

1 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

[MC-DRT]:
Distributed Routing Table (DRT)
Version 1.0 Specification

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft's Open Specification Promise (available here:

http://www.microsoft.com/interop/osp) or the Community Promise (available here:

http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if
the technologies described in the Open Specifications are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

2 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Revision Summary

Date

Revision

History

Revision

Class Comments

12/05/2008 0.1 Major Initial Availability

01/16/2009 1.0 Major Updated and revised the technical content.

02/27/2009 1.0.1 Editorial Revised and edited the technical content.

04/10/2009 1.0.2 Editorial Revised and edited the technical content.

05/22/2009 1.0.3 Editorial Revised and edited the technical content.

07/02/2009 2.0 Major Updated and revised the technical content.

08/14/2009 3.0 Major Updated and revised the technical content.

09/25/2009 3.1 Minor Updated the technical content.

11/06/2009 3.1.1 Editorial Revised and edited the technical content.

12/18/2009 3.1.2 Editorial Revised and edited the technical content.

01/29/2010 4.0 Major Updated and revised the technical content.

03/12/2010 4.0.1 Editorial Revised and edited the technical content.

04/23/2010 4.0.2 Editorial Revised and edited the technical content.

06/04/2010 5.0 Major Updated and revised the technical content.

07/16/2010 5.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/27/2010 6.0 Major Significantly changed the technical content.

10/08/2010 7.0 Major Significantly changed the technical content.

11/19/2010 8.0 Major Significantly changed the technical content.

01/07/2011 9.0 Major Significantly changed the technical content.

02/11/2011 10.0 Major Significantly changed the technical content.

3 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Contents

1 Introduction ... 6
1.1 Glossary ... 6
1.2 References .. 6

1.2.1 Normative References ... 6
1.2.2 Informative References ... 7

1.3 Overview .. 7
1.3.1 Identifiers ... 8
1.3.2 Security .. 8

1.3.2.1 Authenticated Key Security Mode .. 8
1.3.2.2 Membership Security Mode .. 8
1.3.2.3 Confidential Security Mode ... 8

1.3.3 Modularity ... 8
1.3.4 Clouds .. 9

1.3.4.1 Cloud Discovery ... 9
1.3.4.2 Joining a Cloud ... 9
1.3.4.3 Active Participation in the Cloud ... 9
1.3.4.4 Leaving a Cloud .. 10

1.4 Relationship to Other Protocols .. 10
1.5 Prerequisites/Preconditions ... 10
1.6 Applicability Statement ... 10
1.7 Versioning and Capability Negotiation ... 11
1.8 Vendor-Extensible Fields ... 11
1.9 Standards Assignments .. 11

2 Messages.. 12
2.1 Transport .. 12
2.2 Message Syntax .. 12

2.2.1 DRT Header ... 14
2.2.2 DRT Messages ... 15

2.2.2.1 SOLICIT .. 15
2.2.2.2 ADVERTISE .. 16
2.2.2.3 REQUEST ... 17
2.2.2.4 FLOOD .. 20
2.2.2.5 INQUIRE .. 22
2.2.2.6 AUTHORITY ... 25

2.2.2.6.1 AUTHORITY_BUFFER ... 26
2.2.2.7 ACK .. 29
2.2.2.8 LOOKUP .. 30

2.2.3 Data Structures.. 34
2.2.3.1 Security Profile Data Structures .. 34

2.2.3.1.1 Encoded CPA .. 34
2.2.3.1.2 Keytoken ... 35
2.2.3.1.3 Signature ... 35
2.2.3.1.4 Credential .. 35
2.2.3.1.5 Key Identifier .. 35
2.2.3.1.6 PAYLOAD ... 35
2.2.3.1.7 Encrypted Endpoint Array ... 35

2.2.3.2 DRT Data Structures ... 35
2.2.3.3 ROUTE_ENTRY ... 35
2.2.3.4 IPV6_ENDPOINT ... 36

4 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.3.5 IPV6_ENDPOINT_ARRAY .. 37
2.2.3.6 FIELD_ARRAY ... 37

3 Protocol Details .. 39
3.1 Resolver Details ... 39

3.1.1 Abstract Data Model ... 39
3.1.2 Timers .. 41
3.1.3 Initialization .. 41
3.1.4 Higher-Layer Triggered Events ... 41

3.1.4.1 Opening a Cloud ... 41
3.1.4.2 Discovering Other Nodes in a Cloud .. 42
3.1.4.3 Initiating a DRT Synchronization Conversation ... 42
3.1.4.4 Resolving a Key .. 42
3.1.4.5 Closing a Cloud .. 44

3.1.5 Message Processing Events and Sequencing Rules .. 44
3.1.5.1 Receiving a DRT Message .. 44
3.1.5.2 Receiving an ADVERTISE Message .. 44
3.1.5.3 Receiving an ACK Message... 45
3.1.5.4 Receiving a FLOOD Message .. 45
3.1.5.5 Receiving an AUTHORITY Message .. 45

3.1.5.5.1 Receiving an AUTHORITY_BUFFER ... 46
3.1.5.5.1.1 Receiving a Response to an INQUIRE ... 47
3.1.5.5.1.2 Completing a Route Entry Cache Addition ... 47

3.1.5.6 Receiving a New ROUTE_ENTRY ... 48
3.1.6 Timer Events ... 48

3.1.6.1 Maintenance Timer Expiry .. 48
3.1.6.2 Message Retransmission Timer Expiry ... 49

3.1.7 Other Local Events ... 49
3.1.7.1 Processing Address Change Notifications ... 49

3.2 Publisher Details .. 49
3.2.1 Abstract Data Model ... 49

3.2.1.1 Cache ... 50
3.2.2 Timers .. 50
3.2.3 Initialization .. 50
3.2.4 Higher-Layer Triggered Events ... 50

3.2.4.1 Registering a Key ... 50
3.2.4.2 Unregistering a Key .. 51

3.2.5 Message Processing Events and Sequencing Rules .. 51
3.2.5.1 Receiving a New ROUTE_ENTRY ... 51
3.2.5.2 Receiving a LOOKUP Message .. 52
3.2.5.3 Receiving a SOLICIT Message .. 52
3.2.5.4 Receiving a REQUEST Message ... 53
3.2.5.5 Receiving a FLOOD Message .. 53
3.2.5.6 Receiving an INQUIRE Message .. 53
3.2.5.7 Sending an AUTHORITY_BUFFER .. 54
3.2.5.8 Receiving an AUTHORITY Message .. 54

3.2.5.8.1 Receiving an AUTHORITY_BUFFER ... 55
3.2.6 Timer Events ... 55

3.2.6.1 Conversation Timer Expiry ... 55
3.2.6.2 Maintenance Timer Expiry .. 55

3.2.6.2.1 Detection of Cloud Splits .. 56
3.2.6.2.1.1 Cloud Size Estimation .. 56

3.2.6.3 Message Retransmission Timer Expiry ... 57

5 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.2.7 Other Local Events ... 57
3.2.7.1 Resolving a Key .. 57
3.2.7.2 Processing Address Change Notifications ... 57

4 Protocol Examples .. 58
4.1 Resolving a Key ... 58

4.1.1 Opening a Cloud... 58
4.1.2 Cache Synchronization .. 58
4.1.3 Key Resolution ... 60

4.2 Registering a Key .. 62
4.3 Unregistering a Key ... 63
4.4 Flooding a New Leaf Set Member ... 63

5 Security .. 66
5.1 Security Considerations for Implementers ... 66
5.2 Index of Security Parameters .. 66

6 Appendix A: Product Behavior .. 67

7 Change Tracking... 68

8 Index ... 73

6 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1 Introduction

The Distributed Routing Table (DRT) protocol is used for resolving a key to a set of information,
such as IP addresses. This protocol is used to maintain a network of nodes (referred to as a cloud)
and to resolve keys to their endpoint information when requested by a node within the cloud.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

binary large object (BLOB)
nonce
Unicode

The following terms are specific to this document:

Certified Peer Address (CPA): A secured mapping of a key to a set of network endpoints and
an optional extended payload.

classifier: A Unicode string representation of a key.

cloud: A group of DRT nodes that communicate with each other to resolve keys into addresses
and retrieve the payload data associated with those keys.

endpoint: A tuple (composed of an IP address, port, and protocol number) that uniquely
identifies a communication endpoint.

network endpoint: A tuple (composed of an Ipv6 address and port) that uniquely identifies a
protocol communication endpoint.

extended payload: An arbitrary blob of data associated with a key and published by an
application.

key: A 256-bit unsigned integer used internally by DRT to identify a resource.

leaf set: A set of keys numerically close to a node's own key, consisting of the five numerically
closest keys that are less than the node's own key and the five numerically closest keys
that are greater than the node's own key.

node: An instance of DRT running on a machine.

MUST, MAY, SHOULD, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
specified in [RFC2119]. All statements about optional behavior use MAY, SHOULD, or SHOULD
NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624

7 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

[IANAPORT] Internet Assigned Numbers Authority, "Port Numbers", November 2006,
http://www.iana.org/assignments/port-numbers

[IANA-PROTO-NUM] Internet Assigned Numbers Authority, "Protocol Numbers", February 2007,
http://www.iana.org/assignments/protocol-numbers

[MC-DKSP] Microsoft Corporation, "Distributed Routing Table Derived Key Security Profile",
December 2008.

[MS-PNRP] Microsoft Corporation, "Peer Name Resolution Protocol (PNRP) Version 4.0 Specification",
July 2007.

[RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980,
http://www.ietf.org/rfc/rfc768.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

[RFC3174] Eastlake III, D., and Jones, P., "US Secure Hash Algorithm 1 (SHA1)", RFC 3174,

September 2001, http://www.ietf.org/rfc/rfc3174.txt

[RFC3484] Draves, R., "Default Address Selection for Internet Protocol version 6 (IPv6)", RFC 3484,
February 2003, http://www.ietf.org/rfc/rfc3484.txt

[RFC4007] Deering, S., Haberman, B., Jinmei, T., et al., "IPv6 Scoped Address Architecture", RFC

4007, March 2005, http://www.ietf.org/rfc/rfc4007.txt

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary", March 2007.

[PAST] Castro, M., Druschel, P., Hu, Y.C., and Rowstron, A., "Proximity Neighbor Selection in Tree-
based Structured Peer-to-Peer Overlays", 2003, http://research.microsoft.com/~antr/PAST/location-
msrtr-2003-52.pdf

1.3 Overview

The Distributed Routing Table (DRT) Protocol uses messages to maintain a cloud of peer nodes, to
maintain a distributed cache of network endpoint information, and to transfer requests for key
resolutions between nodes. Together these messages allow applications to use registered keys to
obtain corresponding endpoint information such as IP addresses and ports.

The DRT Protocol does not provide any mechanism for browsing keys; they must be distributed by

other means.

There are two primary roles in a DRT:

Resolver: A node seeking to obtain endpoint information for a given key by sending (and, when
appropriate, resending) resolution requests to other nodes within a cloud.

Publisher: A node that provides endpoint information to a Resolver.

The DRT Protocol registration and resolution mechanism does not rely on the existence of servers,

except possibly during initialization.

http://go.microsoft.com/fwlink/?LinkId=89888
http://go.microsoft.com/fwlink/?LinkId=89889
%5bMC-DKSP%5d.pdf
%5bMS-PNRP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90490
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90408
http://go.microsoft.com/fwlink/?LinkId=90424
http://go.microsoft.com/fwlink/?LinkId=90454
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90243
http://go.microsoft.com/fwlink/?LinkId=90243

8 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1.3.1 Identifiers

The DRT Protocol defines a 256-bit numberspace for DRT keys and uses DRT keys to refer to
resources within the cloud.

1.3.2 Security

The DRT protocol can execute in three security modes:

Authenticated Key Security Mode

Membership Security Mode

Confidential Security Mode

1.3.2.1 Authenticated Key Security Mode

Nodes are required to authenticate keys by providing Certified Peer Addresses to peers.

A Certified Peer Address (CPA) is a binary large object (BLOB) that provides authentication
protection for a DRT Key, and contains application endpoint information such as addresses, protocol
numbers, and port numbers.

1.3.2.2 Membership Security Mode

In membership security mode, nodes are required to authenticate themselves when searching for
keys. Unauthorized nodes cannot search for keys or retrieve the endpoint information associated
with a key.

1.3.2.3 Confidential Security Mode

In confidential security mode, endpoint information is encrypted when transmitted between peers.
Unauthorized nodes cannot obtain endpoint information published in the DRT by intercepting
network communication between authorized DRT participants.

1.3.3 Modularity

The Distributed Routing Table Protocol is a generalization of the Peer Name Resolution Protocol [MS-
PNRP]. [MS-PNRP] is a distributed name resolution protocol, where names optionally contain some

cryptographic information and are translated into keys before the name resolution process begins.
The DRT protocol leaves it to the upper layer application to determine the meaning of keys, the
mechanism by which keys are authenticated and how communication is secured between nodes.

