pQueueFormat,

 [in] DWORD dwDesiredAccess,

 [in] DWORD dwShareMode,

 [in] DWORD hRemoteQueue,

 [in, out, ptr, string] WCHAR** lplpRemoteQueueName,

 [in] DWORD* dwpQueue,

 [in] GUID* pLicGuid,

 [in, string] WCHAR* lpClientName,

 [out] DWORD* pdwQMContext,

 [out] RPC_QUEUE_HANDLE* phQueue,

 [in] DWORD dwRemoteProtocol,

 [in] DWORD dwpRemoteContext

);

// opnum 20

HRESULT

rpc_ACCloseHandle(

 [in, out] RPC_QUEUE_HANDLE* phQueue

);

// opnum 21

void

118 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Opnum21NotUsedOnWire (void);

// opnum 22

HRESULT

rpc_ACCloseCursor(

 [in] RPC_QUEUE_HANDLE hQueue,

 [in] DWORD hCursor

);

// opnum 23

HRESULT

rpc_ACSetCursorProperties(

 [in] RPC_QUEUE_HANDLE hProxy,

 [in] DWORD hCursor,

 [in] DWORD hRemoteCursor

);

// opnum 24

void

Opnum24NotUsedOnWire (void);

// opnum 25

void

Opnum25NotUsedOnWire(void);

// opnum 26

HRESULT

rpc_ACHandleToFormatName(

 [in] RPC_QUEUE_HANDLE hQueue,

 [in, range(0, 524288)] DWORD dwFormatNameRPCBufferLen,

 [in, out, unique,

 size_is(dwFormatNameRPCBufferLen),

 length_is(dwFormatNameRPCBufferLen)] WCHAR* lpwcsFormatName,

 [in, out] DWORD* pdwLength

);

// opnum 27

HRESULT

rpc_ACPurgeQueue(

 [in] RPC_QUEUE_HANDLE hQueue

);

// opnum 28

HRESULT

R_QMQueryQMRegistryInternal(

 [in] handle_t hBind,

 [in] DWORD dwQueryType,

 [out, string] WCHAR** lplpMQISServer

);

// opnum 29

void

Opnum29NotUsedOnWire (void);

// opnum 30

void

119 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Opnum30NotUsedOnWire (void);

// opnum 31

DWORD

R_QMGetRTQMServerPort(

 [in] handle_t hBind,

 [in] DWORD fIP

);

// opnum 32

void

Opnum32NotUsedOnWire (void);

// opnum 33

void

Opnum33NotUsedOnWire (void);

// opnum 34

void

Opnum34NotUsedOnWire(void);

} // interface qmcomm

[

 uuid(76d12b80-3467-11d3-91ff-0090272f9ea3),

 version(1.0),

 pointer_default(unique)

]

interface qmcomm2

{

// opnum 0

HRESULT

QMSendMessageInternalEx(

 [in] handle_t hBind,

 [in] struct QUEUE_FORMAT* pQueueFormat,

 [in] struct CACTransferBufferV2 * ptb,

 [in, out, unique] OBJECTID * pMessageID

);

// opnum 1

HRESULT

rpc_ACSendMessageEx(

 [in] RPC_QUEUE_HANDLE hQueue,

 [in] struct CACTransferBufferV2 * ptb,

 [in, out, unique] OBJECTID * pMessageID

);

// opnum 2

HRESULT

rpc_ACReceiveMessageEx(

 [in] handle_t hBind,

 [in] DWORD hQMContext,

 [in, out] struct CACTransferBufferV2 * ptb

);

// opnum 3

HRESULT

120 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

rpc_ACCreateCursorEx(

 [in] RPC_QUEUE_HANDLE hQueue,

 [in, out] struct CACCreateRemoteCursor * pcc

);

} // interface qmcomm2

121 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft Windows NT® operating system

Microsoft Windows® 2000 operating system

Windows® XP operating system

Windows Server® 2003 operating system

Windows Vista® operating system

Windows Server® 2008 operating system

Windows® 7 operating system

Windows Server® 2008 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior

also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 1.6: Only Windows NT, Windows 2000, Windows XP 32-bit, and Windows Server 2003

32-bit on domain-joined machines can be configured as clients of a supporting server. Servers
running Windows NT and Windows 2000 act as supporting servers. By default, Windows

Server 2003, Windows Server 2008 and Windows Server 2008 R2 do not act as supporting servers,
although an administrator can enable support when the MSMQ service is integrated with a directory
service.

<2> Section 2.1: The ncacn_spx protocol sequence is supported only by Windows NT and

Windows 2000 and is supported only if TCP/IP is unavailable. Support for IPX and the ncacn_spx
protocol sequence is deprecated on Windows XP, Windows Server 2003, Windows Vista, Windows
Server 2008, Windows 7, and Windows Server 2008 R2. The ncacn_ip_tcp protocol sequence is
supported when TCP/IP is available.

<3> Section 2.2.3.1: All Windows clients produce new XACTUOW values by calling the Windows
RPC function UuidCreate.

<4> Section 2.2.3.2: All Windows implementations of qmcomm and qmcomm2 Server ignore this

value. If this field is not set to FALSE, clients on Windows NT, Windows 2000, Windows XP, and
Windows Server 2003 create a new thread that is used to perform the steps described in Receiving a

Message (section 3.2.4.12).

<5> Section 2.2.3.2: With MSMQ version 2 and higher, the ppSignature member contains an
MSMQ 1.0 digital signature followed by an MSMQ 2.0 digital signature.

%5bMS-MQMQ%5d.pdf

122 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<6> Section 2.2.3.2: The only value supported by Windows is FALCON_PACKET_VERSION
(0x00000010).

<7> Section 2.3: For Windows NT and Windows 2000, this protocol uses the Message Queuing
(MSMQ): Directory Service Protocol [MS-MQDS].

<8> Section 2.3: For the Message Queuing (MSMQ): Directory Service Protocol [MS-MQDS], the
Directory Service schema elements are described in [MS-MQDS] sections 2.2.10 and 3.1.4.21.1
through 3.1.4.21.4.

<9> Section 3.1.4: Windows 2000 and Windows Server 2003 use target level 5.0. Windows NT
disables strict NDR data consistency checks.

