

1 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

[MS-FSIFT]:
Indexer Fault Tolerance Protocol Specification

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft's Open Specification Promise (available here:
http://www.microsoft.com/interop/osp) or the Community Promise (available here:
http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if
the technologies described in the Open Specifications are not covered by the Open Specifications

Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the

aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

2 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Revision Summary

Date

Revision

History

Revision

Class Comments

02/19/2010 1.0 Major Initial Availability

03/31/2010 1.01 Editorial Revised and edited the technical content

04/30/2010 1.02 Editorial Revised and edited the technical content

06/07/2010 1.03 Editorial Revised and edited the technical content

06/29/2010 1.04 Editorial Changed language and formatting in the technical
content.

07/23/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

09/27/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

11/15/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

12/17/2010 1.05 Minor Clarified the meaning of the technical content.

3 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Table of Contents

1 Introduction ... 6
1.1 Glossary ... 6
1.2 References .. 6

1.2.1 Normative References ... 6
1.2.2 Informative References ... 7

1.3 Protocol Overview (Synopsis) .. 7
1.3.1 Column Backup .. 8
1.3.2 Column Master ... 8
1.3.3 Content Operation Sequence Store ... 9
1.3.4 Sequence Receptor ... 9

1.4 Relationship to Other Protocols .. 9
1.5 Prerequisites/Preconditions ... 10
1.6 Applicability Statement ... 10
1.7 Versioning and Capability Negotiation ... 10
1.8 Vendor-Extensible Fields ... 10
1.9 Standards Assignments .. 10

2 Messages.. 11
2.1 Transport .. 11
2.2 Common Data Types .. 11

2.2.1 sequence_log_info .. 11
2.2.2 sequence_operation.. 12
2.2.3 empty_operation .. 12
2.2.4 fixml_invalidation ... 12
2.2.5 remdoclist ... 13
2.2.6 exclusionlist ... 13
2.2.7 remove_collection .. 13
2.2.8 fixml_append ... 14
2.2.9 document_error ... 14
2.2.10 content_operation_sequence ... 15
2.2.11 cheetah ... 16

3 Protocol Details .. 17
3.1 column_master and content_operation_sequence_store Server Details 17

3.1.1 Abstract Data Model ... 17
3.1.2 Timers .. 17
3.1.3 Initialization .. 18
3.1.4 Message Processing Events and Sequencing Rules .. 20

3.1.4.1 column_master::get_row_id .. 21
3.1.4.2 column_master::register_backup_node ... 21
3.1.4.3 column_master::has_backup_node ... 22
3.1.4.4 column_master::check_backup_nodes .. 22
3.1.4.5 column_master::abdicate .. 22
3.1.4.6 column_master::connect_receiver .. 22
3.1.4.7 column_master::disconnect_receiver .. 23
3.1.4.8 content_operation_sequence_store::is_master... 23
3.1.4.9 content_operation_sequence_store::get_stored_sequences 23
3.1.4.10 content_operation_sequence_store::has_sequence_id 23
3.1.4.11 content_operation_sequence_store::request_sequences 24
3.1.4.12 content_operation_sequence_store::get_row_id ... 24

4 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

3.1.4.13 content_operation_sequence_store::get_hostname 24
3.1.4.14 content_operation_sequence_store::get_highest_sequence_id 24
3.1.4.15 content_operation_sequence_store::get_lowest_sequence_id 24

3.1.5 Timer Events ... 25
3.1.6 Other Local Events ... 25

3.2 column_master and content_operation_sequence_store Client Details 25
3.2.1 Abstract Data Model ... 25
3.2.2 Timers .. 25
3.2.3 Initialization .. 25
3.2.4 Message Processing Events and Sequencing Rules .. 26

3.2.4.1 column_master::get_row_id .. 27
3.2.4.2 column_master::register_backup_node ... 27
3.2.4.3 column_master::has_backup_node ... 27
3.2.4.4 column_master::check_backup_nodes .. 27
3.2.4.5 column_master::abdicate .. 27
3.2.4.6 column_master::connect_receiver .. 27
3.2.4.7 column_master::disconnect_receiver .. 27
3.2.4.8 content_operation_sequence_store::is_master... 27
3.2.4.9 content_operation_sequence_store::get_stored_sequences 28
3.2.4.10 content_operation_sequence_store::has_sequence_id 28
3.2.4.11 content_operation_sequence_store::request_sequences 28
3.2.4.12 content_operation_sequence_store::get_row_id ... 28
3.2.4.13 content_operation_sequence_store::get_hostname 28
3.2.4.14 content_operation_sequence_store::get_highest_sequence_id 28
3.2.4.15 content_operation_sequence_store::get_lowest_sequence_id 28

3.2.5 Timer Events ... 28
3.2.6 Other Local Events ... 28

3.3 column_backup and sequence_receptor Server Details ... 28
3.3.1 Abstract Data Model ... 28
3.3.2 Timers .. 29
3.3.3 Initialization .. 29
3.3.4 Message Processing Events and Sequencing Rules .. 29

3.3.4.1 column_backup::get_row_id .. 30
3.3.4.2 column_backup::get_hostname .. 30
3.3.4.3 column_backup::submit_sequence ... 30
3.3.4.4 column_backup::commit_sequence .. 30
3.3.4.5 column_backup::abort_sequence ... 30
3.3.4.6 column_backup::activate_index_set ... 31
3.3.4.7 sequence_receptor::submit_sequence... 31
3.3.4.8 sequence_receptor::finished .. 31
3.3.4.9 sequence_receptor::get_hostname ... 31

3.3.5 Timer Events ... 31
3.3.6 Other Local Events ... 32

3.4 column_backup and sequence_receptor Client Details .. 32
3.4.1 Abstract Data Model ... 32
3.4.2 Timers .. 32
3.4.3 Initialization .. 32
3.4.4 Message Processing Events and Sequencing Rules .. 32

3.4.4.1 column_backup::get_row_id .. 32
3.4.4.2 column:backup::get_hostname .. 32
3.4.4.3 column_backup::submit_sequence ... 33
3.4.4.4 column_backup::commit_sequence .. 33
3.4.4.5 column_backup::abort_sequence ... 33

5 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

3.4.4.6 column_backup::activate_index_set ... 33
3.4.4.7 sequence_receptor::submit_sequence... 33
3.4.4.8 sequence_receptor::finished .. 33
3.4.4.9 sequence_receptor::get_hostname ... 33

3.4.5 Timer Events ... 33
3.4.6 Other Local Events ... 33

4 Protocol Examples .. 34
4.1 Recover a Backup Indexing Node ... 34

4.1.1 Recovery Code ... 34
4.1.2 Recovery Sequence Diagram ... 35

5 Security .. 36
5.1 Security Considerations for Implementers ... 36
5.2 Index of Security Parameters .. 36

6 Appendix A: Full FSIDL ... 37
6.1 FSIDL ... 37
6.2 Cheetah.. 38

7 Appendix B: Product Behavior .. 40

8 Change Tracking... 41

9 Index ... 43

6 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

1 Introduction

This document specifies the Indexer Fault Tolerance Protocol, which is used for distributing and
synchronizing data structures between indexing nodes, through which functionality the index column
achieves fault-tolerant behavior.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

fault-tolerant

fully qualified domain name (FQDN)
marshal
unmarshal

The following terms are defined in [MS-OFCGLOS]:

abstract object reference (AOR)

base port
Boolean

Cheetah
Cheetah checksum
Cheetah entity
client proxy
content collection
document identifier

exclusion list
FAST Index Markup Language (FIXML)
FAST Search Interface Definition Language (FSIDL)
index column
index partition
indexer row
indexing node

inverted index
item
master indexer node
name server
query matching node

The following terms are specific to this document:

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as

described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If

you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624

7 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

[MS-FSCHT] Microsoft Corporation, "Cheetah Data Structure", November 2009.

[MS-FSID] Microsoft Corporation, "Indexing Distribution Protocol Specification", November 2009.

[MS-FSMW] Microsoft Corporation, "Middleware Protocol Specification", November 2009.

[MS-FSRFCO] Microsoft Corporation, "Remote File Copy Orchestration Protocol Specification",

February 2010.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-FSFIXML] Microsoft Corporation, "FIXML Data Structure", November 2009.

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary", March 2007.

[MS-OFCGLOS] Microsoft Corporation, "Microsoft Office Master Glossary", June 2008.

1.3 Protocol Overview (Synopsis)

On the highest level, the index is partitioned across several index columns. On the level of each
indexing node, the index is partitioned into a disjointed set of index partitions. These index
partitions are denoted by integers from 0 to n-1, where n is the number of index partitions on the

indexing node. A full set of disjoint index partitions is called an index set, and the set of index
partitions currently used by query matching nodes to facilitate search queries is called the active
index set.

In a fault-tolerant system setup there are several indexing nodes in the same index column, with
indexing nodes assuming different column roles. In every index column one of the indexing nodes
assumes the role of the master indexer node, while the rest are referred to as backup indexing
nodes. The different indexing nodes are identified by their indexer row identifier, as shown in the

following figure.

