[MS-FSIADM]:
Indexer Administration and Status Protocol Specification

Intellectual Property Rights Notice for Open Specifications Documentation

Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft's Open Specification Promise (available here:
http://www.microsoft.com/interop/osp) or the Community Promise (available here:
http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if
the technologies described in the Open Specifications are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights.

Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

1/40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

Revision Summary

Revision Revision

Date History Class Comments

11/06/2009 0.1 Major Initial Availability

02/19/2010 1.0 Major Updated and revised the technical content

03/31/2010 1.01 Editorial Revised and edited the technical content

04/30/2010 1.02 Editorial Revised and edited the technical content

06/07/2010 1.03 Editorial Revised and edited the technical content

06/29/2010 1.04 Editorial Changed language and formatting in the technical
content.

07/23/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

09/27/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

11/15/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

12/17/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

[MS-FSIADM] — v20101219

Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

2/40

Table of Contents

IS 3 1 o X [T o o oY 3 RS 6
3 A €] [0 111 | oV PP 6
A 2= <Y /=] Ll T 6

1.2.1 NOIMaAtiVe RE EIENCES .. ittt i ittt et e rae e ate s ane e areeenareaaraaneerns 6
1.2.2 INfOrmMative REfEIENCES . vii ittt i i i ittt ra e s e rabeaarssensssarannnenns 7
1.3 Protocol OVErVIEW (SYNOPSIS) tuviiriiutiiiitiiii i ettt it e a e e et eae s ae e aaeane e aeeanannans 7
1.3.1 Indexer adminiStration . o.viieiii i i it et r et ae et et a e as 8
1.3.2 IndeXer INformation .uuiiuiiiiiiiii i i i et a s e e e saeraerabesasssensssarannnasns 8
1.3.3 Indexer INformation Callbackoviiiiiiiiii i i i v e e e e ea e eanreaneeras 8
1.4 Relationship to Other ProtoCoIS.viiiiiiiii e 8
1.5 Prerequisites/PreCconditionNs ...ui. i e 9
1.6 Applicability Statement.......ovii 9
1.7 Versioning and Capability Negotiation......cccoiiiiiiiii s 9
B & T Y4 <Y o T oY = vq =Y 1= | o] LS S =] e £ 9
1.9 Standards ASSIGNMIENTES ...t 9

B =TT T = 10
A R I =Y 1] o Yo o o PP 10
A o a L o] a T D 1= 1= T IV o =3P 10

B A o Yol 81 o 1= o 1 o e P 10
B o (o Yol 8 1 1= o 1 o e] 10
G T o] 111 =] T3S 11
A oo || 1= e T [11
2.2.5 search_CoNtroller _iSt. ... s 11
B T T g o 125 o =] = P 11

3 Protocol Details....cccviiiiiiiciie i irsr s r e r s r s r e r e r s ra s rrarrarraRrnRanRasRnnRRnERaS 12

T T V2Tl 0] =1 = 12
T T A Y o 1= o = Lot I = | = T 1 o Yo = 12
0 1 I 0 = o 12
T TG T 1 1= 72 oY 12
3.1.4 essage Processing Events and Sequencing RUIES.......ccocvveiiiiiiiiiiiii e 13

3.1.4.1 indexer_admin::suspend_iNdeXiNg.......ccoviiiuiiiiuiiiiiiiiiee e 14
3.1.4.2 indexer_admin::resume_iNdeXiNgcoiveeieiiiirieieiieriie e eeneieneeenereneeenees 14
3.1.4.3 indexer_admin: ireSel _iNAeX .uiiiiiii i i i e e 15
3.1.4.4 indexer_admin::enable_tracemode.....cciiiiiiiiiiiiiiii i e 15
3.1.4.5 indexer_admin::disable _tracemodec.coviiiiiiiiiiiiiiii e 15
3.1.4.6 indexer_admin::enable_debug_loggingccviiiiiiiiiiiii 15
3.1.4.7 indexer_admin::disable_debug_logging......c.cociiiiiiiiiiiiiiiiir e 15
3.1.4.8 indexer_admin::request_reiNdeXiciiiiieiiiiiiiiiei i rr e ae s 15
3.1.4.9 indexer_admin::Self CRECK .uuiiiii i e e raa e raar e saaraeeras 16
3.1.4.10 indexer_info::get_percentage_fullcccoiiiiiiiiiiii 16
3.1.4.11 indexer_info::get_apiqUeUe_SiZecoiiiiiiiiiiiiii e 16
3.1.4.12 indexer_info::get_SpareqUeUE_SIZE......c.cvviiriiiiiiiiiiiiiieii e aees 16
3.1.4.13 indexer_info::get_apiqueue_fullcoiiiiiiiii 17
3.1.4.14 indexer_info::get_sparequeue_full..........ccoiiiiiiiiiiiii 17
3.1.4.15 indexer_info::get_total_num_doCS......c.ceiiiiiiiiiiiii i 17
3.1.4.16 indexer_info::get_num_docs_in_collection..........cccviiiiiiiiiiiiiiiiiii e, 17
3.1.4.17 indexer_info::get_collection_Namesc.cvriiiiiiiiiii e 17
3.1.4.18 indexer_info::get_last_input_timec.ciiiiiiii 18
3/40

[MS-FSIADM] — v20101219

Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

3.1.4.19 indexer_info::report_CONtENES ...iviiiiiii i 18

3.1.4.20 indexer_info::report_collection_contentscccviiiiiiiiiiiiiiiiiic 18

3.1.4.21 indexer_info::get_fixml_fill_rate.......coiiiiiiiii 19

3.1.4.22 indexer_info::get_search_controllersc.cooiiiiiiiiiiiiiiiii 19

3.1.4.23 indexer_info::get_column_role ... 19

3.1.4.24 indexer_info::get_dOCUMENT .. .ot 20

3.1.4.25 indexer_info::has doCUMENt .. .ciiiiiiiiii i i i s e a s srarareas 20

3.1.4.26 indexer_info::get_active_indeX_Set.......ciiiiiiiiiiiiiii 20

3.1.4.27 indeXer _iNfo:iStatlUs .iiiiiiiiiiiiiiiiii it i it raa e saarar e e e e raaareras 20

T 0 A A [o T (=] 21

0 0 30 A e N o Yol W [5 1= o | 21

0 0 3 A A oo 1 18 1o oY T o] e 22

G A Ay AR B 1 (o 1= 4 =T [V = 22

3.1.4.27. 1.4 PartitioN oot e 22

T I 0 A I s R [0 o{ U o 0 =) o 23

3.1.4.27.1.5 dOCUMENE @D tviiriiiiiiiii i e 23

3.1.4.27.1.5.1 QUEUE _SIZE . uiuiinieiiie ittt e e 24

3.1.4.27.1.5.2 0perations_pProCesSedccouieiuiiiiiieiiiiiieiie e ieaaens 24

0 T T I 0 1=l oY =T) (e 24

T T S © 1 o 1= gl I Yot= 1 I V7= 1 24

20 O 11T o 1= 7= 1 24

I A Y o 1= o = Yot I = | = T 1 o Yo 24

2020 I 1 o 2 =1 o 25

1 27200 T 1 11 = 72 oY 25

3.2.4 Message Processing Events and Sequencing RUleS.........c.coiiiiiiiiiiiiiiiiiineieeens 26

3.2.4.1 indexer_info_callback::report_contents......ccoviiiiiiiiiiiiiiiii 26

3.2.4.2 indexer_info_callback::report_collection_contentsccoovviiiiiiiiiiiiicinnnnn, 27

3.2.4.3 indexer_info_callback::report_finishedcccoiiiiiiiiiiiiii e 27

3.2.4.4 indexer_info_callback::report_unindexed_document............ccvvviiiiiiiiiiennnnnnn. 27

3.2.4.5 indexer_info_callback::report_duplicate_document...........ccoviiiiiiiiiiiiiiinninnnn. 28

