

1 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

[MS-FSIDFT]:
Indexing Dispatcher Fault Tolerance Protocol
Specification

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft's Open Specification Promise (available here:

http://www.microsoft.com/interop/osp) or the Community Promise (available here:

http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if
the technologies described in the Open Specifications are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

2 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Revision Summary

Date

Revision

History

Revision

Class Comments

02/19/2010 1.0 Major Initial Availability

03/31/2010 1.01 Editorial Revised and edited the technical content

04/30/2010 1.02 Editorial Revised and edited the technical content

06/07/2010 1.03 Editorial Revised and edited the technical content

06/29/2010 1.04 Editorial Changed language and formatting in the technical
content.

07/23/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

09/27/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

11/15/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

12/17/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

3 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Table of Contents

1 Introduction ... 5
1.1 Glossary ... 5
1.2 References .. 5

1.2.1 Normative References ... 5
1.2.2 Informative References ... 6

1.3 Protocol Overview .. 6
1.4 Relationship to Other Protocols .. 6
1.5 Prerequisites/Preconditions ... 7
1.6 Applicability Statement ... 7
1.7 Versioning and Capability Negotiation ... 7
1.8 Vendor-Extensible Fields ... 7
1.9 Standards Assignments .. 7

2 Messages.. 8
2.1 Transport .. 8
2.2 Common Data Types .. 8

2.2.1 coreprocessing::unknown_collection_error .. 8
2.2.2 core::unsupported_guarantee_set .. 8
2.2.3 cht::core::guarantee .. 8
2.2.4 cht::core::feeding_priority .. 9
2.2.5 cht::core::guarantee_set .. 9

3 Protocol Details .. 10
3.1 indexingengine::master_dispatcher Server Details ... 13

3.1.1 Abstract Data Model ... 13
3.1.2 Timers .. 13
3.1.3 Initialization .. 13
3.1.4 Message Processing Events and Sequencing Rules .. 13

3.1.4.1 register_backup ... 14
3.1.5 Timer Events ... 14
3.1.6 Other Local Events ... 14

3.2 indexingengine::master_dispatcher Client Details .. 14
3.2.1 Abstract Data Model ... 14
3.2.2 Timers .. 14
3.2.3 Initialization .. 15
3.2.4 Message Processing Events and Sequencing Rules .. 15

3.2.4.1 register_backup ... 15
3.2.5 Timer Events ... 15
3.2.6 Other Local Events ... 15

3.3 coreprocessing::session_factory Server Details ... 15
3.3.1 Abstract Data Model ... 15
3.3.2 Timers .. 16
3.3.3 Initialization .. 16
3.3.4 Message Processing Events and Sequencing Rules .. 16

3.3.4.1 create ... 16
3.3.4.2 recreate .. 17
3.3.4.3 close ... 17

3.3.5 Timer Events ... 18
3.3.6 Other Local Events ... 18

3.4 coreprocessing::session_factory Client Details ... 18

4 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

3.4.1 Abstract Data Model ... 18
3.4.2 Timers .. 18
3.4.3 Initialization .. 18
3.4.4 Message Processing Events and Sequencing Rules .. 18
3.4.5 Timer Events ... 18
3.4.6 Other Local Events ... 19

4 Protocol Examples .. 20
4.1 Registering a backup indexing dispatcher ... 20
4.2 Sample code ... 20

4.2.1 Protocol server initialization ... 20
4.2.2 Protocol client initialization .. 20
4.2.3 Protocol client message ... 20
4.2.4 Protocol server response ... 21

5 Security .. 22
5.1 Security Considerations for Implementers ... 22
5.2 Index of Security Parameters .. 22

6 Appendix A: Full FSIDL ... 23
6.1 FSIDL ... 23
6.2 Cheetah Entities .. 24

7 Appendix B: Product Behavior .. 25

8 Change Tracking... 26

9 Index ... 27

5 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

1 Introduction

This document specifies the Indexing Dispatcher Fault Tolerance protocol used between multiple
indexing dispatchers, so they can agree which one becomes the master indexing dispatcher, and
which ones become backup indexing dispatchers. The use of multiple indexing dispatcher nodes
increases performance and robustness; should the master indexing dispatcher become unavailable,
one of the backup indexing dispatchers becomes the new master indexing dispatcher.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

fully qualified domain name (FQDN)
Hypertext Transfer Protocol (HTTP)

The following terms are defined in [MS-OFCGLOS]:

abstract object reference (AOR)

base port
callback message

Cheetah
Cheetah checksum
client proxy
content collection
FAST Search Interface Definition Language (FSIDL)
host name

HTTP POST
index column
indexing dispatcher
indexing node
item
name server

The following terms are specific to this document:

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[MS-FSCHT] Microsoft Corporation, "Cheetah Data Structure", November 2009.