The upper-layer application defines the binary format of several structures carried in DRT messages.
These structures are used to protect the integrity of DRT messages, authenticate published keys,
authenticate searching nodes, and encrypt certain structures in DRT messages. The DRT protocol
calls upon the upper-layer application to complete these structures when sending certain DRT

messages and to validate these structures when receiving certain DRT messages. The DRT protocol
also calls upon the upper-layer application to encrypt and decrypt certain structures in DRT

messages. Section 2 identifies which messages and which structures are completed or encrypted by
the upper-layer application.

Together, the definitions of the binary formats of these structures and the encryption scheme
chosen by the upper-layer application form a DRT security profile. All nodes participating in a cloud

are expected to use the same security profile.

%5bMS-GLOS%5d.pdf
%5bMS-PNRP%5d.pdf
%5bMS-PNRP%5d.pdf

9 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

[MS-PNRP] defines a fixed procedure by which nodes discover peers and bootstrap into the system.
The DRT protocol relies on the upper-layer application to select for it a mechanism for discovering

peers when bootstrapping and providing endpoint information about these peers to the protocol. A
mechanism by which nodes discover peers and bootstrap is known as a bootstrap profile.

1.3.4 Clouds

A cloud is a group of nodes that can communicate with each other to resolve DRT keys into
addresses. Each node participates in one and only one cloud; it maintains a cache of DRT key-to-
endpoint mappings (called "route entries") that allow it to communicate with other members of the
cloud. A node is required to cache its "Leaf Set" (the five DRT keys on each side that are numerically
closest to each of its own DRT keys). Messages are exchanged between nodes to distribute

information about DRT keys. For purposes of determining numerical closeness, the DRT key
numbering space is considered to be circular (for example, 2256-1 is adjacent to 0 in a numberspace
of size 2256).

Participation in clouds involves a number of distinct steps:

Cloud discovery

Joining a cloud

Active participation in the cloud

Leaving a cloud

Each step is discussed in the following sections.

1.3.4.1 Cloud Discovery

Cloud discovery is the process by which a node outside the cloud finds an existing node within the
cloud. It is the responsibility of the upper-layer application to discover existing nodes in a DRT cloud
and provide the endpoints of these nodes to the DRT protocol.

1.3.4.2 Joining a Cloud

The joining node then engages in a "synchronization conversation" with the existing node to obtain
an initial set of DRT cache entries. The existing node provides the joining node with a selection of

entries from its cache, as specified in section 3.2.5.3. On completion of the synchronization, the
joining node may access the cloud, and it has enough information to publish and resolve of DRT
keys.

The act of cloud discovery and joining a cloud is known as bootstrapping.

1.3.4.3 Active Participation in the Cloud

After a DRT node is fully initialized, it has the ability to initiate searches for keys. Messages are sent

towards the target key to locate nodes that satisfy the search criteria.

The Resolver picks the node in its cache with the key numerically closest to the target key and then

asks that node for an entry numerically closer to the target key, excluding any it consulted
previously. As it recognizes nodes numerically closer, it will add them to its own cache and then ask
those nodes for even closer nodes.

The resolution continues until it reaches a node with a key satisfying the search criteria of the

upper-layer application. An application may initiate several different types of searches. It may

10 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

accept only nodes publishing keys that match the target exactly, it may accept nodes publishing
keys falling within a range, or it may accept the node publishing the key that is numerically closest

to the target.

After a publisher is reached, its CPA and an authentication token are returned to the original

Resolver. The CPA signature and authentication token are then validated.

In addition, a DRT node can optionally participate in the following set of activities. Nodes that do not
participate in these activities are known as "resolve-only" nodes.

Register and un-register keys. When a key is registered, the DRT node creates a CPA and enters the
CPA and key into a table of locally registered keys. A key resolution is initiated for (published key +
1) to find the closest match. This request is processed by a number of nodes with keys very similar
to the registered key. Each recipient that finds that the new key falls within its own leaf set adds

the entry for the new key to its cache. When the resolve is complete, the registering node will find
an existing node that is numerically close to the registered key. From that node, it can get the
entries for the five numerically closest keys on either side of the new key (for example, the leaf set
for that key).

When a key is unregistered, a Revoke CPA is sent to two entries from the leaf set of the key being
unregistered. One entry is the numerically closest key greater than the local key, and the other one

is the numerically closest key less than the local key. Each recipient checks its cache to see if an
entry exists for the key. If one is found, the recipient removes it from its cache. If the entry is in a
leaf set of a locally registered key, the node sends the Revoke CPA message on two other members
of its leaf set.

Participate in key resolutions by other nodes. A node will, upon request, compare a target key with
entries in its cache to find the entry that is numerically closer to the requested key than any the
Resolver has previously used. It then sends a response to the requester with the associated

addresses.

Honor cache synchronization requests. Each node responds to requests for cache entries by new
nodes joining the cloud, as described in section 1.3.4.2.

Test for cloud splits. Each node occasionally tests for splits in the cloud to ensure that it has not
become isolated from the cloud.

1.3.4.4 Leaving a Cloud

To leave the cloud, the node unregisters all registered keys and terminates.

1.4 Relationship to Other Protocols

The DRT Protocol uses UDP [RFC768] over IPv6 as a transport.

1.5 Prerequisites/Preconditions

None.

1.6 Applicability Statement

The DRT Protocol is only suitable for publishing a limited amount of information about a resource
and only when the information to be published is independent of which node requests the
information.

http://go.microsoft.com/fwlink/?LinkId=90490

11 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1.7 Versioning and Capability Negotiation

The DRT Protocol has no version-negotiation or capability-negotiation behavior. All nodes that
participate in a cloud are expected to be configured to use the same security mode and to use

common security and bootstrap profiles. DRT messages do, however, include version numbers. For
more information, see section 2.2.1.

1.8 Vendor-Extensible Fields

Application developers can define the structures and encryption schemes defined in the security
profile, and they can define their own bootstrap profiles.

1.9 Standards Assignments

None.

12 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2 Messages

2.1 Transport

DRT messages MUST be transported over the User Datagram Protocol (UDP), as specified in
[RFC768]. A node MUST use a UDP port greater than or equal to 1024 [RFC768]. There is no
requirement that two DRT nodes use the same port number because the port number is dynamically
discovered.

2.2 Message Syntax

DRT messages are designed for future extensibility such that each message element (for example, a
field or set of fields) of each message is self-describing. As a result, the messages defined in this
section have a number of FieldID and Length pairs that occur throughout the messages. Although
each field is specified in the individual messages, it is helpful to explain the convention used.

The pattern used looks similar to the following.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

FieldID Length

Field Data (variable)

...

FieldID (2 bytes): Constant indicating the kind of field.

Value Meaning

DRT_HEADER

0x0010

Part of a DRT Header.

DRT_HEADER_ACKED

0x0018

An Acked MessageID follows.

DRT_ID

0x0030

A DRT ID follows.

TARGET_DRT_ID

0x0038

A Target DRT ID follows.

VALIDATE_DRT_ID

0x0039

A Validate DRT ID follows.

FLAGS_FIELD

0x0040

A flags field follows. The meaning of the individual flags is

message-specific.

FLOOD_CONTROLS

0x0043

Flood criteria follows.

SOLICIT_CONTROLS

0x0044

Solicit criteria follows.

http://go.microsoft.com/fwlink/?LinkId=90490
http://go.microsoft.com/fwlink/?LinkId=90490

13 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

LOOKUP_CONTROLS

0x0045

Lookup criteria follows.

EXTENDED_PAYLOAD

0x005A

Extended payload follows.

DRT_ID_ARRAY

0x0060

An array of DRT IDs follows.

CREDENTIAL

0x0080

A Credential follows.

WCHAR

0x0084

A Unicode character follows.

CLASSIFIER

0x0085

A classifier string follows.

HASHED_NONCE

0x0092

A hashed nonce follows.

NONCE

0x0093

A nonce follows.

SPLIT_CONTROLS

0x0098

Buffer fragmentation information follows.

ROUTING_ENTRY

0x009A

A ROUTE_ENTRY follows.

VALIDATE_CPA

0x009B

An Encoded CPA structure follows, containing a CPA to validate.

REVOKE_CPA

0x009C

An Encoded CPA structure follows, containing a CPA to revoke.

IPV6_ENDPOINT

0x009D

An IPV6_ENDPOINT structure follows.

IPV6_ENDPOINT_ARRAY

0x009E

An array of IPV6_ENDPOINT structures follows.

KEYTOKEN

0x009F

A Keytoken structure follows.

ENCRYPTED_ENDPOINT_ARRAY

0x00A0

An encrypted IPV6_ENDPOINT_ARRAY field.

ENCRYPTED_ROUTING_ENTRY

0x00A1

An encrypted ROUTE_ENTRY field.

ENCRYPTED_CPA

0x00A2

An encrypted VALIDATE_CPA field.

ENCRYPTED_CLASSIFIER

0x00A3

An encrypted CLASSIFIER field.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

14 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

ENCRYPTED_PAYLOAD

0x00A4

An encrypted EXTENDED_PAYLOAD field.

SIGNATURE

0x00A5

A signature.

KEY_IDENTIFIER

0x00A6

Used to identify which key is used to generate the KEYTOKEN.

Length (2 bytes): The length, in bytes, of the Field Data field.

Field Data (variable): Data comprising the body of this field. This data MUST be present if
Length is set to a number greater than zero.

The FieldID fields in each message defined by DRT always start on a 4-byte boundary from the
beginning of the DRT message. Padding fields will be included in a message to ensure this.

Unless otherwise specified, all 2-byte and 4-byte integer fields are defined in network byte order.

2.2.1 DRT Header

All DRT Messages use the following common header.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

FieldID Length

Identifier VersionMajor VersionMinor MessageType

MessageID

FieldID (2 bytes): The type of message. It MUST be set to 0x0010 (DRT_HEADER).

Length (2 bytes): The length, in bytes, of the DRT Header. It MUST be set to 0x000C.

Identifier (1 byte): MUST be set to 0x51.

VersionMajor (1 byte): The major version of protocol, which is defined by the higher-layer
application.

VersionMinor (1 byte): The minor version of protocol, which is defined by the higher-layer
application.

MessageType (1 byte): The type of message following the DRT Header. It MUST be one of the
following:

Value Meaning

0x01 SOLICIT

0x02 ADVERTISE

15 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

0x03 REQUEST

0x04 FLOOD

0x07 INQUIRE

0x08 AUTHORITY

0x09 ACK

0x0B LOOKUP

MessageID (4 bytes): A random number message identifier used for acknowledgment
tracking. This number is generated by the protocol; the algorithm used to generate the
MessageID MUST minimize the probability of duplicate MessageIDs within a window of time at

least as large as the round-trip latency of a protocol message.

2.2.2 DRT Messages

2.2.2.1 SOLICIT

The SOLICIT message is sent by a Resolver to a Publisher so that it can request a list of keys in a
cloud.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

FieldID1 (optional) Length1 (optional)

RouteEntry (variable)

...

Padding1 (variable)

...

FieldID2 Length2

HashedNonce

...

...

...

...

16 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

FieldID1 (2 bytes): If present, MUST be set to 0x009A (ROUTING_ENTRY). Note that a
receiver can tell whether this field is present or absent based on the value at this location.

This field MUST NOT be present if the node has no locally registered key.

Length1 (2 bytes): MUST be present if and only if FieldID1 is present. If present, this field

MUST be set to the size, in bytes, of the RouteEntry field, plus 4.

RouteEntry (variable): Optional. The route entry for a locally registered key on the node
sending the SOLICIT message. This field MUST be present if and only if FieldID1 is present.

Padding1 (variable): Optional. A number of bytes between 0 and 3, such that the offset from
the start of the message to the end of this field is a multiple of 4. It MUST be present if and
only if FieldID1 is present. This field MUST be set to zero and ignored on receipt.

FieldID2 (2 bytes): MUST be set to 0x0092 (HASHED_NONCE).

Length2 (2 bytes): MUST be set to 0x0018.

HashedNonce (20 bytes): A 20-byte hash of the nonce value for the conversation.

2.2.2.2 ADVERTISE

The ADVERTISE message is sent by a Publisher to a Resolver in response to a SOLICIT message so
that it can provide a list of keys in the cloud.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

FieldID1 Length1

Acked MessageID

FieldID2 Length2

NumEntries ArrayLength

ElementFieldType EntryLength

IDList (variable)

...

FieldID3 Length3

HashedNonce

...

...

...

17 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

...

FieldID1 (2 bytes): MUST be set to 0x0018 (DRT_HEADER_ACKED).

Length1 (2 bytes): MUST be set to 0x0008.

Acked MessageID (4 bytes): The value of the MessageID field in the DRT Header of the
SOLICIT message to which this is a response.

FieldID2 (2 bytes): MUST be set to 0x0060 (DRT_ID_ARRAY).

Length2 (2 bytes): MUST be set to 12+(NumEntries*EntryLength).

NumEntries (2 bytes): The number of keys in the IDList field. This field MUST be in the range
0x0000 to 0x7FFF.

ArrayLength (2 bytes): The length of the entries in the array. This field MUST be set to
8+(NumEntries*EntryLength).

ElementFieldType (2 bytes): The type of entries in the array. This field MUST be set to
0x0030 (DRT_ID).

EntryLength (2 bytes): The length, in bytes, of each array element. This field MUST be set to

0x20 (32 bytes).

IDList (variable): A set of 32-byte keys.