Figure 1: Matrix of indexing nodes in a fault-tolerant topology

%5bMS-FSCHT%5d.pdf
%5bMS-FSID%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-FSRFCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-FSFIXML%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

8 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

The backup indexing nodes have all of the item data needed to build indexes, but it is only the
master indexer node that performs the actual indexing.

Item operations, such as adding new items or removing old items, result from Middleware calls, as
described in [MS-FSMW]. Supported item operations include the update_operation, which adds a

new item to the inverted index, and the remove_operation, which removes an item from the
inverted index. All supported item operations are described in [MS-FSID] section 2.2.

The high-level item operations are converted by the master indexer node into low-level sequence
operations, as described in section 2.2.2. The set of indexable items are stored in the intermediate
FAST Index Markup Language (FIXML) format, as described in [MS-FSFIXML], and the sequence
operations manipulate both the FIXML files and the inverted index structures. FIXML files are
identified by using a file identifier, an increasing integer sequence number. A single FIXML file

potentially contains several items.

The master indexer node also keeps a fault-tolerant storage, a data structure that contains a
backlog of processed sequence operations. The sequence operations are numbered with an
increasing integer sequence identifier. The fault-tolerant storage enables a restarted backup

indexing node to quickly become fully synchronized, as the master indexer node only has to resend
the sequence operations that were not delivered during the backup indexing node's downtime.

Using the protocol described in this document, the backup indexing nodes register a file receiver
with the master indexer node. The file receiver is a server object implementing the file_receiver
interface, as described in [MS-FSRFCO]. The file receiver interface is used for transferring the
inverted index from the master indexer node to the backup indexing nodes.

The Indexer Fault Tolerance Protocol uses four interrelated FAST Search Interface Definition
Language (FSIDL) interfaces, with both the master indexer node and the backup indexing nodes
taking on the role of protocol client in some transactions, and protocol server in others. The

interfaces are described in the following sections.

1.3.1 Column Backup

The Column Backup interface is used by the master indexer node in its communication with the

backup indexing nodes. The provided functionality includes the following:

Retrieving the indexer row identifier of the backup indexing node.

Retrieving the fully qualified domain name (FQDN) of the backup indexing node.

Submitting a set of sequence operations to the backup indexing node.

Forcing the backup indexing node to re-resolve the master indexer node.

1.3.2 Column Master

The Column Master interface is used by the backup indexing nodes in their communication with the

master indexer node. The provided functionality includes the following:

Retrieving the indexer row identifier of the master indexer node.

Registering the existence of a backup indexing node.

Unregistering unresponsive backup indexing nodes.

Forcing the master indexer node to relinquish status as master indexer node.

%5bMS-OFCGLOS%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSID%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSFIXML%5d.pdf
%5bMS-FSRFCO%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-GLOS%5d.pdf

9 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Registering a subscribing file receiver.

1.3.3 Content Operation Sequence Store

The Content Operation Sequence Store interface is used by the backup indexing nodes to request
missing item data from other indexing nodes in the index column. The provided functionality
includes the following:

Retrieving the indexer row identifier of the remote indexing node.

Confirming whether the remote indexing node is the master indexer node.

Querying whether the remote indexing node has a specific sequence operation available.

Querying the range of sequence operations available from the remote indexing node.

Requesting an asynchronous transfer of sequence operations.

Retrieving the fully qualified domain name (FQDN) of the remote indexing node.

Retrieving the sequence identifier of the newest sequence operation stored in the remote

indexing node's fault-tolerant storage.

Retrieving the sequence identifier of the oldest sequence operation stored in the remote indexing

node's fault-tolerant storage.

1.3.4 Sequence Receptor

The Sequence Receptor interface is used by indexing nodes to respond to requests issued using the
Content Operation Sequence Store interface. The provided functionality includes the following:

Retrieving the fully qualified domain name (FQDN) of the remote indexing node.

Submitting a set of sequence operations as a response to requests issued using the Content

Operation Sequence Store interface.

1.4 Relationship to Other Protocols

This protocol relies on the Cheetah Data Format to serialize data, as described in [MS-FSCHT], and

on the Middleware Protocol to transport data, as described in [MS-FSMW].

The following diagram shows the underlying messaging and transport stack used by this protocol:

Figure 2: This protocol in relation to other protocols

%5bMS-OFCGLOS%5d.pdf
%5bMS-FSCHT%5d.pdf
%5bMS-FSMW%5d.pdf

10 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

1.5 Prerequisites/Preconditions

The protocol client and protocol server are expected to know the location and connection
information of the shared name server.

1.6 Applicability Statement

This protocol is applicable where there is a need for distributing and synchronizing data structures
between indexing nodes.

1.7 Versioning and Capability Negotiation

Capability Negotiation: The Middleware Protocol is connectionless, but the correct interface version

is to be specified in every message passed using the Middleware Protocol. See sections 3.1.3 and
3.3.3 for the specific version numbers.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

11 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

2 Messages

2.1 Transport

The messages supported by the interfaces specified in sections 3.1.4 and 3.3.4 MUST be sent as
HTTP POST messages, as specified in [MS-FSMW].

2.2 Common Data Types

The allowed FSIDL data types are specified in [MS-FSMW]. This protocol also uses custom Cheetah

data types that are marshaled and embedded in a generic collection of bytes.

Cheetah entities MUST be encoded as specified in [MS-FSCHT] section 2.2. The Cheetah
checksum of the Cheetah messages MUST be -2127454238. The Cheetah type identifier for the
Cheetah entities MUST be as specified in the following table.

Cheetah entity Cheetah type identifier

sequence_log_info 5

sequence_operation 6

empty_operation 7

fixml_invalidation 8

Remdoclist 9

Exclusionlist 10

remove_collection 11

fixml_append 12

document_error 15

content_operation_sequence 16

In addition to the preceding Cheetah entities, the protocol also makes use of data types that are
aliases for standard FSIDL data types. The aliased data types are not custom data types, but rather
standard FSIDL data types that have been given more convenient or verbose names to increase
code readability.

2.2.1 sequence_log_info

The sequence_log_info data type is used to encapsulate information regarding the content of the

fault-tolerant storage. The structure of this data type, as specified in section 6.2, is as follows:

entity sequence_log_info {

 attribute longint low_sequence_id;

 attribute longint high_sequence_id;

 attribute longint processed_sequence_id;

};

%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSCHT%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

12 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

low_sequence_id: An integer value containing the sequence identifier of the oldest sequence

operation stored in the fault-tolerant storage. The value MUST be greater than or equal to zero, and

the value MUST be less than or equal to high_sequence_id.

high_sequence_id: An integer value containing the sequence identifier of the newest sequence

operation stored in the fault-tolerant storage. The value MUST be greater than or equal to zero, and
the value MUST be greater than or equal to low_sequence_id.

processed_sequence_id: An integer value containing the sequence identifier of the newest
operation the indexing node has executed. The value MUST be greater than or equal to zero, and
the value MUST be less than or equal to high_sequence_id.

2.2.2 sequence_operation

The sequence_operation data type is the base type for operations manipulating the set of indexed
items. The structure of this data type, as specified in section 6.2, is as follows:

entity sequence_operation {

 attribute longint sequence_number;

 attribute longint operation_id;

};

sequence_number: An integer value containing the sequence identifier of the sequence operation.

The value MUST be greater than or equal to zero.

operation_id: The identifier of the item operation from which the sequence operation originated.

2.2.3 empty_operation

The empty_operation data type is a subtype of sequence_operation specified in section 2.2.2.
The empty_operation MUST NOT have any effect. The structure of this data type, as specified in
section 6.2, is as follows:

entity empty_operation : sequence_operation {

};

2.2.4 fixml_invalidation

The fixml_invalidation data type is a sub-type of sequence_operation specified in section 2.2.2.
The fixml_invalidation data type is used to invalidate an item. The structure of this data type, as
specified in section 6.2, is as follows:

entity fixml_invalidation : sequence_operation {

 attribute string document_id;

 attribute int file_id;

 attribute int magic_idx;

 attribute bool is_update;

};

document_id: The document identifier (3).

file_id: The file identifier of the FIXML file containing the item to be removed.

%5bMS-OFCGLOS%5d.pdf

13 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

magic_idx: An integer value from 0 to n-1, where n is the number of items in the FIXML file,
describing the position of the item in the FIXML file.

is_update: MUST be true if the sequence operation was derived from a high-level
update_operation as specified in [MS-FSID] section 2.2.36; otherwise false.