<10> Section 3.1.4: Opnums reserved for local use apply to Windows as follows:

Opnum Description

0 Used only locally by Windows, never remotely.

5 Not used by Windows.

13 Used only locally by Windows, never remotely.

21 Not used by Windows.

24 Not used by Windows.

25 Not used by Windows.

29 Used only locally by Windows, never remotely.

30 Used only locally by Windows, never remotely.

32 Used only locally by Windows, never remotely.

33 Used only locally by Windows, never remotely.

34 Used only locally by Windows, never remotely.

<11> Section 3.1.4.1: Only Windows NT and Windows 2000 servers implement this method. The
remote cursor creation process was revised for Windows Server 2003, Windows Server 2008, and
Windows Server 2008 R2.

For Windows NT and Windows 2000 servers, the method rpc_ACCreateCursorEx returns
MQ_INFORMATION_REMOTE_OPERATION (0x400e03e8) to the client to indicate that a different
queue manager is required to create the cursor. Upon receiving this return code, a client can

proceed with cursor creation by calling R_QMGetRemoteQueueName to determine which queue
manager to contact. For Windows Server 2003, Windows Server 2008, and Windows
Server 2008 R2, this process was revised such that rpc_ACCreateCursorEx contacts the remote
queue on behalf of the client, eliminating the need for R_QMGetRemoteQueueName to exist. If
invoked, R_QMGetRemoteQueueName on Windows Server 2003 immediately raises the exception

MQ_ERROR_ILLEGAL_OPERATION (0xc00e0064); R_QMGetRemoteQueueName on Windows
Server 2008 and Windows Server 2008 R2 returns RPC_S_ACCESS_DENIED (0x00000005).

<12> Section 3.1.4.1: For Windows NT and Windows 2000 servers, the method
rpc_ACCreateCursorEx returns MQ_INFORMATION_REMOTE_OPERATION (0x400e03e8) to the
client to indicate that a different queue manager is required to create the cursor. Upon receiving this
return code, a client can proceed with cursor creation by calling R_QMGetRemoteQueueName to

%5bMS-MQDS%5d.pdf
%5bMS-MQDS%5d.pdf
%5bMS-MQDS%5d.pdf
%5bMS-MQDS%5d.pdf
%5bMS-MQDS%5d.pdf
%5bMS-MQDS%5d.pdf

123 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

determine which queue manager to contact. For Windows Server 2003, Windows Server 2008, and
Windows Server 2008 R2, this process was revised such that rpc_ACCreateCursorEx contacts the

remote queue on behalf of the client, which eliminates the need for R_QMGetRemoteQueueName
to exist. If invoked, R_QMGetRemoteQueueName on Windows Server 2003 immediately raises

the exception MQ_ERROR_ILLEGAL_OPERATION (0xc00e0064); R_QMGetRemoteQueueName on
Windows Server 2008 and Windows Server 2008 R2 returns RPC_S_ACCESS_DENIED
(0x00000005).

<13> Section 3.1.4.1: For Windows NT and Windows 2000 servers, the method
rpc_ACCreateCursorEx returns MQ_INFORMATION_REMOTE_OPERATION (0x400e03e8) to the
client to indicate that a different queue manager is required to create the cursor. Upon receiving this
return code, a client can proceed with cursor creation by calling R_QMGetRemoteQueueName to

determine which queue manager to contact. For Windows Server 2003, Windows Server 2008, and
Windows Server 2008 R2, this process was revised such that rpc_ACCreateCursorEx contacts the
remote queue on behalf of the client, eliminating the need for R_QMGetRemoteQueueName to
exist. If invoked, R_QMGetRemoteQueueName on Windows Server 2003 immediately raises the
exception MQ_ERROR_ILLEGAL_OPERATION (0xc00e0064); R_QMGetRemoteQueueName on
Windows Server 2008 and Windows Server 2008 R2 returns RPC_S_ACCESS_DENIED

(0x00000005).

<14> Section 3.1.4.1: For Windows NT and Windows 2000 servers, the method
rpc_ACCreateCursorEx returns MQ_INFORMATION_REMOTE_OPERATION (0x400e03e8) to the
client to indicate that a different queue manager is required to create the cursor. Upon receiving this
return code, a client can proceed with cursor creation by calling R_QMGetRemoteQueueName to
determine which queue manager to contact. For Windows Server 2003, Windows Server 2008, and
Windows Server 2008 R2, this process was revised such that rpc_ACCreateCursorEx contacts the

remote queue on behalf of the client, eliminating the need for R_QMGetRemoteQueueName to
exist. If invoked, R_QMGetRemoteQueueName on Windows Server 2003 immediately raises the
exception MQ_ERROR_ILLEGAL_OPERATION (0xc00e0064); R_QMGetRemoteQueueName on
Windows Server 2008 and Windows Server 2008 R2 returns RPC_S_ACCESS_DENIED
(0x00000005).

<15> Section 3.1.4.2: A Windows client passes its Windows process ID, as returned by the
Windows SDK function GetCurrentProcessId. Servers ignore the value of this parameter. Therefore,

clients can pass 0x00000000.

<16> Section 3.1.4.2: Clients identify themselves to the server using a GUID generated at install
time, and never subsequently modified.

<17> Section 3.1.4.2: These parameters are used to implement client access licensing restrictions.
Such restrictions are enforced only by servers running Windows NT, Windows 2000, and Windows
Server 2003. The parameters are ignored by Windows Server 2008, Windows 7, and Windows

Server 2008 R2.

<18> Section 3.1.4.2: Servers running Windows NT, Windows 2000, and Windows Server 2003 can
limit the number of unique callers. If the limit is exceeded, the server can take no action and return
MQ_ERROR_DEPEND_WKS_LICENSE_OVERFLOW (0xc00e0067).

<19> Section 3.1.4.2: These parameters are used to implement client access licensing restrictions.
Such restrictions are enforced only by servers running Windows NT, Windows 2000, and Windows

Server 2003. The parameters are ignored by Windows Server 2008, Windows 7, and Windows

Server 2008 R2.

<20> Section 3.1.4.2: These parameters are used to implement client access licensing restrictions.
Such restrictions are enforced only by servers running Windows NT, Windows 2000, and Windows

124 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Server 2003. The parameters are ignored by Windows Server 2008, Windows 7, and Windows
Server 2008 R2.

<21> Section 3.1.4.2: A non-Microsoft OS.

<22> Section 3.1.4.2: Any edition of Windows 95, Windows 98, or Windows Millennium Edition.

<23> Section 3.1.4.2: Windows NT Workstation, Windows 2000 Professional, Windows XP,
Windows Vistaor Windows 7.

