

1 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

[MS-IOI]:
IManagedObject Interface Protocol Specification

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft's Open Specification Promise (available here:
http://www.microsoft.com/interop/osp) or the Community Promise (available here:
http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if
the technologies described in the Open Specifications are not covered by the Open Specifications

Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the

aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

2 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Revision Summary

Date

Revision

History

Revision

Class Comments

07/20/2007 0.1 Major MCPP Milestone 5 Initial Availability

09/28/2007 1.0 Major Updated and revised the technical content.

10/23/2007 1.1 Minor Updated the technical content.

11/30/2007 2.0 Major Clarified the state requirements of .NET object

versioning.

01/25/2008 2.0.1 Editorial Revised and edited the technical content.

03/14/2008 3.0 Major Updated and revised the technical content.

05/16/2008 4.0 Major Updated and revised the technical content.

06/20/2008 5.0 Major Updated and revised the technical content.

07/25/2008 6.0 Major Updated and revised the technical content.

08/29/2008 6.0.1 Editorial Fix capitalization issues

10/24/2008 7.0 Major Updated and revised the technical content.

12/05/2008 8.0 Major Updated and revised the technical content.

01/16/2009 9.0 Major Updated and revised the technical content.

02/27/2009 9.0.1 Editorial Revised and edited the technical content.

04/10/2009 9.0.2 Editorial Revised and edited the technical content.

05/22/2009 10.0 Major Updated and revised the technical content.

07/02/2009 11.0 Major Updated and revised the technical content.

08/14/2009 12.0 Major Updated and revised the technical content.

09/25/2009 12.1 Minor Updated the technical content.

11/06/2009 12.1.1 Editorial Revised and edited the technical content.

12/18/2009 12.1.2 Editorial Revised and edited the technical content.

01/29/2010 13.0 Major Updated and revised the technical content.

03/12/2010 13.0.1 Editorial Revised and edited the technical content.

04/23/2010 13.0.2 Editorial Revised and edited the technical content.

06/04/2010 14.0 Major Updated and revised the technical content.

07/16/2010 15.0 Major Significantly changed the technical content.

3 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Date

Revision

History

Revision

Class Comments

08/27/2010 15.0 No change No changes to the meaning, language, or formatting of

the technical content.

10/08/2010 15.0 No change No changes to the meaning, language, or formatting of

the technical content.

11/19/2010 15.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 15.0 No change No changes to the meaning, language, or formatting of

the technical content.

02/11/2011 15.0 No change No changes to the meaning, language, or formatting of

the technical content.

4 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Contents

1 Introduction ... 6
1.1 Glossary ... 6
1.2 References .. 7

1.2.1 Normative References ... 7
1.2.2 Informative References ... 7

1.3 Overview .. 7
1.3.1 IRemoteDispatch Interface and IServicedComponentInfo Interface 8

1.4 Relationship to Other Protocols .. 9
1.5 Prerequisites/Preconditions ... 9
1.6 Applicability Statement ... 9
1.7 Versioning and Capability Negotiation ... 9
1.8 Vendor-Extensible Fields ... 10
1.9 Standards Assignments .. 10

2 Messages.. 11
2.1 Transport .. 11
2.2 Common Data Types .. 11

2.2.1 CCW_PTR .. 11

3 Protocol Details .. 12
3.1 IManagedObject Server Details .. 12

3.1.1 Abstract Data Model ... 12
3.1.2 Timers .. 12
3.1.3 Initialization .. 12
3.1.4 Message Processing Events and Sequencing Rules .. 12

3.1.4.1 IManagedObject ... 12
3.1.4.1.1 GetSerializedBuffer (Opnum 3) ... 13
3.1.4.1.2 IManagedObject::GetObjectIdentity (Opnum 4) 13

3.1.4.2 IRemoteDispatch Interface .. 14
3.1.4.2.1 RemoteDispatchAutoDone (Opnum 7) .. 14
3.1.4.2.2 RemoteDispatchNotAutoDone (Opnum 8) ... 15

3.1.4.3 IServicedComponentInfo Interface .. 15
3.1.4.3.1 GetComponentInfo (Opnum 3) .. 16

3.1.5 Timer Events ... 17
3.1.6 Other Local Events ... 17

3.2 IManagedObject Client Details ... 17
3.2.1 Abstract Data Model ... 17
3.2.2 Timers .. 17
3.2.3 Initialization .. 17
3.2.4 Message Processing Events and Sequencing Rules .. 17
3.2.5 Timer Events ... 17
3.2.6 Other Local Events ... 17

4 Protocol Examples .. 18
4.1 Using the IManagedObject Interface .. 18
4.2 Determining Server Object Identity .. 18
4.3 Dispatching a Call on the Server Using Deactivate ... 19

5 Security .. 24
5.1 Security Considerations for Implementers ... 24
5.2 Index of Security Parameters .. 24

5 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

6 Appendix A: Full IDL ... 25

7 Appendix B: Product Behavior .. 27

8 Change Tracking... 28

9 Index ... 29

6 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1 Introduction

The IManagedObject Interface Protocol provides interoperability support for the common language
runtime (CLR). The common language runtime (CLR) is a virtual machine for the execution of
software. The IManagedObject interface provides a bridge between existing computer systems and
the virtual execution environment.