2.2.5 remdoclist

The remdoclist data type is a subtype of sequence_operation specified in section 2.2.2. The
remdoclist data type is used to add an item to the remove list, a list of items that are to be
removed from the index the next time it is re-indexed. Instead of removing the item from the index
directly, it is removed from query results by being added to the query matching nodes' exclusion
lists. The structure of this data type, as specified in section 6.2, is as follows:

entity remdoclist : sequence_operation {

 attribute string document_id;

 attribute int old_file_id;

 attribute int new_file_id;

};

document_id: The document identifier (3) of the item.

old_file_id: The file identifier of the FIXML file containing the item to remove.

new_file_id: If the sequence operation was derived from a high-level update_operation, as
specified in [MS-FSID] section 2.2.36, the value MUST be the file identifier of the FIXML file
containing the updated item. If the sequence operation was not derived from a high-level
update_operation, the value MUST be the same as old_file_id.

2.2.6 exclusionlist

The exclusionlist data type is a subtype of sequence_operation specified in section 2.2.2. The
exclusionlist data type is used to add an item to the exclusion list. An item that has been added to

the exclusion list will be removed from query results, even if it is present in the index. The structure
of this data type, as specified in section 6.2, is as follows:

entity exclusionlist : sequence_operation {

 attribute string document_id;

 attribute int old_file_id;

};

document_id: The document identifier (3) of the item.

old_file_id: The file identifier of the FIXML file containing the item to exclusion list.

2.2.7 remove_collection

The remove_collection data type is a subtype of sequence_operation specified in section 2.2.2.

The remove_collection data type is used to remove a content collection and all of its indexed
items. The content collection concerned is implicitly derived from the higher level session set up
before item operations are fed, as specified in [MS-FSID] section 3.1.4.1. The structure of this data

type, as specified in section 6.2, is as follows:

entity remove_collection : sequence_operation {

%5bMS-FSID%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSID%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSID%5d.pdf

14 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

};

2.2.8 fixml_append

The fixml_append data type is a subtype of sequence_operation specified in section 2.2.2. The
fixml_append data type is used to add an item to a FIXML file. The structure of this data type, as
specified in section 6.2, is as follows:

entity fixml_append : sequence_operation {

 attribute string document_id;

 attribute string document_content;

 attribute int file_id;

 attribute int magic_idx;

 attribute bool is_update;

};

document_id: The document identifier (3) of the item.

document_content: The content of the item to append.

file_id: The file identifier of the FIXML file in which to place the item.

magic_idx: An integer describing the position of the item in the FIXML file. This MUST be between
0 and n-1, where n is the number of items in the FIXML file.

is_update: A Boolean value that MUST be true.

2.2.9 document_error

The document_error data type is a subtype of sequence_operation specified in section 2.2.2.
The document_error data type contains errors relating to an item. The structure of this data type,
as specified in section 6.2, is as follows:

entity document_error : sequence_operation {

 attribute string document_id;

 attribute int error_code;

 attribute int action;

 attribute string subsystem;

 attribute string error_message;

}

document_id: The document identifier (3) of the item.

error_code: An integer value containing an error code. The value MUST be one of the values
described in the following table.

Error code Description

1 Missing attribute.

2 Generic error.

3 Unknown item.

%5bMS-OFCGLOS%5d.pdf

15 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Error code Description

4 Indexer suspended.

5 FIXML write error. Failed to persist item operation.

6 Unknown content collection.

7 Partial update error.

action: An integer value containing a suggested action code. The value MUST be one of the values
described in the following table.

Action code Description

1 Resubmit.

2 Limited resubmit.

3 Drop operation.

4 Terminate.

subsystem: A string value that MUST be "indexing".

error_message: A string that contains the error message.

2.2.10 content_operation_sequence

The content_operation_sequence data type is a collection of sequence operations. The structure

of this data type, as specified in section 6.2, is as follows:

entity content_operation_sequence {

 attribute int session_id;

 attribute string document_collection;

 attribute longint low_sequence_id;

 attribute longint high_sequence_id;

 collection sequence_operation operations;

};

session_id: The session identifier of the session used to feed the high level operations from which
the sequence operations were deduced. The sessions are created using the create_session

method, as specified in [MS-FSID] section 3.2.4.1.

document_collection: The content collection associated with the sequence operations.

low_sequence_id: The lowest sequence identifier of the operations contained in the structure.

high_sequence_id: The highest sequence identifier of the operations contained in the structure.

operations: A collection of sequence_operations, as specified in section 2.2.2.

%5bMS-FSID%5d.pdf

16 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

2.2.11 cheetah

The cheetah data type is an alias for a collection of bytes. It is used for all custom data types that
are marshaled using Cheetah. The structure of this data type, as specified in section 6.2, is as

follows:

typedef sequence<octet> cheetah;

17 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

3 Protocol Details

This protocol consists of four different protocol interfaces: column_master, column_backup,
content_operation_sequence_store, and sequence_receptor. For column_master and
content_operation_sequence_store the master indexer node acts as a protocol server, and the

backup indexing nodes act as the protocol client. For column_backup and sequence_receptor,
the roles are reversed, and the master indexer node is the protocol client, while the backup indexing
nodes are the protocol servers.

3.1 column_master and content_operation_sequence_store Server Details

A master indexer node implementing the column_master and

content_operation_sequence_store interfaces receives messages from the backup indexing
nodes.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

The following data structures are needed by the master indexer node in the role of protocol server:

fault_tolerance_storage: a data structure containing a backlog of sequence operations.

lowest_sequence_id: an integer value containing the sequence identifier of the oldest sequence
operation stored in the fault_tolerance_storage.

highest_sequence_id: an integer value containing the sequence identifier of the newest sequence

operation stored in the fault_tolerance_storage.

highest_processed_id: an integer value containing the sequence identifier of the newest sequence
operation that the indexing node has processed.

column_role: the current column role of the indexing node in the index column, either "BACKUP,"
"MASTER," or "UNKNOWN." See section 3.1.3 for details on establishing the column role.

backups: a set of client proxies implementing the column_backup interface. The client proxies are

not resolved using the name server, rather they are registered using the register_backup_node
method of the column_master interface.

file_receivers: a set of client proxies implementing the file_receiver interface, specified in [MS-
FSRFCO]. The file receivers are registered and deregistered by using the Indexer Fault Tolerance
protocol; however, the actual use of the client proxies are in relation with the protocol specified in
[MS-FSRFCO].

3.1.2 Timers

None.

%5bMS-OFCGLOS%5d.pdf
%5bMS-FSRFCO%5d.pdf
%5bMS-FSRFCO%5d.pdf

18 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

3.1.3 Initialization

Unless the column role of an indexing node is decided through static and implementation-specific
configuration options, the decision about which column role to assume is established through the

following steps, performed at system initialization:

The column role is set to "UNKNOWN".

The indexing node tries to resolve the column_master interface in the name server, using the
resolve method, as specified in [MS-FSMW]. There are two possible outcomes:

The interface is successfully resolved, and the indexing node tries to ascertain the availability of the
current master indexer node using the standard Middleware __ping method, as specified in [MS-
FSMW] section 4.2. There are two possible outcomes:

The remote indexing node responds to the __ping, and the local indexing node assumes the role of
"BACKUP".

The remote indexing node is unavailable, and the local indexing node tries to bind the

column_master interface itself. If it succeeds in binding to the column_master interface, it
assumes the role of "MASTER;" otherwise, the local indexing node repeats step 2.

The interface cannot be resolved, and the local indexing node tries to bind the column_master

interface itself. If it succeeds in binding to the column_master interface, it assumes the role of
"MASTER;" otherwise, the local indexing node repeats step 2.

When the backup indexing nodes are established, they will periodically ascertain the availability of
the master indexer node, and if the master indexer node fails to respond to a __ping, the backup
indexing nodes will try to bind to the column_master interface and assume the role of master
indexer node. A typical scenario is described in the following figure.

%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf

19 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Figure 3: Establishing column role

If the indexing nodes have predefined roles, a backup indexing node will not try to register the

column_master interface in the absence of a master indexer node, rather it will remain a backup
indexing node and continually try to resolve the predefined master indexer node.

The master indexer node MUST use the Middleware bind method to register an
rtsearch::column_master server object in the name server, as specified in [MS-FSMW] section
2.2. The parameters for the bind method are encapsulated in an abstract object reference

(AOR), as specified in [MS-FSMW] section 3.4.4.2:

host: A string specifying the host name of the server hosting the server object.

port: An integer specifying the port number of the server object on the protocol server. The value is
base port plus 390.

%5bMS-FSMW%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-OFCGLOS%5d.pdf

20 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

interface_type: A string that MUST be "rtsearch::column_master".

interface_version: A string that MUST be "5.9".

object_id: An integer value that MUST be unique for each server object.

name: A string that MUST be "esp/clusters/webcluster/indexing/indexer-C/columnmaster", where C

is the index column identifier.

If fault-tolerant behavior is enabled, all indexing nodes MUST use the Middleware bind method to
register an rtsearch::content_operation_sequence_store server object in the name server, as
specified in [MS-FSMW] section 2.2. The parameters for the bind method are encapsulated in an
abstract object reference (AOR), as specified in [MS-FSMW] section 3.4.4.2:

host: A string specifying the host name of the server hosting the server object.

port: An integer specifying the port number of the server object on the protocol server. The value is

base port plus 390.

interface_type: A string that MUST be "rtsearch::content_operation_sequence_store".

interface_version: A string that MUST be "5.6".

object_id: An integer value that MUST be unique for each server object.

name: A string that MUST be "esp/clusters/webcluster/indexing/indexer-C-R/opr_seq_store", where
C is the index column identifier and R is the indexer row identifier.

