

1 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

[MS-CMP]:
MSDTC Connection Manager:
OleTx Multiplexing Protocol Specification

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft's Open Specification Promise (available here:

http://www.microsoft.com/interop/osp) or the Community Promise (available here:

http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if
the technologies described in the Open Specifications are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

2 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Revision Summary

Date

Revision

History

Revision

Class Comments

04/03/2007 1.0 MCPP Milestone Longhorn Initial Availability

07/03/2007 2.0 Major MLonghorn+90

07/20/2007 3.0 Major Updated and revised the technical content.

08/10/2007 3.0.1 Editorial Revised and edited the technical content.

09/28/2007 4.0 Major Made a change to the IDL.

10/23/2007 5.0 Major Updated and revised the technical content.

11/30/2007 5.0.1 Editorial Revised and edited the technical content.

01/25/2008 5.0.2 Editorial Revised and edited the technical content.

03/14/2008 5.1 Minor Updated the technical content.

05/16/2008 5.1.1 Editorial Revised and edited the technical content.

06/20/2008 6.0 Major Updated and revised the technical content.

07/25/2008 6.1 Minor Updated the technical content.

08/29/2008 7.0 Major Updated and revised the technical content.

10/24/2008 7.0.1 Editorial Revised and edited the technical content.

12/05/2008 7.0.2 Editorial Editorial Update.

01/16/2009 8.0 Major Updated and revised the technical content.

02/27/2009 9.0 Major Updated and revised the technical content.

04/10/2009 10.0 Major Updated and revised the technical content.

05/22/2009 10.1 Minor Updated the technical content.

07/02/2009 10.1.1 Editorial Revised and edited the technical content.

08/14/2009 10.1.2 Editorial Revised and edited the technical content.

09/25/2009 11.0 Major Updated and revised the technical content.

11/06/2009 12.0 Major Updated and revised the technical content.

12/18/2009 13.0 Major Updated and revised the technical content.

01/29/2010 13.1 Minor Updated the technical content.

03/12/2010 14.0 Major Updated and revised the technical content.

3 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Date

Revision

History

Revision

Class Comments

04/23/2010 14.0.1 Editorial Revised and edited the technical content.

06/04/2010 15.0 Major Updated and revised the technical content.

07/16/2010 15.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/27/2010 15.0 No change No changes to the meaning, language, or formatting of

the technical content.

10/08/2010 15.0 No change No changes to the meaning, language, or formatting of

the technical content.

11/19/2010 15.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 16.0 Major Significantly changed the technical content.

02/11/2011 17.0 Major Significantly changed the technical content.

4 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Contents

1 Introduction ... 6
1.1 Glossary ... 6
1.2 References .. 6

1.2.1 Normative References ... 6
1.2.2 Informative References ... 6

1.3 Overview .. 7
1.4 Relationship to Other Protocols .. 8
1.5 Prerequisites/Preconditions ... 9
1.6 Applicability Statement ... 9
1.7 Versioning and Capability Negotiation ... 9
1.8 Vendor-Extensible Fields ... 9
1.9 Standards Assignments .. 9

2 Messages.. 10
2.1 Transport .. 10

2.1.1 Transmitting Messages and Boxcars ... 10
2.1.1.1 Boxcar Format ... 10
2.1.1.2 Boxcar Size Limitations ... 10
2.1.1.3 Transmitting Boxcars .. 10

2.1.2 Security .. 11
2.2 Message Syntax .. 11

2.2.1 BOX_CAR_HEADER ... 11
2.2.2 MESSAGE_PACKET ... 11
2.2.3 MTAG_DISCONNECT ... 14
2.2.4 MTAG_DISCONNECTED ... 14
2.2.5 MTAG_CONNECTION_REQ_DENIED .. 15
2.2.6 MTAG_PING ... 15
2.2.7 MTAG_CONNECTION_REQ ... 16
2.2.8 MTAG_USER_MESSAGE ... 17

3 Protocol Details .. 18
3.1 Common Details .. 18

3.1.1 Abstract Data Model ... 18
3.1.1.1 Connection Object .. 19
3.1.1.2 Boxcar Object .. 19

3.1.2 Timers .. 20
3.1.2.1 Idle Timer .. 20

3.1.3 Initialization .. 20
3.1.3.1 Initialization by a Higher-Layer Protocol .. 20
3.1.3.2 Initialization by the Protocol ... 20

3.1.4 Higher-Layer Triggered Events ... 21
3.1.4.1 Send Message .. 21
3.1.4.2 Create Connection .. 21
3.1.4.3 Disconnect Connection .. 22

3.1.5 Message Processing Events and Sequencing Rules .. 22
3.1.5.1 MTAG_DISCONNECT (MsgTag 0x00000001)... 23
3.1.5.2 MTAG_DISCONNECTED (MsgTag 0x00000002) ... 23
3.1.5.3 MTAG_CONNECTION_REQ_DENIED (MsgTag 0x00000003) 24
3.1.5.4 MTAG_PING (MsgTag 0x00000004) .. 24
3.1.5.5 MTAG_CONNECTION_REQ (MsgTag 0x00000005) ... 24

5 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.5.6 MTAG_USER_MESSAGE (MsgTag 0x00000FFF) ... 25
3.1.6 Timer Events ... 25

3.1.6.1 Idle Timer .. 25
3.1.7 Other Local Events ... 25

3.1.7.1 Enqueuing a Message .. 25
3.1.7.2 Session Down .. 26
3.1.7.3 Allocate Incoming Connection Objects ... 26
3.1.7.4 Notify Higher-Layer of Incoming Message Events .. 26

3.1.7.4.1 Receiving a Message .. 26
3.1.7.4.2 Connection Disconnected ... 26
3.1.7.4.3 Connection Request Denied .. 27

4 Protocol Examples .. 28
4.1 Sending Messages ... 28

4.1.1 Creating the MESSAGE_PACKETs.. 28
4.1.2 Creating a Boxcar ... 30
4.1.3 Sending the Boxcar Using the Underlying MSDTC Connection Manager: OleTx

Transports Protocol Session .. 31
4.2 A Simple Connection Scenario ... 31

4.2.1 Initiating a Connection .. 31
4.2.1.1 Connection Denied .. 31
4.2.1.2 Connection Accepted ... 32

4.2.2 Disconnecting a Connection ... 33

5 Security .. 35
5.1 Security Considerations for Implementers ... 35
5.2 Index of Security Parameters .. 35

6 Appendix A: Product Behavior .. 36

7 Change Tracking... 37

8 Index ... 39

6 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1 Introduction

This document specifies the MSDTC Connection Manager: OleTx Multiplexing Protocol.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

acceptor
boxcar

connection
connection type
initiator
little-endian
session

The following terms are specific to this document:

Name object: An object that contains contact information specific to the MSDTC Connection

Manager: OleTx Transports Protocol, as specified in [MS-CMPO].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We

will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[MS-CMPO] Microsoft Corporation, "MSDTC Connection Manager: OleTx Transports Protocol
Specification", July 2007.

[MS-ERREF] Microsoft Corporation, "Windows Error Codes", January 2007.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-DTCO] Microsoft Corporation, "MSDTC Connection Manager: OleTx Transaction Protocol
Specification", July 2007.

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary", March 2007.

%5bMS-GLOS%5d.pdf
%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf
%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-GLOS%5d.pdf

7 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1.3 Overview

The MSDTC Connection Manager: OleTx Multiplexing Protocol allows partners to multiplex any
number of two-way connections over the MSDTC Connection Manager: OleTx Transports Protocol

session between them. To do this, the protocol defines a small number of messages to manage
connections and uses the MSDTC Connection Manager: OleTx Transports Protocol resource requests
to allocate connection-related resources. To facilitate higher-level protocols, the MSDTC Connection
Manager: OleTx Multiplexing Protocol defines a single user message and allows associating a
connection type with a connection.

To illustrate these concepts, the following figure depicts typical MSDTC Connection Manager: OleTx
Multiplexing Protocol messages to initiate, use, and terminate two connections between partners

labeled A and B.

Figure 1: Messages used to manage two connections between partners

%5bMS-GLOS%5d.pdf
%5bMS-CMPO%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

8 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

As the first message of the preceding figure depicts, to initiate a connection, either partner sends a
Connect message (MTAG_CONNECTION_REQ) to the other partner over their session.

A Connect message includes an identifier for the new connection (abbreviated ID in the figure). To
simplify connection management, connections are identified by two pieces of information: the

partner that initiated the connection, and an identifier assigned by that partner. This scheme allows
each partner to assign identifiers without the risk of collision with the other partner. In effect, each
partner maintains two tables of connections: those initiated by itself (so-called "outgoing"
connections) and those initiated by the other partner (so-called "incoming" connections). Despite
the names "outgoing" and "incoming", either partner has the option to send messages to the other
by using any open connection. To correlate a message with its connection, the message includes a
flag (fIsMaster) indicating which table the connection belongs to, in addition to the initiator-assigned

identifier (dwConnectionId) for the connection.