FieldID3 (2 bytes): MUST be set to 0x0092 (HASHED_NONCE).

Length3 (2 bytes): MUST be set to 0x0018.

HashedNonce (20 bytes): The value of the HashedNonce field in the SOLICIT message to
which this is a response.

2.2.2.3 REQUEST

The REQUEST message is sent by a Resolver to a Publisher so that it can request a route entry for a
given key in the Publisher's cache, as seen in an ADVERTISE message.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

FieldID1 Length1

Reserved

FieldID2 Length2

Size Offset

FieldID3 Length3

Nonce

18 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

...

...

...

FieldID4 Length4

NumEntries ArrayLength

ElementFieldType EntryLength

IDList (variable)

...

FieldID5 (optional) Length5 (optional)

Credential (variable)

...

FieldID6 (optional) Length6 (optional)

Signature (variable)

...

FieldID7 (optional) Length7 (optional)

KeyIdentifier (variable)

...

FieldID1 (2 bytes): If present, this field MUST be set to 0x0040 (FLAGS_FIELD). MUST be
present if and only if the protocol is executing in membership or confidential security mode.

Length1 (2 bytes): If present, this field MUST be set to 0x0006. MUST be present if and only if
FieldID1 is present.

Reserved (4 bytes): If present, this field MUST be set to zero and ignored on receipt. MUST be
present if and only if FieldID1 is present.

FieldID2 (2 bytes): MUST be set to 0x0098 (SPLIT_CONTROLS). MUST be present if and only
if the protocol is executing in membership or confidential security mode.

Length2 (2 bytes): MUST be set to 0x0008. MUST be present if and only if FieldID2 is
present.

19 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Size (2 bytes): Size, in bytes, of the remainder of the message, starting from FieldID3
(inclusive). This field MUST NOT be greater than 0x91E4 (37348), which is large enough to

hold a Certificate Chain and a maximum-sized extended payload. MUST be present if and only
if FieldID2 is present.

Offset (2 bytes): Byte offset, in network byte order, of the message fragment in the original
message. It MUST be a multiple of 1188. MUST be present if and only if FieldID2 is present.

FieldID3 (2 bytes): MUST be set to 0x0093 (NONCE).

Length3 (2 bytes): MUST be set to 0x0014 (20 bytes).

Nonce (16 bytes): The nonce for the conversation.

FieldID4 (2 bytes): MUST be set to 0x0060 (DRT_ID_ARRAY).

Length4 (2 bytes): MUST be set to 12+(NumEntries*EntryLength).

NumEntries (2 bytes): The number of keys in the IDList field. This field MUST be in the range

0x0000 to 0x7FFF.

ArrayLength (2 bytes): The length of the array of entries. This field MUST be set to
8+(NumEntries*EntryLength).

ElementFieldType (2 bytes): The type of entries in the array. This field MUST be set to
0x0030 (DRT_ID).

EntryLength (2 bytes): The length, in bytes, of each array element. This field MUST be set to
0x20 (32 bytes).

IDList (variable): A set of 32-byte keys.

FieldID5 (2 bytes): Optional. MUST be set to 0x0080 (CREDENTIAL). MUST be present if and
only if the protocol is executing in membership or confidential security mode.

Length5 (2 bytes): Optional. MUST be present if and only if FieldID5 is present. If present, it
MUST be set to 4 plus the length in bytes of the Credential field.

Credential (variable): Optional. MUST be present if and only if FieldID5 is present. Contains a
Credential structure defined in the security profile and provided by the upper-layer application.

FieldID6 (2 bytes): Optional. MUST be set to 0x00A5 (SIGNATURE). MUST be present if and
only if the protocol is executing in membership or confidential security mode.

Length6 (2 bytes): Optional. MUST be present if and only if FieldID6 is present. If present, it
MUST be set to 4 plus the length in bytes of the Signature field.

Signature (variable): Optional. MUST be present if and only if FieldID6 is present. Contains a

Signature structure defined in the security profile and provided by the upper-layer application.
The signature is calculated over the IDList field.

FieldID7 (2 bytes): Optional. MUST be set to 0x00A6 (KEY_IDENTIFIER). MUST be present if
and only if the protocol is executing in membership or confidential security mode.

Length7 (2 bytes): Optional. MUST be present if and only if FieldID7 is present. If present, it
MUST be set to 4 plus the length in bytes of the KeyIdentifier field.

20 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

KeyIdentifier (variable): Optional. MUST be present if and only if FieldID7 is present.
Contains a Key Identifier structure defined in the security profile and provided by the upper-

layer application. This field is used to indicate which portion of the Credential field is used to
generate the Signature field.

2.2.2.4 FLOOD

The FLOOD message is sent by a Publisher to a Resolver in response to a REQUEST message so that
it can provide a route entry or to revoke a CPA.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

FieldID1 Length1

Reserved1 D Reserved2 Padding1

FieldID2 Length2

Validate Key

...

...

...

...

...

...

...

FieldID3 (optional) Length3 (optional)

Keytoken (variable)

...

Padding3 (variable)

...

FieldID4 (optional) Length4 (optional)

Revoke CPA (variable)

21 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

...

Padding4 (variable)

...

FieldID5 (optional) Length5 (optional)

Route Entry (variable)

...

Padding5 (variable)

...

FieldID6 (optional) Length6 (optional)

Flooded List (variable)

...

FieldID1 (2 bytes): MUST be set to 0x0043 (FLOOD_CONTROLS).

Length1 (2 bytes): MUST be set to 0x0007.

Reserved1 (15 bits): MUST be set to zero and ignored on receipt.

D (1 bit): If set, indicates that the sender does not require the receiver to send an ACK

message.

If not set, indicates that the sender requires the receiver to send an ACK message.

Reserved2 (1 byte): MUST be set to zero and ignored on receipt.

Padding1 (1 byte): MUST be set to zero and ignored on receipt.

FieldID2 (2 bytes): MUST be set to 0x0039 (VALIDATE_DRT_ID).

Length2 (2 bytes): MUST be set to 0x0024.

Validate Key (32 bytes): MUST contain a key that the searching node recognizes as published
by the destination node.

FieldID3 (2 bytes): If present, MUST be set to 0x009F (KEYTOKEN). This field MUST be

present if and only if the protocol is executing in confidential security mode.

Length3 (2 bytes): If present, MUST be set to 4 plus the length in bytes of the Keytoken
field. This field MUST be present if and only if FieldID3 is present.

Keytoken (variable): Optional. Contains a Keytoken structure defined in the security profile
and provided by the upper-layer application. It is used by the recipient of the message to

22 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

decrypt the encrypted structures in this message. This field MUST be present if and only if
FieldID3 is present.

Padding3 (variable): Optional. A number of bytes between 0 and 3, such that the offset from
the start of the message to the end of this field is a multiple of 4. This field MUST be present if

and only if FieldID3 is present. This field MUST be set to zero and ignored on receipt.

FieldID4 (2 bytes): This field MUST be present if and only if the FLOOD message is sent in the
context of unregistering a key. If present, MUST be set to 0x009C (REVOKE_CPA), if and only
if the protocol is executing in resolve or membership security mode. This field MUST be set to
0x00A2 (Encrypted CPA), if and only if the protocol is executing in confidential security mode.

Length4 (2 bytes): MUST be present if and only if FieldID4 is present. If present, MUST be set
to 4 plus the length in bytes of the Revoke CPA field.

Revoke CPA (variable): Optional. This field MUST be present if and only if the FLOOD message
is sent in the context of unregistering a key. If present, an Encoded CPA structure that
contains the CPA to revoke. The Encoded CPA structure MUST be encrypted if and only if the

protocol is executing in confidential security mode.

Padding4 (variable): Optional. A number of bytes between 0 and 3, such that the offset from
the start of the message to the end of this field is a multiple of 4. This field MUST be present if

and only if FieldID4 is present. This field MUST be set to zero and ignored on receipt.

FieldID5 (2 bytes): If present, MUST be set to 0x009A (ROUTING_ENTRY). This field MUST be
present if the node is flooding a route entry to its neighbors. Note that a receiver can tell
whether this field is present or absent based on the value at this location.

Length5 (2 bytes): MUST be present if and only if FieldID5 is present. If present, this field
MUST be set to 4 plus the length in bytes of the Route Entry field.

Route Entry (variable): Optional. A ROUTE_ENTRY structure that contains an entry the source

node sends to the destination node. This field MUST be present if and only if FieldID5 is
present. The ROUTE_ENTRY structure MUST be encrypted if and only if the protocol is

executing in confidential security mode.

Padding5 (variable): Optional. A number of bytes between 0 and 3, such that the offset from
the start of the message to the end of this field is a multiple of 4. This field MUST be present if
and only if FieldID5 is present. This field MUST be set to zero and ignored on receipt.

FieldID6 (2 bytes): If Present, MUST be set to 0x00A0 (ENCRYPTED_ENDPOINT_ARRAY). This

field MUST be present if and only if the protocol is executing in confidential security mode.

Length6 (2 bytes): MUST be set to length in bytes of the Flooded List field. This field MUST
be present if and only if FieldID6 is present.

Flooded List (variable): Optional. MUST contain an IPV6_ENDPOINT_ARRAY structure. The
IPV6_ENDPOINT_ARRAY structure MUST be encrypted if and only if the protocol is executing
in confidential security mode.

2.2.2.5 INQUIRE

The INQUIRE message is sent by a Resolver to a Publisher so that it can obtain a CPA. Or, it can be
sent from one Publisher to another so that it can verify that it is still in the cloud.

23 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

FieldID1 Length1

Reserved1 A X C Reserved

2

Padding

FieldID2 Length2

Validate Key

...

...

...

...

...

...

...

FieldID3 (optional) Length3 (optional)

Nonce (optional)

...

...

...

FieldID4 (optional) Length4 (optional)

Credential (variable)

...

FieldID5 (optional) Length5 (optional)

Signature (variable)

24 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

...

FieldID6 (optional) Length6 (optional)

KeyIdentifier (variable)

...

FieldID1 (2 bytes): MUST be set to 0x0040 (FLAGS_FIELD).

Length1 (2 bytes): MUST be set to 0x0006.

Reserved1 (11 bits): MUST be set to zero and ignored on receipt.

A (1 bit): If set, the sender is requesting that a CPA appear in the AUTHORITY message
response. If unset, the sender is requesting that a CPA not appear in the AUTHORITY message

response. SHOULD always be set.

X (1 bit): If set, the sender is requesting that an EXTENDED_PAYLOAD message (if any
exists) appear in the AUTHORITY message response. If unset, the sender is requesting that an
EXTENDED_PAYLOAD not appear. SHOULD be set if the INQUIRE was generated as part of

an application-requested resolve.

C (1 bit): If set, the sender is requesting that a Certificate Chain (if any exists) appear in the
AUTHORITY message response. If unset, the sender is requesting that a Certificate Chain
not appear. SHOULD always be set.

Reserved2 (2 bits): MUST be set to zero and ignored on receipt.

Padding (2 bytes): MUST be set to zero and ignored on receipt.

FieldID2 (2 bytes): MUST be set to 0x0039 (VALIDATE_DRT_ID).

Length2 (2 bytes): MUST be set to 0x0024.

Validate Key (32 bytes): The key to validate.

FieldID3 (2 bytes): It MUST be present if and only if the A bit is set. If present, MUST be set
to 0x0093 (NONCE).

Length3 (2 bytes): This field MUST be present if and only if FieldID3 is present. If present,
this field MUST be set to 0x0014 (20 bytes).

Nonce (16 bytes): A nonce value that the sender copies into a CPA before it is signed in order

to prevent replay attacks. This field MUST be present if and only if FieldID3 is present.

FieldID4 (2 bytes): MUST be set to 0x0080 (CREDENTIAL). MUST be present if and only if the
protocol is executing in membership or confidential security mode.

Length4 (2 bytes): MUST be present if and only if FieldID4 is present. If present, it MUST be
set to 4 plus the length in bytes of the Credential field.

Credential (variable): MUST be present if and only if FieldID4 is present. Contains a Credential

structure defined in the security profile and provided by the upper-layer application.

25 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

FieldID5 (2 bytes): MUST be set to 0x00A5 (SIGNATURE). MUST be present if and only if the
protocol is executing in membership or confidential security mode.

Length5 (2 bytes): MUST be present if and only if FieldID5 is present. If present, it MUST be
set to 4 plus the length in bytes of the Signature field.

Signature (variable): MUST be present if and only if FieldID5 is present. Contains a Signature
structure defined in the security profile and provided by the upper-layer application. The
signature is calculated over the Validate Key field.

FieldID6 (2 bytes): MUST be set to 0x00A6 (KEY_IDENTIFIER). MUST be present if and only if
the protocol is executing in membership or confidential security mode.

Length6 (2 bytes): MUST be present if and only if FieldID6 is present. If present, it MUST be
set to 4 plus the length in bytes of the KeyIdentifier field.

KeyIdentifier (variable): MUST be present if and only if FieldID6 is present. Contains a Key
Identifier structure defined in the security profile and provided by the upper-layer application.
This field is used to indicate which portion of the Credential field was used to generate the

Signature field.