3.1.4 Message Processing Events and Sequencing Rules

The message type is determined at the Middleware level. The Middleware MUST call the correct
method of a server object implementing an interface. If custom data types are present in the
signature of the method being called, the Middleware MUST unmarshal (1) the Cheetah data
before passing the arguments to the server object.

In accordance with the Middleware specification, the generic Middleware exceptions may be thrown

from any method, and are thus not defined in the FSIDL method signatures.

The available methods are specified in the following table.

Method Description

column_master::get_row_id Returns the indexer row of the
indexing node.

column_master::register_backup_node Registers a backup indexing node.

column_master::has_backup_node Returns whether a specific
indexing node is registered with
the master indexer node.

column_master::check_backup_nodes Unregisters unresponsive backup
indexing nodes.

column_master::abdicate Relinquishes status as master
indexer node.

column_master::connect_receiver Adds a file receiver to the

%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-GLOS%5d.pdf

21 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Method Description

file_receivers state variable.

column_master::disconnect_receiver Removes a file receiver from the
file_receivers state variable.

content_operation_sequence_store::is_master Returns whether the indexing
node is the master indexer node
of the index column.

content_operation_sequence_store::get_stored_sequences Returns the range of sequence
operations stored in the fault-
tolerant storage.

content_operation_sequence_store::has_sequence_id Returns whether the fault-tolerant
storage contains a specified
sequence operation.

content_operation_sequence_store::request_sequences Requests an asynchronous
transfer of sequence operations.

content_operation_sequence_store::get_row_id Returns the indexer row of the
indexing node.

content_operation_sequence_store::get_hostname Returns the host name of the
indexing node.

content_operation_sequence_store::get_highest_sequence_id Returns the value of the state
variable highest_sequence_id.

content_operation_sequence_store::get_lowest_sequence_id Returns the value of the state
variable lowest_sequence_id.

3.1.4.1 column_master::get_row_id

The get_row_id method MUST return the indexer row of the indexing node. The structure of this
method, as specified in section 6.1, is as follows:

long get_row_id();

Return values: MUST return the indexer row of the indexing node.

3.1.4.2 column_master::register_backup_node

The register_backup_node method MUST add the backup indexing node client proxy to the state
variable backups. The structure of this method, as specified in section 6.1, is as follows:

void register_backup_node(in column_backup backup_interface,

 in long row_id);

backup_interface: The client proxy of the backup indexing node registering.

row_id: The indexer row of the backup indexing node registering.

%5bMS-OFCGLOS%5d.pdf

22 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

3.1.4.3 column_master::has_backup_node

The has_backup_node method MUST return whether the state variable backups contains the
backup indexing node of a specific indexer row. The structure of this method, as specified in section

6.1, is as follows:

boolean has_backup_node(in long row_id);

row_id: The indexer row identifier of the backup indexing node.

Return values: The method MUST return true if the state variable backups contains the specified

backup indexing node; otherwise false.

3.1.4.4 column_master::check_backup_nodes

The check_backup_nodes method MUST remove all unavailable backup indexing nodes from the
state variable backups. The availability of the backup indexing nodes MUST be ascertained using

the __ping method on the client proxies, as specified in [MS-FSMW] section 4.2. The structure of
this method, as specified in section 6.1, is as follows:

void check_backup_nodes();

3.1.4.5 column_master::abdicate

The abdicate method MUST force the master indexer node to relinquish its status as master indexer

node by unbinding the column_master interface from the name server, as specified in [MS-FSMW]
section 3.4.4.3. The column_role state variable MUST be set to "UNKNOWN", and the column role
must be newly established in accordance with the description in section 3.1.3. The abdicate method
MAY return a void value, but SHOULD simply time out. The structure of this method, as specified in
section 6.1, is as follows:

void abdicate();

3.1.4.6 column_master::connect_receiver

The connect_receiver method MUST add the file_receiver client proxy to the state variable
file_receivers. The file_receiver interface is specified in [MS-FSRFCO]. The availability of the file
receiver server object MUST be ascertained using the __ping method on the client proxy, as

specified in [MS-FSMW] section 4.2. The structure of this method, as specified in section 6.1, is as
follows:

boolean connect_receiver(in file_receiver receiver,

 in string hostname,

 in long port);

receiver: The client proxy of the connecting file_receiver, as specified in [MS-FSRFCO].

hostname: The host name of the connecting file_receiver.

port: The port number of the connecting file_receiver.

%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-FSRFCO%5d.pdf
%5bMS-FSMW%5d.pdf

23 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Return values: The method MUST return true if the file_receivers state variable is successfully
updated and the server object is available; otherwise false.

3.1.4.7 column_master::disconnect_receiver

The disconnect_receiver method MUST remove the file_receiver client proxy associated with the
specified host name and port number from the state variable file_receivers. The structure of this
method, as specified in section 6.1, is as follows:

boolean disconnect_receiver(in string hostname, in long port);

hostname: The host name of the disconnecting file_receiver.

port: The port number of the disconnecting file_receiver.

Return values: The method MUST return true.

3.1.4.8 content_operation_sequence_store::is_master

The is_master method MUST return whether or not the column_role state variable equals
"MASTER". The structure of this method, as specified in section 6.1, is as follows:

boolean is_master();

Return values: The method MUST return true if the state variable column_role equals "MASTER";

otherwise false.

3.1.4.9 content_operation_sequence_store::get_stored_sequences

The get_stored_sequences method MUST return the range of sequence operations stored in the
fault_tolerance_storage and the highest_processed_id state variables. The structure of this
method, as specified in section 6.1, is as follows:

cht::rtsmessages::sequence_log_info get_stored_sequences();

Return values: The method MUST return a sequence_log_info object containing the state

variables highest_sequence_id, lowest_sequence_id and highest_processed_id.

3.1.4.10 content_operation_sequence_store::has_sequence_id

The has_sequence_id method MUST return whether the fault_tolerance_storage contains the
specified sequence operation. The structure of this method, as specified in section 6.1, is as follows:

boolean has_sequence_id(in long long sequence_id);

sequence_id: The sequence identifier.

Return values: The method MUST return true if the fault_tolerance_storage contains the
sequence operation; otherwise false.

24 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

3.1.4.11 content_operation_sequence_store::request_sequences

The request_sequences method MUST initiate an asynchronous transfer of a range of sequence
operations using sequence_receptor::submit_sequence. When all of the sequence operations

have been submitted, a call to the sequence_receptor::finished method MUST be made. The
structure of this method, as specified in section 6.1, is as follows:

void request_sequences(in sequence_receptor receptor,

 in long long from_sequence_id,

 in long long to_sequence_id);

receptor: The sequence_receptor client proxy through which to send the sequence operations.

from_sequence_id: The lowest identifier of the range of sequence operations to transfer.

to_sequence_id: The highest identifier of the range of sequence operations to transfer.

3.1.4.12 content_operation_sequence_store::get_row_id

The get_row_id method MUST return the indexer row identifier of the indexing node. The structure
of this method, as specified in section 6.1, is as follows:

long get_row_id();

Return values: The method MUST return the indexer row identifier of the indexing node.

3.1.4.13 content_operation_sequence_store::get_hostname

The get_hostname method MUST return the fully qualified domain name (FQDN) of the indexing
node. The structure of this method, as specified in section 6.1, is as follows:

string get_hostname();

Return values: The method MUST return the fully qualified domain name of the indexing node.

3.1.4.14 content_operation_sequence_store::get_highest_sequence_id

The get_highest_sequence_id method MUST return the value of the state variable
highest_sequence_id. The structure of this method, as specified in section 6.1, is as follows:

long long get_highest_sequence_id();

Return values: The method MUST return the value of the state variable highest_sequence_id.

3.1.4.15 content_operation_sequence_store::get_lowest_sequence_id

The get_lowest_sequence_id method MUST return the value of the state variable
lowest_sequence_id. The structure of this method, as specified in section 6.1, is as follows:

long long get_lowest_sequence_id();

25 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Return values: The method MUST return the value of the state variable lowest_sequence_id.

3.1.5 Timer Events

None.

3.1.6 Other Local Events

None.

3.2 column_master and content_operation_sequence_store Client Details

The backup indexing nodes use the column_master interface to register with and poll information
from the master indexer node. The backup indexing nodes use the

content_operation_sequence_store interface to obtain missing sequence operations from
another indexing node.

3.2.1 Abstract Data Model

None.

3.2.2 Timers

None.

3.2.3 Initialization

The protocol client MUST use the Middleware resolve method to find the server objects bound in
the name server, as specified in [MS-FSMW] section 3.4.4.1.

