[MS-COMT]:
Component Object Model Plus (COM+) Tracker Service
Protocol Specification

Intellectual Property Rights Notice for Open Specifications Documentation

= Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

= Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

= No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

= Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft's Open Specification Promise (available here:
http://www.microsoft.com/interop/osp) or the Community Promise (available here:
http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if
the technologies described in the Open Specifications are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

= Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights.

= Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

1/42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

Revision Summary

Revision Revision
Date History Class Comments
07/20/2007 | 0.1 Major MCPP Milestone 5 Initial Availability
09/28/2007 | 0.1.1 Editorial Revised and edited the technical content.
10/23/2007 | 0.2 Minor Updated the technical content.
11/30/2007 0.2.1 Editorial Revised and edited the technical content.
01/25/2008 0.2.2 Editorial Revised and edited the technical content.
03/14/2008 0.2.3 Editorial Revised and edited the technical content.
05/16/2008 0.2.4 Editorial Revised and edited the technical content.
06/20/2008 1.0 Major Updated and revised the technical content.
07/25/2008 1.1 Minor Updated the technical content.
08/29/2008 1.2 Minor Updated the technical content.
10/24/2008 1.3 Minor Updated the technical content.
12/05/2008 1.4 Minor Updated the technical content.
01/16/2009 | 1.4.1 Editorial Revised and edited the technical content.
02/27/2009 2.0 Major Updated and revised the technical content.
04/10/2009 2.1 Minor Updated the technical content.
05/22/2009 2.1.1 Editorial Revised and edited the technical content.
07/02/2009 2.1.2 Editorial Revised and edited the technical content.
08/14/2009 2.1.3 Editorial Revised and edited the technical content.
09/25/2009 2.2 Minor Updated the technical content.
11/06/2009 2.2.1 Editorial Revised and edited the technical content.
12/18/2009 2.2.2 Editorial Revised and edited the technical content.
01/29/2010 | 2.2.3 Editorial Revised and edited the technical content.
03/12/2010 | 2.2.4 Editorial Revised and edited the technical content.
04/23/2010 | 2.2.5 Editorial Revised and edited the technical content.
06/04/2010 | 2.2.6 Editorial Revised and edited the technical content.
07/16/2010 2.2.6 No change No changes to the meaning, language, or formatting of

the technical content.

2/42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

Revision Revision

Date History Class Comments

08/27/2010 2.2.6 No change No changes to the meaning, language, or formatting of
the technical content.

10/08/2010 | 2.2.6 No change No changes to the meaning, language, or formatting of
the technical content.

11/19/2010 2.2.6 No change No changes to the meaning, language, or formatting of
the technical content.

01/07/2011 | 2.2.6 No change No changes to the meaning, language, or formatting of
the technical content.

02/11/2011 2.2.6 No change No changes to the meaning, language, or formatting of
the technical content.

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

3/42

Contents
B N 1 3 o e Yo LT ot o'oY o R 6
3 A €] [0 111 | oV PP 6
B U= =1 <] Lo PP PP 7
1.2.1 NOIrmative Ref@rENCeS .. civiiiitii i e e e aees 7
1.2.2 INformative RefEIrENCES . vttt e e e 8
G O O 1 7= T 8
3G 0 R = ¥ Yol e] o 11 [PR 8
1.3.2 Instantiation CONCEPES ...iuiiiiiiiiii e 9
3G TG T o To | 11 0T S PP 10
1.3.4 Recycling @nd PaUSING......iiiuiiiiiiiiiiiii e e s e st et 11
1.3.5 ActiVity StatistiCs. .o e 11
1.3.6 Polling and Tracker EVENES.o e 11
G T o ot =YY J D 11 1 oY 1 11
1.4 Relationship to Other ProtoCoIS. . ..ciiiiiiii i e 12
1.5 Prerequisites/Preconditionsiiiiiii i 12
1.6 Applicability Statement. .. oo 12
1.7 Versioning and Capability Negotiation.........c.ccvuiiiiniiii e 12
1.8 Vendor-Extensible Fields......ouiiiiiiii i e 12
1.9 Standards ASSIGNMENTES ...t 12
A 1 =TT T = 14
200 R I = 1= o To | o PP 14
DA o o [o] T D=1 o= T NV o 3P 14
b2 2 R O U1 1] =T = Tl =T €U | 1o 1S} o a1 T [14
2.2.2 ContainerStatistiCs .uuuiieiii i e 14
B2 2 B @] g = [g 1= o/ - | - S 15
2.2.4 ComMPONENEDAta ittt i e e as 15
2.2.5 TrackingInNfo FOrmMats . .oiii ittt ea 16
2.2.5.1 LengthPrefiXedNameo e 16
2.2.5.2 TrackingInfoPropertyValueoeieiiiiiii i e e 17
2.2.5.3 TrackingInNfoPropertyoc i 18
2.2.5.4 TrackingInfoObject OBIJREF_CUSTOMcciiiiiiiiiiiiiiiiiiie e eie e eneenenees 18
2.2.5.5 TrackingInfoCollection OBJREF_CUSTOMcc.iiiiiiiiiiiiiiiiiiii e e 19
3 Protocol Details . .cuccviiiiiririe i srmra s s sra s s s saassa s s nanranrana R annnnnnn 21
T R YT oY1 ol T = TP 21
3.1.1 Abstract Data Modelooviuiiiiiiiii i 21
0 0 I 0 1= o= PP 22
3.1.3 INtiAliZation covei i e 22
3.1.4 Message Processing Events and Sequencing RUleS.........c.coviiiiiiiiiiiiiiiiiiceieeens 22
3.1.4.1 IGetTrackingDataccvvieieiiiiiii it 22
3.1.4.1.1 GetContainerData (OpNUM 4) ...ttt 23
3.1.4.1.2 GetComponentDataByContainer (Opnum 5).....ccocviiiiiiiiiiiiiiiieeineeens 23
3.1.4.1.3 GetComponentDataByContainerAndCLSID (Opnum 6).....ccevvvviiiiiiiinnnnnnns. 24
3.1.4.2 IPIrOCESSDUMID 1ttt ittt 24
3.1.4.2.1 IsSupported (OPNUM 7) .uuieieiiiiieiie et e e e e e eeees 25
3.1.4.2.2 DumpProcess (OPNUM 8) .ouuiuiiiuiiiiiiiii it ara e e ree e aeereaaens 25
3.1, TIMEr BVENES ot 26
3.1.6 Other LOCal EVENES .ttt ettt e e e e e et e e et e e raaens 26
T A O 1T=1 o | B 7= = | = PR 26
4/42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

3.2.1 Abstract Data Modelooviuiiiiiiiiii e 26
0720 I 0 1= o 26
3.2.3 INtiAlizZation .oveieiii e 27
3.2.4 Higher-Layer Triggered EVENESciiiiiiiiii i e e a e e 27
3.2.5 Message Processing Events and Sequencing RUles.........ccoiiiiiiiiiiiiicii i 27
3.2.5.1 ICoMTrackingINfOEVENES. .. cueeiii et r e e e eeans 27
3.2.5.1.1 OnNewTrackingInfo (OpNUM 3) . i.iiiiiiiiiiiiii i e e 27
T G T I [1= ol V7= 29
T A O 1 o 1= ol Mo o= | B Y 7= o) = PP 29
4 Protocol EXamplesS..ciciiiiiiiimimmsmssmss i sse s ssasssssssssssssssasssssasssasssssassansasssnsansnnnss 30
4.1 Polling for TraCking Data.....cccocieieieeieiiii e e e e e e e e e e e e e e e e e eaeaeannnns 30
4.2 Receiving @ Tracker EVENt. 31
L =T ol 32
5.1 Security Considerations for Implementars.....ccooiiiiiiii e 32
5.2 Index Of SECUIitY Parameters .. o.c i r e e e e eeees 32
6 AppendixX A: FUll IDL.....ccicirurimrussmsassmssssssasusssssssasssssssssassnsssansassnssssnsassnsssnnsnsnnsnsnnnns 33
7 Appendix B: Product Behavior......c.cvciiirrimmsisasisssssassssssssassss s sssnsasnnsasnnsnsnnsas 35
8 Change TracCKiNg..icicrirersmrersmmarsnserssmarsnsesssssrsssesssssssssesssssssssasssssssnsasssssssnsassnsassnsansnss 40
O INMA@X turuuunrunensnnnransanssnssss s sssnsssssssssnsssssssssnsssssssssssssssssssssssssssssssssnsanssssssnsassnsassnsansnss 41
5/42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

1 Introduction

This document specifies the Component Object Model Plus (COM+) Tracker Service Protocol (COMT),
which allows clients to monitor running instances of components.