In particular, the CLR supports interoperability with the Component Object Model (COM).<1> The
CLR supports exposing its own objects to COM for use as native COM objects and supports
consuming COM objects.

In order to determine whether a COM object that enters the CLR is actually one of its own managed
objects, the IManagedObject interface was created to allow for the CLR to identify its own objects.
The IManagedObject Interface Protocol mechanism is detailed in this specification.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

activation
application domain
application domain identifier (ID)
authentication level
class identifier (CLSID)
dynamic endpoint

endpoint
globally unique identifier (GUID)
Interface Definition Language (IDL)
interface pointer
.NET Framework
object

object class

opnum
process identifier (PID)
remote procedure call (RPC)
universally unique identifier (UUID)

The following terms are specific to this document:

common language runtime (CLR): The Microsoft implementation of the Common Language
Infrastructure (CLI), as specified in [ECMA-335].

deactivation: Resetting the state of the server object instance such that a new server object
instance is created when the object instance is called again by the client.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or

SHOULD NOT.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=93453
http://go.microsoft.com/fwlink/?LinkId=90317

7 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
http://www.opengroup.org/public/pubs/catalog/c706.htm

[ECMA-335] ECMA International, "Common Language Infrastructure (CLI) Partitions I to VI", ECMA-
335, June 2006, http://www.ecma-international.org/publications/standards/Ecma-335.htm

[MS-DCOM] Microsoft Corporation, "Distributed Component Object Model (DCOM) Remote Protocol
Specification", March 2007.

[MS-DTYP] Microsoft Corporation, "Windows Data Types", January 2007.

[MS-ERREF] Microsoft Corporation, "Windows Error Codes", January 2007.

[MS-NRBF] Microsoft Corporation, ".NET Remoting: Binary Format Data Structure", July 2007.

[MS-NRTP] Microsoft Corporation, ".NET Remoting: Core Protocol Specification", September 2007.

[MS-OAUT] Microsoft Corporation, "OLE Automation Protocol Specification", March 2007.

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions", January 2007.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

[RFC3986] Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifier (URI):

Generic Syntax", STD 66, RFC 3986, January 2005, http://www.ietf.org/rfc/rfc3986.txt

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary", March 2007.

1.3 Overview

The IManagedObject interface is a COM interface used by the common language runtime (CLR) to

identify managed objects (objects created by the CLR) that are exported for interoperability with the
Component Object Model (COM). The IManagedObject interface allows these objects to be
identified when they reenter the CLR.

CLR-managed objects can be exposed to COM clients as COM objects. They can implement any
number of COM interfaces, but all such exported objects implement IManagedObject.

The CLR also allows COM objects to be imported and used as managed objects. In this case,
IManagedObject is used to determine if an object is truly a COM object or if it is actually

originated as a CLR-managed object.

mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=93453
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-NRBF%5d.pdf
%5bMS-NRTP%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90453
%5bMS-GLOS%5d.pdf

8 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

When a COM object enters the CLR, the CLR uses the standard COM interface querying mechanism
(QueryInterface) to determine if the given object implements IManagedObject. If the object

supports IManagedObject, IManagedObject::GetObjectIdentity is called.

At CLR instantiation, the CLR creates a unique GUID to identify a specific CLR instance within a

given process. This GUID is formatted as a string ([MS-DTYP] section 2.3.2.3) and is saved. All CLR-
managed objects originating from this specific instance of the CLR will return this unique identifier
as the first parameter of the call to IManagedObject::GetObjectIdentity. This GUID is used to
recognize that an imported managed object originated in this runtime.

The CLR can support even finer-grained levels of grouping than the process. Objects exported from
a given process division are tagged and return the identifier used for process division in their second
parameter to IManagedObject::GetObjectIdentity. This identifier is also used to indicate

whether or not the given object originated in the correct process division. If the process identifier
and process division match, the last parameter of IManagedObject::GetObjectIdentity is a
pointer to the implementation-specific representation of the managed object.

If the given object does not match the current CLR instance and process division,

IManagedObject::GetSerializedBuffer is called to return a binary representation of a managed
object, as specified by the .NET Remoting: Binary Format Data Structure [MS-NRBF]. It is the

responsibility of the caller on the client CLR to interpret the deserialized opaque object reference.

Figure 1: IManagedObject request-response

1.3.1 IRemoteDispatch Interface and IServicedComponentInfo Interface

A server object instance can associate a unique identity with itself. This identity can be used by the

client to track multiple instances of the server object. The server can use
IServicedComponentInfo to allow the client to query for its identity.