For resolving the content_operation_sequence_store server object, the parameters are:

name: A string that MUST be "esp/clusters/webcluster/indexing/indexer-C-R/opr_seq_store", where

C is the index column identifier and R is the indexer row identifier.

interface_type: A string that MUST be "rtsearch::content_operation_sequence_store".

interface_version: A string that MUST be "5.6".

For resolving the column_master server object, the parameters are:

name: A string that MUST be "esp/clusters/webcluster/indexing/indexer-C/columnmaster", where C
is the index column identifier.

interface_type: A string that MUST be "rtsearch::column_master".

interface_version: A string that MUST be "5.9".

The backup indexing nodes MUST create a server object implementing the column_backup
interface. The server object must then be registered with the master indexer node using

column_master::register_backup_node. The server object MUST have the following values set
for the abstract object reference (AOR), as specified in [MS-FSMW] section 2.2.14:

host: A string specifying the host name of the server hosting the server object.

%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf

26 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

port: An integer specifying the port number of the server object on the protocol server. The value is
base port plus 390.

interface_type: A string that MUST be "rtsearch::column_backup".

interface_version: A string that MUST be "5.14".

object_id: An integer value that MUST be unique for each server object.

To call methods that have parameters of type sequence_receptor, a server object implementing
the interface sequence_receptor MUST first be created. The server object MUST have the
following values set for the abstract object reference (AOR), as specified in [MS-FSMW] section
2.2.14:

host: A string specifying the host name of the server hosting the server object.

port: An integer specifying the port number of the server object on the protocol server. The value is

base port plus 390.

interface_type: A string that MUST be "rtsearch::sequence_receptor".

interface_version: A string that MUST be "5.2".

object_id: An integer value that MUST be unique for each server object.

3.2.4 Message Processing Events and Sequencing Rules

The available methods are specified in the following table.

Method Description

column_master::get_row_id Returns the indexer row of the
indexing node.

column_master::register_backup_node Registers a backup indexing node.

column_master::has_backup_node Returns whether a specific
indexing node is registered with
the master indexer node.

column_master::check_backup_nodes Unregisters unresponsive backup
indexing nodes.

column_master::abdicate Relinquishes status as master
indexer node.

column_master::connect_receiver Adds a file receiver to the
file_receivers state variable.

column_master::disconnect_receiver Removes a file receiver from the
file_receivers state variable.

content_operation_sequence_store::is_master Returns whether the indexing
node is the master indexer node
of the index column.

content_operation_sequence_store::get_stored_sequences Returns the range of sequence
operations stored in the fault-
tolerance storage.

%5bMS-FSMW%5d.pdf

27 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Method Description

content_operation_sequence_store::has_sequence_id Returns whether the fault-
tolerance storage contains a
specified sequence operation.

content_operation_sequence_store::request_sequences Requests an asynchronous
transfer of sequence operations.

content_operation_sequence_store::get_row_id Returns the indexer row of the
indexing node.

content_operation_sequence_store::get_hostname Returns the host name of the
indexing node.

content_operation_sequence_store::get_highest_sequence_id Returns the value of the state
variable highest_sequence_id.

content_operation_sequence_store::get_lowest_sequence_id Returns the value of the state
variable lowest_sequence_id.

3.2.4.1 column_master::get_row_id

The get_row_id method is specified in section 3.1.4.1.

3.2.4.2 column_master::register_backup_node

The register_backup_node method is specified in section 3.1.4.2. Before this call is made, the
backup indexing node MUST first create a column_backup server object, as specified in section
3.2.3.

3.2.4.3 column_master::has_backup_node

The has_backup_node method is specified in section 3.1.4.3.

3.2.4.4 column_master::check_backup_nodes

The check_backup_nodes method is specified in section 3.1.4.4.

3.2.4.5 column_master::abdicate

The abdicate method is specified in section 3.1.4.5. The abdicate method will force the protocol

server to deactivate the server object implementing the method itself. The abdicate method MAY
return a void value, but SHOULD simply time out.

3.2.4.6 column_master::connect_receiver

The connect_receiver method is specified in section 3.1.4.6.

3.2.4.7 column_master::disconnect_receiver

The disconnect_receiver method is specified in section 3.1.4.7.

3.2.4.8 content_operation_sequence_store::is_master

The is_master method is specified in section 3.1.4.8.

28 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

3.2.4.9 content_operation_sequence_store::get_stored_sequences

The get_stored_sequences method is specified in section 3.1.4.9.

3.2.4.10 content_operation_sequence_store::has_sequence_id

The has_sequence_id method is specified in section 3.1.4.10.

3.2.4.11 content_operation_sequence_store::request_sequences

The request_sequences method is specified in section 3.1.4.11.

3.2.4.12 content_operation_sequence_store::get_row_id

The get_row_id method is specified in section 3.1.4.12.

3.2.4.13 content_operation_sequence_store::get_hostname

The get_hostname method is specified in section 3.1.4.13.

3.2.4.14 content_operation_sequence_store::get_highest_sequence_id

The get_highest_sequence_id method is specified in section 3.1.4.14.

3.2.4.15 content_operation_sequence_store::get_lowest_sequence_id

The get_lowest_sequence_id method is specified in section 3.1.4.15.

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

3.3 column_backup and sequence_receptor Server Details

A backup indexing node implementing the column_backup and sequence_receptor interfaces
receive messages from a master indexer node.

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

The following data structures are needed by the backup indexing node in the role of protocol server:

fault_tolerance_storage: A data structure containing a backlog of sequence operations.

lowest_sequence_id: An integer value containing the sequence identifier of the oldest sequence
operation stored in the fault_tolerance_storage.

29 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

highest_sequence_id: An integer value containing the sequence identifier of the newest sequence
operation stored in the fault_tolerance_storage.

highest_processed_id: An integer value containing the sequence identifier of the newest
sequence operation that the indexing node has processed.

column_role: The current column role of the indexing node in the index column, either "BACKUP,"
"MASTER," or "UNKNOWN." See section 3.1.3 for details on establishing the column role.

active_index_set: The currently active index set.

sequence_receptor: A server object implementing the sequence_receptor interface. The server
object receives the asynchronous responses to the message
content_operation_sequence_store::request_sequences.

receptor_finished: A Boolean state variable stating whether or not the sequence_receptor has

received the submitted set of sequence operations.

3.3.2 Timers

None.

3.3.3 Initialization

The backup indexing nodes MUST create a server object implementing the column_backup, as
specified in section 3.2.3.

3.3.4 Message Processing Events and Sequencing Rules

The message type is determined at the Middleware level. The Middleware MUST call the correct
method of the server object implementing the interface. If custom data types are present in the
signature of the method being called, the Middleware MUST unmarshal (1) the Cheetah data before

passing the arguments to the server object.

In accordance with the Middleware specification, generic Middleware exceptions may be thrown from
any method, and are thus not defined in the FSIDL method signatures.

The available methods are specified in the following table.

Method Description

column_backup::get_row_id Returns the indexer row of the indexing node.

column_backup::get_hostname Returns the host name of the indexing node.

column_backup::submit_sequence Submits a set of sequence operations.

column_backup::commit_sequence Persists a set of submitted sequence operations.

column_backup::abort_sequence Reverts a submitted set of sequence operations.

column_backup::activate_index_set Updates the active index set.

sequence_receptor::submit_sequence Submits a set of sequence operations.

sequence_receptor::finished Sets the state variable receptor_finished to true.

30 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Method Description

sequence_receptor::get_hostname Returns the host name of the remote indexing node.

3.3.4.1 column_backup::get_row_id

The get_row_id method MUST return the indexer row identifier of the indexing node. The structure

of this method, as specified in section 6.1, is as follows:

long get_row_id();

Return values: The method MUST return the indexer row identifier of the backup indexing node.

3.3.4.2 column_backup::get_hostname

The get_hostname method MUST return the fully qualified domain name (FQDN) of the indexing

node. The structure of this method, as specified in section 6.1, is as follows:

string get_hostname();

Return values: The method MUST return the fully qualified domain name of the indexing node.

3.3.4.3 column_backup::submit_sequence

The submit_sequence method MUST update the FIXML files in accordance with the incoming set of
sequence operations. The method MUST also update the highest_processed_id state variable to
include the latest set of sequence operations processed. The structure of this method, as specified in
section 6.1, is as follows:

boolean submit_sequence(in cht::rtsmessages::content_operation_sequence seq,

 in string collection_name)

seq: The set of sequence operations.

collection_name: The name of the content collection being updated.

Return values: The method MUST return true if the FIXML files were successfully updated;
otherwise, false.