[MS-FSDP] Microsoft Corporation, "Document Processing Protocol Specification", November 2009.

[MS-FSMW] Microsoft Corporation, "Middleware Protocol Specification", November 2009.

%5bMS-OFCGLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
%5bMS-FSCHT%5d.pdf
%5bMS-FSDP%5d.pdf
%5bMS-FSMW%5d.pdf

6 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-FSO] Microsoft Corporation, "FAST Search System Overview", November 2009.

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary", March 2007.

[MS-OFCGLOS] Microsoft Corporation, "Microsoft Office Master Glossary", June 2008.

1.3 Protocol Overview

One or more indexing dispatchers are part of an extended session-based item feeding chain,
wherein a session is established between a feeding client and an indexing node. Operations

containing information about items to add, update, or remove from the index are sent using the
established session, and asynchronous status information callback messages about the items are
sent from the indexing service back to the feeding client.

In a setup with multiple index columns and indexing dispatchers, the sessions used in the feeding
chain are distributed across all the indexing dispatchers, improving performance and robustness.
When the feeding client requests that a new session be created, recreated, or closed, the master

indexing dispatcher will either execute the request itself, or forward the request to one of the
backup indexing dispatchers, in this way distributing the sessions across the available indexing
dispatchers. An interface to the created session is returned to the feeding client, and the feeding
client is therefore not aware, nor does it have to be, if a specific session used for feeding is routed
using a master or backup indexing dispatcher. The concept of master and backup indexing
dispatcher is therefore only relevant in the task of creating a session, and not in the actual use of
the session.

This protocol enables the indexing dispatchers to agree on which one becomes the master indexing
dispatcher, and which ones become backup indexing dispatchers, registering themselves as backup
indexing dispatchers with the master indexing dispatcher. Each backup indexing dispatcher
continues to monitor the master indexing dispatcher. If the master indexing dispatcher becomes

unavailable, one of the backup indexing dispatchers will take on the role as master indexing
dispatcher.

For an overview of the system of which this protocol is a part, please see [MS-FSO].

1.4 Relationship to Other Protocols

This protocol uses Middleware, an HTTP based protocol, as described in [MS-FSMW].

http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-FSO%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSO%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-FSMW%5d.pdf

7 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Figure 1: This protocol in relation to other protocols

1.5 Prerequisites/Preconditions

The protocol client and protocol server are expected to know the location and connection

information of the shared name server.

1.6 Applicability Statement

This protocol is designed to enable indexing dispatchers to determine which one is to become
master indexing dispatcher and which ones are to become backup indexing dispatchers. The
indexing dispatchers are part of an extended session-based item feeding chain.

1.7 Versioning and Capability Negotiation

Capability Negotiation: The Middleware protocol is connectionless, but the correct interface
version is to be specified in every message passed using the Middleware protocol. See section 3.1.3
for the specific version number.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

%5bMS-OFCGLOS%5d.pdf

8 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

2 Messages

2.1 Transport

The messages in this protocol MUST be sent as HTTP POST messages, as specified in [MS-FSMW],
the Middleware protocol.

2.2 Common Data Types

FSIDL data types are encoded as specified in [MS-FSMW] section 2. Cheetah entities are encoded

as specified in [MS-FSCHT] section 2. The Cheetah checksum MUST be an integer with the value -
1479218033. The type identifier for the Cheetah entities MUST be integers as specified in the
following table.

Cheetah entity type identifier

cht::core::guarantee 3

cht::core::feeding_priority 7

cht::core::guarantee_set 9

The full FSIDL for this protocol is provided in section 6.1. The complete listing of Cheetah entities
used for this protocol is provided in section 6.2.