The IRemoteDispatch interface can be used by the server to provide an alternative way to
dispatch method calls on its object instance. A client can further use this interface to perform
deactivation of the server object instance.

%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-NRBF%5d.pdf

9 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1.4 Relationship to Other Protocols

This protocol uses the OLE Automation Protocol [MS-OAUT], making use of the BSTR and VARIANT
types from the IDispatch interface.

The IManagedObject interface uses the Distributed Component Object Model (DCOM) Remote
Protocol [MS-DCOM].

The IRemoteDispatch and IServicedComponentInfo interfaces use DCOM [MS-DCOM] to
communicate over the wire and to authenticate all requests issued against the infrastructure.

This protocol allows for encodings defined in [MS-NRTP] and [MS-NRBF].

1.5 Prerequisites/Preconditions

This protocol requires the Distributed Component Object Model (DCOM) Remote Protocol [MS-
DCOM] and the OLE Automation Protocol [MS-OAUT]. This protocol requires the CLR to be installed
on the client machine.

All interfaces assume that the client is in possession of valid credentials recognized by the server
that is accepting the client requests.

This protocol assumes that the client has relied on QueryInterface to determine if the server

supports the IManagedObject interface or the IRemoteDispatch interface. The protocol also
assumes that the client has the server object Microsoft® .NET Framework type information prior to
initialization.

1.6 Applicability Statement

IManagedObject is useful as part of the infrastructure for allowing the CLR to interoperate with
COM.

Interoperability between the CLR and COM offers the following benefits.

Existing COM objects can be used from the CLR.

Managed objects created in the CLR can be used from existing COM applications.

The managed identity of an object is not lost when it is passed out to COM and then back to the

CLR.

The IRemoteDispatch interface is used for method call dispatch and deactivation.

The IServicedComponentInfo interface is used for determining server object instance identity.

1.7 Versioning and Capability Negotiation

Supported Transports: This protocol uses the DCOM Remote Protocol as its transport, as specified in
[MS-DCOM].

Protocol Version: The IManagedObject protocol consists of one DCOM interface, IManagedObject

version 0.0. The interfaces defined in this specification have no versioning or capability negotiation
beyond those of the underlying transport.

For both of these interfaces, it is assumed that the client has the Microsoft® .NET Framework
information (such as type information of server objects) prior to initialization.

%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-NRTP%5d.pdf
%5bMS-NRBF%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-DCOM%5d.pdf

10 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The client relies on QueryInterface to determine if the server supports IManagedObject or
IRemoteDispatch.

1.8 Vendor-Extensible Fields

This protocol uses universally unique identifiers (UUIDs). Vendors can create their own UUIDs,
as described in [MS-DTYP] section 2.3.2.

This protocol uses HRESULT values as defined in [MS-DTYP] section 2.2.18. Vendors can define
their own HRESULT values, provided that they set the C bit (0x20000000) for each vendor-defined
value, indicating that the value is a customer code.

This protocol uses Win32 error codes. These values are taken from the Microsoft Windows® error
number space, as specified in [MS-ERREF] section 2.2. It is recommended that vendors reuse those

values with their indicated meaning. Choosing any other value runs the risk of a collision in the
future.

1.9 Standards Assignments

Constant/value Description

IManagedObject

{C3FCC19E-A970-11D2-8B5A-

00A0C9B7C9C4}

The GUID associated with the IManagedObject interface.

IRemoteDispatch

{6619a740-8154-43be-a186-

0319578e02db}

The GUID associated with the IRemoteDispatch interface.

IServicedComponentInfo

{8165B19E-8D3A-4d0b-80C8-

97DE310DB583}

The GUID associated with the IServicedComponentInfo

interface.

%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf

11 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2 Messages

2.1 Transport

This protocol uses RPC dynamic endpoints ([C706] Part 4) and DCOM [MS-DCOM].

To access an interface, the client MUST request a DCOM connection to its well-known object UUID
endpoint on the server, as specified in section 1.9.

The RPC version number for all interfaces MUST be 0.0.

2.2 Common Data Types

This protocol MUST indicate to the RPC runtime that it is to support the NDR transfer syntax only,
as specified in [C706] part 4.

In addition to RPC base types and definitions specified in [C706] and [MS-DTYP], additional data

types are defined in the following subsection.

2.2.1 CCW_PTR

CCW_PTR is an opaque pointer that is up to the implementation to interpret.

The wire representation will consist of the pointer representation used for the transfer syntax in use
(either NDR or NDR64) followed by the wire representation of the content of the int or __int64.

The pointer representation used in NDR transfer syntax is 4 octets in length. NDR transfer syntax is
specified in [C706] Chapter 14, section 14.3.10. The pointer representation used in NDR64 transfer
syntax is specified in [MS-RPCE] 2.2.5.3.5, and is 8 octets in length.