3.3.4.4 column_backup::commit_sequence

The commit_sequence method MUST update the state variables lowest_sequence_id and
highest_sequence_id to correspond to the latest set of submitted sequence operations. The
structure of this method, as specified in section 6.1, is as follows:

void commit_sequence();

3.3.4.5 column_backup::abort_sequence

The abort_sequence method MUST undo the effect of any submitted but not yet committed set of
sequence operations. The structure of this method, as specified in section 6.1, is as follows:

31 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

void abort_sequence();

3.3.4.6 column_backup::activate_index_set

The activate_index_set method MUST update the state variable active_index_set to correspond
to the latest index set available on the backup indexing node. The actual index set is transferred to
the backup indexing node using a different protocol, as specified in [MS-FSRFCO]. The structure of
this method, as specified in section 6.1, is as follows:

void activate_index_set();

3.3.4.7 sequence_receptor::submit_sequence

The submit_sequence method MUST accept a set of sequence operations, sent as a response to
content_operation_sequence_store::request_sequences. The interface is used by indexing

nodes recovering from downtime, and the method MUST mirror the functionality of a call to

column_backup::submit_sequence followed by a call to column_backup::commit_sequence.
The structure of this method, as specified in section 6.1, is as follows:

void submit_sequence(in cht::rtsmessages::content_operation_sequence seq);

seq: The set of sequence operations submitted from the remote indexing node.

3.3.4.8 sequence_receptor::finished

The finished method is an asynchronous callback sent back to the protocol client as a result of the
protocol client issuing a content_operation_sequence_store::request_sequences call. It MUST
set the state variable receptor_finished to true. The protocol server MUST use it to signal that it
has finished submitting the requested sequence operations. The structure of this method, as
specified in section 6.1, is as follows:

void finished();

3.3.4.9 sequence_receptor::get_hostname

The get_hostname method MUST return the fully qualified domain name (FQDN) of the indexing

node. The structure of this method, as specified in section 6.1, is as follows:

string get_hostname();

Return values: The method MUST return the fully qualified domain name (FQDN) of the indexing
node.

3.3.5 Timer Events

None.

%5bMS-FSRFCO%5d.pdf

32 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

3.3.6 Other Local Events

None.

3.4 column_backup and sequence_receptor Client Details

A master indexer node uses the column_backup and sequence_receptor interfaces to interact
with a backup indexing node.

3.4.1 Abstract Data Model

None.

3.4.2 Timers

None.

3.4.3 Initialization

The column_backup client proxy is registered with the master indexer node through a call to
column_master::register_backup_node. The sequence_receptor client proxy is supplied as a
parameter to content_operation_sequence_store::request_sequences.

3.4.4 Message Processing Events and Sequencing Rules

The available methods are specified in the following table.

Method Description

column_backup::get_row_id Returns the indexer row of the indexing node.

column_backup::get_hostname Returns the host name of the indexing node.

column_backup::submit_sequence Submits a set of sequence operations.

column_backup::commit_sequence Persists a set of submitted sequence operations.

column_backup::abort_sequence Reverts a submitted set of sequence operations.

column_backup::activate_index_set Updates the active index set.

sequence_receptor::submit_sequence Submits a set of sequence operations.

sequence_receptor::finished Sets the state variable receptor_finished to true.

sequence_receptor::get_hostname Returns the host name of the remote indexing node.

3.4.4.1 column_backup::get_row_id

The get_row_id method is specified in section 3.3.4.1.

3.4.4.2 column:backup::get_hostname

The get_hostname method is specified in section 3.3.4.2.

33 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

3.4.4.3 column_backup::submit_sequence

The submit_sequence method is specified in section 3.3.4.3.

3.4.4.4 column_backup::commit_sequence

The commit_sequence method is specified in section 3.3.4.4.

3.4.4.5 column_backup::abort_sequence

The abort_sequence method is specified in section 3.3.4.5.

3.4.4.6 column_backup::activate_index_set

The activate_index_set method is specified in section 3.3.4.6.

3.4.4.7 sequence_receptor::submit_sequence

The submit_sequence method is specified in section 3.3.4.7.

3.4.4.8 sequence_receptor::finished

The finished method is specified in section 3.3.4.8.

3.4.4.9 sequence_receptor::get_hostname

The get_hostname method is specified in section 3.3.4.9.

3.4.5 Timer Events

None.

3.4.6 Other Local Events

None.

34 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

4 Protocol Examples

4.1 Recover a Backup Indexing Node

This example illustrates how this protocol is used in a user scenario where a lagging backup
indexing node synchronizes with the master indexer node by requesting missing sequence
operations.

The recovery process typically involves the following messages:

1. The backup indexing node resolves the master indexer node in the name server.

2. The backup indexing node requests the range endpoint values of the sequence operations stored
on the master indexer node.

3. The backup indexing node requests an asynchronous transfer of missing sequence operations
from the master indexer node.

4. The master indexer node submits the missing sequence operations to the backup indexing node.

5. The master indexer node submits an end of transmission message to the backup indexing node.

The scenario presupposes that the master indexer node has already created a server object

implementing the operation_sequence_store interface and bound the server object in a name
server using a logical name known to the backup indexing node.

When a backup indexing node is started, it first resolves the content_operation_sequence_store
interface in the name server. The backup indexing node then proceeds by requesting the range of
sequence operations the master indexer node has stored in its fault-tolerant storage. If the backup
indexing node does not possess all of the sequence operations on the master indexer node, the

backup indexing node must request an asynchronous transfer. Before this request can be made, the
backup indexing node must create a server object implementing the sequence_receptor interface,
so that the backup indexing node can pass a reference to the recipient of the sequence operations.
Using the client proxy to the sequence_receptor, the master indexer node submits the missing

sequence operations to the backup indexing node. After the transfer of sequence operations, a
message indicating that all operations have been submitted is sent to the backup indexing node.

4.1.1 Recovery Code

SET server_object_name TO "esp/clusters/webcluster/indexing/indexer-0-0/opr_seq_store"

SET server_object_type TO "rtsearch::content_operation_sequence_store"

SET server_object_version TO 5.6

CALL nameserver.resolve WITH server_object_name, server_object_type AND server_object_version

RETURNING op_seq_store_client_proxy

CALL op_seq_store_client_proxy.get_stored_sequences RETURNING remote_stored_sequences

IF local_stored_sequences.high_sequence_id < remote_stored_sequences.high_sequence_id THEN

 SET sequence_receptor_server_object TO INSTANCE OF sequence_receptor

 SERVER OBJECT

 CALL op_seq_store_client_proxy.request_sequences WITH sequence_receptor_server_object,

 local_stored_sequences.high_sequence_id + 1, remote_stored_sequences.high_sequence

ENDIF

35 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

REPEAT

 PRINT "Waiting for master indexer node to submit missing sequence operations"

UNTIL sequence_receptor_server_object.finished HAS BEEN CALLED

4.1.2 Recovery Sequence Diagram

Figure 4: Recovery sequence diagram

36 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

5 Security

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

37 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

6 Appendix A: Full FSIDL

For ease of implementation, the full FSIDL and Cheetah specifications are provided in the following
sections.

6.1 FSIDL

module cht {

 module rtsmessages {

 typedef sequence<octet> cheetah;

 typedef cheetah sequence_log_info;

 typedef cheetah content_operation_sequence;

 };

};

module interfaces {

 module rtsearch {

 interface column_backup {

 long get_row_id();

 string get_hostname();

 boolean submit_sequence(in cht::rtsmessages::content_operation_sequence seq,

 in string collection_name);

 void commit_sequence();

 void abort_sequence();

 void activate_index_set();

 }

 interface column_master {

 long get_row_id();

 void register_backup_node(in column_backup backup_interface,

 in long row_id);

 boolean has_backup_node(in long row_id);

 void check_backup_nodes();

 void abdicate();

 boolean connect_receiver(in file_receiver receiver,

 in string hostname,

 in long port);

 boolean disconnect_receiver(in string hostname, in long port);

 }

 interface sequence_receptor {

 void submit_sequence(in cht::rtsmessages::content_operation_sequence seq);

 void finished();

 string get_hostname();

 }

 interface content_operation_sequence_store {

 boolean is_master();

 cht::rtsmessages::sequence_log_info get_stored_sequences();

 boolean has_sequence_id(in long long sequence_id);

 void request_sequences(in sequence_receptor receptor,

 in long long from_sequence_id,

 in long long to_sequence_id);

 long get_row_id();

 string get_hostname();

 long long get_highest_sequence_id();

 long long get_lowest_sequence_id();

 }

38 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

 }

}

6.2 Cheetah

entity sequence_log_info {

 attribute longint low_sequence_id;

 attribute longint high_sequence_id;

 attribute longint processed_sequence_id;

};

entity sequence_operation {

 attribute longint sequence_number;

 attribute longint operation_id;

};

entity empty_operation : sequence_operation {

};

entity fixml_invalidation : sequence_operation {

 attribute string document_id;

 attribute int file_id;

 attribute int magic_idx;

 attribute bool is_update;

};

entity remove_collection : sequence_operation {

};

entity fixml_append : sequence_operation {

 attribute string document_id;

 attribute string document_content;

 attribute int file_id;

 attribute int magic_idx;

 attribute bool is_update;

};

entity remdoclist : sequence_operation {

 attribute string document_id;

 attribute int old_file_id;

 attribute int new_file_id;

};

entity exclusionlist : sequence_operation {

 attribute string document_id;

 attribute int old_file_id;

};

entity document_error : sequence_operation {

 attribute string document_id;

 attribute int error_code;

 attribute int action;

 attribute string subsystem;

 attribute string error_message;

}

entity content_operation_sequence {

39 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

 attribute int session_id;

 attribute string document_collection;

 attribute longint low_sequence_id;

 attribute longint high_sequence_id;

 collection sequence_operation operations;

};

40 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft® FAST™ Search Server 2010

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

41 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

8 Change Tracking

This section identifies changes that were made to the [MS-FSIFT] protocol document between the
November 2010 and December 2010 releases. Changes are classified as New, Major, Minor,
Editorial, or No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A document revision that incorporates changes to interoperability requirements or functionality.