1.1 Glossary
The following terms are defined in [MS-GLOS]:

activation

class identifier (CLSID)

dynamic endpoint

globally unique identifier (GUID)
Interface Definition Language (IDL)
little-endian

opnum

Unicode

Universal Naming Convention (UNC)
Universally Unique Identifier (UUID)

The following terms are specific to this document:

component: An indivisible unit of software functionality that a class identifier (CLSID)
identifies.

component configuration: A particular component configuration.
component instance: An instantiation of a component.

conglomeration: A set of related component configurations that are identified by a
conglomeration identifier.

conglomeration identifier: A GUID that identifies a conglomeration.
container identifier: A GUID that identifies an instance container.
container legacy identifier: A nonzero integer that identifies an instance container.

container pooling: Enabling a conglomeration to support multiple concurrent instance
containers.

distinguished container: The first instance container that is created in a given process.

instance container: A container for the instantiation of components that are configured in a
single conglomeration.

instance pooling: Enabling a component instance that is no longer active to return to a pool
for reuse.

method: A component-defined operation that component instances are able to execute at
the request of external entities.

method call: The act of a component instance executing a method as a result of a specific
request from an external entity.

6/42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

pausing: Temporarily disabling the creation of a new component instance in an instance
container.

process: A conceptual context in which an instance container can be created. A process is
identified by a process identifier.

process dump: A mechanism for automatically gathering debugging data for a process into a
file.

process identifier: A nonzero integer that identifies a process.

recycling: Permanently disabling the creation of a new component instance in an instance
container.

tracker event: A notification that a COM+ Tracker Service Protocol server sends to a client that
contains relevant information about the status of component instances and instance
containers on the server.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
http://www.opengroup.org/public/pubs/catalog/c706.htm

[MS-DCOM] Microsoft Corporation, "Distributed Component Object Model (DCOM) Remote Protocol
Specification", March 2007.

[MS-DTYP] Microsoft Corporation, "Windows Data Types", January 2007.

[MS-ERREF] Microsoft Corporation, "Windows Error Codes", January 2007.

[MS-OAUT] Microsoft Corporation, "OLE Automation Protocol Specification"”, March 2007.

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions", January 2007.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

[RFC2781] Hoffman, P., and Yergeau, F., "UTF-16, an encoding of ISO 10646", RFC 2781, February
2000, http://www.ietf.org/rfc/rfc2781.txt

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN
Namespace", RFC 4122, July 2005, http://www.ietf.org/rfc/rfc4122.txt

[RFC4234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
4234, October 2005, http://www.ietf.org/rfc/rfc4234.txt

7/42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90380
http://go.microsoft.com/fwlink/?LinkId=90460
http://go.microsoft.com/fwlink/?LinkId=90462

1.2.2 Informative References

[MS-COMA] Microsoft Corporation, "Component Object Model Plus (COM+) Remote Administration
Protocol Specification", September 2007.

[MS-COMEV] Microsoft Corporation, "Component Object Model Plus (COM+) Event System Protocol
Specification", September 2007.

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary", March 2007.

[MSDN-Applications] Microsoft Corporation, "Applications (COM+)", http://msdn.microsoft.com/en-
us/library/ms686107.aspx

[MSDN-COM] Microsoft Corporation, "Component Object Model", http://msdn.microsoft.com/en-
us/library/aa286559.aspx

[MSDN-FILE] Microsoft Corporation, "Naming a File", http://msdn.microsoft.com/en-
us/library/aa365247.aspx

[MSDN-MDWD] Microsoft Corporation, "MiniDumpWriteDump Function (Windows)",
http://msdn.microsoft.com/en-us/library/ms680360(VS.85).aspx

[MSDN-Partitions] Microsoft Corporation, "Partitions", http://msdn.microsoft.com/en-
us/library/ms679480.aspx

[UML] Object Management Group, "Unified Modeling Language",
http://www.omg.org/technology/documents/formal/uml.htm

1.3 Overview

The COM+ Tracker Service Protocol enables remote clients to monitor instances of components
running on a server. The server end of the protocol tracks the status of component instances and
instance containers on the server and implements an interface that clients can use to poll for this
status. It also optionally includes an event-driven notification system in which the client can supply
(via another protocol) a callback interface for receiving tracker events. The server then calls the
client's callback interface whenever new tracking data is available, for example, as a result of local
events on the server.

1.3.1 Background

A component is an indivisible unit of software functionality. Examples of components include
Distributed Component Object Model (DCOM) Remote Protocol object classes, as specified in [MS-
DCOM], and COM+ Event System Protocol event classes, as specified in [MS-COMEV]. Each
component known to the server is identified by a GUID, known as the class identifier (CLSID).

A component configuration is a particular configuration of a component. Each component
configuration tracked by a COMT server is associated with a conglomeration, a set of related
component configurations that is identified by a GUID known as the conglomeration identifier. In
general, it is possible for a component to have more than one component configuration on a server.
However, a component can have only one component configuration in any given conglomeration. A
component configuration can be identified by the conglomeration identifier and the component
CLSID.

A conglomeration is a set of related component configurations and is identified by a GUID, known as
the conglomeration identifier. A component that has a component configuration in a conglomeration
is said to be configured in that conglomeration.

8/42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=93766
http://go.microsoft.com/fwlink/?LinkId=93766
http://go.microsoft.com/fwlink/?LinkId=89977
http://go.microsoft.com/fwlink/?LinkId=89977
http://go.microsoft.com/fwlink/?LinkId=90004
http://go.microsoft.com/fwlink/?LinkId=90004
http://go.microsoft.com/fwlink/?LinkId=120636
http://go.microsoft.com/fwlink/?LinkId=93767
http://go.microsoft.com/fwlink/?LinkId=93767
http://go.microsoft.com/fwlink/?LinkId=93768
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

1.3.2 Instantiation Concepts

A server typically provides local or remote mechanisms by which components can be instantiated.
An example of a remote instantiation mechanism is DCOM activation (as specified in [MS-DCOM
section 1.3.1). An instantiation of a component is known as a component instance. Although the
instantiation details may vary, the following conceptual steps are part of any instantiation that is
tracked in the COM+ Tracker Service Protocol.

Through an implementation-specific mechanism, the COMT Protocol server associates the
instantiation with a component configuration, which is associated with a conglomeration as
described in section 1.3.1.

The COMT Protocol server finds an existing instance container for the conglomeration or creates a
new instance container and then associates it with the conglomeration. An instance container is a
conceptual container in which components that are configured in a single conglomeration can be
instantiated.

The COMT Protocol server creates the component instances in the selected instance container.

An instance container is identified by a GUID, known as the container identifier. For historical
reasons, an instance container can also be identified by a nonzero integer, known as the container
legacy identifier.

A process is a conceptual context for the creation of instance containers. Instance containers for
multiple conglomerations can be created within a process. However, a conglomeration can have only
one instance container in any given process. The first instance container created in any given
process is known as the distinguished container for that process. A process is identified by a
nonzero integer, known as the process identifier.

The following Unified Modeling Language (UML) static structure diagram summarizes the
relationships between components, component configurations, conglomerations, component
instances, instance containers, and processes. For more information about UML, see [UML].

9/42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-GLOS%5d.pdf
%5bMS-DCOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=93768

Run-tirme (tracked) objects Static (configuration) abjects

Process

Process identifier

1..*
*

Instance container 1 Conglomeration
Container identifier Conglomeration identifier
Container legacy identifier

1 1
E *
* 1

Component instance Component configuration

Component

CLSID

Figure 1: Relationships between static and run-time objects
1.3.3 Pooling

A server might provide, a single instance container, at most, for a conglomeration at any given time,
or it might have the capability to provide multiple instance containers. Enabling a conglomeration to
support multiple concurrent instance containers is known as container pooling. A typical use of
container pooling is to increase scalability when contention for system resources within a single
instance container is a limiting factor.

For historical reasons, parts of COMT are designed around the assumption that there is a one-to-one
correspondence between conglomerations and instance containers and, therefore, the tracker
cannot enable information about individual instance containers to be exchanged in cases where
container pooling is in use.

Instance pooling refers to enabling component instances that are no longer active to return to a
pool for reuse. A typical use of instance pooling is to reduce the performance penalty for the
creation and destruction of short-lived component instances. A COMT server that enables instance

pooling might track pooling behavior and expose separate statistics for pooled and active component
instances.

10/ 42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

1.3.4 Recycling and Pausing

Recycling refers to permanently disabling the creation of new component instances in an instance
container. An instance container that is recycled shuts down as soon as the existing component
instances in the container are destroyed. Recycling enables a problematic instance container to
gradually drain its component instances, rather than being immediately and forcibly shut down.
COMT enables clients to determine whether an instance container is being recycled.