2.2.1 coreprocessing::unknown_collection_error

exception unknown_collection_error {

};

The unknown_collection_error exception states that the content collection is unknown. It has

no members.

2.2.2 core::unsupported_guarantee_set

exception unsupported_guarantee_set {

 string what;

};

The unsupported_guarantee_set exception states that the backup indexing dispatcher is unable

to create or recreate a session. It has the following member:

what: A string holding verbose information about the cause of the exception. The content of the
string is implementation specific of the higher level application.

2.2.3 cht::core::guarantee

entity guarantee {

};

The guarantee Cheetah entity is a parent class for the feeding_priority Cheetah entity, as

specified in section 2.2.4.

%5bMS-OFCGLOS%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSCHT%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

9 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

2.2.4 cht::core::feeding_priority

entity feeding_priority : guarantee {

 attribute int priority;

};

The feeding_priority Cheetah entity is a subclass of the guarantee Cheetah entity specified in

section 2.2.3. It specifies the priority when feeding items, and has the following member:

priority: An integer that specifies the feeding priority. This MUST be equal to or greater than zero,
where zero represents the highest priority.

2.2.5 cht::core::guarantee_set

root entity guarantee_set {

 collection guarantee guarantees;

};

The guarantee_set Cheetah entity contains a collection of guarantee Cheetah entities, as

specified in section 2.2.3. It has the following member:

guarantees: A collection of guarantee Cheetah entities, as specified in section 2.2.3.

10 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

3 Protocol Details

This document defines a protocol used between two or more indexing dispatcher nodes, where there
is one master indexing dispatcher node and one or more backup indexing dispatcher nodes. This
protocol consists of two interfaces.

The master dispatcher interface enables communication between a backup indexing dispatcher node
and the master indexing dispatcher node. It is used to elect master and backup indexing
dispatchers, and allows backup indexing dispatchers to register with the master.

The session factory interface enables communication between the master indexing dispatcher node

and a backup indexing dispatcher node, and is used by the master indexing dispatcher to forward
incoming session requests to backup indexing dispatchers.

The role as protocol client and protocol server therefore depends on the interface used and the role
of the indexing dispatcher. This is shown in the following figure.

Figure 2: Interfaces between master and backup indexing dispatcher nodes

At initial startup, an indexing dispatcher node has not taken the role as either master or backup. To
determine the role, each indexing dispatcher MUST look for a registered master indexing dispatcher.

If no master indexing dispatcher is found to be alive, the indexing dispatcher MUST become master
indexing dispatcher. If a master indexing dispatcher is found, the indexing dispatcher MUST become
a backup indexing dispatcher, registering itself as a backup indexing dispatcher with the master
indexing dispatcher. A backup indexing dispatcher MUST monitor the master indexing dispatcher,
and attempt to take the role as master indexing dispatcher if the master indexing dispatcher is no
longer available.

To become a master indexing dispatcher, the indexing dispatcher MUST use the bind method, as

specified in section 3.1.3, to register and activate the master_dispatcher interface in the name
server.

To look for a master indexing dispatcher, an indexing dispatcher MUST use the resolve method, as
specified in section 3.2.3, to determine whether or not a master indexing dispatcher has registered
the master_dispatcher interface in the name server.

To verify that a registered master indexing dispatcher is active, the indexing dispatcher MUST use
the __ping method on the master_dispatcher interface, as specified in [MS-FSMW] section 3.2.

To monitor the master indexing dispatcher, the backup indexing dispatcher MUST use the __ping
method on the master_dispatcher interface, as specified in [MS-FSMW] section 3.2.

The sequence and number of times the bind, resolve, and __ping methods are used to ensure

that only one indexing dispatcher registers as master indexing dispatcher and that the backup
indexing dispatchers monitor the master indexing dispatcher is implementation specific of the higher
level application.

A possible sequence diagram is shown as an example in the following figure wherein the indexing
dispatcher ID1 during initialization tries to resolve the master_dispatcher interface in the name

%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf

11 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

server to look for a master indexing dispatcher. Because no master indexing dispatcher is yet
registered, the resolve call returns a resolve_exception, and ID1 elects itself as master indexing

dispatcher and binds and activates the master_dispatcher interface in the name server.