<24> Section 3.1.4.2: Windows NT Server, Windows 2000 Server, Windows Vista, Windows
Server 2008Windows 7, or Windows Server 2008 R2.

<25> Section 3.1.4.2: Any premium, advanced, or data center edition of an NT-class
Windows Server OS.

<26> Section 3.1.4.2: Windows applications typically invoke R_QMOpenRemoteQueue indirectly

via the Windows API function MQOpenQueue. The Windows API documentation for
MQOpenQueue includes the following error codes. For their descriptions, refer to [MS-MQMQ]

section 2.4 or to [MSDN-MQEIC] for those not described in [MS-MQMQ].

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00E0025

MQ_ERROR_ILLEGAL_FORMATNAME 0xC00E001E

MQ_ERROR_NO_DS 0xC00E0013

MQ_ERROR_QUEUE_NOT_FOUND 0xC00E0003

MQ_ERROR_REMOTE_MACHINE_NOT_AVAILABLE 0xC00E0069

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00E000B

MQ_ERROR_SHARING_VIOLATION 0xC00E0009

MQ_ERROR_UNSUPPORTED_ACCESS_MODE 0xC00E0045

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION 0xC00E0020

LDAP_BUSY 0x8007200E

MQ_ERROR_INVALID_PARAMETER 0xC00E0006

<27> Section 3.1.4.2: Windows NT and Windows 2000 support these R_QMOpenRemoteQueue

out-parameter assignments.

<28> Section 3.1.4.2: Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008,
Windows 7, and Windows Server 2008 R2 support these R_QMOpenRemoteQueue out-parameter
assignments.

<29> Section 3.1.4.4: Windows clients pass a non-NULL pointer to a zeroed-out
CACTransferBufferV1 structure when calling R_QMCreateRemoteCursor. The server ignores the
CACTransferBufferV1 pointer.

<30> Section 3.1.4.5: Windows applications typically invoke R_QMCreateObjectInternal
indirectly via the Windows API function MQCreateQueue. The Windows API documentation for

%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90044

125 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

MQCreateQueue includes the following error codes. For descriptions of the following error codes, see
[MS-MQMQ] section 2.4. For error codes not described in [MS-MQMQ], refer to [MSDN-MQEIC].

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00e0025

MQ_ERROR_ILLEGAL_PROPERTY_VALUE 0xc00e0018

MQ_ERROR_ILLEGAL_QUEUE_PATHNAME 0xc00e0014

MQ_ERROR_ILLEGAL_SECURITY_DESCRIPTOR 0xc00e0021

MQ_ERROR_INSUFFICIENT_PROPERTIES 0xc00e003f

MQ_ERROR_INVALID_OWNER 0xc00e0044

MQ_ERROR_NO_DS 0xc00e0013

MQ_ERROR_PROPERTY 0xc00e0002

MQ_ERROR_PROPERTY_NOTALLOWED 0xc00e003e

MQ_ERROR_QUEUE_EXISTS 0xc00e0005

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

MQ_ERROR_WRITE_NOT_ALLOWED 0xc00e0065

MQ_INFORMATION_FORMATNAME_BUFFER_TOO_SMALL 0x400e0009

MQ_INFORMATION_PROPERTY 0x400e0001

LDAP_BUSY 0x8007200e

MQ_ERROR_INVALID_PARAMETER 0xC00E0006

<31> Section 3.1.4.5: Windows components that invoke R_QMCreateObjectInternal indirectly
via the Windows API function MQCreateQueue test for the following return value. For a description
of the following error code, see [MS-MQMQ] section 2.4.

Name Value

MQ_ERROR_FORMATNAME_BUFFER_TOO_SMALL 0xc00e001f

<32> Section 3.1.4.6: Windows applications typically invoke R_QMSetObjectSecurityInternal
indirectly via the Windows API function MQSetQueueSecurity. The Windows API documentation for

MQSetQueueSecurity includes the following error codes. For descriptions of the following error
codes, see [MS-MQMQ] section 2.4. For error codes not described in [MS-MQMQ], refer to [MSDN-
MQEIC].

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00e0025

MQ_ERROR_ILLEGAL_FORMATNAME 0xc00e001e

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90044
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90044
http://go.microsoft.com/fwlink/?LinkId=90044

126 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Name Value

MQ_ERROR_NO_DS 0xc00e0013

MQ_ERROR_PRIVILEGE_NOT_HELD 0xc00e0026

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION 0xc00e0020

MQ_INFORMATION_OWNER_IGNORED 0x400e000b

LDAP_BUSY 0x8007200e

<33> Section 3.1.4.7: Windows applications typically invoke R_QMGetObjectSecurityInternal
indirectly via the Windows API function MQGetQueueSecurity. The Windows API documentation for
MQGetQueueSecurity includes the following error codes. For descriptions of the following error

codes, see [MS-MQMQ] section 2.4. For error codes not described in [MS-MQMQ], refer to [MSDN-

MQEIC].

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00e0025

MQ_ERROR_ILLEGAL_FORMATNAME 0xc00e001e

MQ_ERROR_NO_DS 0xc00e0013

MQ_ERROR_PRIVILEGE_NOT_HELD 0xc00e0026

MQ_ERROR_SECURITY_DESCRIPTOR_TOO_SMALL 0xc00e0023

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION 0xc00e0020

LDAP_BUSY 0x8007200e

<34> Section 3.1.4.8: Windows applications typically invoke R_QMDeleteObject indirectly via the
Windows API function MQDeleteQueue. The Windows API documentation for MQDeleteQueue
includes the following error codes. For descriptions of the following error codes, see [MS-MQMQ]
section 2.4. For error codes not described in [MS-MQMQ], refer to [MSDN-MQEIC].

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00e0025

MQ_ERROR_ILLEGAL_FORMATNAME 0xc00e001e

MQ_ERROR_NO_DS 0xc00e0013

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION 0xc00e0020

MQ_ERROR_WRITE_NOT_ALLOWED 0xc00e0065

LDAP_BUSY 0x8007200e

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90044
http://go.microsoft.com/fwlink/?LinkId=90044
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90044

127 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<35> Section 3.1.4.8: Windows components that invoke R_QMDeleteObject indirectly via the
Windows API function MQDeleteQueue test for the following return value. For a description of the

following error code, see [MS-MQMQ] section 2.4.

Name Value

MQ_ERROR_QUEUE_DELETED 0xc00e005a

<36> Section 3.1.4.9: Windows NT, Windows 2000, Windows Server 2003, and Windows

Server 2008 return MQ_ERROR_ILLEGAL_PROPERTY_VT (0xc00e0019).