Pausing refers to temporarily disabling the creation of new component instances in an instance
container. COMT enables clients to determine whether an instance container is paused.

1.3.5 Activity Statistics

A COMT server optionally collects run-time activity statistics about component instances and
instance containers.

Individual components define operations that component instances are able to execute at the
request of external entities. A method call is the act of a component instance executing such an
operation as a result of a specific request from an external entity. An example of a method call is a
DCOM method call, as specified in [MS-DCOM]. COMT enables a client to obtain method call
statistics for the components instantiated in an instance container, such as the number of successful
method calls or the average time to complete a method call.

Servers that use a reference counting mechanism for component instances optionally collect
statistics on the number of references to a component instance. The meaning of a reference is
implementation-specific, but this information could be useful to administrators. The COMT enables a
client to obtain reference statistics for the components that are instantiated in an instance
container.

1.3.6 Polling and Tracker Events

The COMT enables two mechanisms by which clients can obtain tracking data: a push model and a
pull model.

In the pull model, the COMT client invokes methods on the server interface to poll for tracking data.
The pull model is most appropriate when tracking data is expected to change frequently, or when
the client needs control over the frequency of communication.

In the push model, the client application implements a callback interface to receive tracker events.
The push model is most appropriate when tracking data is expected to change infrequently, or when
the server needs control over the frequency of communication. The COM+ Tracker Service Protocol
does not provide a mechanism to register the callback interface with the server; it only defines the
interface that the client registers. Hence, COMT requires that client applications use another
protocol, such as the COM+ Event System Protocol [MS-COMEV], to register the COMT callback
interface. For example, if a COMT server exposes tracker events as a COM+ Event System Protocol
event class (as specified in [MS-COMEV] section 3.1.1.1), a client application could create a
subscription (as specified in [MS-COMEV] section 3.1.1.2) to the event class and set the
SubscriberInterface property to its callback interface (for more information, see
IEventSubscription::put_SubscriberInterface, [MS-COMEV] section 3.1.4.4.14).

1.3.7 Process Dump

If tracking data received by an administrator or administration client application indicates that there
may be a problem with the instance containers in a particular process, the administrator or
application may wish to collect additional debugging data to investigate this problem. A mechanism

11/42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-DCOM%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-COMEV%5d.pdf

for automatically gathering additional debugging data for a process into a file is known as a process
dump.

COMT enables clients to request a process dump for the process containing an instance container on
the COMT server. The file format to be used for a process dump, as well as the nature and extent of
the debugging data collected, are implementation-specific. However, typical data included in a
process dump might be full or partial contents of the process's address space, information on the
process's usage of system resources, and history of exceptional events that have occurred.

1.4 Relationship to Other Protocols
COMT is built on top of DCOM [MS-DCOM].

The COM+ Remote Administration Protocol [MS-COMA] also provides functionality for obtaining run-
time information about instance containers. COMT makes this functionality obsolete by enabling
clients to obtain a richer set of information, and by providing a push model.

Client applications that want to receive notifications via the push model also need to use another
protocol, such as the Component Object Model Plus (COM+) Event System Protocol [MS-COMEV], to
first register the COMT callback interface.

1.5 Prerequisites/Preconditions

COMT assumes that a client application that wants to receive tracker events by using the push
model has previously registered a callback interface to the server by using some other mechanism;
for example, the Component Object Model Plus (COM+) Event System Protocol, as specified in [MS-
COMEV].

COMT assumes that a client application or administrator that wants to request a process dump to be
written in a location other than the COMT server's default location recognizes the convention for
paths in the COMT server's file system.

COMT assumes that a client application or administrator that wants to interpret debugging data from
a process dump recognizes the file format in which this data will be written.

1.6 Applicability Statement
The COM+ Tracker Service Protocol is most appropriate for monitoring running instances of

components when the tracking information is used for informational purposes. It is not appropriate
when this information is required for correct behavior of a client application.

1.7 Versioning and Capability Negotiation

The COM+ Tracker Service Protocol has no versioning and capability negotiation functionality.

1.8 Vendor-Extensible Fields
The COM+ Tracker Service Protocol uses HRESULT values, as specified in [MS-ERREF] section 2.1.

Vendors can define their own HRESULT values, provided that they set the C bit (0x20000000) for
each vendor-defined value to indicate that the value is a customer code.

1.9 Standards Assignments

The following table lists well-known GUIDs in the COMT Protocol. These GUIDs were generated using
the mechanism specified in [C706] section A.2.5.

12 /42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-DCOM%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824

Parameter

Value

DCOM CLSID for tracker service (CLSID_TrackerService)

{ECABAFB9-7F19-11D2-978E-
0000F8757E2A}

DCOM CLSID for process dump service (CLSID_ProcessDump)

{ECABBOC4-7F19-11D2-978E-
0000F8757E2A}

RPC Interface Identifier (IID) for IGetTrackingData interface

{B60040E0-BCF3-11D1-861D-
0080C729264D}

RPC Interface Identifier (IID) for IComTrackingInfoEvents interface

{4E6CDCC9-FB25-4FD5-9CC5-
C9F4B6559CEC}

RPC Interface Identifier (IID) for IProcessDump interface

{23C9DD26-2355-4FE2-84DE-
F779A238ADBD}

OBJREF_CUSTOM unmarshaler CLSID for TrackingInfoCollection
(CLSID_TrkInfoCollUnmarshal)

{ECABAFCD-7f19-11D2-978E-
0000F8757E2A}

OBJREF_CUSTOM unmarshaler CLSID for TrackingInfoObject
(CLSID_TrkInfoObjUnmarshal)

{ECABAFCE-7f19-11D2-978E-
0000F8757E2A}

[MS-COMT] — v20110204

Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

13 /42

2 Messages

The following sections specify how COM+ Tracker Service Protocol messages are transported as well

as COMT Protocol message syntax.

2.1 Transport

All COM+ Tracker Service Protocol messages are transported via DCOM, as specified in [MS-DCOM].

COMT uses the dynamic endpoints allocated and managed by the DCOM infrastructure.

2.2 Common Data Types

In addition to remote procedure call (RPC) base types and definitions specified in [C706] and [MS-

RPCE], the following table defines additional data types.

Field types in packet diagrams are defined by the packet diagram and the field descriptions. All
fields in packet diagrams use little-endian byte ordering, unless otherwise stated.

All extra padding bytes MUST be zero, unless otherwise stated, and MUST be ignored upon receipt.

This protocol uses the following types, as specified in [MS-DTYP] and [MS-OAUT].

Type Reference

DWORD As specified in [MS-DTYP] section 2.2.9
GUID As specified in [MS-DTYP] section 2.3.2
HRESULT As specified in [MS-DTYP] section 2.2.18
WCHAR As specified in [MS-DTYP] section 2.2.59
BSTR As specified in [MS-OAUT] section 2.2.23

2.2.1 CurlyBraceGuidString

The CurlyBraceGuidString type is a string representation of the GUID type, as specified in [MS-
DTYP] section 2.3.2.3. The following is the Augmented Backus-Naur Form (ABNF) syntax, as
referenced in [RFC4234], for this representation.

CurlyBraceGuidString = "{" UUID "}"

UUID represents the string form of a UUID, as specified in [RFC4122] section 3.

2.2.2 ContainerStatistics

The ContainerStatistics type represents activity statistics for an instance container.

typedef struct {
DWORD cCalls;
DWORD cComponentInstances;
DWORD cComponents;
DWORD cCallsPerSecond;

14 /42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90462
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90460

} ContainerStatistics;

cCalls: The number of method calls that the component instances perform in an instance
container.

cComponentInstances: The number of component instances in an instance container.

cComponents: The number of distinct components currently instantiated in an instance
container.

cCallsPerSecond: This SHOULD be set to a running average, over an implementation-specific
time period,<1> of the number of method calls per second received by an instance container.
Alternatively, an implementation MAY instead simply set this field to zero.