An extensive rewrite, addition, or deletion of major portions of content.

Changes made for template compliance.

Removal of a document from the documentation set.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are

updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the language and formatting in the technical content was
changed. Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical or language changes were introduced.
The technical content of the document is identical to the last released version, but minor editorial
and formatting changes, as well as updates to the header and footer information, and to the revision

summary, may have been made.

Major and minor changes can be described further using the following change types:

New content added.

Content updated.

Content removed.

New product behavior note added.

Product behavior note updated.

Product behavior note removed.

New protocol syntax added.

Protocol syntax updated.

Protocol syntax removed.

New content added due to protocol revision.

Content updated due to protocol revision.

Content removed due to protocol revision.

New protocol syntax added due to protocol revision.

42 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Protocol syntax updated due to protocol revision.

Protocol syntax removed due to protocol revision.

New content added for template compliance.

Content updated for template compliance.

Content removed for template compliance.

Obsolete document removed.

Editorial changes are always classified with the change type "Editorially updated."

Some important terms used in revision type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please

contact protocol@microsoft.com.

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N) Change Type

7
Appendix B: Product
Behavior

Updated the list of applicable product
versions.

N Content
updated.

mailto:protocol@microsoft.com

43 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

9 Index

A

Abstract data model
client (section 3.2.1 25, section 3.4.1 32)
server (section 3.1.1 17, section 3.3.1 28)

Applicability 10

C

Capability negotiation 10
Change tracking 41
cheetah data type 16
Cheetah specification 38
Client

abstract data model (section 3.2.1 25, section
3.4.1 32)

column:backup::get_hostname method 32
column_backup and sequence_receptor interface

32
column_backup::abort_sequence method 33
column_backup::activate_index_set method 33
column_backup::commit_sequence method 33
column_backup::get_row_id method 32
column_backup::submit_sequence method 33
column_master and

content_operation_sequence_store interface
25

column_master::abdicate method 27
column_master::check_backup_nodes method 27
column_master::connect_receiver method 27
column_master::disconnect_receiver method 27
column_master::get_row_id method 27
column_master::has_backup_node method 27
column_master::register_backup_node method

27
content_operation_sequence_store::get_highest_

sequence_id method 28
content_operation_sequence_store::get_hostnam

e method 28
content_operation_sequence_store::get_lowest_s

equence_id method 28
content_operation_sequence_store::get_row_id

method 28
content_operation_sequence_store::get_stored_s

equences method 28
content_operation_sequence_store::has_sequenc

e_id method 28
content_operation_sequence_store::is_master

method 27
content_operation_sequence_store::request_seq

uences method 28
initialization (section 3.2.3 25, section 3.4.3 32)
local events (section 3.2.6 28, section 3.4.6 33)
message processing (section 3.2.4 26, section

3.4.4 32)
overview (section 3.2 25, section 3.4 32)
sequence_receptor::finished method 33
sequence_receptor::get_hostname method 33

sequence_receptor::submit_sequence method 33
sequencing rules (section 3.2.4 26, section 3.4.4

32)
timer events (section 3.2.5 28, section 3.4.5 33)
timers (section 3.2.2 25, section 3.4.2 32)

Column Backup interface 8
Column Master interface 8
column:backup::get_hostname method 32
column_backup and sequence_receptor interface

(section 3.3 28, section 3.4 32)
column_backup::abort_sequence method (section

3.3.4.5 30, section 3.4.4.5 33)
column_backup::activate_index_set method

(section 3.3.4.6 31, section 3.4.4.6 33)
column_backup::commit_sequence method (section

3.3.4.4 30, section 3.4.4.4 33)
column_backup::get_hostname method 30
column_backup::get_row_id method (section

3.3.4.1 30, section 3.4.4.1 32)
column_backup::submit_sequence method (section

3.3.4.3 30, section 3.4.4.3 33)
column_master and

content_operation_sequence_store interface
(section 3.1 17, section 3.2 25)

column_master::abdicate method (section 3.1.4.5
22, section 3.2.4.5 27)

column_master::check_backup_nodes method
(section 3.1.4.4 22, section 3.2.4.4 27)

column_master::connect_receiver method (section
3.1.4.6 22, section 3.2.4.6 27)

column_master::disconnect_receiver method
(section 3.1.4.7 23, section 3.2.4.7 27)

column_master::get_row_id method (section
3.1.4.1 21, section 3.2.4.1 27)

column_master::has_backup_node method (section
3.1.4.3 22, section 3.2.4.3 27)

column_master::register_backup_node method
(section 3.1.4.2 21, section 3.2.4.2 27)

Common data types 11
Content Operation Sequence interface 9
content_operation_sequence data type 15
content_operation_sequence_store::get_highest_se

quence_id method (section 3.1.4.14 24, section
3.2.4.14 28)

content_operation_sequence_store::get_hostname
method (section 3.1.4.13 24, section 3.2.4.13
28)

content_operation_sequence_store::get_lowest_se
quence_id method (section 3.1.4.15 24, section
3.2.4.15 28)

content_operation_sequence_store::get_row_id
method (section 3.1.4.12 24, section 3.2.4.12
28)

content_operation_sequence_store::get_stored_seq
uences method (section 3.1.4.9 23, section
3.2.4.9 28)

44 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

content_operation_sequence_store::has_sequence_
id method (section 3.1.4.10 23, section 3.2.4.10
28)

content_operation_sequence_store::is_master
method (section 3.1.4.8 23, section 3.2.4.8 27)

content_operation_sequence_store::request_seque
nces method (section 3.1.4.11 24, section
3.2.4.11 28)

D

Data model - abstract
client (section 3.2.1 25, section 3.4.1 32)
server (section 3.1.1 17, section 3.3.1 28)

Data types
cheetah 16
common - overview 11
content_operation_sequence 15
document_error 14

empty_operation 12
exclusionlist 13
fixml_append 14
fixml_invalidation 12
remdoclist 13
remove_collection 13
sequence_log_info 11
sequence_operation 12

document_error data type 14

E

empty_operation data type 12
Events

local - client (section 3.2.6 28, section 3.4.6 33)
local - server (section 3.1.6 25, section 3.3.6 32)
timer - client (section 3.2.5 28, section 3.4.5 33)
timer - server (section 3.1.5 25, section 3.3.5

31)
Examples

recover a backup indexing node 34
recovery code 34
recovery sequence diagram 35

exclusionlist data type 13

F

Fields - vendor-extensible 10
fixml_append data type 14
fixml_invalidation data type 12
FSIDL 37
FSIDL specification 37
Full FSIDL 37

G

Glossary 6

I

Implementer - security considerations 36
Index of security parameters 36
Informative references 7

Initialization
client (section 3.2.3 25, section 3.4.3 32)
server (section 3.1.3 18, section 3.3.3 29)

Interfaces
Column Backup 8
Column Master 8
Content Operation Sequence Store 9
Sequence Receptor 9

Interfaces - client
column_backup and sequence_receptor 32
column_master and

content_operation_sequence_store 25
Interfaces - server

column_backup and sequence_receptor 28
column_master and

content_operation_sequence_store 17
Interfaces - server and client 17
Introduction 6

L

Local events
client (section 3.2.6 28, section 3.4.6 33)
server (section 3.1.6 25, section 3.3.6 32)

M

Message processing
client (section 3.2.4 26, section 3.4.4 32)
server (section 3.1.4 20, section 3.3.4 29)

Messages
cheetah data type 16
common data types 11
content_operation_sequence data type 15
document_error data type 14
empty_operation data type 12
exclusionlist data type 13
fixml_append data type 14
fixml_invalidation data type 12
remdoclist data type 13
remove_collection data type 13
sequence_log_info data type 11
sequence_operation data type 12
transport 11

Methods
column:backup::get_hostname 32
column_backup::abort_sequence (section 3.3.4.5

30, section 3.4.4.5 33)
column_backup::activate_index_set (section

3.3.4.6 31, section 3.4.4.6 33)
column_backup::commit_sequence (section

3.3.4.4 30, section 3.4.4.4 33)
column_backup::get_hostname 30
column_backup::get_row_id (section 3.3.4.1 30,

section 3.4.4.1 32)
column_backup::submit_sequence (section

3.3.4.3 30, section 3.4.4.3 33)
column_master::abdicate (section 3.1.4.5 22,

section 3.2.4.5 27)
column_master::check_backup_nodes (section

3.1.4.4 22, section 3.2.4.4 27)