Though not depicted in the figure, a Connect message also includes a type to identify the higher-
level protocol for the connection's messages. Specifically, this connection type typically implies
which types of User messages are expected over the connection.

As depicted in the preceding figure, a Connect message is assumed to succeed. If the receiving
partner does not want to accept the connection, it sends a not-acknowledged message

(MTAG_CONNECTION_REQ_DENIED).

After a connection is open, either partner has the option to send any number of User messages
(MTAG_USER_MESSAGE) to the other partner by using that connection. User messages include their
connection, a message type handled by a higher-level protocol, and the message payload. As the
receiving partner never sends positive acknowledgment to a Connect message, the sending partner
is free to send User messages to the connection along with the Connect message. If the receiving
partner does not accept the connection, it will ignore these extraneous User messages.

A partner receives messages in the order in which they were sent over the connection.

To close a connection, the partner that initiated the connection sends a Disconnect message
(MTAG_DISCONNECT) to the other partner; either partner has the option to initiate a connection,
but only the partner that initiated a connection is allowed to close it. Unlike the Connect message,

the Disconnect message is assumed to fail. As the preceding figure depicts, if the receiving partner
has the option to close the connection, it does so and sends a Disconnect acknowledgment message
(MTAG_DISCONNECTED). Finally, on receipt of the Disconnected message, the initiating partner

closes the connection on its side. This asymmetric design allows the receiving partner to send any
outstanding messages to the initiating partner before acknowledging the Disconnect message.

For efficiency, the MSDTC Connection Manager: OleTx Multiplexing Protocol batches messages by
using Boxcar objects that contain one or more messages for one or more connections. A Boxcar
includes the number of messages it encloses, their total size, and the messages themselves.
Typically, the fact that messages are enclosed in a Boxcar is transparent to connection management

and User messages in the MSDTC Connection Manager: OleTx Multiplexing Protocol. One exception
occurs when a partner receives an unrecognized message type and discards the rest of the
messages in the Boxcar.

1.4 Relationship to Other Protocols

This protocol is explicitly layered upon the MSDTC Connection Manager: OleTx Transports Protocol,
and its design is greatly influenced by that protocol. It relies on the MSDTC Connection Manager:

OleTx Transports Protocol to provide sessions and peer-to-peer message exchange. This protocol, in
turn, provides message batching and connection multiplexing services to a protocol layered above it.
For example, the MSDTC Connection Manager: OleTx Transaction Protocol is a set of connections

%5bMS-GLOS%5d.pdf
%5bMS-CMPO%5d.pdf
%5bMS-DTCO%5d.pdf

9 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

with different connection types layered above the MSDTC Connection Manager: OleTx Multiplexing
Protocol, and it is used for coordinating distributed atomic transactions.

Figure 2: Relationship of MS-CMP to other protocols

1.5 Prerequisites/Preconditions

The MSDTC Connection Manager: OleTx Multiplexing Protocol relies on MSDTC Connection Manager:

OleTx Transports Protocol for carrying communication; there is no handshake or initialization to
communicate this fact between MSDTC Connection Manager: OleTx Multiplexing Protocol instances.

1.6 Applicability Statement

This protocol is suitable for use as a connection multiplexing protocol over the MSDTC Connection
Manager: OleTx Transports Protocol, and it is applicable in all of the same situations.

1.7 Versioning and Capability Negotiation

There are no optional capabilities exposed by the MSDTC Connection Manager: OleTx Multiplexing
Protocol, and there are no extensibility points within the MSDTC Connection Manager: OleTx
Multiplexing Protocol. There are therefore no version negotiation capabilities in this protocol.

1.8 Vendor-Extensible Fields

There are no Vendor-Extensible Fields used by the MSDTC Connection Manager: OleTx Multiplexing
Protocol.

1.9 Standards Assignments

The MSDTC Connection Manager: OleTx Multiplexing Protocol does not use any standard
assignments.

%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf

10 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2 Messages

This section specifies how the MSDTC Connection Manager: OleTx Multiplexing Protocol messages
are encapsulated on the wire and common data types.

2.1 Transport

Messages in the MSDTC Connection Manager: OleTx Multiplexing Protocol MUST be transported over
an MSDTC Connection Manager: OleTx Transports Protocol session; therefore, each MSDTC
Connection Manager: OleTx Multiplexing Protocol instance MUST have an underlying MSDTC

Connection Manager: OleTx Transports Protocol instance. The initialization of the MSDTC Connection
Manager: OleTx Transports Protocol instance occurs during the initialization of the MSDTC
Connection Manager: OleTx Multiplexing Protocol instance, and is specified in section 3.

2.1.1 Transmitting Messages and Boxcars

Every message in MSDTC Connection Manager: OleTx Multiplexing Protocol is an extension of the

MESSAGE_PACKET (section 2.2.2) structure. When any event causes an MSDTC Connection

Manager: OleTx Multiplexing Protocol implementation to send a message, an MSDTC Connection
Manager: OleTx Multiplexing Protocol implementation MUST place this message in a boxcar. Boxcars
are represented conceptually as Boxcar objects in the abstract data model; adding a message to a
boxcar is represented conceptually as adding a message to the end of the Message List in a Boxcar
object. For more information about Boxcar objects in the abstract data model, see section 3.1.1.2.
For more information about processing boxcars, see section 3.1.5.

2.1.1.1 Boxcar Format

A boxcar is formatted as an array of bytes that begins with a BOX_CAR_HEADER (section 2.2.1)
structure and continues with one or more MESSAGE_PACKET structures, each of which is appended
with its associated variable length data (if any). Each MESSAGE_PACKET structure in a boxcar MUST
be aligned on an 8-byte boundary. Because the size of each MESSAGE_PACKET structure is a
multiple of 4 bytes (as defined in section 2.2.2), padding bytes MUST be added as necessary

between the structures in order to have each structure aligned on a 8-byte boundary. Any necessary
padding bytes can be set to any value, and MUST be ignored on receipt. The dwcMessages field of
the BOX_CAR_HEADER structure MUST be equal to the number of messages in the boxcar, and the
dwcbTotal field of the BOX_CAR_HEADER structure MUST be equal to the total number of bytes in
the boxcar.

2.1.1.2 Boxcar Size Limitations

A boxcar MUST contain at least one message, and MUST NOT contain more than 3,412 messages.
Furthermore, the total size of a boxcar MUST be at least 40 bytes, and MUST NOT exceed 81,920
bytes. Unless otherwise specified, an MSDTC Connection Manager: OleTx Multiplexing Protocol
implementation SHOULD add one or more messages to a boxcar as long as doing so does not cause
the boxcar to exceed any of these size restrictions.

2.1.1.3 Transmitting Boxcars

When an MSDTC Connection Manager: OleTx Multiplexing Protocol implementation wants to transmit
a boxcar over a session, the MSDTC Connection Manager: OleTx Multiplexing Protocol provides its
underlying MSDTC Connection Manager: OleTx Transports Protocol implementation with the session
to transmit the boxcar on, the count of messages in the boxcar, and the byte array that makes up
the boxcar itself, as specified in [MS-CMPO] section 3.4.6.5. Also, an MSDTC Connection Manager:
OleTx Multiplexing Protocol implementation MUST NOT transmit more than one boxcar at a time.

%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf

11 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

For more information about transmitting messages in boxcars, see section 3.1.7.1. For more
information about interpreting boxcars after they have been received, see section 3.1.5.

2.1.2 Security

The MSDTC Connection Manager: OleTx Multiplexing Protocol does not introduce any additional
security beyond what is provided by the MSDTC Connection Manager: OleTx Transports Protocol.
The security level value provided by the higher-layer protocol during initialization, as specified in
section 3.1.3, MUST be provided to the MSDTC Connection Manager: OleTx Transports Protocol as
specified in [MS-CMPO] section 2.1.3.

2.2 Message Syntax

All integer fields in the following structures are in little-endian byte order, and all structures MUST
be aligned with an 8-byte alignment. Any padding bytes that are required to align the
MESSAGE_PACKET structures within the boxcar can be set to any value, and MUST be ignored on
receipt.

2.2.1 BOX_CAR_HEADER

The BOX_CAR_HEADER structure MUST be the first structure in each boxcar transmitted via the

underlying MSDTC Connection Manager: OleTx Transports Protocol session.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

dwSeqNumThisCar

dwAckSeqNum

dwcbTotal

dwcMessages

dwSeqNumThisCar (4 bytes): This field is not used, it MUST be set to 0x00000000, and it
MUST be ignored on receipt.

dwAckSeqNum (4 bytes): This field is not used, it MUST be set to 0x00000000, and it MUST
be ignored on receipt.

dwcbTotal (4 bytes): An unsigned 4-byte integer value which MUST be the total number of

bytes in the boxcar message, including its header and all Message Packets. It MUST be greater
than or equal to 40 bytes, and it MUST be less than or equal to 81,920 bytes.

dwcMessages (4 bytes): An unsigned 4-byte integer value which contains the number of
Message_Packet structures that follow the end of this structure in the boxcar. This number
MUST be greater than or equal to 1, and MUST BE less than or equal to 3,412.