If _64BIT is defined, the pointer representation will be followed by the wire representation of the

__int64. The wire representation of __int64 is specified in [MS-RPCE] 2.2.4.1.3. The __int64 is
synonymous to hyper in [C706], which is 8 octets in length.

If _64BIT is not defined, the pointer representation will be the same, but followed by the wire
representation of int. This int will be treated as a long, as specified in [C706] section 14.2.5, and is
4 octets in length.

No negotiation occurs to determine whether _64BIT has been defined. The wire syntax for

CCW_PTR can be made consistent using any implementation-specific method.

The type definition of CCW_PTR is as follows.

#ifdef _64BIT

typedef __int64* CCW_PTR;

#else

typedef int* CCW_PTR;

#endif

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89829
%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89829
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

12 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3 Protocol Details

The following sections specify details of the IManagedObject Interface Protocol, including abstract
data model, interface method syntax, and message processing rules.

The IRemoteDispatch and IServicedComponentInfo client applications initiate the conversation

with the server by performing DCOM activation ([MS-DCOM] section 3.2.4.1.1) of an application-
specific CLSID of an object that supports these interfaces. After the client application uses
activation to get the interface pointer to the DCOM object, it works with this object by making
calls on the DCOM interface supported by the object. After it has finished making calls, the client
application does a release on the interface pointer.

3.1 IManagedObject Server Details

A CLR-managed object that has been exposed to COM will expose the COM interface
IManagedObject. This interface is used to determine whether COM objects that enter the CLR are
actually CLR-managed objects and can be mapped directly to the managed object. This allows CLR-

managed objects to roundtrip from managed to COM and back to managed while maintaining their
original identity.

3.1.1 Abstract Data Model

The CLR implementation that exposes objects to COM MUST maintain a unique UUID to differentiate
its objects from those of other CLR instances and implementations. If the CLR supports per-process
divisions, it will also need to maintain unique identifiers for each division to map objects back to
their originating process division. In addition, the CLR will also need to use an opaque identifier that
is used to map back internally from the COM interface pointer to IManagedObject to the
underlying managed object.

In the case that the CLR-managed object does not belong to the given CLR process instance and
process subdivision, the implementation of IManagedObject MUST provide a mechanism that
returns a binary-formatted version of the underlying managed object.

Server Object Identity: The remote server object instance MUST have a unique Uniform Resource
Identifier (URI), as specified in [RFC3986]. This URI represents the unique identity of the server
object instance. The client uses this identity to track multiple instances of the server object.

3.1.2 Timers

None.

3.1.3 Initialization

The server MUST create a unique UUID to identify this CLR instance upon startup. Upon the startup
of each process division, a unique identifier also needs to be generated.

3.1.4 Message Processing Events and Sequencing Rules

3.1.4.1 IManagedObject

The IManagedObject interface includes the following methods.

The client MUST be implemented with the type information for the remote object.<2>

%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90453

13 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Methods in RPC Opnum Order

Method Description

GetSerializedBuffer Returns a binary-formatted representation of a managed object, as specified in

[MS-NRBF] section 2.3.

Opnum: 3

GetObjectIdentity Used to determine if a COM object is a managed object that belongs to this CLR

instance and process subdivision.

Opnum: 4

3.1.4.1.1 GetSerializedBuffer (Opnum 3)

The GetSerializedBuffer method converts the given managed object to a binary-formatted string
representation that can be used to create a managed object.

HRESULT GetSerializedBuffer(

 [out] BSTR* pbSTR

);

pbSTR: The value MUST contain a binary-formatted string representation of the class record for

the underlying managed object, as specified in [MS-NRBF] section 2.3. For more information
on binary format mapping, see [MS-NRTP] section 3.1.5.1.

Return Values: The method MUST return a positive value or 0 to indicate successful completion
or a negative value to indicate failure.

Return value/code Description

0x00000000

ERROR_SUCCESS

Success.

Exceptions Thrown: No exceptions are thrown from this method beyond those thrown by the
underlying RPC protocol.

3.1.4.1.2 IManagedObject::GetObjectIdentity (Opnum 4)

The IManagedObject::GetObjectIdentity method is used by a CLR instance to determine
whether a COM object entering the system is really a managed object that originated in this CLR
instance and within the current process division.

HRESULT GetObjectIdentity(

 [out] BSTR* pBSTRGUID,

 [out] int* AppDomainID,

 [out] CCW_PTR pCCW

);

pBSTRGUID: The pBSTRGUID parameter is a GUID ([MS-DTYP] section 2.3.2.3). The
pBSTRGUID parameter MUST indicate the CLR instance in which this object was created.

%5bMS-NRBF%5d.pdf
%5bMS-NRBF%5d.pdf
%5bMS-NRTP%5d.pdf
%5bMS-DTYP%5d.pdf

14 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

AppDomainID: Optional parameter that contains implementation-specific, opaque, process-
unique identifiers. If present, the AppDomainID parameter MUST denote the process

subdivision in which this object resides.

pCCW: Optional field. Implementation-specific, opaque value that helps identify the managed

object. If present, this field MUST map back to the implementation's internal representation of
a managed object.