<37> Section 3.1.4.9: Windows applications typically invoke R_QMGetObjectProperties indirectly
via the Windows API function MQGetQueueProperties. The Windows API documentation for
MQGetQueueProperties includes the following error codes. For descriptions of the following error
codes, see [MS-MQMQ] section 2.4. For error codes not described in [MS-MQMQ], refer to [MSDN-
MQEIC].

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00e0025

MQ_ERROR_ILLEGAL_FORMATNAME 0xc00e001e

MQ_ERROR_ILLEGAL_PROPERTY_VT 0xc00e0019

MQ_ERROR_NO_DS 0xc00e0013

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION 0xc00e0020

MQ_INFORMATION_DUPLICATE_PROPERTY 0x400e0005

MQ_INFORMATION_PROPERTY 0x400e0001

MQ_INFORMATION_UNSUPPORTED_PROPERTY 0x400e0004

LDAP_BUSY 0x8007200e

<38> Section 3.1.4.9: Windows components that invoke R_QMGetObjectProperties indirectly via
the Windows API function MQGetQueueProperties test for the following return value. For a
description of the following error code, see [MS-MQMQ] section 2.4.

Name Value

MQ_ERROR 0xc00e0001

<39> Section 3.1.4.10: Windows NT, Windows 2000, Windows Server 2003, and Windows

Server 2008 return MQ_ERROR_ILLEGAL_PROPERTY_VT (0xc00e0019).

<40> Section 3.1.4.10: Windows applications typically invoke R_QMSetObjectProperties
indirectly via the Windows API function MQSetQueueProperties. The Windows API documentation for
MQSetQueueProperties includes the following error codes. For descriptions of the following error
codes, see [MS-MQMQ] section 2.4. For error codes not described in [MS-MQMQ], refer to [MSDN-
MQEIC].

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90044
http://go.microsoft.com/fwlink/?LinkId=90044
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90044
http://go.microsoft.com/fwlink/?LinkId=90044

128 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00e0025

MQ_ERROR_ILLEGAL_FORMATNAME 0xc00e001e

MQ_ERROR_ILLEGAL_PROPERTY_VALUE 0xc00e0018

MQ_ERROR_NO_DS 0xc00e0013

MQ_ERROR_PROPERTY 0xc00e0002

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION 0xc00e0020

MQ_ERROR_WRITE_NOT_ALLOWED 0xc00e0065

MQ_INFORMATION_PROPERTY 0x400e0001

LDAP_BUSY 0x8007200e

<41> Section 3.1.4.11: Windows applications typically invoke R_QMObjectPathToObjectFormat

indirectly via the Windows API function MQPathNameToFormatName. The Windows API
documentation for MQPathNameToFormatName includes the following error codes. For descriptions
of the following error codes, see [MS-MQMQ] section 2.4. For error codes not described in [MS-
MQMQ], refer to [MSDN-MQEIC].

Name Value

MQ_ERROR_FORMATNAME_BUFFER_TOO_SMALL 0xc00e001f

MQ_ERROR_ILLEGAL_QUEUE_PATHNAME 0xc00e0014

MQ_ERROR_NO_DS 0xc00e0013

MQ_ERROR_QUEUE_NOT_FOUND 0xc00e0003

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

LDAP_BUSY 0x8007200e

<42> Section 3.1.4.11: Windows components that invoke R_QMObjectPathToObjectFormat

indirectly via the Windows API function MQPathNameToFormatName test for the following return
value. For a description of the following error code, see [MS-MQMQ] section 2.4.

Name Value

MQ_ERROR_UNSUPPORTED_OPERATION 0xc00e006a

<43> Section 3.1.4.13: Windows components that invoke R_QMEnlistTransaction indirectly via
the Windows API function MQBeginTransaction test for the following return value. For a description
of the following error code, see [MS-MQMQ] section 2.4.

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90044
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

129 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Name Value

MQ_ERROR_INSUFFICIENT_RESOURCES 0xC00E0027

<44> Section 3.1.4.14: All Windows clients produce new XACTUOW values by calling the Windows
RPC function UuidCreate.

<45> Section 3.1.4.17: Clients identify themselves to the server using a GUID generated at install
time, and never subsequently modified.

<46> Section 3.1.4.17: These parameters are used to implement client access licensing restrictions.
Such restrictions are enforced only by Windows NT, Windows 2000, and Windows Server 2003
servers. The parameters are ignored by Windows Server 2008 and Windows Server 2008 R2.

<47> Section 3.1.4.17: Windows NT, Windows 2000, and Windows Server 2003 servers can limit
the number of unique callers. If the limit is exceeded, the server can take no action and can return
MQ_ERROR_DEPEND_WKS_LICENSE_OVERFLOW (0xc00e0067).

<48> Section 3.1.4.17: Windows clients obtain this string from the Windows SDK function

GetComputerName.

<49> Section 3.1.4.17: Client access licensing restrictions are only enforced by Windows NT,
Windows 2000, and Windows Server 2003 supporting servers.

<50> Section 3.1.4.17: Windows servers accept the value 0x00000000 to indicate that the TCP/IP
protocol sequence is used when connecting to a remote queue manager for remote
read.Windows NT and Windows 2000 servers accept the value 0x00000003 to indicate that the

IPX/SPX protocol sequence is used when connecting to a remote queue manager for remote read.
Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and
Windows Server 2008 R2 servers ignore the parameter.

<51> Section 3.1.4.17: Windows applications typically invoke rpc_QMOpenQueueInternal
indirectly via the Windows API function MQOpenQueue. The Windows API documentation for
MQOpenQueue includes the following error codes. For descriptions of the following error codes, see

[MS-MQMQ] section 2.4. For error codes not described in [MS-MQMQ], refer to [MSDN-MQEIC].

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00e0025

MQ_ERROR_ILLEGAL_FORMATNAME 0xc00e001e

MQ_ERROR_NO_DS 0xc00e0013

MQ_ERROR_QUEUE_NOT_FOUND 0xc00e0003

MQ_ERROR_REMOTE_MACHINE_NOT_AVAILABLE 0xc00e0069

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

MQ_ERROR_SHARING_VIOLATION 0xc00e0009

MQ_ERROR_UNSUPPORTED_ACCESS_MODE 0xc00e0045

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION 0xc00e0020

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90044

130 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<52> Section 3.1.4.18: Windows applications typically invoke rpc_ACCloseHandle indirectly via
the Windows API function MQCloseQueue. The Windows API documentation for MQCloseQueue

includes the following error code. For a description of the following error code, see [MS-MQMQ]
section 2.4.