2.2.2 MESSAGE_PACKET

Each message sent using the MSDTC Connection Manager: OleTx Multiplexing Protocol MUST be an
extension of the MESSAGE_PACKET structure. This structure forms the basis for all of these
messages. All integer fields of this structure are in little-endian byte order.

%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-CMPO%5d.pdf

12 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

MsgTag

fIsMaster

dwConnectionId

dwUserMsgType

dwcbVarLenData

dwReserved1

MsgTag (4 bytes): A 4-byte integer value that describes the message type and its
interpretation. This value MUST be one of the following values.

Value Meaning

MTAG_DISCONNECT

0x00000001

Indicates a request to disconnect the specified connection.

MTAG_DISCONNECTED

0x00000002

Indicates that the specified connection has been

disconnected.

MTAG_CONNECTION_REQ_DENIED

0x00000003

Indicates that the connection request for the specified

connection has been denied.

MTAG_PING

0x00000004

A successful MTAG_PING indicates that the session is active.

MTAG_CONNECTION_REQ

0x00000005

Indicates that a new connection is being requested.

MTAG_USER_MESSAGE

0x00000FFF

Indicates that a user (level-three protocol) message should

be delivered on the specified connection.

If the value is not one of the preceding values, then the remainder of the boxcar MUST be

discarded. The details of each message type are given in the following sections.

fIsMaster (4 bytes): A 4-byte value indicating the direction of the message in the
conversation. This value MUST be one of the following values.

Value Meaning

0x00000000 Message is sent by the party that accepted the connection.

0x00000001 Message is sent by the party that initiated the connection, or message is not

associated with a connection because either the connection is down or the

connection request has been denied.

13 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

dwConnectionId (4 bytes): A 4-byte integer value that contains the unique identifier for the
associated connection. The value of the identifier depends on the value of the MsgTag field,

as follows.

MsgTag field value dwConnectionId field

0x00000001

MTAG_DISCONNECT

MUST contain the ID of the connection being disconnected.

0x00000002

MTAG_DISCONNECTED

MUST contain the ID of the connection that was just

disconnected.

0x00000003

MTAG_CONNECTION_REQ_DENIED

MUST contain the ID of the connection that was rejected.

0x00000004

MTAG_PING

MUST be set to 0x00000000

0x00000005

MTAG_CONNECTION_REQ

MUST contain the ID of the connection being requested.

0x00000FFF

MTAG_USER_MESSAGE

MUST contain the ID of the connection that the message

relates to.

dwUserMsgType (4 bytes): A 4-byte integer value that contains additional details about the
message, depending on the value of the MsgTag field, as follows.

MsgTag field value dwUserMsgType field

0x00000001

MTAG_DISCONNECT

MUST contain the connection type of the connection being

disconnected.

0x00000002

MTAG_DISCONNECTED

MUST be set to 0x00000000.

0x00000003

MTAG_CONNECTION_REQ_DENIED

MUST be set to 0x00000000.

0x00000004

MTAG_PING

MUST be set to 0x00000000.

0x00000005

MTAG_CONNECTION_REQ

MUST contain the connection type of the connection being

requested.

0x00000FFF

MTAG_USER_MESSAGE

MUST contain the type of user message to be delivered.

dwcbVarLenData (4 bytes): Unsigned 4-byte integer value that contains the size, in bytes, of

the variable-length data buffer. This value MUST NOT be greater than 81880. This number is
the maximum size of a boxcar, as specified in section 2.1.1.2, minus the size of a
BOX_CAR_HEADER and the MESSAGE_PACKET itself, which is logically the largest single
message that is possible to be transmitted in MSDTC Connection Manager: OleTx Multiplexing
Protocol.

14 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

dwReserved1 (4 bytes): Reserved. This value can be set to any value, and MUST be ignored
on receipt.<1>

2.2.3 MTAG_DISCONNECT

The MTAG_DISCONNECT message indicates a request to disconnect the specified connection.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

MsgHeader

...

...

...

...

...

MsgHeader (24 bytes): This field contains a MESSAGE_PACKET structure. The fields MUST be
set as specified in section 2.2.2. In particular:

The MsgTag field MUST be set to 0x00000001 (MTAG_DISCONNECT).

The fIsMaster field MUST be set to 0x00000001.

The dwcbVarLenData field MUST be set to 0x00000000.

2.2.4 MTAG_DISCONNECTED

The MTAG_DISCONNECTED message indicates that the request to disconnect the specified
connection was successful.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

MsgHeader

...

...

...

...

...

15 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

MsgHeader (24 bytes): This field contains a MESSAGE_PACKET structure. The fields MUST be
set as specified in section 2.2.2. In particular:

The MsgTag field MUST be set to 0x00000002 (MTAG_DISCONNECTED).

The fIsMaster field MUST be set to 0x00000000.

The dwcbVarLenData field MUST be set to 0x00000000.

2.2.5 MTAG_CONNECTION_REQ_DENIED

The MTAG_CONNECTION_REQ_DENIED message indicates that the connection request for the
specified connection has been denied. It represents a not-acknowledged response to an

MTAG_CONNECTION_REQ message. (There is no positive acknowledgment response to an
MTAG_CONNECTION_REQ message.)

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

MsgHeader

...

...

...

...

...

Reason

MsgHeader (24 bytes): This field contains a MESSAGE_PACKET structure. The fields MUST be
set as specified in section 2.2.2. In particular:

The MsgTag field MUST be set to 0x00000003 (MTAG_CONNECTION_REQ_DENIED).

The fIsMaster field MUST be set to 0x00000000.

The dwcbVarLenData field MUST be set to 4.

Reason (4 bytes): This field contains a 4-byte unsigned integer that indicates the reason that
the connection request was denied. The values for this field are defined by the higher-layer

protocol.

2.2.6 MTAG_PING

The MTAG_PING message is used by a protocol participant to determine if it can still contact its
MSDTC Connection Manager: OleTx Transports Protocol session partner (for more information about
the message processing event, see 3.1.5.4).

%5bMS-CMPO%5d.pdf

16 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

MsgHeader

...

...

...

...

...

MsgHeader (24 bytes): This field contains a MESSAGE_PACKET structure. The fields MUST be
set as specified in section 2.2.2. In particular:

The MsgTag field MUST be set to 0x00000004 (MTAG_PING).

The fIsMaster field MUST be set to 0x00000001.

The dwConnectionId field MUST be set to 0x00000000.

The dwcbVarLenData field MUST be set to 0x00000000.

2.2.7 MTAG_CONNECTION_REQ

The MTAG_CONNECTION_REQ message indicates a request to create the specified connection. A

not-acknowledged response to this message is communicated with an
MTAG_CONNECTION_REQ_DENIED message. (There is no positive acknowledgment response to an

MTAG_CONNECTION_REQ message.)

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

MsgHeader

...

...

...

...

...

MsgHeader (24 bytes): This field contains a MESSAGE_PACKET structure. The fields MUST be
set as specified in section 2.2.2. In particular:

17 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The MsgTag field MUST be set to 0x00000005 (MTAG_CONNECTION_REQ).

The fIsMaster field MUST be set to 0x00000001.

The dwcbVarLenData field MUST be set to 0x00000000.

2.2.8 MTAG_USER_MESSAGE

The MTAG_USER_MESSAGE message indicates that a user (level-three protocol) message should be
delivered on the specified connection.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

MsgHeader

...

...

...

...

...

MessageData (variable)

...

MsgHeader (24 bytes): This field contains a MESSAGE_PACKET structure. The fields MUST be
set as specified in section 2.2.2. In particular:

The MsgTag field MUST be set to 0x00000FFF (MTAG_USER_MESSAGE).

The dwcbVarLenData field MUST be set to the length in bytes of the MessageData field,

if it is present, otherwise it MUST be set to 0x00000000.

MessageData (variable): A byte array containing the body of the message. The format of this
body is defined by the higher-layer software operating over this protocol, and it is generally
indicated by the value of the dwUserMsgType field in the MsgHeader structure. The

contents of this field MUST be treated as opaque.

18 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3 Protocol Details

3.1 Common Details

3.1.1 Abstract Data Model

This section describes a conceptual model of a possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol performs. This document does not mandate that the

implementations adhere to this model as long as their external behavior is consistent with that
described in this document.

Note For the sake of clarity, the term "local partner" is used to indicate the role that is being
described, and the term "remote partner" is used to indicate the partner with which the local partner
is communicating.