Return Values: The method MUST return a positive value or 0 to indicate successful completion
or a negative value to indicate failure.

Return value/code Description

0x00000000

ERROR_SUCCESS

Success

Exceptions Thrown: No exceptions are thrown from this method beyond those thrown by
the underlying RPC protocol.

3.1.4.2 IRemoteDispatch Interface

The IRemoteDispatch interface provides methods to dispatch calls on the server object. A client
can optionally use this interface to deactivate the server object instance after the method call
completes. The interface inherits opnums 0 to 6 from IDispatch ([MS-OAUT] section 3.1.4). The

version for this interface is 0.0.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object
class that supports this interface by using the UUID {6619a740-81c4-43be-a186-0319578e02db}
for this interface.

The client MUST be implemented with the type information for the remote object.

The interface includes the following methods beyond those in IDispatch.<3>

Methods in RPC Opnum Order

Method Description

RemoteDispatchAutoDone Invokes a call on the server object and deactivates it when the call

completes.

Opnum: 7

RemoteDispatchNotAutoDone Invokes a call on the server object without deactivating it when the

call completes.

Opnum: 8

3.1.4.2.1 RemoteDispatchAutoDone (Opnum 7)

The RemoteDispatchAutoDone method is called by the client to invoke a method on the server.

[id(0x60020000)] HRESULT RemoteDispatchAutoDone(

 [in] BSTR s,

 [out, retval] BSTR* pRetVal

);

%5bMS-GLOS%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

15 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

s: The s parameter contains binary data representing the input parameters of the method called

on the server. The binary data MUST be marshaled as specified in [MS-NRTP] section

3.1.5.1.1. The data is specified as is in the BSTR, such that the length of the BSTR is the size
of the data divided by 2 (rounded up if necessary).

pRetVal: The pRetVal parameter contains the binary data representing the output parameters of
the method called on the server. The binary data MUST be marshaled as specified in [MS-
NRTP] section 3.1.5.1.1. The data is specified as is in the BSTR, such that the length of the
BSTR is the size of the data divided by 2 (rounded up if necessary).

Return Values: An HRESULT that specifies success or failure. All success HRESULT values
MUST be treated as success and all failure HRESULT values MUST be treated as failure.

When this method is invoked, the server MUST unmarshal the method input parameters and

formulate a method call request. If the payload is a valid method call request for the given server
object instance, the server MUST dispatch the method on the server object instance. Otherwise it
MUST fail the call. After the server object instance completes the method call, the server MUST
marshal the output parameters as specified in [MS-NRTP] section 3.1.5.1.1, and return the encoded

reply through the pRetVal argument. It MUST then deactivate the instance of the server object that
services the call.

3.1.4.2.2 RemoteDispatchNotAutoDone (Opnum 8)

The RemoteDispatchNotAutoDone method is called by the client to invoke a method on the
server.

[id(0x60020001)] HRESULT RemoteDispatchNotAutoDone(

 [in] BSTR s,

 [out, retval] BSTR* pRetVal

);

s: The s parameter contains binary data representing the input parameters of the method called
on the server. The binary data MUST be marshaled as specified in [MS-NRTP] section

3.1.5.1.1. The data is specified as is in the BSTR, such that the length of the BSTR is the size
of the data divided by 2 (rounded up if necessary).

pRetVal: The pRetVal parameter contains the binary data representing the output parameters of
the method called on the server. The binary data MUST be marshaled as specified in [MS-
NRTP] section 3.1.5.1.1. The data is specified as is in the BSTR, such that the length of the
BSTR is the size of the data divided by 2 (rounded up if necessary).

Return Values: An HRESULT that specifies success or failure. All success HRESULT values

MUST be treated as success and all failure HRESULT values MUST be treated as failure.

When this method is invoked, the server MUST unmarshal the method input parameters and
formulate a method call request. If the payload is a valid method call request for the given server
object instance, the server MUST dispatch the method on the server object instance. Otherwise it
MUST fail the call. After the server object instance completes the method call, the server MUST
marshal the output parameters as specified in [MS-NRTP] section 3.1.5.1.1 and return the encoded

reply through the pRetVal argument.

3.1.4.3 IServicedComponentInfo Interface

The IServicedComponentInfo interface is used to get the object identity of the server object
instance that supports this interface. Because this is a DCOM interface, opnum 0 to opnum 2 are

%5bMS-NRTP%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-NRTP%5d.pdf
%5bMS-NRTP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-NRTP%5d.pdf
%5bMS-NRTP%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-NRTP%5d.pdf
%5bMS-NRTP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-NRTP%5d.pdf
%5bMS-DCOM%5d.pdf

16 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

IUnknown methods, as specified in [MS-DCOM] section 3.1.1.5.8. The version for this interface is
0.0.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object class
that supports this interface by using the UUID {8165B19E-8D3A-4d0b-80C8-97DE310DB583} for

this interface.