T TN I 10 2 1=l =371 10 28

I I I © 1 o =] gl I Yot Y V7= 1 28

4 Protocol EXamples....cccciimirimierammrissesanssssss s sassssassasassssassn s ansansasasansansnsannnsannnnunss 29

4.1 Example using CallbacKsouiueiuiiiiiiiii e e 29

4.1.1 COAE EXAMIPI it 29

4.1.1.1 Server InNitialization. ..o e 29

L A R O 1= o ol =Ty =Y T PP 29

L R G B T =T V=T ol =T o o 1= < PP 29

4.1.2 Time SequUENCE Diagram ...eiieiieiieiieit ittt e se st e e aesare e sne e aneaae s 30

L <ol T 1 31

5.1 Security Considerations for Implementers........ccoviiiiiiiii e 31

5.2 IndeX Of SECUMNLY Parametars .ottt e et e e eaaaaas 31

6 Appendix A: FUll FSIDL....ciicuiiiiiiimie i sra s st ssssssssasssssasssssassssssnssasssnsanssnsnnsnns 32

[T N 1 15 32

LT O o =T 1 = o S 33

7 Appendix B: XML Schema for status methodc.ccccviriiiisrsisnssnrs s s 34

8 Appendix C: Product Behaviorc.ccuciieirimierimssissesnssssssessssssssssssssssssssnsassnsnssnsasnnss 36

9 Change TracCKiNG i rsenra s srssmssmsssrs s srssmssmssmssmmssmsssssmssmssmssssssssnsasssnsnssnnsn 37
4 /40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

10 e 1 T 1= 38

5/40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

1 Introduction

This document specifies the Indexer Administration and Status Protocol, which is used for
administering and retrieving information from an indexing component.

1.1 Glossary
The following terms are defined in [MS-GLOS]:

fault-tolerant
XML

The following terms are defined in [MS-OFCGLOST:

abstract object reference (AOR)
base port

Cheetah

Cheetah entity

client proxy

combined identifier

content collection

document identifier

exclusion list

FAST Index Markup Language (FIXML)
FAST Search Interface Definition Language (FSIDL)
index column

index generation identifier
index partition

indexer row

indexing component

indexing node

item

master indexer node

name server

query matching node

query processing node

Web crawler

The following terms are specific to this document:

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[MS-FSCHT] Microsoft Corporation, "Cheetah Data Structure", November 2009.

6/40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

%5bMS-OFCGLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
%5bMS-FSCHT%5d.pdf

[MS-FSFIXML] Microsoft Corporation, "FIXML Data Structure", November 2009.

[MS-FSID] Microsoft Corporation, "Indexing Distribution Protocol Specification", November 2009.

[MS-FSIPA] Microsoft Corporation, "Index Publication and Activation Protocol Specification",
February 2010.

[MS-FSMW] Microsoft Corporation, "Middleware Protocol Specification”, November 2009.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary", March 2007.

[MS-OFCGLOS] Microsoft Corporation, "Microsoft Office Master Glossary", June 2008.

1.3 Protocol Overview (Synopsis)

The Indexer Administration and Status Protocol uses three related interfaces. The interfaces are
defined using the FAST Search Interface Definition Language (FSIDL) language, as specified in
MS-FSMW]. The Indexer Administration interface (indexer_admin) contains methods used to
remotely control indexers, and the Indexer Information interface (indexer_info) contains methods
used to retrieve status information from remote indexing nodes. Both rely on the Indexer
Information Callback interface (indexer_info_callback) to asynchronously receive return data.

Item operations, such as adding new items or removing old items, arrive at the indexing node in
batches containing several operations. Due to load balancing at higher levels, it can happen that
items sent by a Web crawler, for example, arrive at the indexing node in a different order than
that in which they were initially sent. Batches that arrive out of order are first placed on the spare
queue. Batches that arrive in the correct order are placed on the api queue. After a batch has been
placed on the api queue, the spare queue is checked for batches that could be placed on the api
queue to form a contiguous range of batches. There is one spare queue for every client feeding to
the indexing node.

On the highest level, the total index is partitioned across several index columns of indexing node.
On the level of each indexing node, the index is partitioned into a disjointed set of index
partitions. These index partitions are denoted by integers from 0 to n-1, where n is the number of
index partitions on the indexing node. A full set of disjoint index partitions is called an index set, and
the set of index partitions currently used by query matching node to facilitate search queries is
called the active index set.

In a fault-tolerant system setup there are several indexing nodes in the same index column, as
shown in the following figure.

7/ 40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

%5bMS-FSFIXML%5d.pdf
%5bMS-FSID%5d.pdf
%5bMS-FSIPA%5d.pdf
%5bMS-FSMW%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-GLOS%5d.pdf

Master Master Master
indexing indexing indexing
node node node

Row 0, Column 0

Row 0, Column 1

Row 0, Column 2

Backup Backup Backup
indexing indexing indexing
node node node

Row 1, Column 0

Row 1, Column 1

Row 1, Column 2

Backup Backup Backup
indexing indexing indexing
node node node
Row 2, Column 0 Row 2, Column 1 Row 2, Column 2

Figure 1: Matrix of indexing nodes

The different indexing nodes in an index column are identified by their indexer row number. In
every index column, one of the indexing nodes assumes the role of the master indexer node,
while the rest are referred to as the backup indexing nodes. The backup indexing nodes have all of
the item data needed to build indices, but it is only the master indexer node that performs the
actual indexing.

Prior to indexing, items are stored in the intermediate FAST Index Markup Language (FIXML)
format, specified in [MS-FSFIXML]. A single FIXML structure potentially contains several items. The
validity of the items in a FIXML structure is decided by its FIXML meta structure.

1.3.1 Indexer administration

The Indexer Administration interface (indexer_admin) provides methods for remotely controlling
an indexing node. The provided functionality includes: suspending the ability to index new items, re-
indexing the entire set of items from FIXML, re-indexing a particular index partition, enabling and
disabling debug logging and performing a self-diagnosis on the integrity of the data structures.

1.3.2 Indexer Information

The Indexer Information interface (indexer_info) provides methods for remotely monitoring an
indexing node. The interface provides methods for monitoring: the number of items indexed, how
much capacity is left, the size of the api queue and spare queue and whether or not they are full,
what items are indexed, how long ago an index partition was last re-indexed, and the search
services subscribing to index partition updates.

1.3.3 Indexer Information Callback

The Indexer Information Callback interface (indexer_info_callback) provides methods for
returning asynchronous callbacks to a protocol client invoking methods of the Indexer
Administration or Indexer Information interfaces.

1.4 Relationship to Other Protocols

The interfaces are defined in the FSIDL language specified in [MS-FSMW]. The messages are
transported using the HTTP based interoperability framework specified in [MS-FSMW].

8/40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSFIXML%5d.pdf
%5bMS-FSMW%5d.pdf

Indexer Administration and Status This Protocol

Middleware
HTTP | HTTPS
P Industry Standard
1P

Figure 2: This protocol in relation to other protocols

Invoking some of the methods of this protocol will change state variables that will indirectly affect
the behavior of the protocol specified in [MS-FSID]. See section 3.1.1 for a specification of the state
variables concerned.

1.5 Prerequisites/Preconditions

The protocol client and protocol server are expected to know the location and connection
information of the shared name server.

1.6 Applicability Statement

These protocols are applicable for search applications where there is a need to remotely control or
monitor the indexing node.

1.7 Versioning and Capability Negotiation

Capability Negotiation: The Middleware protocol is connectionless, but the correct interface
version is to be specified in every message, as specified in sections 3.1.3 and 3.2.3.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

9/40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

%5bMS-FSID%5d.pdf
%5bMS-OFCGLOS%5d.pdf

2 Messages

2.1 Transport

The messages supported by the interfaces specified in the following subsections MUST be sent as
HTTP POST messages, as specified in [MS-FSMW].

2.2 Common Data Types

The allowed FSIDL data types are specified in [MS-FSMW]. This protocol also makes use of custom
Cheetah data types that are serialized and embedded in a generic collection of bytes.

Cheetah entities MUST be encoded as specified in [MS-FSCHT] section 2. The checksum of the
Cheetah messages MUST be -211918678. The Cheetah type identifier for the Cheetah entities MUST
be as specified in the following table.

Cheetah entity Cheetah type identifier
document_id 11
document_id_set 14

The protocol also makes use of data types that are aliases for standard FSIDL data types. The
aliased data types are not custom data types, but rather standard FSIDL data types that have been
given more convenient or verbose names to increase code readability.