2.2.3 ContainerData

The ContainerData type represents run-time information for a conglomeration that has one or
more instance containers on the server. The meanings of the fields in this structure depend on the

number of instance containers that exist on the server for the conglomeration represented, as
specified in the following section.

typedef struct {
DWORD dwLegacyId;
WCHAR wszApplicationIdentifier([40];
DWORD dwProcessId;
ContainerStatistics statistics;

} ContainerData;

dwlLegacylId: The container legacy identifier of one of the instance containers, arbitrarily
selected by the server, that exist for the conglomeration represented.

wszApplicationIdentifier: A null-terminated Unicode string that MUST contain the
CurlyBraceGuidString (section 2.2.1) representation of a conglomeration identifier. Note that a
null-terminated CurlyBraceGuidString is 39 Unicode characters, including the null character,
and this field is 40 characters long. The final element in this array is unused. It SHOULD be
set to 0 and MUST be ignored upon receipt.

dwProcesslId: The process identifier of the process that contains one of the instance
containers, arbitrarily selected by the server, that exist for the conglomeration represented.

statistics: A ContainerStatistics (section 2.2.2) structure with fields that contain statistics
averaged across all instance containers that exist for the conglomeration represented.

2.2.4 ComponentData

The ComponentData type represents activity statistics for a component that has one or more
component instances in an instance container.

typedef struct {
GUID clsid;
DWORD cTotalReferences;
DWORD cBoundReferences;

15/ 42
[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-GLOS%5d.pdf

DWORD cPooledInstances;
DWORD cInstancesInCall;
DWORD dwResponseTime;
DWORD cCallsCompleted;
DWORD cCallsFailed;

} ComponentData;

clsid: The CLSID of the component.

cTotalReferences: An implementation-specific<2> count of the number of references to all
component instances of the component. This MUST be set to Oxffffffff if the server does not
track this information.<3>

cBoundReferences: The number of references to all active (not pooled) component instances
of the component. This MUST be set to Oxffffffff if the server does not track this
information.<4>

cPooledInstances: The number of pooled component instances of the component, if the server
enables instance pooling. This MUST be set to Oxffffffff if the server does not track this
information.<5>

cInstancesInCall: The number of component instances of the component that are currently
performing a method call. This MUST be set to Oxffffffff if the server does not track this
information.<6>

dwResponseTime: A value that indicates the average time, in milliseconds, it takes to
complete method calls to component instances of the component. Calculation of this value is
implementation-specific.<7> This MUST be set to Oxffffffff if the server does not track this
information.<8>

cCallsCompleted: The number of method calls to component instances of the component that
were successfully completed in an implementation-specific<9> time period. Whether a server
considers a method call successfully completed is implementation-specific.<10> This MUST be
set to Oxffffffff if the server does not track this information.<11>

cCallsFailed: The number of method calls to component instances of the component that failed
in an implementation-specific<12> time period. Whether a server considers a method call to
have failed is implementation-specific.<13> This MUST be set to Oxffffffff if the server does
not track this information.<14>

2.2.5 TrackingInfo Formats

The following sections specify the formats of structures related to the
IComTrackingInfoCollection::OnNewTrackingInfo method (as specified in section 3.2.5.1.1).

2.2.5.1 LengthPrefixedName

The LengthPrefixedName type specifies an array of Unicode characters prefixed by the array length
in characters.

16 /42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4(5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

Length

Name (variable)

Length (4 bytes): An unsigned long that MUST contain the number of Unicode characters in
the Name field and MUST NOT be zero.

Name (variable): This MUST contain an array of Unicode characters in UTF-16 encoding, as
specified in [RFC27811]); the array SHOULD NOT end in a NULL terminator.

2.2.5.2 TrackingInfoPropertyValue

The TrackingInfoPropertyValue structure defines a single name/value pair.

0|1{2({3(4|5|/6|7(8|9|/0|1|2(3|4|5|6[7|8|9|0(1(2|3|4|5|/6(7|8|9|0(1

MaxVersion MinVersion

Name (variable)

vt Value (variable)

MaxVersion (2 bytes): The major version nhumber for this format; this field MUST be set to

0x0001.
MinVersion (2 bytes): The minor version number for this format; this field MUST be set to
0x0001.
Name (variable): A LengthPrefixedName (section 2.2.5.1) that contains the name of the
UserProperty.
vt (2 bytes): The type of data contained in Value. It MUST be set to one of the following
values.
Value Meaning
0x0008 LengthPrefixedName (section 2.2.5.1)
0x000D TrackingInfoCollection OBJREF CUSTOM (section 2.2.5.5)
0x0013 An unsigned long integer.

17/42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

http://go.microsoft.com/fwlink/?LinkId=90380

Value (variable): The data for this name/value pair. The type of this field is specified by the vt

field.

2.2.5.3 TrackingInfoProperty

The TrackingInfoProperty defines a structure for representing a property name/value pair.

0(1(2(3|4|5|6|7(8|9|0[1]|2|3|4|5|6|7|8]|9

2(3|4|5

MaxVersion

MinVersion

PropertyName (variable)

PropertyValue (variable)

MaxVersion (2 bytes): The major version of this marshaled format; this MUST be set to

0x0001.

MinVersion (2 bytes): The minor version of this marshaled format; this MUST be set to

0x0001.

PropertyName (variable): A LengthPrefixedName (section 2.2.5.1) that contains the name of

this property.

PropertyValue (variable): A TrackingInfoPropertyValue (section 2.2.5.2) that contains the

value of this property.

2.2.5.4 TrackingInfoObject OBJREF_CUSTOM

The TrackingInfoObject MUST be marshaled using the OBJREF_CUSTOM format (as specified in [MS-

DCOM] section 2.2.18.6). The CLSID field of the OBJREF_CUSTOM instance MUST be set to

{ECABAFCE-7f19-11D2-978E-0000F8757E2A} (CLSID_TrkInfoObjUnmarshal). The format of the

OBJREF_CUSTOM.pObjectData buffer for CLSID_TrkInfoObjUnmarshal is as follows.

[MS-COMT] — v20110204

Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

1 3
0|1|{2(3(4|5|6|7(8|9|0|1|2(|3|4|5|6|7|8|9 2|3|4|5 0|1
MaxVersion MinVersion
PropCount
Properties (variable)

18/ 42

%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf

MaxVersion (2 bytes): The major version of this marshaled format; this MUST be set to
0x0001.

MinVersion (2 bytes): The minor version of this marshaled format; this MUST be set to
0x0001.

PropCount (4 bytes): The (unsigned) number of elements in the Properties field.

Properties (variable): An array of TrackingInfoProperty (section 2.2.5.3) structures.

2.2.5.5 TrackingInfoCollection OBJREF_CUSTOM

The TrackingInfoCollection MUST be marshaled using the OBJREF_CUSTOM format (as specified in
MS-DCOM] section 2.2.18.6). The CLSID field of the OBJREF_CUSTOM instance MUST be set to

{ECABAFCD-7f19-11D2-978E-0000F8757E2A} (CLSID_TrkInfoCollUnmarshal). The format of the

OBJREF_CUSTOM.pObjectData buffer for CLSID_TrkInfoCollUnmarshal is as follows.

0|1{2({3(4|5|/6|7(8|9|/0|1|2|3|4|5|6[7|8|9|0(1(2|3|4|5|6(7|8|9|0(1

MaxVersion MinVersion

CollectionType

ObjectCount

PropertyNameCount

PropertyNames (variable)

ChildObjects (variable)

MaxVersion (2 bytes): The major version of this marshaled format; this MUST be set to
0x0001.

MinVersion (2 bytes): The minor version of this marshaled format; this MUST be set to
0x0001.

CollectionType (4 bytes): The type of collection; this MUST be one of the following values:

Value Meaning

TRKCOLL_PROCESSES A collection of processes.
0x00000000

TRKCOLL_CONTAINERS A collection of instance containers.
0x00000001

19/42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-DCOM%5d.pdf

Value Meaning

TRKCOLL_COMPONENTS A collection of components.
0x00000002

ObjectCount (4 bytes): The (unsigned) number of elements in the ChildObjects field.
PropertyNameCount (4 bytes): The (unsigned) number of elements in the Properties field.

PropertyNames (variable): An array of LengthPrefixedName (section 2.2.5.1) that contains
the descriptive names for the elements in the ChildObjects field.

ChildObjects (variable): An array of TrackingInfoObject (section 2.2.5.4) structures.

20/ 42
[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

3 Protocol Details

The client side of this protocol is a pass-through. That is, no additional timers or other state is
required on the client side of this protocol. Calls made by the higher-layer protocol or application are
passed directly to the transport, and the results that the transport returns are passed directly back
to the higher-layer protocol or application.

A client application initiates a conversation with a COM+ Tracker Service Protocol server in one of
three ways:

= If the client application wants to poll for tracking information, it performs DCOM activation (as
specified in [MS-DCOM], section 3.2.4.1.1) of the tracker service CLSID (CLSID_TrackerService),
as specified in section 1.9. After getting the interface pointer to the DCOM object as a result of
the activation, the client application works with the object by making calls on the DCOM interface
that it supports. When complete, the client application performs a release on the interface
pointer.