2.2.2.6 AUTHORITY

The AUTHORITY message is sent by a Publisher to a Resolver in response to an INQUIRE or LOOKUP
message.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

FieldID1 Length1

Acked MessageID

FieldID2 Length2

Size Offset

Buffer (variable)

...

FieldID1 (2 bytes): MUST be set to 0x0018 (DRT_HEADER_ACKED).

Length1 (2 bytes): MUST be set to 0x0008.

Acked MessageID (4 bytes): The value of the MessageID field in the DRT Header of the
message to which this is a response.

FieldID2 (2 bytes): MUST be set to 0x0098 (SPLIT_CONTROLS).

Length2 (2 bytes): MUST be set to 0x0008.

26 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Size (2 bytes): Size, in bytes, of the original AUTHORITY_BUFFER. This field MUST NOT be
greater than 0x91E4 (37348), which is large enough to hold a Certificate Chain and a

maximum-sized extended payload.

Offset (2 bytes): Byte offset, in network byte order, of the message fragment in the original

message. It MUST be a multiple of 1188.

Buffer (variable): The portion of an AUTHORITY_BUFFER starting at a byte offset specified in
Offset.

2.2.2.6.1 AUTHORITY_BUFFER

The AUTHORITY_BUFFER structure is contained within a logical message containing the CPA and
extended payload information associated with a Key. Parts of this logical message appear in

AUTHORITY messages.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

FieldID1 Length1

000000 L 00000 B 00 N Padding1

FieldID2 (optional) Length2 (optional)

Certificate Chain (variable)

...

Padding2 (variable)

...

FieldID3 (optional) Length3 (optional)

Keytoken (variable)

...

Padding3 (variable)

...

FieldID4 (optional) Length4 (optional)

Classifier (variable)

...

27 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Padding4 (variable)

...

FieldID5 (optional) Length5 (optional)

Extended Payload (variable)

...

Padding5 (variable)

...

FieldID6 (optional) Length6 (optional)

Route Entry (variable)

...

Padding6 (variable)

...

FieldID7 (optional) Length7 (optional)

CPA (variable)

...

FieldID1 (2 bytes): MUST be set to 0x0040 (FLAGS_FIELD).

Length1 (2 bytes): MUST be set to 0x0006.

000000 (6 bits): These bits are all reserved. MUST be set to zero when sent and MUST be
ignored on receipt.

L (1 bit): Leaf Set. If set, this flag indicates that the target Key is unknown to the sender, but it
is in the sender's Leaf Set if the target Key is known.

00000 (5 bits): These bits are all reserved. MUST be set to zero when sent and MUST be
ignored on receipt.

B (1 bit): Busy. If set, indicates that the sender is too busy to handle a LOOKUP message
request.

00 (2 bits): These bits are all reserved. MUST be set to zero when sent and MUST be ignored
on receipt.

28 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

N (1 bit): Not Found. If set, indicates that the requested Validate Key in the LOOKUP or
INQUIRE message is not known to the sender.

Padding1 (2 bytes): MUST be set to zero when sent, and MUST be ignored on receipt.

FieldID2 (2 bytes): If present, MUST be set to 0x0080 (CREDENTIAL). Note that a receiver can

tell whether this field is present or absent, based on the value at this location.

Length2 (2 bytes): MUST be present if and only if FieldID2 is present. If present, it MUST be
set to 4 plus the length in bytes of the Certificate Chain field.

Certificate Chain (variable): A Certificate Chain containing the public key used to sign the
CPA and its Certificate Chain. MUST be present if and only if FieldID2 is present.

Padding2 (variable): A number of bytes between 0 and 3, such that the offset from the start
of the message to the end of this field is a multiple of 4. MUST be present if and only if

FieldID2 is present. MUST be set to zero when sent, and MUST be ignored on receipt.

FieldID3 (2 bytes): If present, MUST be set to 0x009F (KEYTOKEN). This field MUST be

present if and only if the protocol is executing in confidential security mode.

Length3 (2 bytes): If present, MUST be set to 4 plus the length in bytes of the Keytoken field.
This field MUST be present if and only if FieldID3 is present.

Keytoken (variable): Contains a Keytoken structure defined in the security profile and

provided by the upper-layer application. It is used by the recipient of the message to decrypt
the encrypted structures in this message. This field MUST be present if and only if FieldID3 is
present.

Padding3 (variable): A number of bytes between 0 and 3, such that the offset from the start
of the message to the end of this field is a multiple of 4. This field MUST be present if and only
if FieldID3 is present. This field MUST be set to zero and ignored on receipt.

FieldID4 (2 bytes): If present, MUST be set to 0x0085 (CLASSIFIER) if and only if the protocol

is not executing in confidential security mode. If present, MUST be set to 0x00A3

(ENCRYPTED_CLASSIFIER) if and only if the protocol is executing in confidential security
mode.

Length4 (2 bytes): MUST be present if and only if FieldID4 is present. If present, MUST be
set to 4 plus the length, in bytes, of the Classifier field.

Classifier (variable): MUST contain a FIELD_ARRAY of WCHAR elements representing the
classifier string if and only if FieldID4 is set to 0x0085 (CLASSIFIER). It MUST contain an

array of bytes if FieldId4 is set to 0x00A3 (ENCRYPTED_CLASSIFIER). It MUST NOT be present
if FieldID4 is not present.

Padding4 (variable): A number of bytes between 0 and 3, such that the offset from the start
of the message to the end of this field is a multiple of 4. MUST be present if and only if
FieldID4 is present. MUST be set to zero when sent, and MUST be ignored on receipt.

FieldID5 (2 bytes): If present, MUST be set to 0x005A (EXTENDED_PAYLOAD) if and only if

the protocol is NOT executing in confidential security mode. If present, MUST be set to
0x00A4 (ENCRYPTED_PAYLOAD) if and only if the protocol is executing in confidential security
mode. Note that a receiver can determine whether this field is present or absent, based on the
value at this location. This field is present if the X flag is set in the INQUIRE message in
response to which this AUTHORITY is generated.

29 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Length5 (2 bytes): MUST be present if and only if FieldID5 is present. If present, MUST be
set to 4 plus the length, in bytes, of the Extended Payload field.

Extended Payload (variable): An EXTENDED_PAYLOAD structure. MUST be present if and only
if FieldID5 is present. The Extended Payload structure MUST be encrypted if and only if the

protocol is executing in confidential security mode.

Padding5 (variable): A number of bytes between 0 and 3, such that the offset from the start
of the message to the end of this field is a multiple of 4. MUST be present if and only if
FieldID5 is present. MUST be set to zero when sent, and MUST be ignored on receipt.

FieldID6 (2 bytes): If present, MUST be set to 0x009A (ROUTING_ENTRY) if and only if the
protocol is NOT executing in confidential security mode. If present, MUST be set to 0x00A1
(ENCRYPTED_ROUTING_ENTRY) if and only if the protocol is executing in confidential security

mode. Note that a receiver can tell whether this field is present or absent, based on the value
at this location. This field is present if the sender is responding to a lookup with a next hop
routing entry.

Length6 (2 bytes): MUST be present if and only if FieldID6 is present. If present, MUST be
set to 4 plus the length, in bytes, of the Route Entry field.

Route Entry (variable): A ROUTE_ENTRY structure. MUST be present if and only if FieldID6 is

present. For a response to a LOOKUP message, this MUST be the route entry that is the
closest to the target key in the LOOKUP message, as seen by the remote node. The
ROUTE_ENTRY structure MUST be encrypted if and only if the protocol is executing in
confidential security mode.

Padding6 (variable): A number of bytes between 0 and 3, such that the offset from the start
of the message to the end of this field is a multiple of 4. MUST be present if and only if
FieldID6 is present. MUST be set to zero when sent, and MUST be ignored on receipt.

FieldID7 (2 bytes): If present, MUST be set to 0x009B (VALIDATE_CPA) if and only if the
protocol is NOT executing in confidential security mode. If present, MUST be set to 0x00A2
(ENCRYPTED_CPA) if and only if the protocol is executing in confidential security mode. Note

that a receiver can tell whether this field is present or absent, based on the value at this
location.

Length7 (2 bytes): MUST be present if and only if FieldID7 is present. If present, it MUST be
set to 4 plus the length, in bytes, of the CPA field.

CPA (variable): An Encoded CPA structure. The Encoded CPA structure MUST be encrypted if
and only if the protocol is executing in confidential security mode.

2.2.2.7 ACK

The ACK message is sent from one node to another to acknowledge receipt of a REQUEST or FLOOD
message.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

FieldID1 Length1

Acked MessageID

30 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

FieldID2 (optional) Length2 (optional)

Reserved (optional) N

(optiona

l)

FieldID1 (2 bytes): MUST be set to 0x0018 (DRT_HEADER_ACKED).

Length1 (2 bytes): MUST be set to 0x0008.

Acked MessageID (4 bytes): The value of the MessageID field in the DRT Header of the
message to which this is a response.

FieldID2 (2 bytes): MUST be present if and only if the N flag is set. If present, this field MUST

be set to 0x0040 (FLAGS_FIELD).

Length2 (2 bytes):): MUST be present if and only if FieldID2 is present. If present, this field

MUST be set to 0x0006.

Reserved (15 bits): MUST be present if and only if the N flag is set. If present, this field MUST
be set to zero and ignored on receipt.

N (1 bit): Not Found. MUST be present in response to a FLOOD message if and only if there is
no key registered on the sender that corresponds to the Validate Key field in the FLOOD

message to which this ACK message is a response.

2.2.2.8 LOOKUP

The LOOKUP message is sent by a Resolver to a Publisher to resolve a key.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

FieldID1 Length1

Reserved1 A 0 Precision

ResolveCriteria ResolveReasonCode Reserved2

FieldID2 Length2

Target Key

...

...

...

...

31 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

...

...

...

FieldID3 Length3

Validate Key

...

...

...

...

...

...

...

FieldID4 (optional) Length4 (optional)

Route Entry (variable)

...

Padding4 (variable)

...

FieldID5 Length5

NumEntries ArrayLength

ElementFieldType EntryLength

FlaggedPath (variable)

...

FieldID6 (optional) Length6 (optional)

32 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Credential (variable)

...

FieldID7 (optional) Length7 (optional)

Signature (variable)

...

FieldID8 (optional) Length8 (optional)

KeyIdentifier (variable)

...

FieldID1 (2 bytes): MUST be set to 0x0045 (LOOKUP_CONTROLS).

Length1 (2 bytes): MUST be set to 0x000C.

Reserved1 (14 bits): Reserved. This field MUST be set to zero and ignored on receipt.

A (1 bit): If set, this indicates that the sender is willing to accept returned nodes that are not
closer to the target ID than the Validate Key.

0 (1 bit): Reserved. This field MUST be set to zero and ignored on receipt.

Precision (2 bytes): Number of significant bits to match. When ResolveCriteria is not set to
SEARCH_OPCODE_UPPER_BITS, this MUST be set to zero and MUST be ignored upon receipt.

ResolveCriteria (1 byte): The type of key matching that the sender is requesting. This MUST

be one of the following (for example, although the values are powers of two, they are not bits
that can be combined):

Value Meaning

SEARCH_OPCODE_NONE

0x00

Compare all 256 bits of the key.

SEARCH_OPCODE_ANY_PEERNAME

0x01

Compare only the first 128 bits of the key.

SEARCH_OPCODE_NEAREST_PEERNAME

0x02

Compare all 256 bits of the key and return the

closest possible match.

SEARCH_OPCODE_NEAREST64_PEERNAME

0x04

Compare only the first 192 bits of the key and return

the closest possible match.

SEARCH_OPCODE_UPPER_BITS

0x08

Compare a number of bits equal to the value in the

Precision field.

ResolveReasonCode (1 byte): The reason for the LOOKUP request. MUST be one of the
following:

33 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Value Meaning

REASON_APP_REQUEST

0x00

The LOOKUP is sent in response to an application request.

REASON_REGISTRATION

0x01

The LOOKUP is sent in response to a completed registration that

is being announced.

REASON_CACHE_MAINTENANCE

0x02

The LOOKUP is sent because the node is performing cache

maintenance.

REASON_SPLIT_DETECTION

0x03

The LOOKUP is sent because the node is testing for a split

cloud.

Reserved2 (2 bytes): MUST be set to zero and ignored on receipt.

FieldID2 (2 bytes): MUST be set to 0x0038 (TARGET_DRT_ID).

Length2 (2 bytes): MUST be set to 0x0024 (36 bytes).

Target Key (32 bytes): The key to look up.

FieldID3 (2 bytes): MUST be set to 0x0039 (VALIDATE_DRT_ID).

Length3 (2 bytes): MUST be set to 0x0024 (36 bytes).

Validate Key (32 bytes): A key of the destination machine.

FieldID4 (2 bytes): MUST be present if and only if the sender’s CurrentBestMatch is set. If
present, MUST be set to 0x009A (ROUTING_ENTRY) if and only if the protocol is NOT
executing in confidential security mode; else, if present, MUST be set to 0x00A1
(ENCRYPTED_ROUTING_ENTRY).

Length4 (2 bytes): MUST be present if and only if FieldId4 is present. If present, MUST be set

to 4 plus the size in bytes of the Route Entry field.