When the indexing dispatcher ID2 starts up, it tries to resolve the master_dispatcher interface in

the name server to look for a master indexing dispatcher. It receives the client proxy to
master_dispatcher, registered and served by ID1, and pings it. Because ID1 is alive, ID2 then
elects itself as backup indexing dispatcher, and registers itself as backup indexing dispatcher with
ID1 by calling register_backup.

ID2 continues to ping ID1 to verify that it is alive. When ID1 dies, the ping returns an exception.
ID2 pings one more time for verification. When the second ping also returns an exception, it
resolves the master_dispatcher interface in the name server and sends the returned client proxy a

new ping in case another backup indexing dispatcher has registered as master in the meantime.
Because this third ping also returns an exception, there is no master indexing dispatcher alive. ID2
therefore elects itself as master indexing dispatcher, and binds and activates the
master_dispatcher interface in the name server.

When ID1 later comes alive again, it performs the same steps as ID2. It finds ID2 has registered as
master indexing dispatcher and is active; therefore ID1 registers itself as backup indexing

dispatcher with ID2. It then starts to monitor ID2 with pings to verify that it remains active.

%5bMS-OFCGLOS%5d.pdf

12 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Figure 3: Determining which is the master node and which is the backup node

13 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

3.1 indexingengine::master_dispatcher Server Details

The indexing dispatcher elected as master indexing dispatcher has the role as protocol server for the
master_dispatcher interface. It enables backup indexing dispatchers to register and monitor the

master indexing dispatcher.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this

document.

The master indexing dispatcher MUST maintain the following state:

backup session factory: A state containing session_factory client proxies to registered backup
indexing dispatchers, enabling the master indexing dispatcher to communicate with the registered

backup indexing dispatchers using the session factory interface.

3.1.2 Timers

None.

3.1.3 Initialization

The master indexing dispatcher MUST use the Middleware bind method to register an
indexingengine::master_dispatcher server object in the name server, as specified in [MS-
FSMW] section 3.4.4.2.

The parameters for the bind method are encapsulated in an abstract object reference (AOR), as
specified in [MS-FSMW] section 2.2.18.

name: This MUST be a string containing the value "esp/clusters/webcluster/indexing/dispatcher".

object_id: This MUST be an integer that is unique for each server object.

host: A string specifying the host name of the server hosting the server object.

port: This MUST be an integer that contains the port number of the server object on the protocol
server. The value is base port + 390.

interface_type: This MUST be a string holding the value "indexingengine::master_dispatcher".

interface_version: This MUST be a string holding the value "5.1".

The registration of the master_dispatcher server object in the name server enables other indexing
dispatchers to detect that a master indexing dispatcher has already registered, and that the other
indexing dispatchers MUST register as backup indexing dispatchers with the master indexing
dispatcher.

3.1.4 Message Processing Events and Sequencing Rules

This interface includes the following method.

%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

14 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

Method Description

register_backup Sends a session_factory client proxy from a backup indexing dispatcher to the master
indexing dispatcher.

3.1.4.1 register_backup

The register_backup method sends a session_factory client proxy from a backup indexing

dispatcher to the master indexing dispatcher.

void register_backup(in string hostname,

 in coreprocessing::session_factory backup_session_factory);

hostname: A string holding the fully qualified domain name (FQDN) of the backup indexing

dispatcher.

backup_session_factory: A coreprocessing::session_factory client proxy, as specified in

section 3.3.

Return Values: None.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying Middleware
protocol as specified in [MS-FSMW].

The master indexing dispatcher MUST store backup_session_factory in the backup session
factory state.

3.1.5 Timer Events

None.

3.1.6 Other Local Events

None.

3.2 indexingengine::master_dispatcher Client Details

Any backup indexing dispatcher acts as a protocol client for the master_dispatcher interface, used
to register with the master indexing dispatcher.

3.2.1 Abstract Data Model

None.

3.2.2 Timers

The master dispatcher interface uses one timer:

Check for master: The interval between each time a backup indexing dispatcher looks for an
available master indexing dispatcher. The interval is implementation specific of the higher level
application; the default interval is 30 seconds.