Name Value

MQ_ERROR_INVALID_HANDLE 0xc00e0007

<53> Section 3.1.4.18: All Windows Server implementations invoke the [MS-MQQP] method
RemoteQMCloseQueue using a parallel process, permitting immediate return of control to the
client. Note that this introduces the possibility that RemoteQMCloseQueue could fail and that the
client would not be informed.

<54> Section 3.1.4.19: Windows applications typically invoke rpc_ACCloseCursor indirectly via
the Windows API function MQCloseCursor. The Windows API documentation for MQCloseCursor
includes the following error code. For a description of the following error code, see [MS-MQMQ]

section 2.4.

Name Value

MQ_ERROR_INVALID_HANDLE 0xc00e0007

<55> Section 3.1.4.20: This method is implemented only on Windows NT and Windows 2000. Due
to revisions to the cursor creation process, the method rpc_ACSetCursorProperties is obsolete on
Windows Server 2003, Windows Server 2008, Windows 7, and Windows Server 2008 R2. If the
server implementation does not support rpc_ACSetCursorProperties, it should take no action and
return MQ_ERROR_ILLEGAL_OPERATION (0xc00e0064). Note that this differs from the behavior of

other obsolete methods that raise MQ_ERROR_ILLEGAL_OPERATION as an RPC exception.

<56> Section 3.1.4.20: For Windows NT and Windows 2000 servers, the method
rpc_ACCreateCursorEx returns MQ_INFORMATION_REMOTE_OPERATION (0x400e03e8) to the
client to indicate that a different queue manager is required to create the cursor. Upon receiving this

return code, a client can proceed with cursor creation by calling R_QMGetRemoteQueueName
(section 3.1.4.1) to determine which queue manager to contact. For Windows Server 2003,
Windows Server 2008, and Windows Server 2008 R2, this process was revised such that

rpc_ACCreateCursorEx contacts the remote queue on behalf of the client, eliminating the need for
R_QMGetRemoteQueueName to exist. If invoked, R_QMGetRemoteQueueName on Windows
Server 2003 takes no action and immediately raises the exception
MQ_ERROR_ILLEGAL_OPERATION (0xc00e0064); R_QMGetRemoteQueueName on Windows
Server 2008 and Windows Server 2008 R2 returns RPC_S_ACCESS_DENIED (0x00000005).

<57> Section 3.1.4.21: Windows applications typically invoke rpc_ACHandleToFormatName
indirectly via the Windows API function MQHandleToFormatName. The Windows API documentation

for MQHandleToFormatName includes the following error codes. For descriptions of the following
error codes, see [MS-MQMQ] section 2.4. For error codes not described in [MS-MQMQ], refer to
[MSDN-MQEIC].

Name Value

MQ_ERROR_FORMATNAME_BUFFER_TOO_SMALL 0xc00e001f

MQ_ERROR_INVALID_HANDLE 0xc00e0007

%5bMS-MQMQ%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-MQQP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90044

131 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Name Value

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

MQ_ERROR_STALE_HANDLE 0xc00e0056

<58> Section 3.1.4.22: Windows applications typically invoke rpc_ACPurgeQueue indirectly via
the Windows API function MQPurgeQueue. The Windows API documentation for MQPurgeQueue
includes the following error code. For a description of the following error code, see [MS-MQMQ]
section 2.4.

Name Value

MQ_ERROR_INVALID_HANDLE 0xc00e0007

<59> Section 3.1.4.23: For Windows NT and Windows 2000 Server, this value defaults to

"7776000" (90 days). For Windows Server 2003 and Windows Server 2008, the default value is

"345600" (4 days).

<60> Section 3.1.4.23: Windows servers store and retrieve these values from the registry.

<61> Section 3.1.4.23: Windows servers store and retrieve these values from the registry.

<62> Section 3.1.4.23: This value is supported by Windows 2000, Windows XP, Windows
Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.
Windows NT servers return a failure HRESULT.

<63> Section 3.1.4.23: This value is supported by Windows 2000, Windows XP, Windows
Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.
Windows NT servers return a failure HRESULT.

<64> Section 3.1.4.23: Windows servers store and retrieve these values from the registry.

<65> Section 3.1.4.24: RPC over SPX is supported only by Windows NT and Windows 2000. This
value is not supported by Windows XP, Windows Server 2003, Windows Server 2008, Windows 7,

and Windows Server 2008 R2. The server returns 0x00000000 to indicate failure.

<66> Section 3.1.4.24: RPC over SPX is supported only by Windows NT and Windows 2000. This
value is not supported by Windows XP, Windows Server 2003, Windows Server 2008, Windows 7,
and Windows Server 2008 R2. The server returns 0x00000000 to indicate failure.

<67> Section 3.1.5.1: Windows applications typically invoke QMSendMessageInternalEx
indirectly via the Windows API function MQSendMessage. The Windows API documentation for
MQSendMessage includes the following error codes. For descriptions of the following error codes,

see [MS-MQMQ] section 2.4. For error codes not described in [MS-MQMQ], refer to [MSDN-MQEIC].

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00e0025

MQ_ERROR_BAD_SECURITY_CONTEXT 0xc00e0035

MQ_ERROR_CERTIFICATE_NOT_PROVIDED 0xc00e006d

MQ_ERROR_CORRUPTED_INTERNAL_CERTIFICATE 0xc00e002d

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90044

132 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Name Value

MQ_ERROR_CORRUPTED_PERSONAL_CERT_STORE 0xc00e0031

MQ_ERROR_CORRUPTED_SECURITY_DATA 0xc00e0030

MQ_ERROR_COULD_NOT_GET_USER_SID 0xc00e0036

MQ_ERROR_DTC_CONNECT 0xc00e004c

MQ_ERROR_ILLEGAL_FORMATNAME 0xc00e001e

MQ_ERROR_INSUFFICIENT_RESOURCES 0xc00e0027

MQ_ERROR_INVALID_CERTIFICATE 0xc00e002c

MQ_ERROR_INVALID_HANDLE 0xc00e0007

MQ_ERROR_MESSAGE_STORAGE_FAILED 0xc00e002a

MQ_ERROR_NO_INTERNAL_USER_CERT 0xc00e002f

MQ_ERROR_PROPERTY 0xc00e0002

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

MQ_ERROR_STALE_HANDLE 0xc00e0056

MQ_ERROR_TRANSACTION_USAGE 0xc00e0050

MQ_ERROR_TRANSACTION_ENLIST 0xc00e0058

MQ_ERROR_TRANSACTION_SEQUENCE 0xc00e0051

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION 0xc00e0020

MQ_INFORMATION_PROPERTY 0x400e0001

<68> Section 3.1.5.2: Message bodies are stored encrypted when messages reach their destination
queues. Servers running Windows NT and Windows 2000 only perform message body decryption in
the QMSendMessageInternalEx (section 3.1.5.1) method. If a message with an encrypted body

is sent directly to a target queue via the rpc_ACSendMessageEx method, servers running
Windows NT and Windows 2000 return STATUS_RETRY (0xc000022d) to indicate that the client calls
QMSendMessageInternalEx instead.