An MSDTC Connection Manager: OleTx Multiplexing Protocol implementation uses the following data

elements, as defined in [MS-CMPO] section 3.2.1.1:

Local Name Object

Minimum Level 2 Version Number

Maximum Level 2 Version Number

Minimum Level 3 Version Number

Maximum Level 3 Version Number

Security Level

An MSDTC Connection Manager: OleTx Multiplexing Protocol implementation MUST maintain the
following data elements:

Session Table: A table of Session objects, as maintained by an MSDTC Connection Manager:

OleTx Transports Protocol partner and as specified in [MS-CMPO] section 3.2.1.2. The MSDTC

Connection Manager: OleTx Multiplexing Protocol does not maintain a Session Table itself, but the
Session object MUST be extended to support the following additional data elements:

Outgoing Connection Table: A table of Connection objects in use that are initiated by the

local partner and indexed by the Connection ID field of the Connection object.

Count of Allocated Outgoing Connections: An unsigned 32-bit integer counting the

number of outgoing connections that have been allocated for the local partner in the session.

Partners in this protocol use their respective underlying MSDTC Connection Manager: OleTx
Transports Protocol instances to negotiate a number of pre-allocated Connection objects that
each connection requires. More connections are allocated by this instance when it is
discovered that the number of entries in the Outgoing Connection Table equals the current
value of the Count of Allocated Outgoing Connections. To create a new connection, there
MUST be at least one allocated outgoing connection available. Outgoing connections are

allocated, and the corresponding count increased, by requesting the local partner to allocate
more connection resources through the underlying MSDTC Connection Manager: OleTx
Transports Protocol instance.

Incoming Connection Table: A table of Connection objects in use that are initiated by the

remote partner and indexed by the Connection ID field of the Connection object.

%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf

19 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Count of Allocated Incoming Connections: An unsigned 32-bit integer counting the

number of incoming connections that have been allocated by the remote partner in the

session. Partners in this protocol use their respective underlying MSDTC Connection Manager:

OleTx Transports Protocol instances to negotiate a number of pre-allocated Connection objects
that each connection requires. The number of allocated incoming connections is the value
requested by the remote partner. New connections are allowed to be created until the number
of entries in the Incoming Connection Table equals the count requested by the remote
partner. If the remote partner requires more connections to be created, it MUST request that
more be allocated, causing this count to be increased.

Boxcar Queue: An ordered queue of Boxcar objects to be transmitted on this session.

The management of these additional data elements is the responsibility of the MSDTC Connection
Manager: OleTx Multiplexing Protocol implementation as outlined in sections 3.1.4.2, 3.1.5.1,
3.1.5.5, and 3.1.7.3.

Note that it is possible to implement the conceptual data by using a variety of techniques. An
implementation is at liberty to implement such data in any way it pleases.

3.1.1.1 Connection Object

A Connection object MUST contain the following data elements:

Connection ID: An unsigned 32-bit integer that identifies the connection. The Connection ID MUST
be unique within a table. Note that a given Connection object is allowed to have the same
Connection ID as another Connection object (related to the same Session object), so long as the
other Connection object is in the other connection table. For example, the first connection is in the
Incoming Connection Table and the second connection is in the Outgoing Connection Table, or vice

versa.

Accepted: A Boolean value, indicating whether the connection was accepted or rejected by the
higher-layer protocol. This value is initially false.

Connection Type: An unsigned 32-bit integer that identifies the set of messages defined by a

higher-level protocol sent over the connection. Higher-level messages are grouped based on the
specific set of state changes they produce, and that grouping is identified by connection type.

Incoming Message Notification Interface: The local event of a higher-layer that is used by the

MSDTC Connection Manager: OleTx Multiplexing Protocol to notify a higher-layer protocol of
incoming message events, as specified in section 3.1.7.4.

Note It is possible to implement the conceptual data by using a variety of techniques. An
implementation is at liberty to implement such data in any way it pleases.

3.1.1.2 Boxcar Object

A Boxcar object MUST contain the following data elements:

Message List: A list of MESSAGE_PACKET structures (section 2.2.2) in the boxcar.

When called for, Boxcar objects MUST be formatted and transmitted as specified in section 2.1.1.1.

Note It is possible to implement the conceptual data by using a variety of techniques. An
implementation is at liberty to implement such data in any way it wants.

20 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.2 Timers

An MSDTC Connection Manager: OleTx Multiplexing Protocol implementation MUST maintain the
following timers.

3.1.2.1 Idle Timer

There is an instance of the Idle Timer corresponding to each Session object. This timer MUST be set
when both the Incoming Connection Table and the Outgoing Connection Table are empty, and it
MUST be canceled when a Connection object is added to either the Incoming Connection Table or
the Outgoing Connection Table. The default value of the timer is specific to the implementation.

3.1.3 Initialization

An MSDTC Connection Manager: OleTx Multiplexing Protocol instance is explicitly initialized with the
data elements specified in sections 3.1.3.1 and 3.1.3.2, as specified in [MS-CMPO] section 3.2.1.1.
These elements are required for the initialization of its underlying MSDTC Connection Manager:
OleTx Transports Protocol instance, as specified in [MS-CMPO] section 3.2.3.1.

3.1.3.1 Initialization by a Higher-Layer Protocol

An MSDTC Connection Manager: OleTx Multiplexing Protocol instance is explicitly initialized with the
following data elements, as specified in [MS-CMPO] section 3.2.3.1.

A Local Name Object, as defined in [MS-CMPO] section 3.2.1.1. The higher-layer protocol that

initializes an MSDTC Connection Manager: OleTx Multiplexing Protocol instance MUST initialize
this public data element.

The Minimum Level 3 Version Number and Maximum Level 3 Version Number, as defined

in [MS-CMPO] section 3.2.1.1. The higher-layer protocol that initializes an MSDTC Connection
Manager: OleTx Multiplexing Protocol instance MUST initialize this public data element.

A Security Level, as defined in [MS-CMPO] section 3.2.1.1. The higher-layer protocol that

initializes an MSDTC Connection Manager: OleTx Multiplexing Protocol instance MUST initialize
this public data element.

3.1.3.2 Initialization by the Protocol

The MSDTC Connection Manager: OleTx Multiplexing Protocol MUST perform the following action:

Initialize an underlying MSDTC Connection Manager: OleTx Transports Protocol instance, as

specified in [MS-CMPO] section 3.2.3.1, with the following data elements:

A Minimum Level 2 Version Number of 1, as defined in [MS-CMPO] section 3.2.1.1.

A Maximum Level 2 Version Number of 1, as defined in [MS-CMPO] section 3.2.1.1.

If the initialization of the above data elements fails or the initialization of an underlying MSDTC
Connection Manager: OleTx Transports Protocol instance fails as specified in [MS-CMPO] section

3.2.3.2, then the initialization of the MSDTC Connection Manager: OleTx Multiplexing Protocol MUST
also fail and the implementation-specific failure result MUST be returned to the higher-layer
protocol.

%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf

21 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.4 Higher-Layer Triggered Events

3.1.4.1 Send Message

When the higher-layer protocol requests to send a message, it MUST specify the Connection object
on which to send the message (which implies the connection table containing it), an unsigned 32-bit
integer representing the type of message, and a byte array containing the body of the message. The
byte array MUST NOT be more than 81880 bytes long.

The MSDTC Connection Manager: OleTx Multiplexing Protocol instance MUST allocate an
MTAG_USER_MESSAGE message. It MUST set the dwUserMsgType field in the MsgHeader field to
the provided message type, it MUST set the dwConnectionId field in the MsgHeader field to the

Connection ID of the provided Connection object, it MUST set the dwcbVarLenData field in the
MsgHeader field to the length of the provided array, and it MUST set the MessageData field to the
provided byte array. Finally, if the provided Connection object is contained in an Outgoing
Connection Table, then the fIsMaster field of the MsgHeader field MUST be set to 0x00000001;
otherwise, it MUST be set to 0x00000000.

This message MUST be enqueued on the Session object associated with the provided Connection

object as described in section 3.1.7.1.

3.1.4.2 Create Connection

When the higher-layer protocol requests a new connection, it MUST specify the following arguments.

The Name Object of the partner with which to create the connection.

The Outgoing connection type of the connection to create.

The Incoming Message Notification Interface.

First, the MSDTC Connection Manager: OleTx Multiplexing Protocol instance MUST look up the
Session object with the specified Name Object in the Session Table. If a matching session does not
exist, the MSDTC Connection Manager: OleTx Multiplexing Protocol instance MUST request a new

session with the partner from the underlying MSDTC Connection Manager: OleTx Transports Protocol
instance. If the request is unsuccessful, then the connection request MUST fail. The MSDTC

Connection Manager: OleTx Multiplexing Protocol instance MUST initialize its extensions to the
Session object as follows:

The Incoming Connection Table MUST be empty.

The Outgoing Connection Table MUST be empty.

The Count of Allocated Outgoing Connections MUST be zero.

The Count of Allocated Incoming Connections MUST be zero.

The Boxcar Queue MUST be empty.