Route Entry (variable): Optional. MUST be present if and only if FieldId4 is present. If
present, a ROUTE_ENTRY structure for the best match so far. The ROUTE_ENTRY structure
MUST be encrypted if and only if the protocol is executing in confidential security mode.

Padding4 (variable): Optional. A number of bytes between 0 and 3, such that the offset from
the start of the message to the end of this field is a multiple of 4. This field MUST be present if

and only if FieldID4 is present. It MUST be set to zero and ignored on receipt.

FieldID5 (2 bytes): Set to 0x009E (IPV6_ENDPOINT_ARRAY) if and only if the protocol is
executing in resolve or membership security mode. This field MUST be set to 0x00A0
(ENCRYPTED_ENDPOINT_ARRAY) if and only if the protocol is executing in confidential
security mode.

Length5 (2 bytes): Set to 12+(NumEntries*EntryLength) if and only if the protocol is
executing in resolve or membership security mode. This field MUST be set to 2 plus the size,

in bytes, of the Encrypted Endpoint Array Blob if and only if the protocol is executing in
confidential security mode.

NumEntries (2 bytes): Number of entries in the FlaggedPath field. This MUST be in the range
1 to 22.

34 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

ArrayLength (2 bytes): MUST be set to 8+(NumEntries*EntryLength).

ElementFieldType (2 bytes): MUST be set to 0x009D (IPV6_ENDPOINT).

EntryLength (2 bytes): MUST be set to 0x0012 (18 bytes).

FlaggedPath (variable): A list of IPV6_ENDPOINT structures for DRT node that have seen this

LOOKUP request so far.

FieldID6 (2 bytes): MUST be set to 0x0080 (CREDENTIAL). MUST be present if and only if the
protocol is executing in membership or confidential security mode.

Length6 (2 bytes): MUST be present if and only if FieldID6 is present. If present, it MUST be
set to 4 plus the length in bytes of the Credential field.

Credential (variable): MUST be present if and only if FieldID6 is present. Contains a Credential
structure defined in the security profile and provided by the upper-layer application.

FieldID7 (2 bytes): MUST be set to 0x00A5 (SIGNATURE). MUST be present if and only if the

protocol is executing in membership or confidential security mode.

Length7 (2 bytes): MUST be present if and only if FieldID7 is present. If present, it MUST be
set to 4 plus the length in bytes of the Signature field.

Signature (variable): MUST be present if and only if FieldID7 is present. Contains a Signature
structure defined in the security profile and provided by the upper-layer application. The

signature is calculated over the Validate Key field.

FieldID8 (2 bytes): MUST be set to 0x00A6 (KEY_IDENTIFIER). MUST be present if and only if
the protocol is executing in membership or confidential security mode.

Length8 (2 bytes): MUST be present if and only if FieldID8 is present. If present, it MUST be
set to 4 plus the length in bytes of the KeyIdentifier field.

KeyIdentifier (variable): MUST be present if and only if FieldID8 is present. Contains a Key

Identifier structure defined in the security profile and provided by the upper-layer application.

This field is used to indicate which portion of the Credential field was used to generate the
Signature field.

If the protocol is executing in confidential security mode, then the fields following FieldID5
(NumEntries, ArrayLength, ElementFieldType, EntryLength, and FlaggedPath) MUST be
encrypted into an Encrypted Endpoint Array Blob before being sent out on the wire. Therefore, these
fields are not present in confidential security mode. The size of this blob is variable because the
security provider is pluggable.

2.2.3 Data Structures

2.2.3.1 Security Profile Data Structures

The upper-layer application is responsible for completing the data structures in this section.

2.2.3.1.1 Encoded CPA

The Encoded CPA structure contains information that links a DRT service endpoint to a key. It is
specified in [MC-DKSP] section 2.4.

%5bMC-DKSP%5d.pdf

35 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.3.1.2 Keytoken

The Keytoken structure is used to decrypt encrypted structures in a DRT message. It is specified in
[MC-DKSP] section 2.5.

2.2.3.1.3 Signature

The Signature structure is used to protect the integrity of one or more fields or structures in a DRT
message. It is specified in [MC-DKSP] section 2.3.

2.2.3.1.4 Credential

The Credential structure is used to authenticate a node or authenticate a key. It is specified in [MC-

DKSP] section 2.1.

2.2.3.1.5 Key Identifier

A Credential structure MAY contain multiple tokens suitable for authenticating a key or a node. The

Key Identifier structure acts as a differentiator and includes an index into a Credential structure. It
is specified in [MC-DKSP] section 2.2.

2.2.3.1.6 PAYLOAD

The PAYLOAD structure carries application data associated with a key. It is specified in [MC-DKSP]
section 2.6.

2.2.3.1.7 Encrypted Endpoint Array

An Endpoint Array structure containing one or more IPv6 addresses and ports, as specified in [MC-
DKSP] (section 2.8).

2.2.3.2 DRT Data Structures

The data structures defined in this section are core DRT protocol data structures and are not defined
by the upper-layer application.

2.2.3.3 ROUTE_ENTRY

The ROUTE_ENTRY represents the basic critical information about a node to the other members of

the cloud. The key elements are a 32-byte key and an array of IPv6 Addresses on which the DRT
Protocol on the node is listening.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Key

...

...

...

%5bMC-DKSP%5d.pdf
%5bMC-DKSP%5d.pdf
%5bMC-DKSP%5d.pdf
%5bMC-DKSP%5d.pdf
%5bMC-DKSP%5d.pdf
%5bMC-DKSP%5d.pdf
%5bMC-DKSP%5d.pdf
%5bMC-DKSP%5d.pdf
%5bMC-DKSP%5d.pdf
%5bMC-DKSP%5d.pdf

36 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

...

...

...

...

DRT Major Version DRT Minor Version Port Number

Flags Address Count IPv6 Addresses (variable)

...

Key (32 bytes): A 32-byte key.

DRT Major Version (1 byte): The major version of the protocol, which is defined by the
higher-layer application.

DRT Minor Version (1 byte): The minor version of the protocol, which is defined by the
higher-layer application.

Port Number (2 bytes): The UDP port number on which the DRT node represented by this

route entry is listening. This MUST be greater than or equal to 1024.

Flags (1 byte): Reserved. This MUST be set to zero and ignored on receipt.

Address Count (1 byte): Number of IPv6 Addresses that follow. This MUST be in the range 1
to 20.

IPv6 Addresses (variable): An array of IPv6 Addresses on which the DRT node represented

by this route entry is listening.

2.2.3.4 IPV6_ENDPOINT

The IPV6_ENDPOINT structure contains information about an IPV6_ENDPOINT of a DRT node.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Port Address

...

...

...

...

37 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Port (2 bytes): IPv6 port. This MUST be greater than or equal to 1024.

Address (16 bytes): IPv6 address.

2.2.3.5 IPV6_ENDPOINT_ARRAY

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

FieldID1 Length1

NumEntries ArrayLength

ElementFieldType EntryLength

Already Flooded List (variable)

...

FieldID1 (2 bytes): MUST be set to 0x009E.

Length1 (2 bytes): MUST be set to 12+(NumEntries*EntryLength).

NumEntries (2 bytes): The number of entries in the Already Flooded List. This MUST be in

the range 1 to 22.

ArrayLength (2 bytes): MUST be set to 8+(NumEntries*EntryLength).

ElementFieldType (2 bytes): MUST be set to 0x009D (IPV6_ENDPOINT).

EntryLength (2 bytes): MUST be set to 0x12 (18 bytes).

Already Flooded List (variable): A list of IPV6_ENDPOINT structures.

2.2.3.6 FIELD_ARRAY

The FIELD_ARRAY structure is used to describe an array of elements.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

NumEntries ArrayLength

ElementFieldType EntryLength

Array Data (variable)

...

NumEntries (2 bytes): MUST be set to the number of elements in the array.

ArrayLength (2 bytes): MUST be set to 8+(NumEntries*EntryLength).

38 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

ElementFieldType (2 bytes): MUST be a valid FieldID.

EntryLength (2 bytes): MUST be set to the size, in bytes, of an element of type

ElementFieldType.

Array Data (variable): A list of elements of type ElementFieldType.

39 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3 Protocol Details

DRT nodes use eight specific message types. These messages can be split into two distinctive
classes: request messages (SOLICIT, REQUEST, FLOOD, LOOKUP, and INQUIRE) and acknowledge
messages (ADVERTISE, ACK, and AUTHORITY_BUFFER). Request messages are initiated by one
node and sent to another. Acknowledge messages are sent in reply to request messages.

Specific relationships of messages sent by a Resolver are shown in the following table.

Message sent by Resolver Acknowledgment sent by Publisher

SOLICIT ADVERTISE

REQUEST ACK

LOOKUP AUTHORITY_BUFFER (contained in an AUTHORITY)

INQUIRE AUTHORITY_BUFFER (contained in an AUTHORITY)

Specific relationships of messages sent to a Resolver are shown in the following table.

Message sent by Publisher Acknowledgment sent by Resolver

FLOOD with D flag clear ACK

3.1 Resolver Details

3.1.1 Abstract Data Model

This section specifies a conceptual model of a possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this

document.

Cloud State: A set of states for the cloud in which the node can perform resolutions. The cloud

state has the following information:

Conversation Table: A table of state for synchronization conversations in progress, if any.

Each entry has the following state:

Nonce: The nonce being used in the current synchronization conversation in progress, if

any.

SolicitMessageId: MessageID of the SOLICIT message sent.

Local Endpoint List: The list of network endpoints on which this DRT node is listening for

messages for the cloud.

Outstanding Resolves Table: A table of state for resolutions in progress. Each entry has the

following state:

Target Key: The key being resolved.

ResolveReasonCode: The resolve reason code (section 2.2.2.8) for this resolve.

40 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

ResolvePath: A list of network endpoints of DRT nodes that have already been asked

about this request.

NextHopStack: A last-in-first-out stack of entries for nodes that can be consulted to find

nearer matches. Each entry contains the following:

RouteEntry: Route entry for the DRT node.

UseCount: A count of the number of times a LOOKUP message has been sent to this

node.

BestMatchStack: A last-in-first-out stack of the route entries closest to the target. This

maintains a history of route entries stored at CurrentBestMatch.

CurrentBestMatch: The route entry that is the "Best Match" so far.

CurrentNextHop: The entry of the same type as used in the NextHopStack that contains

the route entry for the node to which the current LOOKUP message has been sent.

NewNextHop: Temporary storage for a route entry received during AUTHORITY message

processing.

SuspiciousCount: A count of hops that returned an AUTHORITY_BUFFER message with

the L flag set.

TotalUsefulHops: Total number of nodes that LOOKUP messages are sent to and from

that, an AUTHORITY_BUFFER message is received in reply.

LastSentMessageId: The MessageID of the last sent LOOKUP or INQUIRE message sent.

Used to match up received AUTHORITY messages.

SecurityModule: A mechanism by which the DRT Protocol can call upon the upper-layer

application for activities defined as part of the security profile.

BootstrapModule: A mechanism by which the DRT Protocol can call upon the upper-layer

application for activities defined as part of the bootstrap profile.

SecurityMode: The security mode used by nodes participating in this cloud.

VersionMajor: The major version of the DRT Protocol, which is defined by the higher-layer

application.

VersionMinor: The minor version of the DRT protocol, which is defined by the higher-layer

application.

Pending List: A set of messages that have been sent and are awaiting acknowledgment or

retransmission. Each entry in the queue has the message, a Retry Count, and a Message
Retransmission Timer, section 3.1.2.

Pending Route Entry Add List: A list of route entries in the process of being added to the

Route Entry Cache. Each entry has the following state:

RouteEntry: The route entry being pended.

NeedCpa: Flag indicating if a CPA is requested.

InquireMessageId: MessageID of the INQUIRE message sent to validate this route

entry.

41 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Reassembly List: A list of AUTHORITY_BUFFER messages currently in the process of being

reassembled. Each entry has the following state:

Message ID: The MessageID value in the DRT Header for the AUTHORITY messages

being reassembled.

Source IP address and port: The IP address and port of the peer from which

AUTHORITY_BUFFER message fragments are received.

Size: Expected size of the final buffer.

Buffer: A buffer into which fragments are placed.

Route Entry Cache: A cache of route entries. Each route entry in the cache contains a key and

a list of network endpoints.

Note The preceding conceptual data can be implemented by using a variety of techniques. An
implementer is at liberty to implement such data in any way.

3.1.2 Timers

A DRT Cloud has the following timers:

Maintenance Timer: A periodic timer used to perform periodic cache maintenance. The period

SHOULD<1> be 15 seconds to keep the cache functional.

Message Retransmission Timer: This conceptual timer exists for each entry in the Pending List

and is used for retransmission. The period SHOULD be 1 second.

3.1.3 Initialization

The higher-layer application MUST select a security mode, provide minor and major version
numbers to be included in the protocol messages, and MUST provide the protocol with security and
bootstrap modules.

3.1.4 Higher-Layer Triggered Events

A Resolver MUST provide to higher-layer applications and protocols the three logical operations that

can be invoked: Opening a Cloud, Resolving a Key, and Closing a Cloud.

3.1.4.1 Opening a Cloud

When a higher-layer application or protocol asks DRT to open a cloud, the node MUST first check
whether it already has an opened cloud. If so, it MUST return a failure to the application or higher-
layer protocol.