%5bMS-GLOS%5d.pdf
%5bMS-FSMW%5d.pdf

15 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

3.2.3 Initialization

The backup indexing dispatcher MUST use the Middleware resolve method to find the client proxy
to the master_dispatcher server object bound in the name server, as specified in [MS-FSMW]

section 3.4.4.1.The parameters for the resolve method are:

name: This MUST be a string holding the value "esp/clusters/webcluster/indexing/dispatcher".

interface_type: This MUST be a string holding the value "indexingengine::master_dispatcher".

version: This MUST be a string holding the value "5.1".

If the resolve method returns a resolve_exception, as specified in [MS-FSMW] section 2.2.21, a
master indexing dispatcher is not available, and the backup indexing dispatcher MUST attempt to
register itself as the master indexing dispatcher, as specified in section 3.1.3. If another backup

indexing dispatcher registers itself as a master indexing dispatcher before this, then the backup
indexing dispatcher MUST register itself as backup with the new master indexing dispatcher.

3.2.4 Message Processing Events and Sequencing Rules

3.2.4.1 register_backup

The register_backup method is specified in section 3.1.4.1.

After a backup indexing dispatcher has registered as backup with the master indexing dispatcher,
the backup indexing dispatcher MUST use the built in __ping method of the master_dispatcher
interface, as specified in [MS-FSMW] section 3.2.4.2, to determine whether the master indexing
dispatcher is active.

If the master indexing dispatcher is not active, the protocol client MUST attempt to take the role as
master indexing dispatcher.

3.2.5 Timer Events

The Check for master timer triggers the backup indexing dispatcher to test for an active master
indexing dispatcher, as specified in section 3.2.

3.2.6 Other Local Events

None.

3.3 coreprocessing::session_factory Server Details

A backup indexing dispatcher performs the role of protocol server for the session_factory
interface. It enables the backup indexing dispatcher to receive messages from the master indexing
dispatcher regarding creation, recreation, and closing of session server objects.

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

A backup indexing dispatcher MUST maintain the following states:

%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf

16 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

session holder: A state containing a set of session server objects, where each server object can
be referenced by a session identifier.

callback message: A state associated with a session server object holding a client proxy to a
callback server object, used for sending callback messages, as specified in [MS-FSDP] section 3.

3.3.2 Timers

None.

3.3.3 Initialization

The backup indexing dispatcher MUST send a session_factory client proxy to the master indexing
dispatcher using master_dispatcher::register_backup, as specified in section 3.1.4.1.

3.3.4 Message Processing Events and Sequencing Rules

This interface includes the following methods.

Method Description

create Creates a session server object identified by a session identifier, and returns a session client
proxy.

recreate Recreates a feeding session with a given identifier, and returns a session client proxy.

close Closes a session with a given identifier.

3.3.4.1 create

The create method creates a session server object identified by a session identifier, and returns a
session client proxy.

coreprocessing::session create(

 in long id,

 in string collection,

 in coreprocessing::operation_callback callback,

 in cht::core::guarantee_set guarantees)

 raises (unknown_collection_error, core::unsupported_guarantee_set);

id: The identifier of the new session server object to create, which MUST be an integer equal to or
greater than zero.

collection: A string holding the name of the content collection to use.

callback: A callback message client proxy, as specified in [MS-FSDP] section 3.4.

guarantees: A guarantee_set Cheetah entity, as specified in section 2.2.3. It MUST contain either
one feeding_priority Cheetah entity, as specified in section 2.2.4, which specifies the priority for

the feeding session represented by the session client proxy, or an empty Cheetah collection.

Return Values: A session client proxy, as specified in [MS-FSDP] section 3.

Exceptions Thrown:

%5bMS-FSDP%5d.pdf
%5bMS-FSDP%5d.pdf
%5bMS-FSDP%5d.pdf

17 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

The exception unknown_collection_error MUST NOT be used.

The exception unsupported_guarantee_set MUST be thrown if unable to create a session.

This method MUST create, return, and activate the new session server object.

This method MUST store the session server object in the session holder state, with id as the

unique key.

This method MUST store the callback client proxy in the callback message state associated with
the newly created session server object.