= If the client application wants to receive tracker events, it uses any implementation-specific
mechanism <15> to supply an IComTrackingInfoEvents (section 3.2.5.1) callback interface
to the server. Thereafter, the COMT server sends tracker events as a result of implementation-
specific local events, and the client application receives these events in the form of DCOM calls to
OnNewTrackingInfo() on the client application's IComTrackingInfoEvents interface. The
credentials that are used for these calls are COMT server implementation-specific<16>. The
conversation can be terminated by either the client application or the COMT server.

= If the client application wants to request a process dump, it performs a DCOM activation ([MS-
DCOM] section 3.2.4.1.1) of the process dump service CLSID (CLSID_ProcessDump) as specified
in section 1.9. Depending on the behavior of the underlying DCOM client implementation, the
client application might need to override the default impersonation level to use
RPC_C_IMPL_LEVEL_IMPERSONATE (as specified in [MS-RPCE] section 2.2.1.1.9). After getting
the interface pointer to the DCOM object as a result of the activation, the client application works
with the object by making calls on the DCOM interface that it supports. When done, the client
application performs a release operation on the interface pointer.

When the client application no longer wants to receive tracker events, the client application uses any
implementation-specific mechanism<17> to request that the server stop sending events and release
the client's IComTrackingInfoEvents interface.

When the server no longer has to send tracker events, it performs a release on the interface pointer
to IComTrackingInfoEvents.

3.1 Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Conglomeration Table: A table of conglomerations. Each entry has the following fields.

= Conglomeration Identifier: The conglomeration identifier.

21/ 42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-RPCE%5d.pdf

= Partition ID: An implementation-specific GUID that identifies a conceptual group (or type) of
conglomerations to which this conglomeration belongs.<18>

= Instance Container Table: A table of instance containers that exist for the conglomeration.
Each entry has the following fields.

»= Container Identifier: The container identifier.

»= Container Legacy Iidentifier: The container legacy identifier.

= Process Identifier: The process identifier that contains the instance container.
= Container Statistics: The container statistics, as specified in section 2.2.2.

= Component Table: A table of components that are instantiated in the container. Each
component entry has the following field.

= Component Data: The component data, as specified in section 2.2.4.

3.1.2 Timers

None.

3.1.3 Initialization

None.
3.1.4 Message Processing Events and Sequencing Rules

3.1.4.1 IGetTrackingData

The IGetTrackingData interface provides methods for a client to poll for tracking information. This
interface inherits from IUnknown, as specified in [MS-DCOM] section 3.1.1.5.8. The version for this
interface is 0.0.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object class
with the CLSID CLSID_TrackerService (as specified in section 1.9) by using the UUID {B60040EO-
BCF3-11D1-861D-0080C729264D} for this interface.

The IGetTrackingData interface includes the following methods beyond those of IUnknown.

Methods in RPC Opnum Order

Method Description

Opnum3NotUsedOnWire Reserved for local use.
Opnum: 3

GetContainerData Returns tracking information for instance containers.
Opnum: 4

GetComponentDataByContainer Returns tracking information for components by instance
container.
Opnum: 5

GetComponentDataByContainerAndCLSID | Returns tracking information for a component by instance

22 /42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-DCOM%5d.pdf

Method Description

container and CLSID.
Opnum: 6

Opnum7NotUsedOnWire Reserved for local use.
Opnum: 7

In the preceding table, the phrase "Reserved for local use" means that the client MUST NOT send
the opnum and that the server behavior is undefined<19> because it does not affect
interoperability.

All methods MUST NOT throw exceptions.

3.1.4.1.1 GetContainerData (Opnum 4)

A client calls this method to obtain tracking information for instance containers across all
conglomerations.

HRESULT GetContainerData (
[out] DWORD* nContainers,
[out, size is(, (*nContainers))]
ContainerData** aContainerData

)i

nContainers: A pointer to a variable that, upon successful completion, MUST contain the number
of elements in aContainerData.

aContainerData: A pointer to a variable that, upon successful completion, MUST contain an
array of zero or more ContainerData (section 2.2.3) structures. An array with zero
elements MUST be represented by null.

Return Values: This method MUST return S_OK (0x00000000) on success and a failure result
(as specified in [MS-ERREF] section 2.1) on failure.

When this method is invoked, the server MUST attempt to return an array of ContainerData
structures, one for each instance container tracked by the server, or fail the call if it cannot.

3.1.4.1.2 GetComponentDataByContainer (Opnum 5)

A client calls this method to obtain tracking information for components that have one or more
component instances in a given instance container.

HRESULT GetComponentDataByContainer (
[in] DWORD idContainer,
[out] DWORD* nComponents,
[out, size_ is(,*nComponents)] ComponentData** aComponentData

)i
idContainer: The container legacy identifier of an instance container.

nComponents: A pointer to a variable that, upon successful completion, MUST contain the
number of elements in aComponentData.

23/ 42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-GLOS%5d.pdf
%5bMS-ERREF%5d.pdf

aComponentData: A pointer to a variable that, upon successful completion, MUST contain an
array of zero or more ComponentData (section 2.2.4) structures. An array with zero
elements MUST be represented by null.

Return Values: This method MUST return S_OK (0x00000000) on success and a failure result
(as specified in [MS-ERREF] section 2.1) on failure.

When this method is invoked, the server MUST verify that the idContainer parameter identifies a
tracked instance container and fail the call if not. The server then MUST attempt to return an array
of zero or more ComponentData structures, one for each distinct component instance instantiated
in the instance container, and fail the call if it cannot.

3.1.4.1.3 GetComponentDataByContainerAndCLSID (Opnum 6)

A client calls this method to obtain tracking information for a single component that has component
instances in an instance container.

HRESULT GetComponentDataByContainerAndCLSID (
[in] DWORD idContainer,
[in] GUID clsid,
[out] ComponentData** ppComponentData

)i

idContainer: The container legacy identifier of an instance container.

clsid: A pointer to the CLSID of a component.

ppComponentData: A pointer to a variable that, upon successful completion, MUST contain a
pointer to a single ComponentData (section 2.2.4) structure.

Return Values: This method MUST return S_OK (0x00000000) on success and a failure result
(as specified in [MS-ERREF] section 2.1) on failure.

When this method is invoked, the server MUST verify that the idContainer parameter identifies a
tracked instance container and that the CLSID received in the cl/sid parameter identifies a
component that is instantiated in that instance container. If not, the server MUST fail the call;
otherwise, the server MUST return a single ComponentData structure that represents the
component instantiated in the instance container and return success.

3.1.4.2 IProcessDump

The IProcessDump interface provides methods for a client to request a process dump of a process
containing an instance container on the COMT server. This interface inherits from IDispatch, as
specified in [MS-OAUT] section 3.1.4. The version for this interface is 0.0.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object class
with the CLSID CLSID_ProcessDump (as specified in section 1.9) by using the UUID {23C9DD26-
2355-4FE2-84DE-F779A238ADBD?} for this interface.

This interface includes the following methods beyond those of IDispatch.

Methods in RPC Opnum Order

24 /42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-GLOS%5d.pdf

Method Description

IsSupported Returns a result indicating whether or not process dump is supported.
Opnum: 7

DumpProcess Requests a process dump.
Opnum: 8

All methods MUST NOT throw exceptions.

3.1.4.2.1 IsSupported (Opnum 7)

This method is called by a client to determine whether or not the COMT server supports process
dump.

[id (1)] HRESULT IsSupported();

This method has no parameters.

Return Values: This method returns S_OK (0x00000000) if the COMT server supports process
dump, and MUST return S_FALSE (0x00000001) if not.

3.1.4.2.2 DumpProcess (Opnum 8)

This method is called by a client to request a process dump for the process containing a particular
instance container.

(2)] HRESULT DumpProcess (
in] BSTR bstrContainerID,
in] BSTR bstrDirectory,
in] DWORD dwMaxFiles,
t, retval] BSTR* pbstrDumpFile

bstrContainerID: The CurlyBraceGuidString (section 2.2.1) representation of a container
identifier for a distinguished container.

bstrDirectory: Either a path, in the convention of the server's file system, to a location in which
the file produced by process dump is to be written, or NULL to indicate that the client wants
the COMT server to write the file to an implementation-specific default location.

dwMaxFiles: The maximum number of process dump files associated with the conglomeration of
the instance container identified by the bstrContainerID parameter that the client requests the
COMT server to leave in the location specified by the bstrDirectory parameter before the
server begins deleting previously written files. A value of 0x00000000 indicates that the COMT
server is to use an implementation-specific default limit.

pbstrDumpFile: A pointer to a variable that, upon successful completion, contains a fully
qualified path, in the convention of the server's file system, to the process dump file written.