The interface contains the following methods beyond those of IUnknown.

Methods in RPC Opnum Order

Method Description

GetComponentInfo Gets the server object identity associated with the server object instance.

Opnum: 3

3.1.4.3.1 GetComponentInfo (Opnum 3)

The GetComponentInfo method is used to determine the environment of the server object.

HRESULT GetComponentInfo(

 [in, out] int* infoMask,

 [out] SAFEARRAY(BSTR)* infoArray

);

infoMask: A bitwise OR of zero of more of the following values:

Value Meaning

0x00000001 The serviced component's process identifier (PID).

0x00000002 The serviced component's application domain identifier (ID).

0x00000004 The serviced component's remote URI [RFC3986], which represents the server

object identity.

On input, the bits set indicate the information the client is requesting that the server return.
On output, the bits set indicate the information actually returned in the infoArray.

infoArray: An array that contains a set of values returned by the server corresponding to the
bits set in infoMask.

Return Values: An HRESULT that specifies success or failure. All success HRESULT values
MUST be treated as success and all failure HRESULT values MUST be treated as failure.

When this method is invoked, the server MUST do the following. If any bits not defined above in
infoMask are set, the server first MUST update infoMask to clear those bits.

The server MUST return in infoArray a SAFEARRAY ([MS-OAUT] section 2.2.30.10) of type VT_BSTR.
This SAFEARRAY MUST contain, in order, the (possibly empty) subset of the following items,

corresponding to the bits set in infoMask.

Process ID

Application Domain ID

%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90453
%5bMS-DTYP%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf

17 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The serviced component's remote URI [RFC3986]

The type of each element MUST be a BSTR ([MS-OAUT] section 2.2.23.2). The server then MUST

return success.

3.1.5 Timer Events

None.

3.1.6 Other Local Events

There are no protocol-specific local events.

3.2 IManagedObject Client Details

3.2.1 Abstract Data Model

The client is essentially the same as the server. The IManagedObject interface is used to identify

CLR-mapped COM objects after they are exported to COM and returned as COM objects.
Implementation of the IManagedObject class denotes that a given COM object is really a CLR-
managed COM object. The methods of IManagedObject are used to determine if the COM object

lives in this CLR instance and process subdivision. These methods will otherwise return a CLR-
managed object underlying the COM object. The deserialized opaque object reference is returned to
the caller on the client CLR for interpretation.

3.2.2 Timers

There are no protocol-specific timers.

3.2.3 Initialization

The initialization is the same as for server. See section 3.1.3.

3.2.4 Message Processing Events and Sequencing Rules

The client determines if it is the server by matching values returned from the
IManagedObject::GetObjectIdentity method. The client matches the value of pBSTRGUID
against the GUID of the client CLR instance and uses the implementation-specific helper values in

AppDomainID and pCCW to help decide if the COM object originated in the client CLR instance.
Otherwise, the client fetches a binary-formatted string representation ([MS-NRBF] section 2.3) to
the underlying managed object by using GetSerializedBuffer, which can be used to create a
managed object.

When the IServiceComponentInfo interface is used, the client determines the server instance
identity by means of the URI returned from the IServiceComponentInfo::GetComponentInfo
method.

3.2.5 Timer Events

There are no protocol-specific timers.

3.2.6 Other Local Events

None.

http://go.microsoft.com/fwlink/?LinkId=90453
%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-NRBF%5d.pdf

18 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4 Protocol Examples

4.1 Using the IManagedObject Interface

A CLR instance uses the IManagedObject interface in the following manner.

1. A CLR instance starts up and generates a UUID to uniquely identify itself. It later creates a
process subdivision and creates a unique value to identify the process subdivision.

2. A COM object enters the CLR, and the CLR then calls the IUnknown::QueryInterface method
to determine whether the object implements IManagedObject. The object returns S_OK and

returns a pointer to an IManagedObject interface pointer.

3. The CLR then calls the IManagedObject::GetObjectIdentity method and matches the
pBSTRGUID against its UUID and, if they match, compares the AppDomainID to the identifier of
the current process subdivision. If they match, the CLR converts pCCW to the underlying CLR-
managed object. If they do not match, it calls the IManagedObject::GetSerializedBuffer
method and uses the binary-formatted version of the object converted to a string to create a

copy of the object that resides in another CLR (which could be a completely different

implementation). The caller on the client CLR is then able to interpret the deserialized opaque
object reference. For more information about how to create the binary-formatted string
representation of an object, see [MS-NRBF] section 2.3.

4.2 Determining Server Object Identity

This example assumes that the client already has an interface pointer to an instance of an object
that implements IServicedComponentInfo. The example also assumes that the server already

has a unique identifier encoded into a URI to identify the server object instance. The following
diagram helps to illustrate this example.