45 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

column_master::connect_receiver (section
3.1.4.6 22, section 3.2.4.6 27)

column_master::disconnect_receiver (section
3.1.4.7 23, section 3.2.4.7 27)

column_master::get_row_id (section 3.1.4.1 21,
section 3.2.4.1 27)

column_master::has_backup_node (section
3.1.4.3 22, section 3.2.4.3 27)

column_master::register_backup_node (section
3.1.4.2 21, section 3.2.4.2 27)

content_operation_sequence_store::get_highest_
sequence_id (section 3.1.4.14 24, section
3.2.4.14 28)

content_operation_sequence_store::get_hostnam
e (section 3.1.4.13 24, section 3.2.4.13 28)

content_operation_sequence_store::get_lowest_s
equence_id (section 3.1.4.15 24, section
3.2.4.15 28)

content_operation_sequence_store::get_row_id
(section 3.1.4.12 24, section 3.2.4.12 28)

content_operation_sequence_store::get_stored_s
equences (section 3.1.4.9 23, section 3.2.4.9
28)

content_operation_sequence_store::has_sequenc
e_id (section 3.1.4.10 23, section 3.2.4.10 28)

content_operation_sequence_store::is_master
(section 3.1.4.8 23, section 3.2.4.8 27)

content_operation_sequence_store::request_seq
uences (section 3.1.4.11 24, section 3.2.4.11
28)

sequence_receptor::finished (section 3.3.4.8 31,
section 3.4.4.8 33)

sequence_receptor::get_hostname (section
3.3.4.9 31, section 3.4.4.9 33)

sequence_receptor::submit_sequence (section
3.3.4.7 31, section 3.4.4.7 33)

N

Normative references 6

O

Overview (synopsis) 7
Column Backup interface 8
Column Master interface 8
Content Operation Sequence interface 9
Sequence Receptor interface 9

P

Parameters - security index 36
Preconditions 10
Prerequisites 10
Product behavior 40
Protocol details 17

R

Recover a backup indexing node example 34
Recovery code 34
Recovery sequence diagram 35

References
informative 7
normative 6

Relationship to other protocols 9
remdoclist data type 13
remove_collection data type 13

S

Security
implementer considerations 36
parameter index 36

Sequence Receptor interface 9
sequence_log_info data type 11
sequence_operation data type 12
sequence_receptor::finished method (section

3.3.4.8 31, section 3.4.4.8 33)
sequence_receptor::get_hostname method (section

3.3.4.9 31, section 3.4.4.9 33)

sequence_receptor::submit_sequence method
(section 3.3.4.7 31, section 3.4.4.7 33)

Sequencing rules
client (section 3.2.4 26, section 3.4.4 32)
server (section 3.1.4 20, section 3.3.4 29)

Server
abstract data model (section 3.1.1 17, section

3.3.1 28)
column_backup and sequence_receptor interface

28
column_backup::abort_sequence method 30
column_backup::activate_index_set method 31
column_backup::commit_sequence method 30
column_backup::get_hostname method 30
column_backup::get_row_id method 30
column_backup::submit_sequence method 30
column_master and

content_operation_sequence_store interface
17

column_master::abdicate method 22
column_master::check_backup_nodes method 22
column_master::connect_receiver method 22
column_master::disconnect_receiver method 23
column_master::get_row_id method 21
column_master::has_backup_node method 22
column_master::register_backup_node method

21
content_operation_sequence_store::get_highest_

sequence_id method 24
content_operation_sequence_store::get_hostnam

e method 24
content_operation_sequence_store::get_lowest_s

equence_id method 24
content_operation_sequence_store::get_row_id

method 24
content_operation_sequence_store::get_stored_s

equences method 23
content_operation_sequence_store::has_sequenc

e_id method 23
content_operation_sequence_store::is_master

method 23
content_operation_sequence_store::request_seq

uences method 24

46 / 46

[MS-FSIFT] — v20101219
 Indexer Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

initialization (section 3.1.3 18, section 3.3.3 29)
local events (section 3.1.6 25, section 3.3.6 32)
message processing (section 3.1.4 20, section

3.3.4 29)
overview (section 3.1 17, section 3.3 28)
sequence_receptor::finished method 31
sequence_receptor::get_hostname method 31
sequence_receptor::submit_sequence method 31
sequencing rules (section 3.1.4 20, section 3.3.4

29)
timer events (section 3.1.5 25, section 3.3.5 31)
timers (section 3.1.2 17, section 3.3.2 29)

Standards assignments 10

T

Timer events
client (section 3.2.5 28, section 3.4.5 33)
server (section 3.1.5 25, section 3.3.5 31)

Timers
client (section 3.2.2 25, section 3.4.2 32)
server (section 3.1.2 17, section 3.3.2 29)

Tracking changes 41
Transport 11

V

Vendor-extensible fields 10
Versioning 10

	Table of Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Protocol Overview (Synopsis)
	1.3.1 Column Backup
	1.3.2 Column Master
	1.3.3 Content Operation Sequence Store
	1.3.4 Sequence Receptor

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 sequence_log_info
	2.2.2 sequence_operation
	2.2.3 empty_operation
	2.2.4 fixml_invalidation
	2.2.5 remdoclist
	2.2.6 exclusionlist
	2.2.7 remove_collection
	2.2.8 fixml_append
	2.2.9 document_error
	2.2.10 content_operation_sequence
	2.2.11 cheetah

	3 Protocol Details
	3.1 column_master and content_operation_sequence_store Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 column_master::get_row_id
	3.1.4.2 column_master::register_backup_node
	3.1.4.3 column_master::has_backup_node
	3.1.4.4 column_master::check_backup_nodes
	3.1.4.5 column_master::abdicate
	3.1.4.6 column_master::connect_receiver
	3.1.4.7 column_master::disconnect_receiver
	3.1.4.8 content_operation_sequence_store::is_master
	3.1.4.9 content_operation_sequence_store::get_stored_sequences
	3.1.4.10 content_operation_sequence_store::has_sequence_id
	3.1.4.11 content_operation_sequence_store::request_sequences
	3.1.4.12 content_operation_sequence_store::get_row_id
	3.1.4.13 content_operation_sequence_store::get_hostname
	3.1.4.14 content_operation_sequence_store::get_highest_sequence_id
	3.1.4.15 content_operation_sequence_store::get_lowest_sequence_id

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 column_master and content_operation_sequence_store Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 column_master::get_row_id
	3.2.4.2 column_master::register_backup_node
	3.2.4.3 column_master::has_backup_node
	3.2.4.4 column_master::check_backup_nodes
	3.2.4.5 column_master::abdicate
	3.2.4.6 column_master::connect_receiver
	3.2.4.7 column_master::disconnect_receiver
	3.2.4.8 content_operation_sequence_store::is_master
	3.2.4.9 content_operation_sequence_store::get_stored_sequences
	3.2.4.10 content_operation_sequence_store::has_sequence_id
	3.2.4.11 content_operation_sequence_store::request_sequences
	3.2.4.12 content_operation_sequence_store::get_row_id
	3.2.4.13 content_operation_sequence_store::get_hostname
	3.2.4.14 content_operation_sequence_store::get_highest_sequence_id
	3.2.4.15 content_operation_sequence_store::get_lowest_sequence_id

	3.2.5 Timer Events
	3.2.6 Other Local Events

	3.3 column_backup and sequence_receptor Server Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Message Processing Events and Sequencing Rules
	3.3.4.1 column_backup::get_row_id
	3.3.4.2 column_backup::get_hostname
	3.3.4.3 column_backup::submit_sequence
	3.3.4.4 column_backup::commit_sequence
	3.3.4.5 column_backup::abort_sequence
	3.3.4.6 column_backup::activate_index_set
	3.3.4.7 sequence_receptor::submit_sequence
	3.3.4.8 sequence_receptor::finished
	3.3.4.9 sequence_receptor::get_hostname

	3.3.5 Timer Events
	3.3.6 Other Local Events

	3.4 column_backup and sequence_receptor Client Details
	3.4.1 Abstract Data Model
	3.4.2 Timers
	3.4.3 Initialization
	3.4.4 Message Processing Events and Sequencing Rules
	3.4.4.1 column_backup::get_row_id
	3.4.4.2 column:backup::get_hostname
	3.4.4.3 column_backup::submit_sequence
	3.4.4.4 column_backup::commit_sequence
	3.4.4.5 column_backup::abort_sequence
	3.4.4.6 column_backup::activate_index_set
	3.4.4.7 sequence_receptor::submit_sequence
	3.4.4.8 sequence_receptor::finished
	3.4.4.9 sequence_receptor::get_hostname

	3.4.5 Timer Events
	3.4.6 Other Local Events

	4 Protocol Examples
	4.1 Recover a Backup Indexing Node
	4.1.1 Recovery Code
	4.1.2 Recovery Sequence Diagram

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full FSIDL
	6.1 FSIDL
	6.2 Cheetah

	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