Return Values: This method MUST return S_OK (0x00000000) on success and a failure result
(as specified in [MS-ERREF] section 2.1) on failure.

25/ 42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-ERREF%5d.pdf

When this method is invoked, if the server does not support process dump, it MUST simply return
E_NOTIMPL (0x80004001). Otherwise, the server MUST verify that the bstrContainerID parameter
identifies a tracked instance container, and that this instance container is a distinguished container,
and fail the call if not.

The server then MUST verify that the bstrDirectory parameter, if not NULL, is in a file path syntax
supported<20> by the server and fail the call if not. If bstrDirectory is not NULL, the server MUST
select the location specified by this parameter as the dump file location, the use of which is
described later in this section. Otherwise, the server MUST select an implementation-specific <21 >
default location.

The server then MUST select the dump file limit, the use of which is described later in this section,
as the value specified by the dwMaxFiles parameter if this parameter is nonzero, and an
implementation-specific <22> default limit if this parameter is zero.

The server SHOULD<23> impersonate the client while performing any file access specified in the
remainder of the method behavior.

The server then SHOULD attempt to determine the number of previously written process dump files
that are associated with the conglomeration of the instance container identified in bstrContainerID in
the dump file location, and MAY fail the call if it cannot do so. If the number of previously written
files is greater than or equal to the dump file limit, the server SHOULD attempt to delete at least
one of the previously written files, and MAY fail the call if it cannot do so. If more than one
previously written file exists, the server SHOULD attempt to determine which of these files was
written least recently, and SHOULD select that file for deletion.

The server then MUST attempt to perform an implementation-specific <24> process dump
procedure by writing a file to the dump file location, and fail the call if it cannot.

The server then MUST set the pbstrDumpFile parameter to the fully qualified path to the file written,
and return success.

3.1.5 Timer Events

None.

3.1.6 Other Local Events

None.

3.2 Client Details

A client that uses only the polling capabilities that IGetTrackingData (section 3.1.4.1) provides is
simply a pass-through.

A client that is to receive tracker events MUST implement the IComTrackingInfoEvents (section

3.2.5.1) interface.

3.2.1 Abstract Data Model

None.

3.2.2 Timers

None.

26/ 42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

3.2.3 Initialization

None.

3.2.4 Higher-Layer Triggered Events

Calls that the higher-layer protocol or application make MUST be passed directly to the transport,
and the results that the transport returns MUST be passed directly back to the higher-layer protocol
or application.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 IComTrackingInfoEvents

The IComTrackingInfoEvents interface provides a method for a server to send the client tracker
events. This interface inherits from IUnknown, as specified in [MS-DCOM] section 3.1.1.5.8. The
version for this interface is 0.0.

This interface includes the following method beyond those of IUnknown.

Methods in RPC Opnum Order

Method Description
OnNewTrackingInfo Handles new tracking info.
Opnum: 3

This method MUST NOT throw exceptions.

3.2.5.1.1 OnNewTrackingInfo (Opnum 3)

The OnNewTrackingInfo method handles a tracker event from the server.

HRESULT OnNewTrackingInfo (
[in] IUnknown* pToplevelCollection
)7

pToplevelCollection: An interface pointer of a DCOM object. This MUST be a
TrackingInfoCollection OBJREF CUSTOM (section 2.2.5.5). This collection SHOULD be of type
TRKCOLL_PROCESSES (as specified in section 2.2.5.5), and each TrackingInfoObject in the
collection SHOULD represent a process on the server. Each process TrackingInfoObject
structure SHOULD have the following properties.

Property

name vt value Meaning

ProcessID 0x00000013 The process identifier.

ExeName 0x00000008 Implementation-specific identifier of the type of process.<25>

Paused 0x00000013 TRUE (0x00000001) if the distinguished container for the process
is paused; otherwise, FALSE (0x00000000).

Recycling 0x00000013 TRUE (0x00000001) if the distinguished instance container for the

27/ 42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-DCOM%5d.pdf

Property
name vt value Meaning

process is recycled; otherwise, FALSE (0x00000000).

IsService 0x00000013 TRUE (0x00000001) if the process is a system service; otherwise,
FALSE (0x00000000). The definition of system service is
implementation-specific.<26>

Applications 0x0000000D | A TrackingInfoCollection (section 2.2.5.5) of type
TRKCOLL_CONTAINERS that represents the instance containers in
the process.

Each instance container TrackingInfoObject SHOULD have the following properties.

Property
name vt value Meaning
ApplicationID 0x00000008 The CurlyBraceGuidString (section 2.2.1) representation of the

conglomeration identifier of the conglomeration that is
associated with the instance container.

ApplInstancelD 0x00000008 | The CurlyBraceGuidString (section 2.2.1) representation of the
container identifier of the instance container.

ApplicationType | 0x00000013 An implementation-specific<27> integer that identifies the type
of instance container.

PartitionID 0x00000008 | The CurlyBraceGuidString (section 2.2.1) representation of the
Partition ID of the conglomeration.

Name 0x00000008 An implementation-specific<28> Unicode string that provides a
human-readable name for the conglomeration that is associated
with the instance container.

Components 0x0000000D | A TrackingInfoCollection (section 2.2.5.5) of type
TRKCOLL_COMPONENTS that represents the components
instantiated in the instance container.

Each component TrackingInfoObject SHOULD have the following properties:

Property

name vt value Meaning

CLSID 0x00000008 | The CurlyBraceGuidString (section 2.2.1) representation of the CLSID
of the component.

Objects 0x00000013 | The number of component instances for the component in an
instance container.

Activated 0x00000013 | The number of active component instances for the component in an
instance container.

Pooled 0x00000013 | The number of pooled component instances for the component in an
instance container.

InCall 0x00000013 | The number of component instances for the component in an
instance container that are currently performing a method call.

28/ 42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

Property

name vt value Meaning

CallTime 0x00000013 | A value that indicates the average amount of time, in milliseconds,
that it takes to complete method calls to component instances for the
component. The calculation of this value is implementation-
specific.<29>

Name 0x00000008 | An implementation-specific Unicode string that provides a human-
readable name for the component.<30>

Return Values: The OnNewTrackingInfo method MUST return S_OK (0x00000000) on
success and a failure result (as specified in [MS-ERREF] section 2.1) on failure.

Upon receiving a call to the OnNewTrackingInfo method, the client MUST attempt to unmarshal
the TrackingInfoCollection OBJREF_CUSTOM received in pToplevelCollection and fail the call if it
cannot. The client SHOULD then return before performing any further actions. Any further
implementation-specific processing SHOULD be done asynchronously.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

29/ 42

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-ERREF%5d.pdf

4 Protocol Examples

The following examples build on the examples in [MS-DCOM] section 4.1.

4.1 Polling for Tracking Data

Client Server

5-_-_-_-_-_-_DCOM Activation CLSID_Traf:kErSEWr'tE—'—-—-—-_...,
i

. I—
Tracker service Object Returned

E"—-—-—-—-_.caﬂ IGetTrackin gData:: GetCon tain erData—-—-—-—._..,
H

kingData: -GetContatnerData returned S_OK—""

..q—-—-—'! GetTrac
—— Call i : —
i GeiTra::knga ta: ‘GetComponentDa taByContainer

1

anentDataByCDntai ner returned 5_ O —

iq—-lGetTrackmg Data::GetComp

Figure 2: Polling for tracking data

This example shows a client application polling for tracking data on instance containers and the
components instantiated in a particular instance container.

1.

The client first performs a DCOM activation for the tracker service DCOM object on the server by
using the CLSID CLSID_TrackerService.

. The server returns an object reference to the tracker service DCOM object.

. Using the tracker service DCOM object, the client retrieves tracking data for all instance

containers on the server.

. The server returns an array of ContainerData (section 2.2.3) structures in aContainerData and

returns S_OK.

. The client then finds the container legacy identifier (such as, 0x00000173) for an instance

container of interest in one of the ContainerData structures and uses it to retrieve tracking data
for all components instantiated in that instance container.

HRESULT GetComponentDataByContainer (
[in] DWORD idContainer = 0x00000173,
[out] DWORD* nComponents,

30/ 42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-DCOM%5d.pdf

[out, size is(, *nComponents)] ComponentData** aComponentData
)i

6. The server returns an array of ComponentData (section 2.2.4) structures in aComponentData
and returns S_OK.

4.2 Receiving a Tracker Event

Client Server

i fo———1
]CumTracking] nfoEvents: 0 nNewTratkmgln

%,.-_._-Call

"‘—[CD”' racki g! fic E'-'E' - G"ife ra k“lg nro rety ned 5 {]‘K‘h‘-
s ' 1 C
I 1]

Figure 3: Receiving a tracker event

This example shows a client application that receives a tracker event. For this example, the client
role acts as a DCOM server and the server role acts as a DCOM client.