<69> Section 3.1.5.2: Clients running Windows NT and Windows 2000 use MQMSG_CALG_MD5
(0x00008003) as the default hash algorithm. Clients running Windows XP 32-bit and Windows
Server 2003 32-bit use MQMSG_CALG_SHA1 (0x00008004) as the default hash algorithm.

<70> Section 3.1.5.2: Clients on supported Windows platforms use MQMSG_CALG_RC2
(0x00006602) as the default encryption algorithm value.

<71> Section 3.1.5.2: The ptb.old.pulAuthProvNameLenProp field is ignored on input to send
operations on Windows NT.

<72> Section 3.1.5.2: Windows applications typically invoke rpc_ACSendMessageEx indirectly via
the Windows API function MQSendMessage. The Windows API documentation for MQSendMessage

133 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

includes the following error codes. For descriptions of the following error codes, see [MS-MQMQ]
section 2.4. For error codes not described in [MS-MQMQ], refer to [MSDN-MQEIC].

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00e0025

MQ_ERROR_BAD_SECURITY_CONTEXT 0xc00e0035

MQ_ERROR_CERTIFICATE_NOT_PROVIDED 0xc00e006d

MQ_ERROR_CORRUPTED_INTERNAL_CERTIFICATE 0xc00e002d

MQ_ERROR_CORRUPTED_PERSONAL_CERT_STORE 0xc00e0031

MQ_ERROR_CORRUPTED_SECURITY_DATA 0xc00e0030

MQ_ERROR_COULD_NOT_GET_USER_SID 0xc00e0036

MQ_ERROR_DTC_CONNECT 0xc00e004c

MQ_ERROR_ILLEGAL_FORMATNAME 0xc00e001e

MQ_ERROR_INSUFFICIENT_RESOURCES 0xc00e0027

MQ_ERROR_INVALID_CERTIFICATE 0xc00e002c

MQ_ERROR_INVALID_HANDLE 0xc00e0007

MQ_ERROR_MESSAGE_STORAGE_FAILED 0xc00e002a

MQ_ERROR_NO_INTERNAL_USER_CERT 0xc00e002f

MQ_ERROR_PROPERTY 0xc00e0002

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

MQ_ERROR_STALE_HANDLE 0xc00e0056

MQ_ERROR_TRANSACTION_USAGE 0xc00e0050

MQ_ERROR_TRANSACTION_ENLIST 0xc00e0058

MQ_ERROR_TRANSACTION_SEQUENCE 0xc00e0051

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION 0xc00e0020

MQ_INFORMATION_PROPERTY 0x400e0001

<73> Section 3.1.5.3: Windows applications typically invoke rpc_ACReceiveMessageEx indirectly
via the Windows API function MQReceiveMessage. The Windows API documentation for
MQReceiveMessage includes the following error codes. For descriptions of the following error codes,

see [MS-MQMQ] section 2.4. For error codes not described in [MS-MQMQ], refer to [MSDN-MQEIC].

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00e0025

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90044
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90044

134 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Name Value

MQ_ERROR_BUFFER_OVERFLOW 0xc00e001a

MQ_ERROR_DTC_CONNECT 0xc00e004c

MQ_ERROR_FORMATNAME_BUFFER_TOO_SMALL 0xc00e001f

MQ_ERROR_ILLEGAL_CURSOR_ACTION 0xc00e001c

MQ_ERROR_INSUFFICIENT_PROPERTIES 0xc00e003f

MQ_ERROR_INVALID_HANDLE 0xc00e0007

MQ_ERROR_IO_TIMEOUT 0xc00e001b

MQ_ERROR_LABEL_BUFFER_TOO_SMALL 0xc00e005e

MQ_ERROR_MESSAGE_ALREADY_RECEIVED 0xc00e001d

MQ_ERROR_OPERATION_CANCELLED 0xc00e0008

MQ_ERROR_PROV_NAME_BUFFER_TOO_SMALL 0xc00e0063

MQ_ERROR_PROPERTY 0xc00e0002

MQ_ERROR_QUEUE_DELETED 0xc00e005a

MQ_ERROR_SENDER_CERT_BUFFER_TOO_SMALL 0xc00e002b

MQ_ERROR_SENDERID_BUFFER_TOO_SMALL 0xc00e0022

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

MQ_ERROR_SIGNATURE_BUFFER_TOO_SMALL 0xc00e0062

MQ_ERROR_STALE_HANDLE 0xc00e0056

MQ_ERROR_SYMM_KEY_BUFFER_TOO_SMALL 0xc00e0061

MQ_ERROR_TRANSACTION_USAGE 0xc00e0050

MQ_INFORMATION_OPERATION_PENDING 0x400e0006

MQ_INFORMATION_PROPERTY 0x400e0001

<74> Section 3.1.5.3: Windows components that invoke rpc_ACReceiveMessageEx indirectly via

the Windows API function MQReceiveMessage test for the following return value. For a description of
the following error code, see [MS-ERREF] section 2.1.

Name Value

E_OUTOFMEMORY 0x8007000E

<75> Section 3.1.5.4: Windows applications typically invoke rpc_ACCreateCursorEx indirectly via
the Windows API function MQCreateCursor. The Windows API documentation for

%5bMS-ERREF%5d.pdf

135 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

MQCreateCursor includes the following error codes. For descriptions of the following error codes,
see [MS-MQMQ] section 2.4. For error codes not described in [MS-MQMQ], refer to [MSDN-MQEIC].