The node MUST carry out the following procedures when initializing.

1. Choose one port and a set of four IPv6 Addresses, or as many as the local system has, not
exceeding four, that the node will use for DRT communication. The addresses MUST all be of the

same scope and scope zone (as specified in [RFC4007] section 5). The same port number MUST
be used for all addresses. If no addresses are available, the open attempt MUST report a failure.
Otherwise, store the chosen addresses in the Local Endpoint List.

2. Begin listening for incoming messages on the UDP port and IPv6 Addresses chosen.

3. Initiate the cloud discovery process as specified in section 3.1.4.2.

http://go.microsoft.com/fwlink/?LinkId=90454

42 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4. Start the Maintenance Timer for the cloud.

3.1.4.2 Discovering Other Nodes in a Cloud

The upper-layer application is responsible for discovering other nodes in the cloud and supplying the

DRT service endpoints of these nodes to the DRT protocol. The DRT protocol MAY call upon the
upper-layer application to obtain the DRT service endpoints of other nodes after initialization.<2>

3.1.4.3 Initiating a DRT Synchronization Conversation

A synchronization conversation allows a node to exchange resource information in the form of
ROUTE_ENTRY structures with another given node in a given cloud.

The DRT node MUST generate a random 16-byte nonce value, save it in its local Conversation nonce

state, and then send to the given node a SOLICIT message that includes a SHA-1 [RFC3174] hash
of the Conversation nonce in the Hashed Nonce field.

The node MUST save the MessageID of the SOLICIT message in the entry in the conversation

table.

The node MUST also put the SOLICIT message in the Pending List, set its Retry Count to 2, and start
its Message Retransmission Timer.

3.1.4.4 Resolving a Key

In a resolution operation, three inputs are provided by the application or higher-layer protocol:

A key to resolve

A ResolveCriteria corresponding to the OpCode values specified in section 2.2.2.8

A PickBestMatchFromLocalIds flag indicating whether to consider locally registered keys

If the cloud has not been opened, the node MUST fail the request.

If there are no addresses in the Local Endpoint List abstract data model (ADM) element, the node
MUST fail the request.

All nodes taking part in DRT will carry out the resolve process from time to time. Resolve-only nodes
use the resolve process to handle requests from higher level applications to resolve a key. The
process is also used in cache maintenance operations. Publishers use the resolve operation to

advertise published keys to the rest of the cloud. Publishers also use the resolve operation to
attempt to detect splits in the cloud.

The following parameters MUST be supplied to the resolving logic:

Target Key, which is mapped to the key provided by the application or higher-layer protocol as

specified in section 2.2.2.8.

ResolveCriteria, which maps to the ResolveCriteria provided by the application or higher-layer

protocol as specified in section 2.2.2.8.

PickBestMatchFromLocalIds, which maps to the PickBestMatchFromLocalIds provided by the

application or higher-layer protocol as specified in section 3.1.4.4.

ResolveReasonCode, which MUST be set to REASON_APP_REQUEST when the resolve operation is

initiated by the application or higher-layer protocol.

http://go.microsoft.com/fwlink/?LinkId=90408

43 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

and optionally

InitialBestMatchRouteEntry, which is a ROUTE_ENTRY structure used by the protocol during key

registration. See section 3.2.4.1 for details.

InitialNextHopRouteEntry, which is a ROUTE_ENTRY structure used by the protocol during

maintenance. See section 3.2.6.2 for details.

A Resolver MUST then perform the following steps:

1. Attempt to create a new entry in the Outstanding Resolves Table element, and fail the request
if one cannot be created. If one is created, initialize the fields as follows.

2. Initialize SuspiciousCount element and TotalUsefulHops element to 0.

3. The resolve entry's ResolvePath MUST be initialized to contain any one of the endpoints in the

Local Endpoint List element.

4. Save the supplied Target Key and ResolveReasonCode in the corresponding fields of the resolve

entry.

5. If an InitialNextHopRouteEntry is supplied, push it onto the NextHopStack element. Otherwise
select the route entry from the cache for the key numerically closest to the Target Key and push
it onto the resolve entry's NextHopStack element. In both cases the UseCount element for the

entry on the stack MUST be set to zero.

6. If an InitialBestMatchRouteEntry is supplied, push it onto the resolve entry's BestMatchStack
element. If an InitialBestMatchRouteEntry is not supplied, leave BestMatchStack element
empty.

7. If the resolve entry's CurrentBestMatch element is not empty and the key of the most recently
pushed entry in the BestMatchStack element is sufficiently close (per the ResolveCriteria)
match to the Target Key, then:

Create an INQUIRE message with the following fields:

Validate Key field set to the key of the CurrentBestMatch element.

Request CPA, Certificate Chain, Classifier, and Extended Payload flags set.

FieldId3 set to 0x0093 (NONCE).

Set LastSentMessageID to the Message-ID of the INQUIRE message. If the protocol is

executing in membership or confidential security mode, call upon the SecurityModule element
to provide the Credential, Signature, and KeyIdentifier fields of the message. Then choose an
address from the CurrentBestMatch element route entry's address list by using the algorithm
as specified in [RFC3484] section 6, and send the INQUIRE message to that address. Finally, put
the INQUIRE message in the Pending List element, set its Retry Count to 2, and start its
Message Retransmission Timer.

Otherwise (for example, if the resolve entry's CurrentBestMatch element is empty or not

sufficiently close to the Target Key), continue processing as follows:

8. Attempt to pop a route entry off of the NextHopStack element and store this route entry in the
resolve entry's CurrentNextHop element. If the CurrentNextHop element is empty or
SuspiciousCount element is greater than 6 or TotalUsefulHops element is greater than 22,
the Resolver MUST do the following:

http://go.microsoft.com/fwlink/?LinkId=90424

44 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

If the resolve entry's CurrentBestMatch element is not empty, determine whether it meets the
minimal match conditions as specified in the ResolveCriteria. If it does not, or the

CurrentBestMatch element is empty, return no results to the caller because no adequate match
is found. The Resolve operation is now complete. Otherwise, send an INQUIRE message as in

step 7 above.

If the NextHopStack element is not empty, SuspiciousCount element is less than or equal to
6, and TotalUsefulHops element is less than or equal to 22, continue processing as follows:

9. Prepare a LOOKUP message with the Validate Key field set to the key from the route entry in
the CurrentNextHop element, and the FlaggedPath field filled with the entries from the
ResolvePath. If the number of entries in the cache is less than 8, the Resolver SHOULD set the A
flag in the LOOKUP message. If the protocol is executing in membership or confidential security

mode, call upon the SecurityModule element to provide the Credential, Signature, and
KeyIdentifier fields of the message.

10.Choose an address from the list of addresses in the route entry in the CurrentNextHop element
state, using the algorithm as specified in [RFC3484] section 6, send the LOOKUP message to it,

and increment the UseCount in the CurrentNextHop element state. Set LastSentMessageID
to the Message-ID of the LOOKUP message. Put the LOOKUP message in the Pending List

element, set its Retry Count to 2, and start its Message Retransmission Timer.

3.1.4.5 Closing a Cloud

When an application or higher-layer protocol closes a cloud, the DRT node MUST verify that it has a
cloud state for the cloud, and fail the request if not. The DRT node MUST delete all state information
for the cloud.

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 Receiving a DRT Message

When a node receives a DRT Message, it MUST first check whether the message starts with a DRT

Header that conforms to the syntax as specified in section 2.2.1, and silently drop the message if
not. If the UDP source port of the message is less than 1024, it MUST silently drop the message.

The node MUST then determine the cloud to which the message applies (based on the local address

and port to which the message is sent). Messages targeted to a cloud different than the node’s
opened cloud must be dropped.

The node MUST then check the Message Type field and handle additional type-specific processing
in accordance with its message type. Messages with types other than those specified in this
document must be dropped.

3.1.5.2 Receiving an ADVERTISE Message

When a Resolver receives an ADVERTISE message, it MUST perform the following steps:

1. Match the AckedMessageId in the ADVERTISE message against any SOLICIT messages in the

Pending List. If no match is found, it MUST silently discard the ADVERTISE message. Otherwise,
it MUST remove the SOLICIT message from the Pending List and continue processing as follows.

2. Check the array of keys in the ADVERTISE message. If the array is empty (for example,
NumEntries is 0x0000), silently discard the message.

3. Select a set of keys in the array to request. The node SHOULD select all keys in the array.

http://go.microsoft.com/fwlink/?LinkId=90424

45 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Prepare a REQUEST message with the desired keys and send it to the remote node. The node MUST
also add the REQUEST message to the Pending List, set its Retry Count to 2, and start its Message

Retransmission Timer. If the protocol is executing in membership or confidential security mode, call
upon the SecurityModule to provide the Credential, Signature, and KeyIdentifier fields of the

message.

3.1.5.3 Receiving an ACK Message

When an ACK message is received, the receiving node MUST attempt to match the Acked
MessageID field with the MessageID of an entry in the Pending List. If a match is not found, the
message MUST be silently discarded with no further action.

If, alternatively, a match is found, the entry in the Pending List MUST be removed.

3.1.5.4 Receiving a FLOOD Message

Upon receiving a FLOOD message, a DRT node MUST perform the following steps:

1. Check whether the FLOOD message conforms to the syntax as specified in section 2.2.2.4 and
drop the message if not. Otherwise, continue processing as follows. If the protocol is executing in
confidential security mode, pass the message to the SecurityModule for decryption. If decryption

fails, silently drop the message.

2. If the D flag is clear, reply with an ACK message to the sending node.

3. If a ROUTE_ENTRY is supplied in the FLOOD message, begin validating the ROUTE_ENTRY as
specified in Receiving a New ROUTE_ENTRY.

4. If a Revoke CPA is supplied in the FLOOD message, validate the CPA as a Revoke CPA and, if
not valid, discard.

5. Extract the CPA and pass it to the SecurityModule for verification and for calculation of the key.

Remove the ROUTE_ENTRY (if any) for the key of the Revoke CPA from the cache.

3.1.5.5 Receiving an AUTHORITY Message

On receipt of an AUTHORITY message, the DRT node MUST first check whether the AUTHORITY
message conforms to the syntax as specified in section 2.2.2.6, and drop the message if not.
Otherwise, it looks in the Pending List for a LOOKUP message or INQUIRE message whose
MessageID matches the Acked MessageID in the AUTHORITY message. If none is found, drop

the message.

The DRT node MUST then check whether the AUTHORITY_BUFFER message is fragmented by
comparing the Size field in the AUTHORITY message and the received message size. If the
AUTHORITY_BUFFER message is not fragmented, it MUST be processed as specified in section
3.1.5.5.1. Otherwise, the DRT node MUST start the reassembly process as follows:

To reassemble fragmented packets into the original AUTHORITY message, a DRT node MUST use the
MessageID from the DRT Header and the source IP address and Port to look for an existing entry

in the Reassembly List. If no entry exists, the node MUST attempt to create one and drop the

message if it cannot create one. Otherwise, continue processing as follows.

Check whether the length of the Buffer field (as computed from the UDP message size) plus the
Offset value is greater than the Size value, and if so, drop the message and delete the existing
reassembly state.

46 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Check if the Size in the AUTHORITY message received matches the Size in the reassembly entry,
and if not, drop the message and delete the existing reassembly state. Otherwise, continue

processing as follows:

For all fragments, a DRT node MUST copy the AUTHORITY_BUFFER message at the offset as

specified in the AUTHORITY message.

If the AUTHORITY_BUFFER message is still not completely reassembled, no further processing is
necessary. After the last fragment is received, processing MUST be done on the reassembled
AUTHORITY_BUFFER message.

3.1.5.5.1 Receiving an AUTHORITY_BUFFER

When a DRT node has a fully formed AUTHORITY_BUFFER message, the DRT node MUST first check

whether the AUTHORITY_BUFFER message conforms to the syntax as specified in section 2.2.2.6,
and drop the AUTHORITY message containing the malformed AUTHORITY_BUFFER if not.

Otherwise, the DRT node MUST remove the entry from the Pending List.

The Outstanding Resolves Table MUST then be checked to find whether an entry has sent a LOOKUP
message during a resolution. The Acked MessageID of the AUTHORITY message is compared
against the LastSentMessageID in the resolve entries to find a match. If no entry is found, the node

MUST follow the steps as specified in section 3.1.5.5.1.1. If the protocol is executing in confidential
security mode, the AUTHORITY_BUFFER MUST be passed to the SecurityModule for decryption.
Otherwise, continue processing as follows:

1. Add the address used when sending the previous LOOKUP message to the resolve entry's
ResolvePath.

2. Increment the entry's TotalUsefulHops.

3. If the L flag in the AUTHORITY_BUFFER message is set, increment the resolve entry's

SuspiciousCount.

4. If the N flag in the AUTHORITY_BUFFER message is clear, begin validating the route entry in the
resolve entry's CurrentNextHop as specified in 3.1.5.6. Otherwise clear the CurrentNextHop
because the key is no longer registered at that node and remove this node from the cache. In
either case, continue processing as follows.