This example assumes that the client has already sent its callback interface to the server.

= The server creates a TrackingInfoCollection OBJREF CUSTOM (section 2.2.5.5) that represents
the tracker event and sends it to the client.

*= The client unmarshals the TrackingInfoCollection OBJREF_CUSTOM and returns S_OK.

31/42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

5 Security

5.1 Security Considerations for Implementers

Implementers should review the security considerations referenced in [MS-DCOM] section 5.1
because these are also valid for the COM+ Tracker Service Protocol.

5.2 Index of Security Parameters

None.

32/42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-DCOM%5d.pdf

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided as follows, where "ms-dcom.idl" refers to the
IDL found in [MS-DCOM] Appendix A, "ms-dtyp.idl" refers to the IDL found in [MS-DTYP] Appendix

A, and "ms-oaut.idl" refers to the IDL found in [MS-OAUT] Appendix A.

The syntax uses the IDL syntax extensions, as specified in [MS-RPCE] sections 2.2.4 and 3.1.1.5.1,
and the Automation IDL syntax extensions specified in [MS-OAUT] section 2.2.49. For example, as

noted in [MS-RPCE] section 2.2.4.9, a pointer_default declaration is not required and

pointer_default(unique) is assumed.

import "ms-dcom.idl";
import "ms-dtyp.idl";
import "ms-oaut.idl";

typedef
{
DWORD
DWORD
DWORD
DWORD

struct

cCalls;
cComponentInstances;
cComponents;
cCallsPerSecond;

} ContainerStatistics;

typedef

{
DWORD

WCHAR wszApplicationIdentifier[40];

DWORD

struct

dwLegacyId;

dwProcessId;

ContainerStatistics statistics;
} ContainerData;

typedef

{
GUID
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

struct

clsid;
cTotalReferences;
cBoundReferences;
cPooledInstances;
cInstancesInCall;
dwResponseTime;
cCallsCompleted;
cCallsFailed;

} ComponentData;

object,

uuid (B60040EO-BCF3-11D1-861D-0080C729264D),

pointer default (unique)

]

interface IGetTrackingData:

{

HRESULT Opnum3NotUsedOnWire () ;

HRESULT GetContainerData (

[out] DWORD* nContainers,

[out, size is(, (*nContainers))]
ContainerData** aContainerData

IUnknown

[MS-COMT] — v20110204

Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

33/42

%5bMS-GLOS%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-RPCE%5d.pdf

]

HRESULT GetComponentDataByContainer (
[in] DWORD idContainer,
[out] DWORD* nComponents,
[out, size is(, *nComponents)]
ComponentData** aComponentData

)i

HRESULT GetComponentDataByContainerAndCLSID (

[in] DWORD idContainer,

[in] GUID «c¢lsid,

[out] ComponentData** ppComponentData
)

HRESULT Opnum7NotUsedOnWire () ;

object,
uuid (4E6CDCCY9-FB25-4FD5-9CC5-C9F4B6559CEC) ,
pointer default (unique)

interface IComTrackingInfoEvents: IUnknown

{

]

HRESULT OnNewTrackingInfo (
[in] IUnknown* pToplevelCollection
)7

object,
uuid (23C9DD26-2355-4FE2-84DE-F779A238ADBD) ,
dual

interface IProcessDump: IDispatch

{

[1d(1)]
HRESULT IsSupported();

[id(2)]
HRESULT DumpProcess (
[in] BSTR bstrContainerID,
[in] BSTR bstrDirectory,
[in] DWORD dwMaxFiles,
[out, retval] BSTR* pbstrDumpFile
)i

[MS-COMT] — v20110204

Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

34 /42

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

= Microsoft Windows® 2000 operating system
= Windows® XP operating system

= Windows Server® 2003 operating system

= Windows Vista® operating system

= Windows Server® 2008 operating system

= Windows® 7 operating system

= Windows Server® 2008 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 2.2.2: Windows collects method call statistics in 1-second intervals and calculates the
statistics over the four most recent intervals.

<2> Section 2.2.4: On Windows, the COM+ Tracker Service Protocol server tracks out-of-process
COM references (for more information, see [MSDN-COM]).

<3> Section 2.2.4: On Windows, reference-count statistics are collected for tracked
conglomerations. Windows determines whether or not to track a conglomeration based on its per-
conglomeration configuration, which can be modified by using the COM+ Remote Administration
Protocol EventsEnabled property. For more information about this property, see the
Conglomerations Table in [MS-COMA] section 3.1.1.3.6.

<4> Section 2.2.4: On Windows, reference-count statistics are collected for tracked
conglomerations. Windows determines whether or not to track a conglomeration based on its per-
conglomeration configuration, which can be modified by using the COM+ Remote Administration
Protocol EventsEnabled property. For more information about this property, see the
Conglomerations Table in [MS-COMA] section 3.1.1.3.6.

<5> Section 2.2.4: On Windows, pooling statistics are collected for tracked conglomerations.

Windows determines whether or not to track a conglomeration based on its per-conglomeration

configuration, which can be modified by using the COM+ Remote Administration Protocol
EventsEnabled property. For more information about this property, see the Conglomerations Table in
MS-COMA] section 3.1.1.3.6.

<6> Section 2.2.4: On Windows, method call statistics are collected for tracked conglomerations.
Windows determines whether or not to track a conglomeration based on its per-conglomeration
configuration, which can be modified by using the COM+ Remote Administration Protocol

35/42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

http://go.microsoft.com/fwlink/?LinkId=89977
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf

EventsEnabled property. For more information about this property, see the Conglomerations Table in
MS-COMA] section 3.1.1.3.6.

<7> Section 2.2.4: Windows collects method call statistics in 1-second intervals and calculates the
statistics over the four most recent intervals. The average response time for a component is
calculated as the slowest average response time over all component instances in the instance
container.

<8> Section 2.2.4: On Windows, method call statistics are collected for tracked conglomerations.

Windows determines whether or not to track a conglomeration based on its per-conglomeration

configuration, which can be modified by using the COM+ Remote Administration Protocol
EventsEnabled property. For more information about this property, see the Conglomerations Table in
MS-COMA] section 3.1.1.3.6.

<9> Section 2.2.4: Windows collects method call statistics in 1-second intervals and calculates the
statistics over the four most recent intervals.

<10> Section 2.2.4: Windows considers a method call successful if it returns a success result, as
specified in [MS-ERREF] section 2.1.

<11> Section 2.2.4: On Windows, method call statistics are collected for tracked conglomerations.

Windows determines whether or not to track a conglomeration based on its per-conglomeration

configuration, which can be modified by using the COM+ Remote Administration Protocol
EventsEnabled property. For more information about this property, see the Conglomerations Table in
MS-COMA] section 3.1.1.3.6.

<12> Section 2.2.4: Windows collects method call statistics in 1-second intervals and calculates the
statistics over the four most recent intervals.

<13> Section 2.2.4: Windows considers a method call failed if it returns a failure result, as specified

in [MS-ERREF] section 2.1.

<14> Section 2.2.4: On Windows, method call statistics are collected for tracked conglomerations.

Windows determines whether or not to track a conglomeration based on its per-conglomeration

configuration, which can be modified by using the COM+ Remote Administration Protocol
EventsEnabled property. For more information about this property, see the Conglomerations Table in
MS-COMA] section 3.1.1.3.6.

<15> Section 3: On the following Windows versions, the COMT server exposes tracker events as a
COM+ Event System Protocol event class (for more information, see [MS-COMEV] section 3.1.1.1)
with the EventClassID {ECABB0OC3-7F19-11D2-978E-0000F8757E2A}:

= Windows XP

= Windows Server 2003
= Windows Vista

* Windows Server 2008

To receive tracker events from a Windows server, a client application creates a COM+ Event System
Protocol subscription object (for more information, see [MS-COMEV] section 3.1.1.2) with the
following properties:

Property Value

EventClassID {ECABBOC3-7F19-11D2-978E-0000F8757E2A}

36/42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-COMEV%5d.pdf

Property Value

InterfaceID {4E6CDCC9-FB25-4FD5-9CC5-C9F4B6559CECY}

The client application can set other subscription properties to values that are appropriate to the
application. The client application then stores the subscription by calling the IEventSystem::Store
method (for more information, see [MS-COMEV] section 3.1.4.1.2).