Figure 2: Call sequence for determining server object identity

1. The client calls the IServicedComponentInfo::GetComponentInfo method.

HRESULT

GetComponentInfo{

 [in,out] int* infoMask = 0x00000004,

 [out] SAFEARRAY(BSTR)* infoArray = {An uninitialized pointer to

 receive the SAFEARRAY}};

%5bMS-NRBF%5d.pdf

19 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2. The server receives the call, verifies the parameters, and returns a SAFEARRAY of type

VT_BSTR into the infoArray that contains the URI for the server object instance.

HRESULT = S_OK

GetComponentInfo{

 [in,out] int* infoMask = 0x00000004,

 [out] SAFEARRAY(BSTR)* infoArray = {VT_BSTR,

 "http://56C8D6F0ED8B4d658F42148430C65CEE" }};

3. The client records the URI of the server object instance, and uses it to distinguish between two

different server object instances.

4.3 Dispatching a Call on the Server Using Deactivate

This example assumes that the client already has an interface pointer to an instance of an object
that implements IRemoteDispatch. The following diagram helps to illustrate this example. The

scenario is around a remote server object which has a method named Method. This method takes
two string parameters. The first parameter a is an in only parameter, the second parameter b is the
out only parameter.

Method(string a, out string b);

The call graph for this on the client side is given below.

Figure 3: Call sequence for dispatching a call with Deactivate from client to server

%5bMS-OAUT%5d.pdf

20 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Figure 4: Call graph on the client side for the given scenario

1. The client accepts a call for "Method" taking two parameters a and b.

2. The client transforms the method call into a byte representation as specified in [MS-NRTP]
section 3.1.5.1.1.

3. The client then takes the byte representation and passes it as a BSTR in the s parameter over
RemoteDispatchAutoDone.

The representative BSTR for the current example would look like the following.

00000000 00000000 00000100 00000000

00121500 06120000 6874654d 5112646f Method.Q

74736554 706d6f43 6574202c 202c7473 TestComp, test,

73726556 3d6e6f69 2e302e30 2c302e30 Version=0.0.0.0,

6c754320 65727574 75656e3d 6c617274 Culture=neutral

7550202c 63696c62 5479654b 6e656b6f , PublicKeyToken

3030313d 66663066 65643064 34336662 =100f0ffd0debf34

00000233 48051200 6f6c6c65 00000b11 3......Hello....

00650073 00000073 78adbf68 00000642 s.e.s...h..xB...

61df552e 800000d1 0000017e 00000006 .U.a....~.......

00000000 00001771 00000002 76726553 q.......Serv

20656369 6b636150 202c3120 36322e76 ice Pack 1, v.26

00000037 00000002 0000004c 00000009 7.......L.......

00000002 00000059 00000013 00000004 Y...........

0000005d 00000015 00000002 0000006a]...........j...

0000001f 00000004 0000006e 00000021 n...!...

%5bMS-NRTP%5d.pdf
%5bMS-OAUT%5d.pdf

21 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4. The server receives the call and transforms the incoming BSTR in parameter s into a method

call. The server then dispatches the method call on the object.

Figure 5: Call graph on the server side for the given scenario.

5. "Method" completes. On completion, it populates "World" into the out parameter b.

22 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Figure 6: Return call graph on the server side for the given scenario.

6. The server now takes the return call and packages it again into a byte representation as specified

in [MS-NRTP] section 3.1.5.1.1.

RemoteDispatchAutoDone implementation takes the binary representation and makes it a

payload for BSTR out parameter pRetVal.

The representative BSTR for the current example would look like the following.

00000000 00000000 00000100 00000000

04121600 00020000 12110000 726f5705 Wor

000b646c 00000000 0020f490 00000000 ld........

61df71bf 800000d1 0000003a 00000000 .q.a....:.......

00000000 00000000 ff6c5db0 ]l.

7. RemoteDispatchAutoDone implementation deactivates the server object by releasing all

references to it such that the particular instance of the server is destroyed.

8. As the client call returns the data received on the client side in the pRetVal BSTR parameter is

converted back to a return call parameters and the control is transferred back to the caller.

%5bMS-NRTP%5d.pdf

23 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Figure 7: Return call graph on the client side for the given scenario.