5. If CurrentNextHop is not clear and if the key of the route entry in the resolve entry's
CurrentNextHop is numerically closer to the Target Key than the key of the resolve entry's

CurrentBestMatch, push the CurrentBestMatch onto the BestMatchStack and create a copy of the
resolve entry's CurrentNextHop and save it in the resolve entry's CurrentBestMatch.

6. If the resolve entry's CurrentNextHop is not empty and the UseCount of the entry is 3, then clear
the resolve entry's CurrentNextHop.

7. If the Route Entry field is present in the AUTHORITY_BUFFER message then create a route entry
and store it in the resolve entry's NewNextHop.

8. If the resolve entry's CurrentNextHop is not empty, push it back onto NextHopStack and clear
the resolve entry's CurrentNextHop.

9. If the resolve entry's NewNextHop is not empty, check the addresses in the route entry to ensure
that none of them appear in the resolve entry's ResolvePath except for the last entry in the path.
If the address appears, clear the resolve entry's NewNextHop.

47 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

10.If the resolve entry's NewNextHop is not empty, determine whether the resolve entry's
NewNextHop is numerically closer to the Target Key than the node from which the NewNextHop

is obtained. If the resolve entry's NewNextHop is closer, push it onto the resolve entry's
NextHopStack. If it is not closer, but the cache contains fewer than 8 entries, push it onto the

resolve entry's NextHopStack. If the cache has more than eight entries, pop the Previous hop off
of the resolve entry's NextHopStack if it is pushed on in step 8. Clear the resolve entry's
NewNextHop.

11.Resume at step 7 in section 3.1.4.4.

3.1.5.5.1.1 Receiving a Response to an INQUIRE

The Outstanding Resolve table MUST be checked to find an entry that MAY have sent an INQUIRE

message during a resolution. If one is not found, see section 3.1.5.5.1.2. Otherwise, continue
processing as follows:

If the AUTHORITY message contains a CPA, then the node MUST pass the AUTHORITY_BUFFER to
the SecurityModule for validation.

If validation fails, then the node MUST discard the AUTHORITY message, and attempt to pop a new
entry from its BestMatchStack and place it (if any) in its CurrentBestMatch variable. If there is no

new CurrentBestMatch, the node MUST return a failure to the higher-layer application or protocol;
otherwise, the node MUST repeat the LOOKUP message procedure starting at step 7 of section
3.1.4.4.

If the resolve entry's ResolveReasonCode is equal to REASON_APP_REQUEST, the node MUST
then return the endpoints information to the higher-layer application or protocol.

3.1.5.5.1.2 Completing a Route Entry Cache Addition

The following processing MUST be done when the AUTHORITY_BUFFER message is acknowledging
an INQUIRE message sent while adding a route entry to the cache:

1. Check the Pending Route Entry Add List. If an entry is not found that has an InquireMessageId

corresponding to the Acked MessageID of the AUTHORITY message, silently discard the
AUTHORITY message. Otherwise, continue processing as follows.

2. If the AUTHORITY_BUFFER message has the N flag set (indicating that the key in the route entry
is not currently registered on that node), then the Route Entry MUST be removed from the

Pending Route Entry Add List.

3. If the entry's NeedCpa flag is not set, the check for whether the entry is reachable is complete
and the entry SHOULD be stored in the cache. The processing of the Route Entry is complete.
Otherwise, continue processing as follows.

4. If a CPA is requested but one is not included in the AUTHORITY_BUFFER message, the Route
Entry MUST be silently discarded.

5. The node MUST validate the CPA by passing the AUTHORITY_BUFFER to the SecurityModule. If it
fails to validate, or if a required Credential is not received, the Route Entry MUST be silently

discarded.

6. The key in the Route Entry MUST be compared against the key of the CPA, and the addresses in
the Route Entry MUST be compared against the service addresses in the CPA. If they do not
match, the Route Entry MUST be silently discarded.

48 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

7. Add the Route Entry to the Route Entry Cache.

3.1.5.6 Receiving a New ROUTE_ENTRY

After a ROUTE_ENTRY message has been extracted from a received message, the receiving node

MUST follow these steps to submit it to the cache for inclusion. If the PortNumber field of the
ROUTE_ENTRY message is less than 1024, the entry MUST be ignored.

Otherwise, the node MUST attempt to add the ROUTE_ENTRY message to the Pending Route
Entry Add List element, with the NeedCpa field set to false. If it cannot be added, the
ROUTE_ENTRY message MUST be ignored.

The ROUTE_ENTRY message MUST then be tested for return routability by composing an INQUIRE
message with the Validate Key field set to the key in the ROUTE_ENTRY message and FieldId3 set

to 0x0093 (NONCE). The node MUST then select one of the addresses included in the ROUTE_ENTRY
message, using the algorithm in [RFC3484] section 6, and send the INQUIRE message to the
selected address, using the port indicated in the ROUTE_ENTRY message.

The node MUST then set InquireMessageId to the MessageID of the INQUIRE message sent, in
the entry added to the Pending Route Entry Add List element.

3.1.6 Timer Events

3.1.6.1 Maintenance Timer Expiry

The node MUST check to see if it knows of any other members of the cloud. If it does not, it MUST
invoke the process as specified in section 3.1.4.2 to attempt to discover the cloud.

The DRT node MUST select 10 keys from the local cache and perform an INQUIRE for each of these
keys, to help identify and eliminate stale entries from the cache. The 10 keys SHOULD be selected

randomly. When inquiring cache entries, an INQUIRE message MUST be sent as follows:

Create an INQUIRE message with the following fields:

Validate Key field set to the key corresponding to the cache entry.

If the protocol is executing in confidential security mode:

Request CPA, Certificate Chain, Classifier flags set.

FieldId3 set to 0x0093 (NONCE).

If the protocol is NOT executing in confidential security mode:

Request CPA, Certificate Chain, Classifier flags NOT set.

FieldId3 NOT set.

Set LastSentMessageID to the MessageID of the INQUIRE message. If the protocol is executing
in membership or confidential security mode, call upon the SecurityModule to provide the

Credential, Signature, and KeyIdentifier fields of the message. Then choose an address from the
cache entry’s route entry's address list by using the algorithm as specified in [RFC3484] section 6,
and send the INQUIRE message to that address. Finally, put the INQUIRE message in the Pending
List element, set its Retry Count to 2, and start its Message Retransmission Timer.

In addition, the DRT node MAY<3> resolve any keys to accept additional route entries (for example,
to ensure that the Route Cache contains entries roughly evenly distributed across the key

http://go.microsoft.com/fwlink/?LinkId=90424
http://go.microsoft.com/fwlink/?LinkId=90424

49 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

numbering space, so as to reduce the time it takes to do a resolve on behalf of an application or
higher-layer protocol). If it does so, then the ResolveReasonCode element MUST be set to

REASON_CACHE_MAINTENANCE.

3.1.6.2 Message Retransmission Timer Expiry

When the Message Retransmission Timer expires for an entry in the Pending List, the DRT node
MUST decrement the entry's Retry Count. If it is still nonzero, it MUST send the message again and
restart the timer. If the Retry Count is zero, a failure result MUST be reported to the higher-layer
application or protocol, and the entry MUST be removed from the Pending List.

Additional actions are required for specific message types, as specified below.

If the message stored is a LOOKUP message or INQUIRE message, the DRT node MUST clean up any

outstanding reassembly context that matches the MessageID. This will ensure that any reassembly
context will not remain longer than 1 second.

3.1.7 Other Local Events

3.1.7.1 Processing Address Change Notifications

The DRT node MUST monitor changes in IPv6 addresses available on the host machine. If a change

in the set of addresses is detected, then the node MUST construct a new list of addresses following
the restrictions as specified in step 1 of section 3.1.4.1. If this is different than the current list in the
Local Endpoint List, then the node MUST replace the old list with the new one.

3.2 Publisher Details

All Publishers MUST follow the rules for Resolvers as well as the rules for Publishers. This section

specifies additional rules beyond those in section 3.1.

3.2.1 Abstract Data Model

This section specifies a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this

document.

The Cloud State data structure (section 3.1.1) is extended by adding two additional
subcomponents to the Conversation Table component specified in section 3.1.1, Peer's IP
Address and Port and Hashed Nonce, and by adding one additional component, the Locally
Registered Key List.

Conversation Table: A table of active synchronization conversations from new nodes in the

process of joining the cloud. Each entry has the following state:

Peer's IP Address and Port: The IP address and port number of the peer.

Hashed Nonce: The Hashed Nonce value received in a SOLICIT message from the node.

Locally Registered Key List: A list of all keys registered by the DRT node itself or on behalf of

higher-layer applications or protocols publishing Keys. Each entry in the list has the following
fields:

Key: The locally registered key.

50 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Leaf Set: A list of the route entries for the five numerically closest keys that are less than the

locally registered key and the five numerically closest keys that are greater than the locally

registered key.

Note The preceding conceptual data can be implemented by using a variety of techniques. An
implementer is at liberty to implement such data in any way.

3.2.1.1 Cache

To respond to LOOKUP messages when a neighbor is searching for a particular key, a DRT node is
required to maintain a Route Entry Cache. A DRT cloud has no scale limitation, and could consist of
millions of registrations; because it would be prohibitively expensive, in both bandwidth and

memory, for every node to cache every single registration in a cloud of this size, the selection of
neighbors to cache is of critical importance to ensure a reasonable trade-off between search time,
bandwidth, and memory consumption.

The specific cache organization is an implementation detail,<4> but the following are requirements
that MUST be met by a cache implementation:

1. It MUST be such that a search for a single registration in the cloud can be implemented on the
order of Log10(n) LOOKUP message operations, where n is the total number of registrations in

the cloud. (For example, the cache structure described in [PAST] has this property.)

2. The cache MUST logically include all entries in each of the node's leaf sets.

This constraint on the cache ensures that there is always a discoverable path to a registered key.
DRT nodes, which are also Publishers, also use this constraint to detect and repair partitions in
the cloud, section 3.2.6.2.1.

3. A DRT node MUST maintain a cache of at least 10 route entries (or all route entries in the cloud,
if there are fewer than 10), of the keys of which are evenly distributed around the number space.

This constraint ensures that when a neighbor is performing a bootstrap operation and sends
SOLICIT messages for entries for this node's cache, it is possible to ADVERTISE an even

distribution of candidates.

3.2.2 Timers

Conversation Timer: A one-shot timer per Conversation Table entry, it is used to expire the

conversation entry. The timeout value SHOULD be 15 seconds.

3.2.3 Initialization

The Publisher performs no initialization beyond that specified in section 3.1.3.

3.2.4 Higher-Layer Triggered Events

3.2.4.1 Registering a Key

To register a key, the application or higher-layer protocol MUST provide:

The elements required by the SecurityModule abstract data model (ADM) element to

authenticate the key to peers.

Optionally a Payload.

http://go.microsoft.com/fwlink/?LinkId=90243

51 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

If there are no addresses currently available in the Local Endpoint List element, a failure MUST be
returned to the application or higher-layer protocol.

To register a key in a given cloud, a node MUST perform the following steps:

1. Verify that an entry for the cloud exists in the Cloud State element. If it does not, return a

failure.

2. The node MUST add the key to its Locally Registered Key List element.

The node MUST then initiate the procedure as specified in section 3.1.4.4 to resolve the key
equal to the new key + 1. The ResolveCritera MUST be set to SEARCH_OPCODE_NONE,
ResolveReasonCode MUST be set to REASON_REGISTRATION, PickBestMatchFromLocalIds MUST
be set to FALSE, and the InitialBestMatchRouteEntry MUST be a ROUTE_ENTRY structure holding
the key and the endpoints in the Local Endpoint List element.

(Note that because the above route entry is in each LOOKUP message sent, the nodes receiving
the LOOKUP will have the opportunity to learn of the existence of the new node.)

3.2.4.2 Unregistering a Key

To unregister a Key, a node MUST perform the following steps:

1. Call upon the SecurityModule to construct a Revoke CPA for the key. This CPA MUST have the R

field set to indicate that this is a revoke CPA.

2. The Revoke CPA MUST be sent via a FLOOD message with the D flag clear to the two nodes in
the leaf set with keys that are closest to the locally registered key. That is, the (numerically)
nearest key that is greater than the local key and the (numerically) nearest key that is less than
the key MUST be used.

3. The node MUST select the node that has the key immediately greater than the Local Key. The
node MUST send the key via a FLOOD message (with the D flag clear) to the node with a key

that is the fifth closest and smaller than the local key. The process is also reversed. The node

MUST select the key that is immediately less than the local key. This entry will be sent via a
FLOOD message (with the D flag clear) to the fifth closest and larger key that the node knows
about.

4. In this manner, the leaf sets of the nodes at the edge of this node's leaf set will recognize the
existing neighbors.

Whenever a FLOOD message with the D flag clear is sent, the node MUST also put the FLOOD

message in the Pending List, set its Retry Count to 2, and start its Message Retransmission Timer.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Receiving a New ROUTE_ENTRY

SOLICIT, LOOKUP, FLOOD, and AUTHORITY messages contain route entries. The processing
required when receiving a new ROUTE_ENTRY structure is specified in section 3.1.5.6. Publishers

MUST follow the same rules, with the following additions:

If the key of the ROUTE_ENTRY message falls within one of the node's key leaf sets, it MUST set the
A and C flags in the INQUIRE message to request a CPA and Certificate Chain, and NeedCpa
MUST be set to true for the entry added to the Pending Route Entry Add List.