2.2.1 document_id

The document_id Cheetah entity uniquely identifies an item. The structure of this data type, as
defined in section 6.2, is as follows:

root entity document id {
attribute string id;
collection key value pair routing attributes;

bi

id: The document identifier (3).

routing_attributes: These MUST be an empty Cheetah collection.

2.2.2 document_id_set

The document_id_set Cheetah entity is a collection of document_id objects. The structure of this
data type, as defined in section 6.2, is as follows:

root entity document id set {
collection document id doc_ids;

bi

doc_ids: The collection of document_ids.

10/ 40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSCHT%5d.pdf
%5bMS-OFCGLOS%5d.pdf

2.2.3 cheetah

The cheetah data type is an alias for a collection of bytes. It is used for all custom data types that
are serialized using Cheetah. The structure of this data type, as defined in section 6.1, is as follows:

typedef sequence<octet> cheetah;

2.2.4 collection_list

The collection_list is an alias for a collection of strings, where each string is the name of a
content collection. The structure of this data type, as defined in section 6.1, is as follows:

typedef sequence<string> collection list;

2.2.5 search_controller_list

The search_controller_list is an alias for a collection of strings, where each string contains the
location and status of a query matching node. The structure of this data type, as defined in section
6.1, is as follows:

typedef sequence<string> search controller list;

2.2.6 index_id_set_t

The index_id_set_t is an alias for a collection of strings, where each string is an index
generation identifier. The structure of this data type, as defined in section 6.1, is as follows:

typedef sequence<string> index id set t;

11/40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

3 Protocol Details
3.1 Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

The underlying Middleware protocol is connectionless, and the vast majority of the messages
specified in section 3.1.4 are one-step methods: they either perform a single action on the indexing
node, as in the case of the indexer_admin interface, or they retrieve a single piece of information,
as in the case of the indexer_info interface. As a result, the protocol requires very little data
organization.

The following data structures are needed for the state of the server:

indexing_suspended: A Boolean state variable. When indexing_suspended is TRUE, the ability
to re-index partitions MUST be deactivated. Existing re-index jobs MUST be allowed to finish. When
indexing_suspended is FALSE, the protocol server is in its normal state of operation as specified
by this protocol and described in section 1.3. Changing the state of this variable also affects the
behavior of a related protocol, see [MS-FSID] section 3.3.1.

reset_index_in_progress: A Boolean state variable. Set to TRUE when a reset index operation is
in progress. The reset index procedure re-indexes the entire corpus of items into a single partition.

3.1.2 Timers

None.

3.1.3 Initialization

The protocol server MUST use the middleware bind method to register an
indexingengine::indexer_admin server object in the name server, as specified in [MS-FSMW
section 3.4.4.2. The parameters for the bind method are encapsulated in an abstract object
reference, as specified in [MS-FSMW] section 2.2.15:

host: A string holding the host name of the server object on the protocol server. The value is
implementation specific of the higher level application, and is specified in the configuration file
%FASTSEARCH%\etc\Node.xml.

port: An integer holding the port number of the server object on the protocol server. The value is
base port + 390.

interface_type: A string that MUST be "indexingengine::indexer_admin".
interface_version: A string that MUST be "5.16".
object_id: An integer that is unique for each server object.

name: A string that MUST be "esp/clusters/webcluster/indexing/indexer-C-R/indexer_admin”,
where C is the index column number and R is the indexer row number.

12 /40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

%5bMS-FSID%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

The protocol server MUST use the middleware bind method to register an
indexingengine::indexer_info server object in the name server, as specified in [MS-FSMW
section 3.4.4.2. The parameters for the bind method are encapsulated in an abstract object
reference, as specified in [MS-FSMW] section 2.2.15:

host: A string holding the host name of the server object on the protocol server. The value is
implementation specific of the higher level application and is specified in the configuration file
%FASTSEARCH%\etc\Node.xml.

port: An integer holding the port number of the server object on the protocol server. The value is
base port + 390.

interface_type: A string that MUST be "indexingengine::indexer_info".
interface_version: A string that MUST be "5.15".
object_id: An integer that is unique for each server object.

name: A string that MUST be "esp/clusters/webcluster/indexing/indexer-C-R/indexer_info", where C
is the index column number and R is the indexer row number.

3.1.4 Message Processing Events and Sequencing Rules

The message type is determined at the middleware level. The middleware MUST call the correct
method of a server object implementing an interface. If custom data types are present in the
signature of the method being called, the middleware MUST deserialize the Cheetah data before
passing the arguments to the server object.

Some of the following specified methods use generic middleware exceptions to facilitate the return
of error messages. In accordance with the middleware specification, the generic middleware
exceptions may be thrown from any method, and are thus not defined in the FSIDL method
signatures.

The available methods are specified in the following table.

Method Description

indexer_admin::suspend_indexing Sets the state variable indexing_suspended to TRUE.
indexer_admin::resume_indexing Sets the state variable indexing_suspended to FALSE.
indexer_admin::reset_index Re-indexes all indexed items from FIXML into one single

index partition.

indexer_admin::enable_tracemode Enables item tracking, which tracks an item's path through
the indexing node using verbose logging.

indexer_admin::disable_tracemode Disables item tracking, which tracks an item's path through
the indexing node using verbose logging.

indexer_admin::enable_debug_logging Enables debug level logging.
indexer_admin::disable_debug_logging Disables debug level logging.
indexer_admin::request_reindex Triggers an asynchronous re-indexing of an index partition.
indexer_admin::self _check Performs consistency checking between the items in the

FIXML files and the items in the set of active indexes.

13 /40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

%5bMS-FSMW%5d.pdf

Method Description

indexer_info::get_percentage_full Returns the percentage of items indexed in relation to the
total capacity.

indexer_info::get_apiqueue_size Returns the number of batches stored on the api queue.

indexer_info::get_sparequeue_size Returns the number of batches stored on the spare queue.

indexer_info::get_apiqueue_full Returns whether or not the api queue is full.

indexer_info::get_sparequeue_full Returns whether or not the spare queue is full.

indexer_info::get_total_num_docs Returns the total number of items indexed.

indexer_info::get_num_docs_in_collection Returns the number of items in a content collection.

indexer_info::get_collection_names Returns the names of all the content collections.

indexer_info::get_last_input_time Returns the time since the set of indexed items last changed.

indexer_info::report_contents Returns a list of all the indexed items.

indexer_info::report_collection_contents Returns a list of all the indexed items for a specific content
collection.

indexer_info::get_fixml_fill_rate Returns the arithmetic mean of the fill rates of all FIXML files.

indexer_info::get_search_controllers Returns the location and status of the query matching nodes
registered with the indexing node.

indexer_info::get_column_role Returns the role of the indexing node, that is, "Master" or
"Backup".

indexer_info::get_document Returns the FIXML of an item.

indexer_info::has_document Returns whether or not the indexing node contains a specific
item.

indexer_info::get_active_index_set Returns the index generation identifiers of the active index
set.

indexer_info::status Returns an XML formatted status report of the indexing node.

3.1.4.1 indexer_admin::suspend_indexing

The suspend_indexing method sets the state variable indexing_suspended to TRUE. The
structure of this method, as defined in section 6.1, is as follows:

void suspend indexing();

3.1.4.2 indexer_admin::resume_indexing

The resume_indexing method sets the state variable indexing_suspended to FALSE. The
structure of this method, as defined in section 6.1, is as follows:

void resume indexing();

14 / 40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

3.1.4.3 indexer_admin::reset_index
The reset_index method asynchronously re-indexes all indexed items from FIXML into one single

index partition. Calling reset_index also sets the reset_index_in_progress state variable to
TRUE. The structure of this method, as defined in section 6.1, is as follows:

void reset index();

3.1.4.4 indexer_admin::enable_tracemode

The enable_tracemode method enables item tracking, which tracks an item's path through the
indexer using verbose logging. The structure of this method, as defined in section 6.1, is as follows:

void enable tracemode () ;

3.1.4.5 indexer_admin::disable_tracemode
The disable_tracemode method disables item tracking, which tracks an item's path through the

indexing node using verbose logging. The structure of this method, as defined in section 6.1, is as
follows:

void disable tracemode () ;

3.1.4.6 indexer_admin::enable_debug_logging

The enable_debug_logging method enables debug level logging. The structure of this method, as
defined in section 6.1, is as follows:

void enable debug logging();

3.1.4.7 indexer_admin::disable_debug_logging

The disable_debug_logging method disables debug level logging. The structure of this method, as
defined in section 6.1, is as follows:

void disable debug logging();

3.1.4.8 indexer_admin::request_reindex

The request_reindex method triggers an asynchronous re-indexing of an index partition. The
structure of this method, as defined in section 6.1, is as follows:

boolean request reindex(in long partition);

partition: The index partition to re-index. This MUST be a valid index partition number.