Note that the COMEV server on Windows might be unable to create a subscription if the subscriber
interface is located on an object server that does not accept anonymous incoming calls. See [MS-
COMEV] Appendix B Windows Behavior (section 7) for more information.

On Windows 2000, the COMT server does not support tracker events.

On the following Windows versions, the Component Services administrative tool creates such a
subscription, setting the Subscriberlnterface property to its implementation of
IComTrackingInfoEvents by calling IEventSubscription::put_SubscriberInterface (for more
information, see [MS-COMEV] section 3.1.4.4.14):

» Windows XP

* Windows Server 2003
= Windows Vista

= Windows Server 2008

On Windows 2000, the Component Services administrative tool does not create a subscription to
tracker events.

<16> Section 3: Windows COMT servers make calls to the IComTrackingInfoEvents interface as the
machine account of the server.

<17> Section 3: On the following Windows versions, the COMT server stops sending tracker events
to a client application when that application removes the subscription object it created:

= Windows XP

= Windows Server 2003
= Windows Vista

* Windows Server 2008

A client application can do this by calling either the IEventSystem::Remove method or the
IEventSystem::RemoveS method (for more information, see [MS-COMEV] sections 3.1.4.1.3 and
3.1.4.1.6, respectively).

On Windows 2000, the COMT server does not support tracker events.

On the following Windows versions the Component Services administrative tool removes the
subscription it created by calling IEventSystem::Remove:

= Windows XP
= Windows Server 2003

= Windows Vista

37/42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

%5bMS-COMEV%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-COMEV%5d.pdf

= Windows Server 2008

On Windows 2000, the Component Services administrative tool does not create a subscription to
tracker events.

<18> Section 3.1.1: On Windows, the Partition ID property is the ID property of the Partition (for
more information, see [MSDN-Partitions]) for the COM+ application (for more information, see
[MSDN-Applications]).

<19> Section 3.1.4.1: Opnums reserved for local use apply to Windows as follows:

opnum Description
3 Returns E_NOTIMPL only. It is never used.
7 Returns E_NOTIMPL only. It is never used.

<20> Section 3.1.4.2.2: Windows COMT servers accept a value for the bstrDirectory parameter that
is a path to a directory in the server’s local file system (for more information, see [MSDN-FILE]) or
in Universal Naming Convention (UNC) representing a local or remote path. In addition,
Windows COMT servers require paths to have a maximum length of 260 (MAX_PATH) Unicode
characters.

<21> Section 3.1.4.2.2: Windows COMT servers enable the default dump file location to be
configured for a conglomeration via the COMA protocol [MS-COMA]. This location is the
conglomeration's DumpPath property as specified in [MS-COMA] section 3.1.1.3.6.

<22> Section 3.1.4.2.2: Windows COMT servers enable the default dump file limit to be configured
for a conglomeration via the COMA protocol [MS-COMA]. This location is the conglomeration's
MaxDumpCount property as specified in 3.1.1.3.6.

<23> Section 3.1.4.2.2: Windows COMT servers do not impersonate the client when attempting to
determine the number of previously written dump files or when deleting a previously written dump
file. Windows COMT servers do impersonate the client when writing the dump file.

<24> Section 3.1.4.2.2: Windows COMT servers write user-mode mini-dumps (for more
information, see [MSDN-MDWD]). The file name used for these mini-dumps is of the form
"Conglomerationldentifier-YYYY_MM_DD_HH_mm_ss", where ConglomerationIdentifier is the
CurlyBraceGuidString representation of the conglomeration identifier of the conglomeration
corresponding to the specified instance container, and the remaining fields represent the date and
time when the process dump was requested.

<25> Section 3.2.5.1.1: On Windows, a process is a Windows process. The ExeName property is
the executable image file name.

<26> Section 3.2.5.1.1: The IsService property is TRUE (0x00000001) or FALSE (0x000000000) to
indicate whether the process is a Windows service.

<27> Section 3.2.5.1.1: On Windows, an instance container is an instance of a COM+ application
(for more information, see [MSDN-Applications]). The ApplicationType property is one of the
following values:

Value Meaning

0 A COM+ library application.

38/ 42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

http://go.microsoft.com/fwlink/?LinkId=93767
http://go.microsoft.com/fwlink/?LinkId=93766
http://go.microsoft.com/fwlink/?LinkId=90004
%5bMS-GLOS%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=120636
http://go.microsoft.com/fwlink/?LinkId=93766

Value

Meaning

A COM+ server application.

Services without components.

<28> Section 3.2.5.1.1: On Windows, the Name property is the COM+ application name (for more
information, see [MSDN-Applications]).

<29> Section 3.2.5.1.1: Windows collects method call statistics in 1-second intervals and calculates

the statistics over the four most recent intervals. The average response time for a component is

calculated as the slowest average response time over all component instances in the instance

container.

<30> Section 3.2.5.1.1: On Windows, the Name property is the Progld of the component (for more

information, see [MSDN-COM]).

[MS-COMT] — v20110204

Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

39/42

http://go.microsoft.com/fwlink/?LinkId=93766
http://go.microsoft.com/fwlink/?LinkId=89977

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

40/ 42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

9 Index

A Initialization
client 27
Abstract data model server 22
client 26 Introduction 6
server 21 IsSupported method 25
Applicability 12
L
(o
LengthPrefixedName packet 16
Capability negotiation 12 Local events
Change tracking 40 client 29
Client server 26
abstract data model 26
higher-layer triggered events 27 M
initialization 27
local events 29 Message processing
message processing 27 client 27
overview 26 server 22
seguencing rules 27 Messages
timer events 29 data types 14
timers 26 overview 14
Common data types 14 transport 14
ComponentData structure 15
ContainerData structure 15 N

ContainerStatistics structure 14

Normative references 7

D
o
Data model - abstract
client 26 OnNewTrackingInfo method 27
server 21 Overview (synopsis) 8
Data types 14
DumpProcess method 25 P
E Parameters - security index 32
Preconditions 12
Examples - overview 30 Prerequisites 12
Product behavior 35
F
R
Fields - vendor-extensible 12
References
G informative 8
normative 7
GetComponentDataByContainer method 23 Relationship to other protocols 12
GetComponentDataByContainerAndCLSID method
24 S
GetContainerData method 23
Glossary 6 Security
implementer considerations 32
H parameter index 32
Sequencing rules
Higher-layer triggered events - client 27 client 27
server 22
I Server
abstract data model 21
Implementer - security considerations 32 initialization 22
Index of security parameters 32 local events 26
Informative references 8 message processing 22

41/ 42

[MS-COMT] — v20110204
Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

sequencing rules 22
timer events 26

timers 22
Standards assignments 12

T

Timer events

client 29

server 26
Timers

client 26

server 22
Tracking changes 40
TrackingInfoCollection packet 19
TrackingInfoObject packet 18
TrackingInfoProperty packet 18
TrackingInfoPropertyValue packet 17

Transport 14
Triggered events - higher-layer - client 27

\'}

Vendor-extensible fields 12
Versioning 12

[MS-COMT] — v20110204

Component Object Model Plus (COM+) Tracker Service Protocol Specification

Copyright © 2011 Microsoft Corporation.

Release: Friday, February 4, 2011

42 /42

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Background
	1.3.2 Instantiation Concepts
	1.3.3 Pooling
	1.3.4 Recycling and Pausing
	1.3.5 Activity Statistics
	1.3.6 Polling and Tracker Events
	1.3.7 Process Dump

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 CurlyBraceGuidString
	2.2.2 ContainerStatistics
	2.2.3 ContainerData
	2.2.4 ComponentData
	2.2.5 TrackingInfo Formats
	2.2.5.1 LengthPrefixedName
	2.2.5.2 TrackingInfoPropertyValue
	2.2.5.3 TrackingInfoProperty
	2.2.5.4 TrackingInfoObject OBJREF_CUSTOM
	2.2.5.5 TrackingInfoCollection OBJREF_CUSTOM

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 IGetTrackingData
	3.1.4.1.1 GetContainerData (Opnum 4)
	3.1.4.1.2 GetComponentDataByContainer (Opnum 5)
	3.1.4.1.3 GetComponentDataByContainerAndCLSID (Opnum 6)

	3.1.4.2 IProcessDump
	3.1.4.2.1 IsSupported (Opnum 7)
	3.1.4.2.2 DumpProcess (Opnum 8)

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 IComTrackingInfoEvents
	3.2.5.1.1 OnNewTrackingInfo (Opnum 3)

	3.2.6 Timer Events
	3.2.7 Other Local Events

	4 Protocol Examples
	4.1 Polling for Tracking Data
	4.2 Receiving a Tracker Event

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