3.3.4.2 recreate

The recreate method recreates a feeding session with a given identifier, and returns a session
client proxy.

coreprocessing::session recreate(

 in long id,

 in string collection,

 in coreprocessing::operation_callback callback,

 in cht::core::guarantee_set guarantees)

 raises (unknown_collection_error, core::unsupported_guarantee_set);

id: The identifier of the session server object to recreate, which MUST be an integer equal to or

greater than zero.

collection: A string holding the name of the content collection to use.

callback: A callback message client proxy, as specified in [MS-FSDP] section 3.

guarantees: A guarantee_set Cheetah entity, as specified in section 2.2.5. It MUST contain either
one feeding_priority Cheetah entity, as specified in section 2.2.4, specifying the priority for the
feeding session represented by the session client proxy, or an empty Cheetah collection.

Return Values: A session client proxy, as specified in [MS-FSDP] section 3.

Exceptions Thrown:

The exception unknown_collection_error MUST NOT be used.

The exception unsupported_guarantee_set MUST be thrown if unable to recreate the session.

This method MUST determine whether a session server object identified by id exists in the session
holder state. If true, a client proxy to this existing server object MUST be returned. If false, a new
session server object MUST be created and activated, and a client proxy to the created session

server object MUST be returned.

This method MUST store the session server object in the session holder state, with id as the
unique key.

This method MUST store the callback client proxy in the callback message state, associated with
the newly created session server object.

3.3.4.3 close

The close method closes a session with a given identifier.

%5bMS-FSDP%5d.pdf
%5bMS-FSDP%5d.pdf

18 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

void close(in long id)

id: The identifier of the session to close, which MUST be an integer equal to or greater than zero.

Return Values: None.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying Middleware
protocol as specified in [MS-FSMW].

This method MUST determine whether a session server object identified by id exists in the session
holder state, and if so, close the server object and remove it from the session holder state.

3.3.5 Timer Events

None.

3.3.6 Other Local Events

None.

3.4 coreprocessing::session_factory Client Details

The master indexing dispatcher, acting as protocol client, forwards requests to create, recreate, and
close sessions to backup indexing dispatchers on the session factory interface.

3.4.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

The master indexing dispatcher MUST maintain the backup session factory state as specified in
section 3.1.1.

3.4.2 Timers

None.

3.4.3 Initialization

The master indexing dispatcher MUST use the client proxy references found in the backup session
factory state to access the backup indexing dispatchers.

3.4.4 Message Processing Events and Sequencing Rules

None.

3.4.5 Timer Events

None.

%5bMS-FSMW%5d.pdf

19 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

3.4.6 Other Local Events

None.

20 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

4 Protocol Examples

4.1 Registering a backup indexing dispatcher

This example will describes how to use the register_backup method of the master_dispatcher
interface, as specified in section 3.1.4.1, so an indexing dispatcher can register as a backup
indexing dispatcher with a master indexing dispatcher and send the client proxy for a
session_factory interface.

First the protocol server creates a server object implementing the master_dispatcher interface,

and registers it in the name server. The protocol client then acquires a client proxy to that
master_dispatcher interface by resolving the server object in the name server. This is possible
because both the protocol client and protocol server have agreed a priori on both the location of the
shared name server, and the symbolic name of the server object.

The protocol client is now ready to call the register_backup method on the master_dispatcher
client proxy, and send a client proxy to its session_factory interface.

4.2 Sample code

4.2.1 Protocol server initialization

SET server_object_instance TO INSTANCE OF master_dispatcher SERVER OBJECT

SET server_object_host TO "myserver.mydomain.com"

SET server_object_port TO "1234"

SET server_object_interface_type TO "indexingengine::master_dispatcher"

SET server_object_interface_version TO "5.1"

SET server_object_name TO "esp/clusters/webcluster/indexing/dispatcher"

SET server_object_aor TO server_object_host, server_object_port,

server_object_interface_type, server_object_interface_version AND server_object_name

CALL nameserver.bind WITH server_object_name AND server_object_aor

4.2.2 Protocol client initialization

SET server_object_name TO "esp/clusters/webcluster/indexing/dispatcher"

SET server_object_type TO "indexingengine::master_dispatcher"

SET server_object_version TO "5.1"

CALL nameserver.resolve WITH server_object_name, server_object_type AND server_object_version

RETURNING master_dispatcher_client_proxy

4.2.3 Protocol client message

SET hostname TO "myclient.mydomain.com"

21 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

SET backup_session_factory_instance TO INSTANCE OF coreprocessing::session_factory SERVER

OBJECT

CALL master_dispatcher_client_proxy.register_backup WITH hostname AND

backup_session_factory_instance

4.2.4 Protocol server response

ADD backup_session_factory_instance TO backup_session_factory_list

22 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

5 Security

5.1 Security Considerations for Implementers

Security is resolved in the Middleware protocol, as described in [MS-FSMW].