Returns: MUST return FALSE if the index partition number is invalid, or if the state variables
reset_index_in_progress or indexing_suspended are set to TRUE. If these conditions are not
met, TRUE MUST be returned.

15/40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

3.1.4.9 indexer_admin::self_check

The self_check method performs consistency checking between the items in the FIXML structures
and the items in the set of active indices. Calling the self_check method sets the
indexing_suspended state to TRUE. The result of the consistency check is sent back in the form of
callbacks:

- For each valid item that is found in a FIXML structure, while at the same time the item is not
present in the inverted index, an indexer_info_callback::report_unindexed_document
message MUST be sent.

- For each instance where an item is present in a pair of inverted indices, a
indexer_info_callback::report_duplicate_document message MUST be sent.

The structure of this method, as defined in section 6.1, is as follows:

void self check(in indexer info callback callback);

callback: A reference to the server object receiving the callbacks.

3.1.4.10 indexer_info::get_percentage_full

The get_percentage_full method returns the percentage of items indexed in relation to the total
capacity. The structure of this method, as defined in section 6.1, is as follows:

long get percentage full();

Returns: MUST return an integer value between 0 and 100 inclusive, describing the percentage of
items indexed.

3.1.4.11 indexer_info::get_apiqueue_size

The get_apiqueue_size method returns the number of batches stored on the api queue. The
structure of this method, as defined in section 6.1, is as follows:

long get apiqueue size();

Returns: MUST return the number of batches stored on the api queue.

3.1.4.12 indexer_info::get_sparequeue_size

The get_sparequeue_size method returns the number of batches stored on the spare queue. The
structure of this method, as defined in section 6.1, is as follows:

long get sparequeue_size();

Returns: MUST return the number of batches stored on the spare queue.

16 / 40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

3.1.4.13 indexer_info::get_apiqueue_full
The get_apiqueue_full method returns whether or not the number of bytes stored on the api

queue is greater than the total allowed size. The structure of this method, as defined in section 6.1,
is as follows:

boolean get apiqueue full();

Returns: MUST return TRUE if the api queue is full, FALSE otherwise.

3.1.4.14 indexer_info::get_sparequeue_full
The get_sparequeue_full method returns whether or not the number of bytes stored on any of

the spare queues is greater than the total allowed size. The structure of this method, as defined in
section 6.1, is as follows:

boolean get sparequeue full();

Returns: MUST return TRUE if any of the spare queues are full, false otherwise.

3.1.4.15 indexer_info::get_total_num_docs

The get_total_num_docs method returns the total number of items indexed in all index partitions.
The structure of this method, as defined in section 6.1, is as follows:

long get total num docs();

Returns: MUST return the total number of items indexed.

3.1.4.16 indexer_info::get_num_docs_in_collection

The get_num_docs_in_collection method returns the number of items in a content collection.
The structure of this method, as defined in section 6.1, is as follows:

long get num docs_in collection(in string collection)
raises (unknown collection error);

collection: The name of the content collection.
Returns: MUST return the number of items in the specified content collection.

Throws: MUST throw an unknown_collection_error if the specified content collection does not
exist.

3.1.4.17 indexer_info::get_collection_names

The get_collection_names method returns the names of all the content collections. The structure
of this method, as defined in section 6.1, is as follows:

collection list get collection names();

17/ 40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

Returns: MUST return a collection containing the names of all of the content collections.

3.1.4.18 indexer_info::get_last_input_time

The get_last_input_time method returns the time since the set of indexed items in a content
collection has changed. The structure of this method, as defined in section 6.1, is as follows:

long long get last input time(in string collection);

collection: The name of the content collection.

Returns: MUST return the seconds elapsed from midnight January 1st 1970 (UTC), not counting
leap seconds, to the point in time when the set of indexed items last changed. MUST return 0 if the
content collection does not exist.

3.1.4.19 indexer_info::report_contents

The report_contents method uses asynchronous callbacks to list all the items indexed on an
indexing node. The protocol client specifies the maximum number of items to report in each
callback, and the protocol server MUST then send an indexer_info_callback::report_contents
callback until all items on the indexing node have been reported. The callbacks returned to the
protocol client have sequence numbers, and the first callback returned MUST have the sequence
number 0. For subsequent callbacks in the same sequence, the sequence humber MUST be
incremented by 1. When all items have been reported, the protocol server MUST send an
indexer_info_callback::report_finished message to the protocol client.

The structure of this method, as defined in section 6.1, is as follows:

vold report contents(in indexer info callback callback,
in long batch size);

callback: A reference to the server object receiving the callbacks.

batch_size: The maximum number of items reported in each callback.

3.1.4.20 indexer_info::report_collection_contents

The report_collection_contents method uses asynchronous callbacks to list all the items indexed
in a specific content collection on an indexing node. The protocol client specifies the maximum
number of items to report in each callback, and the protocol server MUST then send an
indexer_info_callback::report_collection_contents callback until all items in the content
collection have been reported. The callbacks returned to the protocol client have sequence numbers,
and the first callback returned MUST have the sequence number 0. For subsequent callbacks in the
same sequence, the sequence number MUST be incremented by 1. When all items have been
reported, the protocol server MUST send an indexer_info_callback::report_finished message to
the protocol client.

The structure of this method, as defined in section 6.1, is as follows::

void report collection contents(in indexer info callback callback,
in long batch size,
in string collection);

18/ 40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

callback: A reference to the server object receiving the callbacks.
batch_size: The maximum number of items reported in each callback.

collection: The name of the content collection.

3.1.4.21 indexer_info::get_fixml_fill_rate

The get_fixml_fill_rate method returns the arithmetic mean of the fill rates of all FIXML
structures. The fill rate is the percentage of valid items in a FIXML structure. The validity of an item
in @ FIXML structure is defined by the FIXML meta structure. The structure of this method, as
defined in section 6.1, is as follows:

float get fixml fill rate();

Returns: MUST return the arithmetic mean of the fill rates of all FIXML structures.

3.1.4.22 indexer_info::get_search_controllers

The get_search_controllers method returns a collection of strings describing the location and
status of the query matching nodes registered with the master indexer node. The format of each
string is

"[hostname]:[port] - [status]"

where hostname is the query matching node's hostname, and port is the port number used by the
query matching node for listening to requests from query processing nodes. The status string
MUST be either "ok", "down" or "initializing".

To acquire the port number and the status string, the indexing node invokes the
search_controller::get_fdispatch_ptport and search_controller::get_status methods as

specified in [MS-FSIPA].

The structure of this method, as defined in section 6.1, is as follows:

search controller list get search controllers();

Returns: MUST return a collection of strings describing the location and status of all query matching
nodes registered with the indexing node.

3.1.4.23 indexer_info::get_column_role

The get_column_role method returns the role of the indexing node: "Master" for a master indexer
node, "Backup"” for a backup indexing node, “Standalone” if the index column has a single indexing
node and "N/A" if the role is unknown, for example, before an indexing node has had the chance to
look for a registered master indexer node in the name server. The structure of this method, as
defined in section 6.1, is as follows:

string get column role();

Returns: MUST return the role of the indexing node in the index column.

19/ 40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

%5bMS-OFCGLOS%5d.pdf
%5bMS-FSIPA%5d.pdf

3.1.4.24 indexer_info::get_document

The get_document method returns the FIXML of an item. The structure of this method, as defined
in section 6.1, is as follows:

string get document (in cht::documentmessages::document id doc id,
in string collection);

doc_id: The document identifier (3) of the requested item.
collection: The name of the content collection containing the item.

Returns: MUST return a string containing the FIXML of the requested item, or an empty string if the
item does not exist.