24 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

5 Security

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

25 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

6 Appendix A: Full IDL

For convenience, the full IDL is provided with this specification.

import "ms-oaut.idl";

#ifdef _64BIT

typedef __int64* CCW_PTR;

#else

typedef int* CCW_PTR;

#endif

#define SAFEARRAY(type) SAFEARRAY

[

 object,

 oleautomation,

 uuid(C3FCC19E-A970-11d2-8B5A-00A0C9B7C9C4),

helpstring("Managed Object Interface"),

 pointer_default(unique)

]

interface IManagedObject : IUnknown

{

 HRESULT GetSerializedBuffer([out] BSTR *pBSTR);

 HRESULT GetObjectIdentity([out] BSTR* pBSTRGUID, [out] int* AppDomainID, [out] CCW_PTR

pCCW);

};

[

object,

uuid(6619a740-8154-43be-a186-0319578e02db),

helpstring("RemoteDispatch Interface"),

dual,

pointer_default(unique)

]

interface IRemoteDispatch: IDispatch

{

[id(0x60020000)]

HRESULT RemoteDispatchAutoDone([in] BSTR s, [out, retval] BSTR* pRetVal);

[id(0x60020001)]

HRESULT RemoteDispatchNotAutoDone([in] BSTR s, [out, retval] BSTR* pRetVal);

};

[

object,

uuid(8165B19E-8D3A-4d0b-80C8-97DE310DB583),

helpstring("ServicedComponentInfo Interface"),

pointer_default(unique)

]

interface IServicedComponentInfo : IUnknown{

%5bMS-GLOS%5d.pdf

26 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

HRESULT GetComponentInfo([in,out] int* infoMask, [out] SAFEARRAY(BSTR)* infoArray);

};

27 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

7 Appendix B: Product Behavior

This document specifies version-specific details in the Microsoft® .NET Framework. For information
about which versions of .NET Framework are available in each released Microsoft Windows® product
or as supplemental software, see .NET Framework.

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft® .NET Framework 1.0

Microsoft® .NET Framework 2.0

Microsoft® .NET Framework 3.0

Microsoft® .NET Framework 3.5

Microsoft® .NET Framework 4.0

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product

edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 1: The Microsoft common language runtime (CLR) and Component Object Model (COM)
are capable of interoperating over the IManagedObject Interface Protocol mechanism.

<2> Section 3.1.4.1: On the Windows platform, the IManagedObject interface is implemented by
all .NET Framework components when they are exposed through the COM-Interop feature of the

.NET Framework.

<3> Section 3.1.4.2: On the Windows platform, the IRemoteDispatch interface is exposed only by
components inheriting from System.EnterpriseServices.ServicedComponent.

%5bMS-GLOS%5d.pdf

28 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

29 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

9 Index

A

Abstract data model
client 17
server 12

Applicability 9

C

Capability negotiation 9
Change tracking 28
Client

abstract data model 17
initialization 17
local events 17
message processing 17
sequencing rules 17
timer events 17
timers 17

Common data types 11

D

Data model - abstract
client 17
server 12

Data types 11
Deactivate - dispatching a call - server 19
Dispatching a call - server - deactivate 19

E

Examples 18

F

Fields - vendor-extensible 10

G

GetComponentInfo method 16
GetObjectIdentity method 13
GetSerializedBuffer method 13
Glossary 6

I

IManagedObject interface - use of 18
Implementer - security considerations 24
Index of security parameters 24
Informative references 7
Initialization

client 17
server 12

Introduction 6
IRemoteDispatch Interface 8
IServicedComponentInfo Interface 8

L

Local events
client 17
server 17

M

Message processing
client 17
server 12

Messages
data types 11
transport 11

N

Normative references 7

O

Object identity - server - determining 18
Overview 7

P

Parameters - security index 24
Preconditions 9
Prerequisites 9
Product behavior 27

R

References
informative 7
normative 7

Relationship to other protocols 9
RemoteDispatchAutoDone method 14
RemoteDispatchNotAutoDone method 15

S

Security
implementer considerations 24
parameter index 24

Sequencing rules
client 17
server 12

Server
abstract data model 12
initialization 12
local events 17
message processing 12
object identity - determining 18
overview 12
sequencing rules 12
timer events 17
timers 12

Standards assignments 10

T

30 / 30

[MS-IOI] — v20110204
 IManagedObject Interface Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Timer events
client 17
server 17

Timers
client 17
server 12

Tracking changes 28
Transport 11

V

Vendor-extensible fields 10
Versioning 9

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 IRemoteDispatch Interface and IServicedComponentInfo Interface

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 CCW_PTR

	3 Protocol Details
	3.1 IManagedObject Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 IManagedObject
	3.1.4.1.1 GetSerializedBuffer (Opnum 3)
	3.1.4.1.2 IManagedObject::GetObjectIdentity (Opnum 4)

	3.1.4.2 IRemoteDispatch Interface
	3.1.4.2.1 RemoteDispatchAutoDone (Opnum 7)
	3.1.4.2.2 RemoteDispatchNotAutoDone (Opnum 8)

	3.1.4.3 IServicedComponentInfo Interface
	3.1.4.3.1 GetComponentInfo (Opnum 3)

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 IManagedObject Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.5 Timer Events
	3.2.6 Other Local Events

	4 Protocol Examples
	4.1 Using the IManagedObject Interface
	4.2 Determining Server Object Identity
	4.3 Dispatching a Call on the Server Using Deactivate

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