After a Session object has been found or created, the MSDTC Connection Manager: OleTx

Multiplexing Protocol instance MUST compare the number of Connection objects in the Outgoing
Connection Table in the Session object with the Count of Allocated Outgoing Connections. If they are
equal, then the MSDTC Connection Manager: OleTx Multiplexing Protocol instance MUST request

resource allocation from the underlying MSDTC Connection Manager: OleTx Transports Protocol
instance, as specified in MSDTC Connection Manager: OleTx Transports Protocol section 3.4.6.4. The
MSDTC Connection Manager: OleTx Multiplexing Protocol instance MUST provide the Session object.
In addition, it MUST specify the RT_CONNECTIONS value for the RESOURCE_TYPE enumeration as

%5bMS-CMPO%5d.pdf

22 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

specified in [MS-CMPO] section 2.2.7, and it MUST specify a number of resources equal to or greater
than 1.

If the request is successful, then the number of resources that were actually allocated MUST be
added to the Count of Allocated Outgoing Connections. Otherwise, the connection request MUST fail

and the Session object MUST be left unmodified, with the exception that if both the Incoming and
Outgoing Connection Tables are empty, then the Idle Timer associated with the Session object MUST
be started.

Note If this is a newly created session object and the Idle Timer is already running (due to both
Incoming and Outgoing Connection Tables being initialized as empty) and the connection resource
allocation has failed, then the Idle Timer is restarted at this point.

Next, the MSDTC Connection Manager: OleTx Multiplexing Protocol instance MUST allocate a new

Connection object with the specified connection type and with a connection identifier that is
currently unused in the Outgoing Connection Table. The Accepted field of the new Connection
object MUST be set to true. This Connection object MUST be added to the Outgoing Connection
Table. If the Idle Timer is active, the timer MUST be canceled. The Incoming Message Notification

Interface that was provided by the higher-layer protocol MUST be stored in the Incoming Message
Notification ADM element.

Finally, the MSDTC Connection Manager: OleTx Multiplexing Protocol instance MUST allocate an
MTAG_CONNECTION_REQ message. It MUST set the dwUserMsgType field in the MsgHeader field
to the specified connection type, and it MUST set the dwConnectionId field in the MsgHeader
field to the connection identifier of the new Connection object. It MUST enqueue the message on the
Session object as described in section 3.1.7.1.

3.1.4.3 Disconnect Connection

When the higher-layer protocol requests to disconnect a connection, it MUST specify the following
argument.

Connection object to disconnect.

This Connection object MUST be contained in an Outgoing Connection Table in a Session object
contained in the Session Table; otherwise, the request to disconnect the connection MUST fail.

The MSDTC Connection Manager: OleTx Multiplexing Protocol instance MUST allocate an

MTAG_DISCONNECT message and set the dwConnectionId field in the MsgHeader field of the
message to the connection identifier of that specified Connection object. It MUST enqueue this
message on the Session object of the specified Connection object as described in section 3.1.7.1.

3.1.5 Message Processing Events and Sequencing Rules

MSDTC Connection Manager: OleTx Multiplexing Protocol messages are received from the underlying
MSDTC Connection Manager: OleTx Transports Protocol as specified in [MS-CMPO] section 3.3.4.4.

The buffers that the MSDTC Connection Manager: OleTx Transports Protocol provides MUST be
formatted boxcars as specified in section 2.1.1.

The relative position of each message in the boxcar MUST be used to order the messages; messages

that occur at a smaller offset from the boxcar header in the boxcar MUST be considered to come
before messages that occur later in the boxcar. Boxcars MUST be ordered by the time of their
receipt by an MSDTC Connection Manager: OleTx Multiplexing Protocol implementation; all of the
messages in a boxcar that is received earlier than another boxcar are considered to come before all

of the messages in the later boxcar. The dwConnectionId field of the message MUST be used to

%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf

23 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

logically group messages; messages MUST be in the same group if their dwConnectionId fields are
equal. (The messages MAY be physically ordered by their dwConnectionId fields in the boxcar.)

An MSDTC Connection Manager: OleTx Multiplexing Protocol implementation MUST NOT process a
message until it has processed all messages in the same group that come before it. (Message order

MUST be preserved within an MSDTC Connection Manager: OleTx Multiplexing Protocol connection.)
An MSDTC Connection Manager: OleTx Multiplexing Protocol implementation MAY process messages
in any order that does not violate the preceding restriction.

All MSDTC Connection Manager: OleTx Multiplexing Protocol messages are extensions of the
MESSAGE_PACKET structure as specified in section 2.2.2. An MSDTC Connection Manager: OleTx
Multiplexing Protocol message is identified by looking at the value of the MsgTag field; the
interpretation of the message depends on the value of that field. If the value of the MsgTag field is

outside of the expected range (as specified in section 2.2.2), then all remaining unprocessed
messages in the boxcar MUST be ignored, regardless of which connection they are intended for.

3.1.5.1 MTAG_DISCONNECT (MsgTag 0x00000001)

When an MTAG_DISCONNECT message is received over a session, the MSDTC Connection Manager:
OleTx Multiplexing Protocol implementation MUST look at the dwConnectionId field of the

MsgHeader field of the message, and retrieve the Connection object with the matching Connection
ID from the Incoming Connection Table of the Session object. If no such Connection object exists,
the MTAG_DISCONNECT message MUST be silently ignored.

Otherwise, the higher-layer protocol MUST be notified of the Connection Disconnected (section
3.1.7.4.2) event by signaling this event using the Incoming Message Notification Interface as
described in section 3.1.1.1, and the MSDTC Connection Manager: OleTx Multiplexing Protocol
implementation MUST remove the Connection object from the Incoming Connection Table of the

Session object. If both the Incoming Connection Table and the Outgoing Connection Table of the
Session object are now empty, the Idle Timer MUST be started.

The MSDTC Connection Manager: OleTx Multiplexing Protocol implementation MUST then allocate a
new MTAG_DISCONNECTED message, set the dwUserMsgType field of the MsgHeader field to the
connection type of the Connection object, and set the dwConnectionId field of the MsgHeader to

the Connection ID of the Connection object. Finally, the message MUST be enqueued on the Session
object as specified in section 3.1.7.1.

3.1.5.2 MTAG_DISCONNECTED (MsgTag 0x00000002)

When an MTAG_DISCONNECTED message is received over a session, the MSDTC Connection
Manager: OleTx Multiplexing Protocol implementation MUST look at the dwConnectionId field of
the MsgHeader field of the message, and retrieve the Connection object with the matching
Connection ID from the Outgoing Connection Table of the Session object. If no such Connection

object exists, the MTAG_DISCONNECTED message MUST be silently ignored.

Otherwise, the higher-layer protocol MUST be notified of the Connection Disconnected (section
3.1.7.4.2) event by signaling this event using the Incoming Message Notification Interface as
described in section 3.1.1.1, and the MSDTC Connection Manager: OleTx Multiplexing Protocol
implementation MUST remove the Connection object from the Outgoing Connection Table of the

Session object. If there are no more connections in the Outgoing Connection Table of the Session
object and there are no connections in the Incoming Connection Table of the Session object, then

the Idle Timer MUST be started.

24 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.5.3 MTAG_CONNECTION_REQ_DENIED (MsgTag 0x00000003)

When an MTAG_CONNECTION_REQ_DENIED message is received over a session, the MSDTC
Connection Manager: OleTx Multiplexing Protocol implementation MUST look at the

dwConnectionId field of the MsgHeader field of the message, and retrieve the Connection object
with the matching Connection ID from the Outgoing Connection Table of the Session object. If no
such Connection object exists, the MTAG_CONNECTION_REQ_DENIED message MUST be silently
ignored.

Note The MTAG_CONNECTION_REQ_DENIED message does not remove Connection IDs from the
Outgoing Connection Table. A Connection ID value can only be reused in a subsequent
MTAG_CONNECTION_REQ message after an MTAG_DISCONNECT message has been sent.

Otherwise, the higher-layer protocol MUST be notified of the fact that the connection request was
denied for the particular Connection object, along with the value in the Reason field of the message
by signaling the Connection Request Denied (section 3.1.7.4.3) event using the Incoming Message
Notification Interface as described in section 3.1.1.1.

3.1.5.4 MTAG_PING (MsgTag 0x00000004)

A protocol implementation SHOULD send out MTAG_PING messages periodically to verify that its
session with a communication partner is active. (If the session is unavailable, sending the
MTAG_PING message will return an error.) A successful MTAG_PING indicates that the RPC session
with the communication partner is active. When an MTAG_PING message is received over a session,
the MSDTC Connection Manager: OleTx Multiplexing Protocol implementation MUST ignore it.

3.1.5.5 MTAG_CONNECTION_REQ (MsgTag 0x00000005)

When an MTAG_CONNECTION_REQ message is received over a Session object, the MSDTC
Connection Manager: OleTx Multiplexing Protocol implementation MUST first compare the number of
Connection objects in the Incoming Connection Table on the Session object with the Count of
Allocated Incoming Connections on the Session object. If the Count of Allocated Incoming
Connections is equal to the number of Connection objects in the table, then the MSDTC Connection

Manager: OleTx Multiplexing Protocol implementation MUST ignore the MTAG_CONNECTION_REQ
message.