3.1.4.25 indexer_info::has_document

The has_document method returns whether or not the indexing node contains a specific item. The
structure of this method, as defined in section 6.1, is as follows:

boolean has_document (in string internal id)
raises (invalid arguments exception);

internal_id: The combined identifier of the requested item.
Returns: MUST return TRUE if the item is indexed, FALSE otherwise.

Throws: MUST throw an invalid_arguments_exception if the internal_id argument does not
conform to the syntax of a combined identifier.

3.1.4.26 indexer_info::get_active_index_set

The get_active_index_set method returns the index generation identifiers of the active index set.
The structure of this method, as defined in section 6.1, is as follows:

index id set t get active index set();
Returns: MUST return the index generation identifiers of the active indices.
Throws: MUST throw a middleware system_exception if there is no active index set.

3.1.4.27 indexer_info::status

The status method returns an XML formatted report of the status of the indexing node. The
structure of this method, as defined in section 6.1, is as follows:

string status();

Returns: A string that MUST be in XML format, which uses the XML Schema specified in section 7
and the content of which is implementation specific. The following are descriptions of elements and
element specific attributes in this XML Schema.

20/ 40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

%5bMS-OFCGLOS%5d.pdf
%5bMS-GLOS%5d.pdf

3.1.4.27.1 indexer

The <indexer> element is the root element. Its attributes are specified in the following table.

Attribute name Description

hostname The fully qualified domain name of the indexing node.

port The lowest port in the range of ports used by the indexing node.

cluster MUST be "webcluster".

column The index column number.

row The indexer row number.

factory_type MUST be "filehash".

preferred_master "yes" if the indexing node is the preferred master, "no" otherwise. If the indexing
node is the preferred master, it will force an already registered master to become
a backup.

connected_feeds The number of sessions connected to the indexing node. Creating sessions is

handled by the protocol specified in [MS-FSID].

status If the indexing_suspended state variable is TRUE, and the
reset_index_in_progress state variable is FALSE, the status attribute MUST be
set to "indexing suspended". However, if the reset_index_in_progress state
variable is TRUE, the status attribute MUST be set to "reset index in progress". If
both of the aforementioned state variables are FALSE, the status string MUST be
set to "running ok".

heartbeat If fault-tolerance is enabled, the attribute is either "Running" if the heartbeat is
running, or "Suspended" if the heartbeat is suspended. If fault-tolerance is
disabled, the attribute is set to "-". The heartbeat is a periodic thread that backup
indexing nodes use to ascertain the availability of the master indexer node.

exclusion_interval The interval, specified in seconds, at which the exclusion lists are updated.

time_since_last_index | The number of seconds since a new index set last became active, or 0 if no index
set has become active during the uptime of the indexing node.

The child elements of the <indexer> element are specified in the following subsections.

3.1.4.27.1.1 documents

The <documents> element specifies information concerning the corpus of indexed items. Its
attributes are specified in the following table.

Attribute

name Description

size The total size, in bytes, of the FAST Index Markup Language (FIXML) structures
describing the indexed items.

total The total number of items intended for indexing.

indexed The total number of items present in the active index set.

21/ 40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

%5bMS-FSID%5d.pdf
%5bMS-OFCGLOS%5d.pdf

Attribute
name Description

not_indexed The difference between the attributes "total" and "indexed".

3.1.4.27.1.2 column_role

The <column_role> element specifies the role of the indexing node in the index column. Its
attributes are specified in the following table.

Attribute

name Description

state The role of the indexing node. The string is identical to that returned by
indexer_info::get_column_role.

backups The number of backup indexing nodes registered with the master indexer node. If the
Protocol Server is a backup indexing node, the value MUST be 0.

3.1.4.27.1.3 index_frequence

The <index_frequence> element specifies the number of items indexed per second. Its attributes
are specified in the following table.

Attribute

name Description

min The lowest measurement made of indexed items per second, or "0" if no new index has
been built during the uptime of the indexing node.

max The highest measurement made of indexed items per second, or "0" if no new index has
been built during the uptime of the indexing node.

3.1.4.27.1.4 partition

The <partition> element specifies information concerning the index partitions. The root node
contains one <partition> child element per index partition. Its attributes are specified in the

following table.

Attribute name Description

id The index partition number.

index_id A unique string identifying the current inverted index associated with the index
partition.

status The status string has either of the following values:

"idle": The index partition is in an idle state.

"waiting": The index partition is waiting on another resource.

"copying (x%)": The inverted index associated with the index partition is being
copied to another server. If the percentage that has finished copying is greater
than or equal to 1, "x" MUST be replaced by an integer value specifying the
percentage finished.

"copying": Same as preceding case, used when the percentage finished is less

22 /40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

Attribute name Description

than 1.

"indexing (x%)": The inverted index associated with the index partition is being
re-indexed. If the percentage of items that has finished re-indexing is greater than
or equal to 1, "x" MUST be replaced by an integer value specifying the percentage
finished.

"indexing": Same as preceding case, used when the percentage finished is less
than 1.

"unknown": Used when no other case applies.

type The type of the index partition. If the index partition cannot be re-indexed the
type is "static", otherwise it is "dynamic".

timestamp_indexed The point in time when the index partition was last updated, specified as the
number of seconds since midnight January 1st 1970 (UTC), not counting leap
seconds.

indexed_per_second The average number of items indexed per second, or "0" if no new index has been
built for the index partition during the uptime of the indexing node.

pending_exclusionlist | The total number of items scheduled to be added to the exclusion list.

range The indexed items are stored in FIXML structures that are numbered using
increasing sequence numbers. The range attribute describes the range of FIXML
structures included in the inverted index associated with the index partition. If no
items are indexed, the range is specified as "0-0".

The child elements of the <partition> element are specified in the following subsections.

3.1.4.27.1.4.1 documents

The <documents> element specifies information concerning the indexed items in the index partition.
Its attributes are specified in the following table.

Attribute

name Description

active The total number of items in the inverted index associated with the index partition,
subtracted by the number of items in the exclusion lists.

total The total number of items in the inverted index associated with the index partition.

3.1.4.27.1.5 document_api

The <document_api> element specifies information concerning the api queue. Its attributes are
specified in the following table.

Attribute name Description

number_of_elements | The number of batches stored on the api queue.

last_sequence The identifier of the last sequence operation processed.

frequence The number of operations processed per second, measured as the average over
the uptime of the indexing node. See the operation Cheetah entity as specified
in [MS-FSID] section 2.2.16.

23/ 40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

%5bMS-OFCGLOS%5d.pdf
%5bMS-FSID%5d.pdf

Attribute name Description

load The amount of memory used by the api queue as a percentage of the maximum
allowed size.
status_updates The number of failed item operations registered during the uptime of the indexing

node. See the operation Cheetah entity as specified in [MS-FSID] section 2.2.16.

The child elements of the <document_api> element are specified in the following subsections.

3.1.4.27.1.5.1 queue_size

The <queue_size> element specifies the size of the api queue. Its attributes are specified in the
following table.

Attribute name Description

current The size of the api queue, in bytes.

3.1.4.27.1.5.2 operations_processed

The <operations_processed> element specifies the humber of items processed. Its attributes are
specified in the following table.

Attribute

name Description

api The number of item operations processed during the uptime of the indexing node. See the
operation Cheetah entity specified in [MS-FSID].

3.1.5 Timer Events

None.

3.1.6 Other Local Events

None.
3.2 Client Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

The underlying Middleware protocol is connectionless, and the vast majority of the messages
specified in section 3.1.4 are one-step methods: they either perform a single action on the indexing
node, in the case of the indexer_admin interface, or they retrieve a single piece of information, as
in the case of the indexer_info interface. As a result, the protocol requires very little data
organization. The exceptions are the three messages that involve callbacks:

24 /40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

%5bMS-FSID%5d.pdf
%5bMS-FSID%5d.pdf

indexer_admin::self_check, indexer_info::report_contents and
indexer_info::report_collection_contents.

The following data structures are needed for the state of the client:

callback: A server object implementing the indexer_info_callback interface. The server object
receives the asynchronous responses to the messages report_contents,
report_collection_contents and self_check.

3.2.2 Timers

None.

3.2.3 Initialization

The protocol client MUST use the middleware resolve call to find the server objects bound in the
name server, as specified in [MS-FSMW] section 3.4.4.1.