5.2 Index of Security Parameters

None.

%5bMS-FSMW%5d.pdf

23 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

6 Appendix A: Full FSIDL

For ease of implementation the full FSIDL and complete listing of Cheetah entities used in this
protocol are provided in the following sections. The coreprocessing::operation_callback interface
is specified in [MS-FSDP] section 3.4.

6.1 FSIDL

module cht {

 module core {

 typedef sequence<octet> cheetah;

 typedef cheetah guarantee_set;

 };

};

module interfaces {

 module core {

 exception unsupported_guarantee_set {

 string message;

 };

 };

 module indexingengine {

 interface master_dispatcher {

#pragma version master_dispatcher 5.1

 void register_backup(in string hostname,

 in coreprocessing::session_factory backup_session_factory);

 };

 };

 module coreprocessing {

 exception unknown_collection_error {

 };

 interface session_factory {

 #pragma version session_factory 5.1

 coreprocessing::session create(

 in long id,

 in string collection,

 in coreprocessing::operation_callback callback,

 in cht::core::guarantee_set guarantees)

 raises (unknown_collection_error, core::unsupported_guarantee_set);

 coreprocessing::session recreate(

 in long id,

 in string collection,

 in coreprocessing::operation_callback callback,

 in cht::core::guarantee_set guarantees)

 raises (unknown_collection_error, core::unsupported_guarantee_set);

 void close(in long id);

 };

 };

};

%5bMS-FSDP%5d.pdf

24 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

6.2 Cheetah Entities

entity guarantee {

};

entity feeding_priority : guarantee {

 attribute int priority;

};

root entity guarantee_set {

 collection guarantee guarantees;

};

25 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft® FAST™ Search Server 2010

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

26 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

27 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

9 Index

A

Abstract data model
client (section 3.2.1 14, section 3.4.1 18)
server (section 3.1.1 13, section 3.3.1 15)

Applicability 7

C

Capability negotiation 7
Change tracking 26
cht

core

feeding_priority data type 9
guarantee data type 8
guarantee_set data type 9

Client
abstract data model (section 3.2.1 14, section

3.4.1 18)
coreprocessing::session_factory interface 18
indexingengine::master_dispatcher interface 14
initialization (section 3.2.3 15, section 3.4.3 18)
local events (section 3.2.6 15, section 3.4.6 19)
message processing 18
overview (section 3.2 14, section 3.4 18)
register_backup method 15
sequencing rules 18
timer events (section 3.2.5 15, section 3.4.5 18)
timers (section 3.2.2 14, section 3.4.2 18)

close method 17
Common data types 8
core

unsupported_guarantee_set data type 8

coreprocessing

unknown_collection_error data type 8
coreprocessing::session_factory interface (section

3.3 15, section 3.4 18)
create method 16

D

Data model - abstract
client (section 3.2.1 14, section 3.4.1 18)
server (section 3.1.1 13, section 3.3.1 15)

Data types
cht

core

feeding_priority 9
guarantee 8
guarantee_set 9

common - overview 8
core

unsupported_guarantee_set 8
coreprocessing

unknown_collection_error 8

E

Events
local - client (section 3.2.6 15, section 3.4.6 19)
local - server (section 3.1.6 14, section 3.3.6 18)
timer - client (section 3.2.5 15, section 3.4.5 18)
timer - server (section 3.1.5 14, section 3.3.5

18)
Examples

registering a backup indexing dispatcher 20

F

Fields - vendor-extensible 7
FSIDL 23
Full FSIDL 23

G

Glossary 5

I

Implementer - security considerations 22

Index of security parameters 22
indexingengine::master_dispatcher interface

(section 3.1 13, section 3.2 14)
Informative references 6
Initialization

client (section 3.2.3 15, section 3.4.3 18)
server (section 3.1.3 13, section 3.3.3 16)