Otherwise, the MSDTC Connection Manager: OleTx Multiplexing Protocol implementation MUST look
at the dwConnectionId field of the MsgHeader field of the message, and attempt to retrieve the
Connection object with the matching Connection ID from the Incoming Connection Table of the
Session object. If a Connection object is found, then the MTAG_CONNECTION_REQ message MUST
be silently ignored.

Otherwise, the MSDTC Connection Manager: OleTx Multiplexing Protocol implementation MUST
allocate a Connection object, initializing the connection type field to the dwUserMsgType field of

the MsgHeader field of the message, the Accepted field to false, and the Connection ID field to
the dwConnectionId field of the MsgHeader field of the message. It MUST add the Connection
object to the Incoming Connection Table of the Session object. If the Idle Timer is active, then it
MUST be canceled.

The implementation MUST then notify the higher-layer protocol of the incoming connection,
providing the Connection object and its connection type. The higher-layer protocol MUST either

accept or reject the connection.

If the higher-layer protocol rejects the connection, then it MUST provide a protocol-specific, 32-bit
unsigned integer that specifies the reason for the rejection. The implementation MUST then allocate
a new MTAG_CONNECTION_REQ_DENIED message, initializing the dwConnectionId field of the

25 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

MsgHeader field to the Connection ID of the Connection object and the Reason field to the
unsigned integer provided by the higher-layer protocol. It MUST then enqueue this message on the

Session object as specified in section 3.1.7.1.

If the higher-layer protocol accepts the connection, then the MSDTC Connection Manager: OleTx

Multiplexing Protocol implementation MUST set the Accepted field of the Connection object to true.

3.1.5.6 MTAG_USER_MESSAGE (MsgTag 0x00000FFF)

When an MTAG_USER_MESSAGE message is received over a Session object, the MSDTC Connection
Manager: OleTx Multiplexing Protocol implementation MUST examine the fIsMaster field of the
MsgHeader field of the message to determine which table contains the destination Connection
object. If the fIsMaster field is 0x00000000, then the MSDTC Connection Manager: OleTx

Multiplexing Protocol implementation MUST attempt to find a Connection object with a Connection
ID that matches the dwConnectionId field of the MsgHeader field of the message in the Incoming
Connection Table of the Session object. Otherwise, the MSDTC Connection Manager: OleTx
Multiplexing Protocol implementation MUST attempt to find a Connection object with a Connection
ID that matches the dwConnectionId field of the MsgHeader field of the message in the Outgoing

Connection Table of the Session object.

If no Connection object is found in the selected table, or the Accepted field of the Connection
object is false, then the MSDTC Connection Manager: OleTx Multiplexing Protocol implementation
MUST ignore the message. Otherwise, the higher-layer protocol MUST be notified of the incoming
message by signaling the Receiving a Message (section 3.1.7.4.1) event using the Incoming
Message Notification Interface, as described in section 3.1.1.1. The MSDTC Connection Manager:
OleTx Multiplexing Protocol implementation MUST provide the higher-layer protocol with the
Connection object, the value of the dwUserMsgType field of the MsgHeader field of the message,

and the MessageData field of the MTAG_USER_MESSAGE field if it is present.

3.1.6 Timer Events

3.1.6.1 Idle Timer

The Idle Timer is active only when there are no Connection objects in both the Outgoing Connection
Table and the Incoming Connection Table. When the Idle Timer associated with a Session object

expires (the maximum number of MTAG_PING messages have been sent), an implementation of the
MSDTC Connection Manager: OleTx Multiplexing Protocol MUST request a forced session teardown
for the underlying MSDTC Connection Manager: OleTx Transports Protocol Session object. As there
are no Connection objects in both the Outgoing Connection Table and the Incoming Connection
Table, it is not required to inform the higher-layer protocol of the teardown.

3.1.7 Other Local Events

3.1.7.1 Enqueuing a Message

Various events in the protocol require that a message be queued on a particular Session object. This
section describes how this is done.

If it is possible to add the provided message to the end of the Message List of the last Boxcar object,
in the Boxcar Queue associated with the provided Session object, then it MUST be added to that
Boxcar object. (The constraints governing whether it is possible to add a message to the list are

provided in section 2.1.1.2.) Otherwise, a new Boxcar object MUST be allocated and added to the
end of the Boxcar Queue associated with the provided Session object; the message MUST then be
added to the end of the Message List in new Boxcar object instead.

%5bMS-CMPO%5d.pdf

26 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

An MSDTC Connection Manager: OleTx Multiplexing Protocol implementation can choose to transmit
the Boxcar object at the head of the Boxcar Queue at any time, as long as it contains at least one

message; however, an implementation SHOULD transmit this Boxcar as soon as possible when there
is at least one other Boxcar object in the Boxcar Queue. Boxcars MUST be formatted and

transmitted as described in section 2.1.1.1.

3.1.7.2 Session Down

When the underlying MSDTC Connection Manager: OleTx Transports Protocol Session object is torn
down or fails for any reason other than the expiration of the Idle Timer, the higher-layer protocol
MUST be notified of the teardown using the Incoming Message Notification Interface as described in
section 3.1.1.1. The higher-layer protocol MUST be provided with the Connection Disconnected

(section 3.1.7.4.2) event for every Connection object in both the Outgoing Connection Table and the
Incoming Connection Table of the Session object. The Connection objects MUST then be removed
from their containing tables. Any resources associated with the session SHOULD also be reclaimed
at this time.

3.1.7.3 Allocate Incoming Connection Objects

When the underlying MSDTC Connection Manager: OleTx Transports Protocol is requested to allocate
more Connection object (section 3.1.1.1) resources from a partner, the MSDTC Connection
Manager: OleTx Multiplexing Protocol determines the number (if any) of Connection object resources
to be allocated and reports the number of allocated resources back to the MSDTC Connection
Manager: OleTx Transports Protocol. The manner in which Connection objects are allocated is
implementation-specific, as described in section 3.1.1.1, and the determination regarding how many
are allocated is also implementation-specific. For example, an implementation can decide to limit the

increase of allocated Connection objects to 10 at a time. As a result, if a partner requests the
allocation of 20 objects, only 10 will be allocated. This demonstrates how the number of allocated
objects returned by the MSDTC Connection Manager: OleTx Transports Protocol can differ from the
number requested by a partner. In Microsoft Windows®, Connection objects are created by
allocating new objects from the memory heap and saving them on a list of "free" Connection
objects. The only limit that is imposed is the amount of available memory.

3.1.7.4 Notify Higher-Layer of Incoming Message Events

When the MSDTC Connection Manager: OleTx Multiplexing Protocol receives incoming message
events as described in section 3.1.5, and the protocol expects a higher-layer protocol to be notified
of these incoming events, then the MSDTC Connection Manager: OleTx Multiplexing Protocol MUST
use the Incoming Message Notification Interface provided by the higher-layer protocol.

3.1.7.4.1 Receiving a Message

The Receiving a Message event MUST be signaled with the following arguments.

A protocol message that extends the MESSAGE_PACKET (section 2.2.2) structure, along with its

associated variable dwcbVarLenData field and the appropriate variable-length data buffer.

A Connection object.

3.1.7.4.2 Connection Disconnected

The Connection Disconnected event MUST be signaled with the following argument.

A Connection object.

%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf

27 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.1.7.4.3 Connection Request Denied

The Connection Request Denied event MUST be signaled with the following arguments.

A Connection object.

The Reason field of the message, as defined in section 2.2.5.

28 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4 Protocol Examples

In the following examples, there are two MSDTC Connection Manager: OleTx Transaction Protocol
Specification instances: initiator and acceptor. It is assumed that the two instances have
established a session with each other, and that the initiator has negotiated a sufficient number of
resources with the acceptor.

Sending Messages

A Simple Connection Scenario

4.1 Sending Messages

The Sending Messages example shows how the initiator creates the appropriate structures to create
a connection and then sends a message on that connection. In this case, the connection type of the
connection is 0x00000101, and the user message type of the first message is 0x00002001. (These
values are CONNTYPE_PARTNERTM_PROPAGATE and PARTNERTM_PROPAGATE_MTAG_PROPAGATE,
respectively, as specified in [MS-DTCO].)

The initiator is going to create two MESSAGE_PACKET structures, format them into a boxcar, and
then submit them to the underlying MSDTC Connection Manager: OleTx Transports Protocol session
to be transmitted. (Because it is assumed that a connection request will succeed, both
MESSAGE_PACKET structures are put into the same boxcar.)

4.1.1 Creating the MESSAGE_PACKETs

To start the connection, the initiator allocates the next free connection identifier; in this instance, it

is 0x00000001. The initiator then creates a MESSAGE_PACKET, with the MsgTag field set to
MTAG_CONNECTION_REQ (0x00000005) and with the dwUserMsgType field set to 0x00000101
(which is CONNTYPE_PARTNERTM_PROPAGATE as specified in [MS-DTCO]). By definition, the
instance that creates the connection always sets the fIsMaster field to 0x00000001, and as this
MESSAGE_PACKET structure contains no extra data, the dwcbVarLenData is set to 0x00000000.