For resolving the indexer_admin server object, the parameters are:

name: A string that MUST be "esp/clusters/webcluster/indexing/indexer-C-R/indexer_admin",
where C is the index column number and R is the indexer row number.

interface_type: A string that MUST be "indexingengine::indexer_admin".
version: A string that MUST be "5.16".
For resolving the indexer_info server object, the parameters are:

name: A string that MUST be "esp/clusters/webcluster/indexing/indexer-C-R/indexer_info", where C
is the index column number and R is the indexer row number.

interface_type: A string that MUST be "indexingengine::indexer_info".
version: A string that MUST be "5.15".

To call methods that have parameters of type indexer_info_callback, a server object
implementing the interface indexer_info_callback MUST first be created. The callback server
object MUST have the following values set for the abstract object reference, as specified in [MS-
FSMW] section 2.2.15:

host: A string holding the host name of the server object on the protocol server. The value is
implementation specific of the higher level application and is specified in the configuration file
%FASTSEARCH%\etc\Node.xml.

port: An integer holding the port number of the server object on the protocol server. The value is
base port + 390.

interface_type: A string that MUST be "indexingengine::indexer_info_callback".
interface_version: A string that MUST be "5.6".

object_id: An integer that is unique for each server object.

25/ 40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

%5bMS-FSMW%5d.pdf

3.2.4 Message Processing Events and Sequencing Rules

The client only processes messages that are the result of the client itself invoking callback
generating methods. A client's invocation of each method typically results from local application
activity, which specifies values for all input parameters.

The callback message type is determined at the middleware level. The middleware MUST call the
correct method of the server object implementing the interface. If custom data types are present in
the signature of the method being called, the middleware MUST deserialize the Cheetah data before
passing the arguments to the server object.

The following table specifies the available methods.

Method Description

indexer_info_callback::report_contents Used to receive asynchronous callbacks in response
to the protocol client calling the
indexer_info::report_contents method.

indexer_info_callback::report_collection_contents Used to receive asynchronous callbacks in response
to the protocol client calling the
indexer_info::report_collection_contents
method.

indexer_info_callback::report_finished Used to receive asynchronous callbacks in response
to the protocol client calling either
indexer_info::report_collection or
indexer_info::report_collection_contents.

indexer_info_callback::report_unindexed_document | Used to receive asynchronous callbacks in response
to the protocol client calling the
indexer_info::self_check method.

indexer_info_callback::report_duplicate_document Used to receive asynchronous callbacks in response
to the protocol client calling the
indexer_info::self_check method.

3.2.4.1 indexer_info_callback::report_contents

The report_contents method is an asynchronous callback sent back to the protocol client as a
result of the protocol client issuing an indexer_info::report_contents call. The method MUST
accept a sequence of callbacks from the protocol server, where each callback contains a different
subset of the total corpus of items on the indexer. The structure of this method, as defined in
section 6.1, is as follows:

void report contents(in long column_id,
in long row_id,
in cht::documentmessages::document id set set,
in long batch num);

column_id: The index column number of the indexer sending the callback.
row_id: The indexer row number of the indexer sending the callback.
set: A set of document identifiers (3) describing indexed items on the indexer.

batch_num: An increasing integer identifying the callback. This value MUST begin at 0.

26 /40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

3.2.4.2 indexer_info_callback::report_collection_contents

The report_collection_contents method is an asynchronous callback sent back to the protocol
client as a result of the protocol client issuing an indexer_info::report_collection_contents. The
method MUST accept a sequence of callbacks from the protocol server, where each callback contains
a different subset of the total corpus of items belonging to a specific content collection on the
indexer. The structure of this method, as defined in section 6.1, is as follows:

void report collection contents(in long column_id,
in long row id,
in string collection,
in cht::documentmessages::document id set set,
in long batch num);

column_id: The index column number of the indexer sending the callback.
row_id: The indexer row number of the indexer sending the callback.

collection: The name of the content collection containing the reported documents.
set: A set of document identifiers (3) indexed on the indexer.

batch_num: An increasing integer identifying the callback. This value MUST begin at 0.

3.2.4.3 indexer_info_callback::report_finished

The report_finished method is an asynchronous callback sent back to the protocol client in
response to the protocol client issuing an indexer_info::report_collection or an
indexer_info::report_collection_contents call. The protocol server MUST use it to signal that all
of the items have been reported using the methods specified in sections 3.2.4.1 and 3.2.4.2. The
structure of this method, as defined in section 6.1, is as follows:

void report finished(in long column_ id,
in long row_id,
in long num batches,
in long num docs);

column_id: The column number of the indexing node sending the callback.
row_id: The row number of the indexing node sending the callback.

num_batches: The number of batches sent back to the client using
indexer_info_callback::report_contents or indexer_info_callback::report_collection_contents.

num_docs: The number of documents reported back to the client using
indexer_info_callback::report_contents or indexer_info_callback::report_collection_contents.

3.2.4.4 indexer_info_callback::report_unindexed_document

The report_unindexed_document method is an asynchronous callback sent back to the protocol
client in response to the protocol client issuing an indexer_admin::self_check call. It MUST be
accepted for every non-invalidated item found in a FIXML document, while at the same time the
item is not present in the active index set. The structure of this method, as defined in section 6.1, is
as follows:

27/ 40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

void report unindexed document (in long column_ id,
in long row_id,
in string combined id,
in string message);

column_id: The column number of the indexing node sending the callback.
row_id: The row number of the indexing node sending the callback.
combined_id: The combined identifier of the un-indexed item.

message: The index generation identifier of the index partition where the item was expected to be
found.

3.2.4.5 indexer_info_callback::report_duplicate_document

The report_duplicate_document method is an asynchronous callback sent back to the protocol
client in response to the protocol client issuing an indexer_admin::self_check call. It MUST be
accepted for every pair of index partitions containing the same item.

The structure of this method, as defined in section 6.1, is as follows:

void report duplicate document (in long column id,
in long row_ id,
in string combined id,
in string message);

column_id: The index column number of the indexing node sending the callback.
row_id: The indexer row number of the indexing node sending the callback.
combined_id: The combined identifier of the duplicate document.

message: The index generation identifiers of the pair of index partitions containing the duplicate
document. The index generation identifiers MUST be separated by a comma character.

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

28/ 40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

4 Protocol Examples

4.1 Example using Callbacks
This example describes how to use the report_contents method of the indexer_info interface.

First, the indexing node (indexer row 0, index column 0) acting as the protocol server in this
transaction, creates a server object implementing the indexer_info interface. The protocol server
then binds the server object in the name server. Subsequently, the protocol client acquires a client
proxy to the indexer_info server object by resolving the server object in the name server. This is
possible because both protocol client and protocol server have agreed a priori on both the location of
the shared name server, and the symbolic name of the server object.

The protocol client then creates a server object implementing the indexer_info_callback interface.
Callbacks are used to retrieve data asynchronously, as opposed to acquiring the result of a method
call in the form of a return value from the method.

The protocol client is now ready to call the report_contents method on the indexer_info client
proxy. The protocol client passes a reference to its callback server object as an argument to the
method call, and the protocol server invokes methods on the received callback client proxy to send
the results back.

4.1.1 Code Example

4.1.1.1 Server Initialization

SET server object instance TO INSTANCE OF indexer info SERVER OBJECT

SET server object id TO UNIQUE INTEGER

SET server object host TO "myserver.mydomain.com"

SET server object port TO "1234"

SET server object interface type TO "indexingengine::indexer info"

SET server object interface version TO "5.15"

SET server_object name TO "esp/clusters/webcluster/indexing/indexer-0-0/indexer_info"
SET server object aor TO server object host, server object port,

server objgct interface type, server ogject interface version, server object id AND
server:object:name B B B B B B

CALL nameserver.bind WITH server object name AND server object aor

4.1.1.2 Client Message

SET server object name TO "esp/clusters/webcluster/indexing/indexer-0-0/indexer info"

SET server object interface type TO "indexingengine::indexer info"

SET server object interface version TO "5.15"

CALL nameserver.resolve WITH server object name, server object interface type AND

server object interface version RETURNING Indexeriinfoiglientigroxy B

SET callback server object TO INSTANCE OF indexer info callback SERVER OBJECT

SET batch _size TO 100

CALL indexer info client proxy.report contents WITH callback server object AND batch size

4.1.1.3 Server Response

SET row TO O
SET column TO 0
SET batch num TO 0

29/ 40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

REPEAT

SET reported docs TO THE MINIMUM OF batch size AND THE REMAINDING NUMBER OF

UNREPORTED DOCUMENTS

SET batch TO reported docs UNREPORTED DOCUMENTS
CALL callback client proxy.report contents WITH row, column, batch AND batch num

INCREMENT batch num

ADD reported_docs TO num_documents
UNTIL ALL DOCUMENTS ARE REPORTED
CALL callback client proxy.report finished WITH column, row, batch num AND num documents

4.1.2 Time Sequence Diagram

The protocol client receives the callback, and then aggregates all the batches it receives. This is
described in the following diagram.