Name Value

MQ_ERROR_INVALID_HANDLE 0xc00e0007

MQ_ERROR_INSUFFICIENT_RESOURCES 0xc00e0027

MQ_ERROR_REMOTE_MACHINE_NOT_AVAILABLE 0xc00e0069

MQ_ERROR_STALE_HANDLE 0xc00e0056

<76> Section 3.1.5.4: The described behavior is for Windows Server 2003, Windows Vista, Windows
Server 2008, Windows 7, and Windows Server 2008 R2. Servers running Windows NT,
Windows 2000, and Windows XP behave as follows: if the given queue handle represents a queue
that is NOT local (remote) to the supporting server, the server creates a cursor object and returns a
handle to it via the hCursor member of pcc. Additionally, the server also sets pcc.srv_hQueue to

RemoteQueueProxyHandle.RemoteContext and sets pcc.cli_pQMQueue to
RemoteQueueProxyHandle.Context. Note that the value returned for pcc.cli_pQMQueue is not
required to equal the RemoteQueueProxyHandle.Context; instead, the server is permitted to use
any value that can be correlated to the impending invocation of rpc_ACSetCursorProperties.
Abstractly, the value in RemoteQueueProxyHandle.Context is most suitable for this purpose;
however, Windows NT, Windows 2000, and Windows XP correlate the subsequent call
rpc_ACSetCursorProperties using a different DWORD value.

The server then returns MQ_INFORMATION_REMOTE_OPERATION (0x400e03e8). This specific
return code instructs the client to contact a remote queue manager to create a remote cursor via
R_QMCreateRemoteCursor and to associate the result with the local cursor handle via
rpc_ACSetCursorProperties. The caller completes these operations successfully prior to using the
cursor handle returned by this method.

<77> Section 4.4: In this example, the supporting server is exhibiting the behavior of Windows NT

and Windows 2000 with regard to creating a cursor for a remote queue.

<78> Section 4.5: All Windows clients produce new XACTUOW ([MS-MQMQ] section 2.2.18.1.8)
values by calling the Windows RPC function UuidCreate.

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90044
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

136 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

8 Change Tracking

This section identifies changes that were made to the [MS-MQMP] protocol document between the
January 2011 and February 2011 releases. Changes are classified as New, Major, Minor, Editorial, or
No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A document revision that incorporates changes to interoperability requirements or functionality.

An extensive rewrite, addition, or deletion of major portions of content.

The removal of a document from the documentation set.

Changes made for template compliance.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are

updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the language and formatting in the technical content was
changed. Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical or language changes were introduced.
The technical content of the document is identical to the last released version, but minor editorial
and formatting changes, as well as updates to the header and footer information, and to the revision

summary, may have been made.

Major and minor changes can be described further using the following change types:

New content added.

Content updated.

Content removed.

New product behavior note added.

Product behavior note updated.

Product behavior note removed.

New protocol syntax added.

Protocol syntax updated.

Protocol syntax removed.

New content added due to protocol revision.

Content updated due to protocol revision.

Content removed due to protocol revision.

New protocol syntax added due to protocol revision.

137 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Protocol syntax updated due to protocol revision.

Protocol syntax removed due to protocol revision.

New content added for template compliance.

Content updated for template compliance.

Content removed for template compliance.

Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please

contact protocol@microsoft.com.

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

3.1.1.12

Queue PROPID to Abstract

Queue Property Translation

59924

Added the Set method as applicable to the

BasePriority abstract queue property.

N Content

updated.

3.1.5.2

rpc_ACSendMessageEx (Opnum

1)

56894

Updated the exit logic to handle success

and error codes from the [MS-MQDMPR]

Enqueue Message event.

Y Content

updated.

mailto:protocol@microsoft.com

138 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

9 Index

A

Abstract data model
client 92
server 30

Applicability 10

C

CACCreateRemoteCursor structure 28
CACTransferBufferV2 structure 27
Capability negotiation 11
Change tracking 136
Client

abstract data model 92
initialization 93
local events 103
message processing 93
sequencing rules 93
timer events 103
timers 93

Common data types 12
Cursor

closing 102
creating 99

CursorContextValue 93

D

Data model - abstract
client 92
server 30

Data types
common 12
handle 13

E

Enumerations 14
Examples

internal transaction example 109
local cursor example 107
local queue example 104
remote cursor example 107
remote queue example 105

F

Fields - vendor-extensible 11
Format name

retrieving for queue context handle 102
retrieving for queue path name 102

Full IDL 112

G

Glossary 7

H

Handle data types 13

I

IDL 112
Implementer - security considerations 111
Index of security parameters 111
Informative references 9
Initialization

client 93
server 37

Internal transaction example 109
Introduction 7

L

Local cursor example 107
Local events

client 103
server 91

Local private queue
creating 94
deleting 95
retrieving properties 96
retrieving security 95
updating properties 96
updating security 95

Local queue example 104

M

Message processing
client 93
server

qmcomm 37
qmcomm2 75

Messages
data types (section 2.2 12, section 2.2.1 13)
enumerations 14
peeking 101
receiving 101
sending 100
structures 14
transport 12

N

Normative references 8

O

Overview (synopsis) 10

P

139 / 139

[MS-MQMP] — v20110204
 Message Queuing (MSMQ): Queue Manager Client Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Parameters - security index 111
Preconditions 10
Prerequisites 10
Product behavior 121

Q

QMSendMessageInternalEx method 75
Queue

opening 97
purging 100

Queue context handle
closing 102
retrieving format name 102

Queue path name - retrieving format name 102
QueueContextHandle 92

R

R_QMAbortTransaction method 59
R_QMCloseRemoteQueueContext method 44
R_QMCommitTransaction method 58
R_QMCreateObjectInternal method 46
R_QMCreateRemoteCursor method 45
R_QMDeleteObject method 51
R_QMEnlistInternalTransaction method 57
R_QMEnlistTransaction method 56
R_QMGetObjectProperties method 51
R_QMGetObjectSecurityInternal method 49
R_QMGetRemoteQueueName method 40
R_QMGetRTQMServerPort method 74
R_QMGetTmWhereabouts method 55
R_QMObjectPathToObjectFormat method 54
R_QMOpenRemoteQueue method 41
R_QMQueryQMRegistryInternal method 72
R_QMSetObjectProperties method 52
R_QMSetObjectSecurityInternal method 48
References

informative 9
normative 8

Relationship to other protocols 10
Remote cursor example 107
Remote queue example 105
rpc_ACCloseCursor method 66
rpc_ACCloseHandle method 65
rpc_ACCreateCursorEx method 89
rpc_ACHandleToFormatName method 69
rpc_ACPurgeQueue method 71
rpc_ACReceiveMessageEx method 81
rpc_ACSendMessageEx method 76
rpc_ACSetCursorProperties method 68
rpc_QMOpenQueueInternal method 60