The following table displays the first MESSAGE_PACKET structure that the initiator creates (all

values are 32-bits wide).

Field Value Value description

MsgTag 0x00000005 MTAG_CONNECTION_REQ

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00000101 CONNTYPE_PARTNERTM_PROPAGATE

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

The initiator then creates a second MESSAGE_PACKET to contain the user message. It sets the
MsgTag field to MTAG_USER_MESSAGE (0x00000FFF) and the dwUserMsgType field to
0x00002001 (which is PARTNERTM_PROPAGATE_MTAG_PROPAGATE as specified in [MS-DTCO]).

The MESSAGE_PACKET also contains an extra 64 bytes of data for the message body, so it sets the
dwcbVarLenData field to 0x00000040. The message body that follows is specific to the message;

%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-CMPO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf

29 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

in this instance, it specifies a transaction ID (guidTx, set to 9fa8a337-eaf7-4230-9232-
b57379d65077), a transaction isolation level (isoLevel, set to 0x00100000, which is

ISOLATIONLEVEL_SERIALIZABLE), and a transaction description (szDesc, set to the string
"Example Transaction - 39 chars long...."). The following table is the second MESSAGE_PACKET

structure that the initiator creates.

Field Value Value Description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00002001 PARTNERTM_PROPAGATE_MTAG_PROPAGATE

dwcbVarLenData 0x00000040 64

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

guidTx

0x9fa8a337

0x4230eaf7

0x73b53292

0x7750d679

9fa8a337-eaf7-4230-9232-b57379d65077

isoLevel 0x00100000 ISOLATIONLEVEL_SERIALIZABLE

szDesc

0x6d617845

0x20656c70

0x6e617254

0x74636173

0x206e6f69

0x3933202d

0x61686320

0x6c207372

0x2e676e6f

0x002e2e2e

"Example Transaction - 39 chars long...."

To send these MESSAGE_PACKETs, the initiator wraps the two messages into a single boxcar, which
is in turn passed to the underlying MSDTC Connection Manager: OleTx Transports Protocol instance
as specified in sections 2.1.1.3 and 3.1.7.1.

%5bMS-CMPO%5d.pdf

30 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4.1.2 Creating a Boxcar

A boxcar always begins with a BOX_CAR_HEADER structure. The first two fields
(dwSeqNumThisCar and dwAckSeqNum) are reserved and are always set to zero. The third field

(dwcbTotal) contains the total number of bytes in the Boxcar (in this case, 0x00000080; 128
bytes.) The fourth field (dwcMessages) contains the total number of MESSAGE_PACKETs in the
BOX_CAR_HEADER (in this case, 2).

The rest of the boxcar contains an array of MESSAGE_PACKET structures. In this example, the two
MESSAGE_PACKET structures from section 4.1.1 are included in this boxcar. Note that individual
MESSAGE_PACKET structures are aligned to 8-byte boundaries, and that they are present in the
order that they are intended to be processed. The following is the final boxcar structure.

Field Value Value description

dwSeqNumThisCar 0x00000000 dwSeqNumThisCar: 0

dwAckSeqNum 0x00000000 dwAckSeqNum: 0

dwcbTotal 0x00000080 dwcbTotal: 128

dwcMessages 0x00000002 dwcMessages: 2

MsgTag 0x00000005 MTAG_CONNECTION_REQ

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00000101 CONNTYPE_PARTNERTM_PROPAGATE

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00002001 PARTNERTM_PROPAGATE_MTAG_PROPAGATE

dwcbVarLenData 0x00000040 64

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

guidTx

0x9fa8a337

0x4230eaf7

0x73b53292

0x7750d679

9fa8a337-eaf7-4230-9232-b57379d65077

isoLevel 0x00100000 ISOLATIONLEVEL_SERIALIZABLE

31 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Field Value Value description

szDesc

0x6d617845

0x20656c70

0x6e617254

0x74636173

0x206e6f69

0x3933202d

0x61686320

0x6c207372

0x2e676e6f

0x002e2e2e

0x00000000

"Example Transaction - 39 chars long...."

Padding

4.1.3 Sending the Boxcar Using the Underlying MSDTC Connection Manager:

OleTx Transports Protocol Session

Now that the boxcar has been constructed, the MSDTC Connection Manager: OleTx Multiplexing
Protocol provides the underlying MSDTC Connection Manager: OleTx Transports Protocol
implementation with the session on which to transmit the boxcar, the count of messages in the
boxcar, and the byte array that makes up the boxcar itself, as specified in [MS-CMPO] section
3.4.6.5. The MSDTC Connection Manager: OleTx Transports Protocol session will ensure that the

boxcar is delivered to the acceptor, which will parse it and process the messages it contains.

4.2 A Simple Connection Scenario

In this example, the initiator starts a connection and then, when all of the messages associated with
the connection are complete, the initiator disconnects the connection.

4.2.1 Initiating a Connection

Sending Messages shows how the initiator would create two MESSAGE_PACKET structures to

request a new connection with connection type 0x00000101 (CONNTYPE_PARTNERTM_PROPAGATE
as specified in [MS-DTCO]) and send the first message. In this scenario, after the first message is
sent, the connection type that the initiator has requested indicates that the initiator should wait for
some sort of response message. As this will be the first message that the initiator receives on the
connection, the initiator will also be informed that the connection request was denied.

4.2.1.1 Connection Denied

Assume for a moment that the acceptor denies the connection request, then the acceptor will create
a MESSAGE_PACKET with the MsgTag field set to MTAG_CONNECTION_REQ_DENIED
(0x00000003), and it will provide a reason for the rejection in the Reason field (for example,

%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf

32 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

E_ACCESSDENIED, or 0x80070005), which is appended to the end of the MESSAGE_PACKET. It will
set the dwConnectionId field to the connection identifier that the initiator requested

(0x00000001), and it will set the dwcbVarLenData field to four (the size of the Reason field that
follows). The dwUserMsgType field is set to zero, because this is a

MTAG_CONNECTION_REQ_DENIED message; likewise, the fIsMaster field is set to 0x00000000.
The acceptor will then drop all incoming messages with a dwConnectionId field set to 0x00000001
until it receives a disconnect request.

The MESSAGE_PACKET structure is as follows.

Field Value Description

MsgTag 0x00000003 MTAG_CONNECTION_REQ_DENIED

fIsMaster 0x00000000 0

dwConnectionId 0x00000001 1

dwUserMsgType 0x00000000 dwUserMsgType: 0

dwcbVarLenData 0x00000004 4

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

dwReason 0x80070005 E_ACCESSDENIED

4.2.1.2 Connection Accepted

If the acceptor accepts the connection request instead, then it does not send back a specific
message to that effect. Instead, the acceptor will move on to process the next message in the
boxcar. In this case, the next message is a user message and therefore, the higher-layer protocol
(in this case, MSDTC Connection Manager: OleTx Transaction Protocol) MUST be notified of the user

message by signaling the message received event with the message and the Connection object, as
specified in [MS-DTCO] section 3.1.8.4.

In this example, the higher-layer protocol will respond with another user message. The acceptor will
create a MESSAGE_PACKET structure with the MsgTag field set to MTAG_USER_MESSAGE
(0x00000FFF), and the dwUserMsgType field set to 0x00002002 (which is
PARTNERTM_PROPAGATE_MTAG_PROPAGATED, the message that MSDTC Connection Manager:
OleTx Transaction Protocol sends to indicate that the PARTNERTM_PROPAGATE_MTAG_PROPAGATED

message was processed successfully.) The message has no body, so the dwcbVarLenData field is
set to 0x00000000, and the message is being sent by the acceptor, so the fIsMaster field is set to
0x00000000. The message is being sent as a response on the connection that the initiator started,
so the dwConnectionId field is set to 0x00000001.

The response MESSAGE_PACKET ultimately looks like the following.

Field Value Description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

dwConnectionId 0x00000001 1

dwUserMsgType 0x00002002 PARTNERTM_PROPAGATE_MTAG_PROPAGATED

%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf

33 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Field Value Description

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

Regardless of whether the acceptor chooses to accept or reject the connection, the
MESSAGE_PACKET that the acceptor generates is packed into a boxcar (as described earlier) and it
is transmitted back to the initiator.

4.2.2 Disconnecting a Connection

The initiator is responsible for disconnecting the connection when the connection is complete, even if
the connection was denied by the acceptor.

The initiator begins the disconnect sequence for a connection by creating a MESSAGE_PACKET
structure with the MsgTag field set to MTAG_DISCONNECT (0x00000001), the dwConnectionId
field set to the identifier of the connection being disconnected (0x00000001), and the

dwUserMsgType field set to CONNTYPE_PARTNERTM_PROPAGATE (0x00000101).

The MESSAGE_PACKET structure is as follows.

Field Value Description

MsgTag 0x00000001 MTAG_DISCONNECT

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00000101 CONNTYPE_PARTNERTM_PROPAGATE

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

The initiator packages this MESSAGE_PACKET into a boxcar and sends it to the acceptor over the
underlying MSDTC Connection Manager: OleTx Transports Protocol session.