NameServer

Abind Server Object

indexer_info Server Object

resolve Server Object

U bind OK
——————————— —>

indexer_info_callback
Server Object

report_contents(callback Server Object)

Figure 3: Protocol example

:
|
|
! Client Proxy
o mnm s
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
I
|
|
|
|
I
|
|
|
|

[MS-FSIADM] — v20101219

Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

30/ 40

5 Security

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

31/40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

6 Appendix A: Full FSIDL

For ease of implementation the full FSIDL and Cheetah specifications are provided in the following

sections.

6.1 FSIDL

module interfaces {
module indexingengine {
exception invalid input_ exception {

string what;

exception unknown_collection_error {

string what;

typedef sequence<octet> cheetah;

typedef cheetah document id;

typedef cheetah document id set;

typedef sequence<string> collection list;
typedef sequence<string> search controller list;

typedef sequence<string> index id set t;

interface indexer admin {

voild suspend indexing();

voild resume indexing();

vold reset index();

void enable tracemode () ;

void disable tracemode () ;

void enable debug logging();

void disable debug logging();

boolean request reindex(in long partition);

void self check(in indexer info callback callback);

interface indexer info {

long get percentage full();
long get apiqueue size();
long get sparequeue_size();
boolean get apiqueue full();
boolean get sparequeue full();
long get total num docs();
long get num docs_in collection(in string collection)
raises (unknown collection error);
collection list get collection names();
long long get last input time (in string collection);
void report contents(in indexer info callback callback,
in long batch size);
void report collection contents(in indexer info callback callback,
in long batch size,
in string collection);
float get fixml fill rate();
search controller list get search controllers();
string get column role();
string get document (in cht::documentmessages::document id doc id,
in string collection);
boolean has_document (in string internal id)

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release:

Sunday, December 19, 2010

32/40

raises (invalid arguments exception);
index id set t get active index set();
string status();

interface indexer info callback {
void report contents(in long column_id,
in long row id,
in cht::documentmessages::document id set set,
in long batch num);
void report collection contents(in long column id,
in long row id,
in string collection,
in cht::documentmessages::document id set set,
in long batch num);
void report finished(in long column_id,
in long row_id,
in long num batches,
in long num docs);
void report unindexed document (in long column_ id,
in long row_ id,
in string combined id,
in string message);
void report duplicate document (in long column id,
in long row_ id,
in string combined id,
in string message);

6.2 Cheetah

root entity document id{
attribute string id;
collection key value pair routing attributes;

root entity document id set {
collection document id doc_ids;

33/40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

7 Appendix B: XML Schema for status method

<?xml version="1.0" encoding="UTF-8" 2>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="column_role">
<xs:complexType>
<xs:attribute name="backups" type="xs:NMTOKEN" use="required" />
<xs:attribute name="state" type="xs:string" use="required" />
</xs:complexType>
</xs:element>

<xs:element name="document_ api'">
<xs:complexType>
<xs:sequence>
<xs:element ref="queue size" />
<xs:element ref="operations processed" />
</xs:sequence>
<xs:attribute name="number of elements" type="xs:NMTOKEN" use="required" />
<xs:attribute name="status updates" type="xs:NMTOKEN" use="required" />
<xs:attribute name="frequence" type="xs:NMTOKEN" use="required" />
<xs:attribute name="load" type="xs:NMTOKEN" use="required" />
<xs:attribute name="last sequence" type="xs:NMTOKEN" use="required" />
</xs:complexType>
</xs:element>

<xs:element name="documents">
<xs:complexType>
<xs:attribute name="size" type="xs:NMTOKEN" use="optional" />
<xs:attribute name="total" type="xs:NMTOKEN" use="required" />
<xs:attribute name="indexed" type="xs:NMTOKEN" use="optional" />
<xs:attribute name="active" type="xs:NMTOKEN" use="optional" />
<xs:attribute name="not indexed" type="xs:NMTOKEN" use="optional" />
</xs:complexType>
</xs:element>

<xs:element name="index frequence">
<xs:complexType>
<xs:attribute name="max" type="xs:NMTOKEN" use="required" />
<xs:attribute name="min" type="xs:NMTOKEN" use="required" />
</xs:complexType>
</xs:element>

<xs:element name="indexer">
<xs:complexType>

<xs:sequence>

<xs:element ref="documents" />

<xs:element ref="column_role" />

<xs:element ref="index frequence" />

<xs:element ref="partition" maxOccurs="unbounded" />

<xs:element ref="document api" />
</xs:sequence>
<xs:attribute name="exclusion interval" type="xs:NMTOKEN" use="required" />
<xs:attribute name="preferred master" type="xs:NMTOKEN" use="required" />
<xs:attribute name="heartbeat" type="xs:NMTOKEN" use="required" />
<xs:attribute name="time since last index" type="xs:NMTOKEN" use="required" />
<xs:attribute name="connected feeds" type="xs:NMTOKEN" use="required" />
<xs:attribute name="port" type="xs:NMTOKEN" use="required" />

34 /40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

<XSs
<xs
<xXs
<xs
<xs
<xXs

rattribute
rattribute
:attribute
:rattribute
:attribute
:rattribute

name="column" type="xs:NMTOKEN" use="required" />
name="factory type" type="xs:NMTOKEN" use="required" />
name="status" type="xs:string" use="required" />
name="hostname" type="xs:NMTOKEN" use="required" />
name="cluster" type="xs:NMTOKEN" use="required" />

name="row" type="xs:NMTOKEN" use="required" />

</xs:complexType>
</xs:element>

<xs:element name="operations_ processed">

<xs:complexType>

<xs:attribute name="api" type="xs:NMTOKEN" use="required" />
</xs:complexType>
</xs:element>

<xs:element name="partition">

<xs:complexType>
<xs:

sequence>

<xs:element ref="documents" />

</xs:sequence>
rattribute
rattribute
rattribute
rattribute
rattribute
rattribute
rattribute
:rattribute

<XS
<XS
<XS
<XS
<XS
<XS
<XS
<xs

name="pending exclusionlist" type="xs:NMTOKEN" use="required" />
name="status" type="xs:NMTOKEN" use="required" />
name="indexed per second" type="xs:NMTOKEN" use="required" />
name="range" type="xs:NMTOKEN" use="required" />

name="timestamp indexed" type="xs:NMTOKEN" use="required" />
name="type" type="xs:NMTOKEN" use="required" />

name="index id" type="xs:NMTOKEN" use="required" />

name="1id" type="xs:NMTOKEN" use="required" />

</xs:complexType>
</xs:element>

<xs:element name="queue size">

<xs:complexType>

<xs:attribute name="current" type="xs:NMTOKEN" use="required" />
</xs:complexType>
</xs:element>

</xs:schema>

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

35/40

8 Appendix C: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

= Microsoft® FAST™ Search Server 2010

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

36 /40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

9 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

37/ 40

[MS-FSIADM] — v20101219
Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

10 Index
A

Abstract data model
client 24
server 12
Applicability 9

C

Capability negotiation 9
Change tracking 37
cheetah data type 11
Client
abstract data model 24
indexer info callback::report collection contents
method 27
indexer info callback::report contents method
26
indexer info callback::report duplicate docume
nt method 28
indexer info callback::report finished method 27
indexer info callback::report unindexed docum
ent method 27
initialization 25
local events 28
message processing 26
seguencing rules 26
timer events 28
timers 25
Client message example 29
collection list data type 11
Common data types 10