Interfaces - client
coreprocessing::session_factory 18
indexingengine::master_dispatcher 14

Interfaces - server
coreprocessing::session_factory 15
indexingengine::master_dispatcher 13

Introduction 5

L

Local events
client (section 3.2.6 15, section 3.4.6 19)
server (section 3.1.6 14, section 3.3.6 18)

M

Message processing
client 18
server (section 3.1.4 13, section 3.3.4 16)

Messages
cht

core

28 / 28

[MS-FSIDFT] — v20101219
 Indexing Dispatcher Fault Tolerance Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Sunday, December 19, 2010

feeding_priority data type 9
guarantee data type 8
guarantee_set data type 9

common data types 8
core

unsupported_guarantee_set data type 8

coreprocessing

unknown_collection_error data type 8
transport 8

Methods
close 17
create 16
recreate 17
register_backup (section 3.1.4.1 14, section

3.2.4.1 15)

N

Normative references 5

O

Overview (synopsis) 6

P

Parameters - security index 22
Preconditions 7
Prerequisites 7
Product behavior 25
Protocol client initialization - sample 20
Protocol client message - sample 20
Protocol server initialization - sample 20
Protocol server response - sample 21

R

recreate method 17
References

informative 6
normative 5

register_backup method (section 3.1.4.1 14,
section 3.2.4.1 15)

Registering a backup indexing dispatcher example
20
protocol client initialization 20
protocol client message 20
protocol server initialization 20
protocol server response 21

Relationship to other protocols 6

S

Security
implementer considerations 22
parameter index 22

Sequencing rules
client 18
server (section 3.1.4 13, section 3.3.4 16)

Server
abstract data model (section 3.1.1 13, section

3.3.1 15)
close method 17
coreprocessing::session_factory interface 15
create method 16
indexingengine::master_dispatcher interface 13
initialization (section 3.1.3 13, section 3.3.3 16)
local events (section 3.1.6 14, section 3.3.6 18)
message processing (section 3.1.4 13, section

3.3.4 16)
overview (section 3.1 13, section 3.3 15)
recreate method 17
register_backup method 14
sequencing rules (section 3.1.4 13, section 3.3.4

16)
timer events (section 3.1.5 14, section 3.3.5 18)
timers (section 3.1.2 13, section 3.3.2 16)

Standards assignments 7

T

Timer events
client (section 3.2.5 15, section 3.4.5 18)
server (section 3.1.5 14, section 3.3.5 18)

Timers
client (section 3.2.2 14, section 3.4.2 18)
server (section 3.1.2 13, section 3.3.2 16)

Tracking changes 26
Transport 8

V

Vendor-extensible fields 7
Versioning 7

	Table of Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Protocol Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 coreprocessing::unknown_collection_error
	2.2.2 core::unsupported_guarantee_set
	2.2.3 cht::core::guarantee
	2.2.4 cht::core::feeding_priority
	2.2.5 cht::core::guarantee_set

	3 Protocol Details
	3.1 indexingengine::master_dispatcher Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 register_backup

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 indexingengine::master_dispatcher Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 register_backup

	3.2.5 Timer Events
	3.2.6 Other Local Events

	3.3 coreprocessing::session_factory Server Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Message Processing Events and Sequencing Rules
	3.3.4.1 create
	3.3.4.2 recreate
	3.3.4.3 close

	3.3.5 Timer Events
	3.3.6 Other Local Events

	3.4 coreprocessing::session_factory Client Details
	3.4.1 Abstract Data Model
	3.4.2 Timers
	3.4.3 Initialization
	3.4.4 Message Processing Events and Sequencing Rules
	3.4.5 Timer Events
	3.4.6 Other Local Events

	4 Protocol Examples
	4.1 Registering a backup indexing dispatcher
	4.2 Sample code
	4.2.1 Protocol server initialization
	4.2.2 Protocol client initialization
	4.2.3 Protocol client message
	4.2.4 Protocol server response

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full FSIDL
	6.1 FSIDL
	6.2 Cheetah Entities

	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