When the acceptor receives the disconnect request, the acceptor begins the process of cleaning up
any connection-specific resources. After this process is complete, the acceptor creates a
MESSAGE_PACKET structure with the MsgTag field set to MTAG_DISCONNECTED (0x00000002),

the dwConnectionId field set to the identifier of the connection that was just disconnected
(0x00000001), and the dwUserMsgType field set to zero (0x00000000). The complete
MESSAGE_PACKET structure is as follows:

Field Value Description

MsgTag 0x00000002 MTAG_DISCONNECTED

fIsMaster 0x00000000 0

dwConnectionId 0x00000001 1

dwUserMsgType 0x00000000 dwUserMsgType: 0

%5bMS-CMPO%5d.pdf

34 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Field Value Description

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

When the initiator receives the disconnected message, the initiator then cleans up any connection-
specific resources and reclaims the connection identifier for future use.

35 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

5 Security

5.1 Security Considerations for Implementers

This protocol has no additional security considerations beyond those discussed in [MS-CMPO],
section 5.1 Security Considerations for Implementers.

5.2 Index of Security Parameters

None.

%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf

36 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows NT® 4.0 operating system Option Pack for Windows NT® Server

Microsoft Windows® 2000 operating system

Windows® XP operating system

Windows Server® 2003 operating system

Windows Vista® operating system

Windows Server® 2008 operating system

Windows® 7 operating system

Windows Server® 2008 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 2.2.2: All versions of Windows set this field to a random 4-byte value.

37 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

7 Change Tracking

This section identifies changes that were made to the [MS-CMP] protocol document between the
January 2011 and February 2011 releases. Changes are classified as New, Major, Minor, Editorial, or
No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A document revision that incorporates changes to interoperability requirements or functionality.

An extensive rewrite, addition, or deletion of major portions of content.

The removal of a document from the documentation set.

Changes made for template compliance.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are

updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the language and formatting in the technical content was
changed. Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical or language changes were introduced.
The technical content of the document is identical to the last released version, but minor editorial
and formatting changes, as well as updates to the header and footer information, and to the revision

summary, may have been made.

Major and minor changes can be described further using the following change types:

New content added.

Content updated.

Content removed.

New product behavior note added.

Product behavior note updated.

Product behavior note removed.

New protocol syntax added.

Protocol syntax updated.

Protocol syntax removed.

New content added due to protocol revision.

Content updated due to protocol revision.

Content removed due to protocol revision.

New protocol syntax added due to protocol revision.

38 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Protocol syntax updated due to protocol revision.

Protocol syntax removed due to protocol revision.

New content added for template compliance.

Content updated for template compliance.

Content removed for template compliance.

Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please

contact protocol@microsoft.com.

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N) Change type

1.5

Prerequisites/Preconditions

60088

Updated the statement regarding the

relationship with [MS-CMPO].

Y Content

updated.

mailto:protocol@microsoft.com

39 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

8 Index

A

Abstract data model
Boxcar Object 19
Connection Object 19
overview 18

Applicability 9

B

BOX_CAR_HEADER packet 11
Boxcar

format 10
size limit 10
transmitting (section 2.1.1 10, section 2.1.1.3

10)
Boxcar Object - abstract data model 19

C

Capability negotiation 9
Change tracking 37
Connection

creating 21
disconnecting 22

Connection accepted example 32
Connection denied example 31
Connection Disconnected

events 26
Connection Object - abstract data model 19
Connection Request Denied

events 27

Connection scenario 31
Creating Boxcar example 30
Creating connections 21
Creating MESSAGE_PACKET example 28

D

Data model - abstract
Boxcar Object 19
Connection Object 19
overview 18

Details 18
Disconnecting connection accepted example 33
Disconnecting connections 22

E

Enqueuing messages 25
Events

Connection Disconnected 26
Connection Request Denied 27
Receiving a Message 26

Examples
connection accepted example 32
connection denied example 31
connection scenario 31

creating Boxcar example 30
creating MESSAGE_PACKET example 28
disconnecting connection example 33
initiating connection example 31
overview 28
sending Boxcar example 31
sending messages example 28

F

Fields - vendor-extensible 9

G

Glossary 6

H

Higher-layer triggered events 21

I

Idle Timer (section 3.1.2.1 20, section 3.1.6.1 25)
Implementer - security considerations 35
Index of security parameters 35
Informative references 6
Initialization 20

Initialization by a Higher-Layer Protocol 20
Initialization by the Protocol 20

Initialization by a Higher-Layer Protocol 20
Initialization by the Protocol 20
Initiating connection example 31
Introduction 6

L

Local events 25

M

Message processing 22
MESSAGE_PACKET packet 11
Messages

enqueuing 25
overview 10
sending 21
syntax 11
transmitting 10
transport 10

MTAG_CONNECTION_REQ (MsgTag 0x00000005)
24

MTAG_CONNECTION_REQ packet 16
MTAG_CONNECTION_REQ_DENIED (MsgTag

0x00000003) 24
MTAG_CONNECTION_REQ_DENIED packet 15
MTAG_DISCONNECT (MsgTag 0x00000001) 23
MTAG_DISCONNECT packet 14
MTAG_DISCONNECTED (MsgTag 0x00000002) 23

40 / 40

[MS-CMP] — v20110204
 MSDTC Connection Manager: OleTx Multiplexing Protocol Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

MTAG_DISCONNECTED packet 14
MTAG_PING (MsgTag 0x00000004) 24
MTAG_PING packet 15
MTAG_USER_MESSAGE (MsgTag 0x00000FFF) 25
MTAG_USER_MESSAGE packet 17

N

Normative references 6
Notify Higher-Layer of Incoming Message Events 26

O

Overview (synopsis) 7

P

Parameters - security index 35
Preconditions 9
Prerequisites 9
Product behavior 36

R

Receiving a Message
events 26

References
informative 6
normative 6

Relationship to other protocols 8

S

Security
implementer considerations 35
messages 11
parameter index 35

Sending Boxcar example 31
Sending messages 21
Sending messages example 28
Sequencing rules 22
Session down 26
Standards assignments 9
Syntax 11

T

Timer events 25
Timers 20
Tracking changes 37
Transmitting Boxcars 10
Transmitting messages 10
Transport 10
Triggered events - higher-layer 21

V

Vendor-extensible fields 9
Versioning 9

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.1.1 Transmitting Messages and Boxcars
	2.1.1.1 Boxcar Format
	2.1.1.2 Boxcar Size Limitations
	2.1.1.3 Transmitting Boxcars

	2.1.2 Security

	2.2 Message Syntax
	2.2.1 BOX_CAR_HEADER
	2.2.2 MESSAGE_PACKET
	2.2.3 MTAG_DISCONNECT
	2.2.4 MTAG_DISCONNECTED
	2.2.5 MTAG_CONNECTION_REQ_DENIED
	2.2.6 MTAG_PING
	2.2.7 MTAG_CONNECTION_REQ
	2.2.8 MTAG_USER_MESSAGE

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.1.1 Connection Object
	3.1.1.2 Boxcar Object

	3.1.2 Timers
	3.1.2.1 Idle Timer

	3.1.3 Initialization
	3.1.3.1 Initialization by a Higher-Layer Protocol
	3.1.3.2 Initialization by the Protocol

	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Send Message
	3.1.4.2 Create Connection
	3.1.4.3 Disconnect Connection

	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 MTAG_DISCONNECT (MsgTag 0x00000001)
	3.1.5.2 MTAG_DISCONNECTED (MsgTag 0x00000002)
	3.1.5.3 MTAG_CONNECTION_REQ_DENIED (MsgTag 0x00000003)
	3.1.5.4 MTAG_PING (MsgTag 0x00000004)
	3.1.5.5 MTAG_CONNECTION_REQ (MsgTag 0x00000005)
	3.1.5.6 MTAG_USER_MESSAGE (MsgTag 0x00000FFF)

	3.1.6 Timer Events
	3.1.6.1 Idle Timer

	3.1.7 Other Local Events
	3.1.7.1 Enqueuing a Message
	3.1.7.2 Session Down
	3.1.7.3 Allocate Incoming Connection Objects
	3.1.7.4 Notify Higher-Layer of Incoming Message Events
	3.1.7.4.1 Receiving a Message
	3.1.7.4.2 Connection Disconnected
	3.1.7.4.3 Connection Request Denied

	4 Protocol Examples
	4.1 Sending Messages
	4.1.1 Creating the MESSAGE_PACKETs
	4.1.2 Creating a Boxcar
	4.1.3 Sending the Boxcar Using the Underlying MSDTC Connection Manager: OleTx Transports Protocol Session

	4.2 A Simple Connection Scenario
	4.2.1 Initiating a Connection
	4.2.1.1 Connection Denied
	4.2.1.2 Connection Accepted

	4.2.2 Disconnecting a Connection

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