D

Data model - abstract
client 24
server 12
Data types
cheetah 11
collection list 11
common - overview 10
document id 10
document id set 10
index id set t 11
search controller list 11
document id data type 10
document id set data type 10

Events

local - client 28

local - server 24

timer - client 28

timer - server 24
Example using callbacks example 29
Examples

client message 29

example using callbacks 29
server initialization 29

server response 29
time sequence diagram 30

F

Fields - vendor-extensible 9
FSIDL 32
Full FSIDL 32

G

Glossary 6

I

Implementer - security considerations 31
Index of security parameters 31
index id set t data type 11
Indexer (overview)
administration 8
information 8
information callback 8
indexer admin::disable debug logging method 15
indexer admin::disable tracemode method 15
indexer admin::enable debug logging method 15
indexer admin::enable tracemode method 15
indexer admin::request reindex method 15
indexer admin::reset index method 15
indexer admin::resume indexing method 14
indexer admin::self check method 16
indexer admin::suspend indexing method 14
indexer info::get active index set method 20
indexer info::get apiqueue full method 17
indexer info::get apiqueue size method 16
indexer info::get collection names method 17
indexer info::get column role method 19
indexer info::get document method 20
indexer info::get fixml fill rate method 19
indexer info::get last input time method 18
indexer info::get num docs in collection method
17
indexer info::get percentage full method 16
indexer info::get search controllers method 19
indexer info::get sparequeue full method 17
indexer info::get sparequeue size method 16
indexer info::get total num docs method 17
indexer info::has document method 20
indexer info::report collection contents method 18
indexer info::report contents method 18
indexer info::status method 20
indexer info callback::report collection contents
method 27
indexer info callback::report contents method 26
indexer info callback::report duplicate document
method 28
indexer info callback::report finished method 27

[MS-FSIADM] — v20101219

Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

38/40

indexer info callback::report unindexed document
method 27

Informative references 7

Initialization
client 25
server 12

Introduction 6

L

Local events
client 28
server 24

Message processing
client 26
server 13

Messages
cheetah data type 11
collection list data type 11
common data types 10
document id data type 10
document id set data type 10
index id set t data type 11
search controller list data type 11
transport 10

Methods
indexer admin::disable debug logging 15
indexer admin::disable tracemode 15
indexer admin::enable debug logging 15
indexer admin::enable tracemode 15
indexer admin::request reindex 15
indexer admin::reset index 15
indexer admin::resume indexing 14
indexer admin::self check 16
indexer admin::suspend indexing 14
indexer info::get active index set 20
indexer info::get apiqueue full 17
indexer info::get apigqueue size 16
indexer info::get collection names 17
indexer info::get column role 19
indexer info::get document 20
indexer info::get fixml fill rate 19
indexer info::get last input time 18
indexer info::get num docs in collection 17
indexer info::get percentage full 16
indexer info::get search controllers 19
indexer info::get sparequeue full 17
indexer info::get sparequeue size 16
indexer info::get total num docs 17
indexer info::has document 20
indexer info::report collection contents 18
indexer info::report contents 18
indexer_info::status 20
indexer info callback::report collection contents

27
indexer info callback::report contents 26
indexer info callback::report duplicate docume
nt 28

indexer info callback::report finished 27

indexer info callback::report unindexed docum
ent 27

Normative references 6

o

Overview (synopsis) 7

P

Parameters - security index 31
Preconditions 9

Prerequisites 9
Product behavior 36

R

References
informative 7
normative 6
Relationship to other protocols 8

S

search controller list data type 11
Security
implementer considerations 31
parameter index 31
Sequencing rules
client 26
server 13
Server
abstract data model 12
indexer admin::disable debug logging method
15
indexer admin::disable tracemode method 15
indexer admin::enable debug logging method
15
indexer admin::enable tracemode method 15
indexer admin::request reindex method 15
indexer admin::reset index method 15
indexer admin::resume indexing method 14
indexer admin::self check method 16
indexer admin::suspend indexing method 14
indexer info::get active index set method 20
indexer info::get apiqueue full method 17
indexer info::get apiqueue size method 16
indexer info::get collection names method 17
indexer info::get column role method 19
indexer info::get document method 20
indexer info::get fixml fill rate method 19
indexer _info::get last input time method 18
indexer info::get num docs in collection
method 17
indexer info::get percentage full method 16
indexer _info::get search controllers method 19
indexer info::get sparequeue full method 17
indexer info::get sparequeue size method 16
indexer info::get total num docs method 17

[MS-FSIADM] — v20101219

Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

39/40

indexer info::has document method 20
indexer_info::report collection contents method

18

indexer info::report contents method 18

indexer info::status method 20

initialization 12

local events 24

message processing 13

sequencing rules 13

timer events 24

timers 12
Server initialization example 29
Server response example 29
Standards assignments 9

T

Time sequence diagram 30
Timer events

client 28

server 24
Timers

client 25

server 12
Tracking changes 37
Transport 10

\'}

Vendor-extensible fields 9
Versioning 9

[MS-FSIADM] — v20101219

Indexer Administration and Status Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Sunday, December 19, 2010

40/ 40

	Table of Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Protocol Overview (Synopsis)
	1.3.1 Indexer administration
	1.3.2 Indexer Information
	1.3.3 Indexer Information Callback

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 document_id
	2.2.2 document_id_set
	2.2.3 cheetah
	2.2.4 collection_list
	2.2.5 search_controller_list
	2.2.6 index_id_set_t

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 indexer_admin::suspend_indexing
	3.1.4.2 indexer_admin::resume_indexing
	3.1.4.3 indexer_admin::reset_index
	3.1.4.4 indexer_admin::enable_tracemode
	3.1.4.5 indexer_admin::disable_tracemode
	3.1.4.6 indexer_admin::enable_debug_logging
	3.1.4.7 indexer_admin::disable_debug_logging
	3.1.4.8 indexer_admin::request_reindex
	3.1.4.9 indexer_admin::self_check
	3.1.4.10 indexer_info::get_percentage_full
	3.1.4.11 indexer_info::get_apiqueue_size
	3.1.4.12 indexer_info::get_sparequeue_size
	3.1.4.13 indexer_info::get_apiqueue_full
	3.1.4.14 indexer_info::get_sparequeue_full
	3.1.4.15 indexer_info::get_total_num_docs
	3.1.4.16 indexer_info::get_num_docs_in_collection
	3.1.4.17 indexer_info::get_collection_names
	3.1.4.18 indexer_info::get_last_input_time
	3.1.4.19 indexer_info::report_contents
	3.1.4.20 indexer_info::report_collection_contents
	3.1.4.21 indexer_info::get_fixml_fill_rate
	3.1.4.22 indexer_info::get_search_controllers
	3.1.4.23 indexer_info::get_column_role
	3.1.4.24 indexer_info::get_document
	3.1.4.25 indexer_info::has_document
	3.1.4.26 indexer_info::get_active_index_set
	3.1.4.27 indexer_info::status
	3.1.4.27.1 indexer
	3.1.4.27.1.1 documents
	3.1.4.27.1.2 column_role
	3.1.4.27.1.3 index_frequence
	3.1.4.27.1.4 partition
	3.1.4.27.1.4.1 documents

	3.1.4.27.1.5 document_api
	3.1.4.27.1.5.1 queue_size
	3.1.4.27.1.5.2 operations_processed

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 indexer_info_callback::report_contents
	3.2.4.2 indexer_info_callback::report_collection_contents
	3.2.4.3 indexer_info_callback::report_finished
	3.2.4.4 indexer_info_callback::report_unindexed_document
	3.2.4.5 indexer_info_callback::report_duplicate_document

	3.2.5 Timer Events
	3.2.6 Other Local Events

	4 Protocol Examples
	4.1 Example using Callbacks
	4.1.1 Code Example
	4.1.1.1 Server Initialization
	4.1.1.2 Client Message
	4.1.1.3 Server Response

	4.1.2 Time Sequence Diagram

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full FSIDL
	6.1 FSIDL
	6.2 Cheetah

	7 Appendix B: XML Schema for status method
	8 Appendix C: Product Behavior
	9 Change Tracking
	10 Index