S

Security
implementer considerations 111

parameter index 111
Sequencing rules

client 93
server

qmcomm 37

qmcomm2 75
Server

abstract data model 30
initialization 37
local events 91
message processing

qmcomm 37
qmcomm2 75

sequencing rules
qmcomm 37
qmcomm2 75

timer events 91
timers 37

Standards assignments 11
structure (section 2.2.3.2 14, section 2.2.3.5 28)
Structures 14

T

Timer events
client 103
server 91

Timers
client 93
server 37

Tracking changes 136
TRANSFER_TYPE enumeration 14
Transport 12

V

Vendor-extensible fields 11
Versioning 11

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 Data Types
	2.2.1.1 Handle Data Types
	2.2.1.1.1 RPC_INT_XACT_HANDLE
	2.2.1.1.2 RPC_QUEUE_HANDLE
	2.2.1.1.3 PCTX_OPENREMOTE_HANDLE_TYPE

	2.2.2 Enumerations
	2.2.2.1 TRANSFER_TYPE

	2.2.3 Structures
	2.2.3.1 XACTUOW
	2.2.3.2 CACTransferBufferV1
	2.2.3.3 CACTransferBufferV2
	2.2.3.4 CACCreateRemoteCursor
	2.2.3.5 OBJECT_FORMAT

	2.3 Directory Service Schema Elements

	3 Protocol Details
	3.1 qmcomm and qmcomm2 Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 Shared Data Elements
	3.1.1.2 LocalQueueContextHandleTable
	3.1.1.3 LocalQueueContextHandle
	3.1.1.4 RemoteQueueProxyHandleTable
	3.1.1.5 RemoteQueueProxyHandle
	3.1.1.6 CursorProxy
	3.1.1.7 RemoteQueueOpenContextHandleTable
	3.1.1.8 RemoteQueueOpenContextHandle
	3.1.1.9 TransactionHandleTable
	3.1.1.10 TransactionHandle
	3.1.1.11 Message to CACTransferBufferV2 Translation
	3.1.1.12 Queue PROPID to Abstract Queue Property Translation

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules for qmcomm
	3.1.4.1 R_QMGetRemoteQueueName (Opnum 1)
	3.1.4.2 R_QMOpenRemoteQueue (Opnum 2)
	3.1.4.3 R_QMCloseRemoteQueueContext (Opnum 3)
	3.1.4.4 R_QMCreateRemoteCursor (Opnum 4)
	3.1.4.5 R_QMCreateObjectInternal (Opnum 6)
	3.1.4.6 R_QMSetObjectSecurityInternal (Opnum 7)
	3.1.4.7 R_QMGetObjectSecurityInternal (Opnum 8)
	3.1.4.8 R_QMDeleteObject (Opnum 9)
	3.1.4.9 R_QMGetObjectProperties (Opnum 10)
	3.1.4.10 R_QMSetObjectProperties (Opnum 11)
	3.1.4.11 R_QMObjectPathToObjectFormat (Opnum 12)
	3.1.4.12 R_QMGetTmWhereabouts (Opnum 14)
	3.1.4.13 R_QMEnlistTransaction (Opnum 15)
	3.1.4.14 R_QMEnlistInternalTransaction (Opnum 16)
	3.1.4.15 R_QMCommitTransaction (Opnum 17)
	3.1.4.16 R_QMAbortTransaction (Opnum 18)
	3.1.4.17 rpc_QMOpenQueueInternal (Opnum 19)
	3.1.4.18 rpc_ACCloseHandle (Opnum 20)
	3.1.4.19 rpc_ACCloseCursor (Opnum 22)
	3.1.4.20 rpc_ACSetCursorProperties (Opnum 23)
	3.1.4.21 rpc_ACHandleToFormatName (Opnum 26)
	3.1.4.22 rpc_ACPurgeQueue (Opnum 27)
	3.1.4.23 R_QMQueryQMRegistryInternal (Opnum 28)
	3.1.4.24 R_QMGetRTQMServerPort (Opnum 31)

	3.1.5 Message Processing Events and Sequencing Rules for qmcomm2
	3.1.5.1 QMSendMessageInternalEx (Opnum 0)
	3.1.5.2 rpc_ACSendMessageEx (Opnum 1)
	3.1.5.3 rpc_ACReceiveMessageEx (Opnum 2)
	3.1.5.4 rpc_ACCreateCursorEx (Opnum 3)

	3.1.6 Timer Events
	3.1.7 Other Local Events
	3.1.7.1 RPC_QUEUE_HANDLE Context Handle Rundown Routine
	3.1.7.2 PCTX_OPENREMOTE_HANDLE_TYPE Context Handle Rundown Routine
	3.1.7.3 RPC_INT_XACT_HANDLE Context Handle Rundown Routine

	3.2 qmcomm and qmcomm2 Client Details
	3.2.1 Abstract Data Model
	3.2.1.1 LicenceGuid
	3.2.1.2 OpenQueueContext
	3.2.1.3 CursorIdentifier

	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 Creating a Local Private Queue
	3.2.4.2 Deleting a Local Private Queue
	3.2.4.3 Updating Local Private Queue Security
	3.2.4.4 Retrieving Local Private Queue Security
	3.2.4.5 Updating Local Private Queue Properties
	3.2.4.6 Retrieving Local Private Queue Properties
	3.2.4.7 Opening a Queue
	3.2.4.8 Creating a Cursor
	3.2.4.9 Purging a Queue
	3.2.4.10 Sending a Message
	3.2.4.11 Peeking a Message
	3.2.4.12 Receiving a Message
	3.2.4.13 Retrieving a Format Name for a Queue Path Name
	3.2.4.14 Retrieving a Format Name for a Queue Context Handle
	3.2.4.15 Closing a Queue
	3.2.4.16 Closing a Cursor

	3.2.5 Timer Events
	3.2.6 Other Local Events

	4 Protocol Examples
	4.1 Application Opening and Closing a Local Queue Example
	4.2 Application Opening and Closing a Remote Queue Example
	4.3 Application Creating and Closing a Local Cursor Example
	4.4 Application Creating and Closing a Remote Cursor Example
	4.5 Application Internal Transaction Example

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