52 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.2.5.2 Receiving a LOOKUP Message

When a LOOKUP message is received, a node MUST perform the following steps:

1. The receiving node MUST parse the received message to ensure that it is properly structured,

that all required fields are present, and that all fields are in the correct order. Individual fields
MUST also be parsed for correctness. If the message fails validation, it MUST be silently
discarded.

2. If the LOOKUP message contains a ROUTE_ENTRY message, the ROUTE_ENTRY message
SHOULD be submitted to the cache (section 3.2.5.1) for consideration for inclusion.

3. If the Validate Key field contains a nonzero value, the protocol MUST check the Locally
Registered Key List to determine whether or not this key is registered. If the ID is not currently

registered, the protocol MUST set a flag to indicate that the Validate Key field is not present on
this node. This flag is referred to as ValidateNotLocal.

4. The node MUST compare the addresses in the IPV6_ENDPOINT_ARRAY against the addresses

being used by this node. If none of this node's addresses appear in the list, the node MUST
search its Locally Registered Key List and select the one numerically closest to the Target Key (a
tie can be broken in any implementation-specific manner). This is referred to as the

ClosestLocalMatch. If the ValidateNotLocal flag is not set, the returned key MUST be closer to the
Target Key than the Validate Key field.

5. The node MUST search its cache of remote nodes looking for the closest match to the Target Key.
The search MUST not return any nodes having addresses that appear in IPV6_ENDPOINT_ARRAY.
If the A flag in the LOOKUP message (section 2.2.2.8) is not set, any remote node found MUST
also be closer to Target Key than the Validate Key field. If multiple nodes are located, the node
MUST make a random choice between the nodes, giving more weight to the nodes that are

closest to Target Key. The result, if any, will be referred to as ClosestRemoteMatch.

6. If no ClosestRemoteMatch is found and the Target Key falls within one the leaf set of one of the
locally registered IDs, the node SHOULD note this is a flag to be referred to a TargetSuspicious.

7. If both a ClosestLocalMatch and a ClosestRemoteMatch are found, the node MUST now prepare
an AUTHORITY_BUFFER message to send back to the sender of the LOOKUP message. If both a
ClosestLocalMatch and a ClosestRemoteMatch are found, the one closest to Target Key MUST be
placed in the ROUTE_ENTRY message in the AUTHORITY message. Otherwise, the match that is

found MUST be used.

8. If ValidateNotLocal is set, the N flag in the AUTHORITY_BUFFER (section 2.2.2.6.1) message
MUST be set.

9. If TargetSuspicious is set, the L flag in the AUTHORITY_BUFFER (section 2.2.2.6.1) message
MUST be set.

10.The AUTHORITY_BUFFER message MUST now be sent back to the sender of the LOOKUP

message, section 3.2.5.7.

3.2.5.3 Receiving a SOLICIT Message

Upon receiving a SOLICIT message for a given cloud, a DRT node MUST perform the following steps:

1. Check whether the SOLICIT message conforms to the syntax as specified in section 2.2.2.1, and
drop the message if not. Otherwise, continue processing as follows.

53 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2. Look for an entry in the cloud's Conversation Table with the same source address and port and
Hashed Nonce. If an entry is found in the table, its Conversation Timer MUST be restarted.

Otherwise, attempt to create a new entry and start its Conversation Timer. If a new entry cannot
be created (or the node deems itself too busy for any other reason), it MUST respond with an

ADVERTISE message that has a IDList containing no keys; otherwise, continue processing as
follows.

3. The node SHOULD select a set of five keys from its Route Entry Cache, which is roughly evenly
spread around the number space. The keys MAY be randomly selected. If the cache does not
contain at least five entries, the node MUST include its own locally registered keys as well.

4. Construct an ADVERTISE message with the selected keys in the IDList and send it to back to the
source of the SOLICIT message.

5. The node SHOULD also begin validating the ROUTE_ENTRY from the SOLICIT message as
specified in section 3.2.5.1.

3.2.5.4 Receiving a REQUEST Message

When the REQUEST message is received for a given cloud, the receiving node MUST perform the
following steps:

1. Check whether the REQUEST message conforms to the syntax as specified in section 2.2.2.3, and
drop the message if not. If the protocol is executing in membership or confidential security mode,
pass the REQUEST message to the SecurityModule for verification of the Credential and Signature
fields. If verification fails, drop the message. Otherwise, continue processing as follows.

2. Look for an entry in the cloud's Conversation Table corresponding to the sender's IP address and
port. If none is found, ignore the REQUEST message. Otherwise, continue processing as follows.

3. Attempt to verify that the value of the Nonce field in the REQUEST message is valid. This MUST

be done by performing a SHA-1 [RFC3174] hash on the nonce and comparing it with the Hashed
Nonce stored in the conversation entry. If they do not match, further processing MUST be
stopped and the message MUST be silently dropped. Otherwise, continue processing as follows.

4. Reply with an ACK message to the sender of the REQUEST message to indicate receipt and to
avoid retransmission of the REQUEST message.

5. The node MUST then send a FLOOD message, with the D flag set, for each key that is listed in
the REQUEST message and delete the entry from the Conversation Table.

3.2.5.5 Receiving a FLOOD Message

Section 3.1.5.4 specifies the rules for handling received FLOOD messages. In addition to those rules,
when sending an ACK message in response to a FLOOD message with a nonzero Validate Key field,
a Publisher MUST check its Locally Registered Key List. If the Validate Key is not in the list, the
Publisher MUST set the N flag in the ACK message.

3.2.5.6 Receiving an INQUIRE Message

When a DRT node receives an INQUIRE message, it MUST perform the following steps:

1. Check whether the INQUIRE message conforms to the syntax as specified in section 2.2.2.5, and
drop the message if not. If the protocol is executing in membership or confidential security mode,
pass the REQUEST message to the SecurityModule for verification of the Credential and Signature
fields. If verification fails, drop the message. Otherwise, continue processing as follows.

http://go.microsoft.com/fwlink/?LinkId=90408

54 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2. Check the Locally Registered KEY List for the presence of the KEY in the Validate KEY field. If
the KEY is not found, the node MUST construct an AUTHORITY_BUFFER message with the N flag

set, return it to the sender, and take no further action. Otherwise, continue processing as follows.

3. If the KEY is in the Locally Registered KEY List, the node MUST construct an AUTHORITY_BUFFER

message.

4. If the A flag in the INQUIRE message is set, construct a CPA (as specified in section 3.2.5.7) for
the locally registered KEY, including the INQUIRE message. If the NONCE field is not present in
the INQUIRE message, an all-zero NONCE SHOULD be used by the receiver when processing the
INQUIRE.

5. If the C flag in the INQUIRE message is set, retrieve the Certificate Chain, if any, for the CPA
message and insert it into the AUTHORITY_BUFFER message.

6. If the X flag in the INQUIRE message is set, retrieve the Extended Payload, if any, for the ID
and insert it into the AUTHORITY_BUFFER message.

7. Send the AUTHORITY_BUFFER message to the source of the INQUIRE message, as specified in

section 3.2.5.7.

3.2.5.7 Sending an AUTHORITY_BUFFER

To send an AUTHORITY_BUFFER message to a given node, a DRT node MUST construct AUTHORITY
messages as follows:

If the AUTHORITY_BUFFER message is less than or equal to 1188 bytes long, the DRT node MUST
construct a single AUTHORITY message with the Offset field set to 0.

If the AUTHORITY_BUFFER message is more than 1188 bytes long, the DRT node MUST fragment
the original AUTHORITY_BUFFER message into multiple fragments where every fragment except the
last fragment MUST be 1188 bytes long, and the last fragment MUST be less than or equal to 1188

bytes long. Each fragment MUST then be placed into its own AUTHORITY message, where every
AUTHORITY message MUST contain the same DRT Header values.

The DRT node MUST then send the AUTHORITY message(s) to the specified node.

3.2.5.8 Receiving an AUTHORITY Message

Section 3.1.5.5.1.1 specifies the rules for handling received AUTHORITY messages. In addition to
those rules, when a ROUTE_ENTRY completes validation and is added to the Route Entry Cache (as

specified in 3.1.5.5.1.2), the Publisher MUST also check, for each locally registered key, whether the
key in the ROUTE_ENTRY falls within its leaf set. If so, it MUST do the following:

1. Add the ROUTE_ENTRY to the leaf set (removing the farthest entry on the same side of the
locally registered key, if there are already 5 entries in the leaf set on that side).

2. Build a list of leaf set neighbors to which the new ROUTE_ENTRY is forwarded. It MUST pick the
nearest cached key greater than the route entry's key and the nearest cached key less than the

route entry's key. If the ROUTE_ENTRY is being added because of a FLOOD message, any nodes

with endpoints in the Already Flooded List of the FLOOD message MUST be excluded when
looking for the nearest key.

3. Construct a FLOOD message with the D flag clear containing the new ROUTE_ENTRY. The Already
Flooded List MUST contain one of the endpoints from each of the two nodes chosen above (the
choice of which endpoint can be arbitrary). If the route entry is received in a FLOOD message,

55 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

then the Already Flooded List MUST also contain any addresses in the Already Flooded List of the
original FLOOD message.

4. Send the FLOOD message to the two nodes previously chosen.

5. If the ROUTE_ENTRY is received from a FLOOD and the source address of the FLOOD message is

not in the received ROUTE_ENTRY, the local node MUST send a FLOOD message with the D flag
clear back to the sender, containing a ROUTE_ENTRY for the local key to add the ROUTE_ENTRY
to the leaf set.

Whenever a FLOOD message with the D flag clear is sent, the node MUST also put the FLOOD
message in the Pending List, set its Retry Count to 2, and start its Message Retransmission Timer.

3.2.5.8.1 Receiving an AUTHORITY_BUFFER

The rules of processing an AUTHORITY_BUFFER message are as specified in section 3.1.5.5.1.1,
with the following addition at the end. If the ResolveReasonCode is REASON_SPLIT_DETECTION,
and this AUTHORITY_BUFFER message is received in response to an INQUIRE message, then the

DRT node MUST do the following processing to determine if the cloud is split or not.

Below, the "best match key" refers to the key in the ROUTE_ENTRY of the AUTHORITY_BUFFER
message, and the "Target Key" is the Target Key in the resolve entry.

The following are the three possibilities:

1. The best match key exists in the local cache of this node and there are no cache entries with key
between the best match key and the Target Key. This means there is no evidence of a cloud split.

2. The best match key exists in the local cache of this node and there is at least one Route Entry
with a key between the best match key and the Target Key. This tends to suggest that the cloud
is split with the local node being part of the bigger cloud.

3. The best match key is not part of the local cache of this node. This indicates that the cloud is

likely split, because the best match key woud otherwise have been the locally published DRT_ID.

If the best match key is closer to the Target Key than any other entry in the local cache, this
suggests that the local node is part of the smaller cloud piece. Otherwise, if the local node has a
cache entry that is closer to the Target Key than the best match key, this indicates that the local
node is part of the bigger cloud piece.

If the indication is that the local node is part of a small cloud, a DRT node SHOULD repeat the split
detection process, as specified in section 3.2.6.2.1, for each locally published key except the Target

Key (which it just completed). This will help to get as many parts of the number space merged as
possible.

3.2.6 Timer Events

3.2.6.1 Conversation Timer Expiry

When a Conversation Timer expires for a given Conversation Table entry, the DRT node MUST delete

the entry.

3.2.6.2 Maintenance Timer Expiry

When the Maintenance Timer expires, the DRT node MUST attempt to detect cloud splits (as
specified in section 3.2.6.2.1).

56 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

If a node finds that it has no entries in its cache, it SHOULD also try to resynchronize with the nodes
it knows to obtain more entries. Synchronization is initiated when the node sends a SOLICIT

message, as specified in section 3.1.4.3.

The DRT node MAY<5> also resolve any keys to ensure that the cache requirements continue to be

met, as specified in section 3.2.1.1. If it does so, then the ResolveReasonCode MUST be set to
REASON_CACHE_MAINTENANCE.

3.2.6.2.1 Detection of Cloud Splits

A DRT node MUST periodically test to determine whether they have become isolated or split off from
the main cloud. For performance reasons, the frequency of split detections SHOULD be roughly
constant over the entire cloud. This prevents tests from occurring too frequently. It means that for a

single node, the test frequency is inversely proportional to the cloud's estimated size as specified in
3.2.6.2.1.1. If, therefore, a node estimates that the cloud is large, that will reduce the probability of
that node to initiate the split detection.

To initiate split detection, a DRT node MUST initiate a key resolve process as specified in 3.1.4.4,

with the following parameters:

Parameter Value

Target Key A node MUST randomly select a locally registered key and then add 1 to get

a Target Key.

ResolveCriteria SEARCH_OPCODE_NONE.

PickBestMatchFromLocalIds False.

ResolveReasonCode REASON_SPLIT_DETECTION.

InitialBestMatchRouteEntry NULL.

InitialNextHopRouteEntry A Route Entry with the key set to zero and the first address set to an

address returned by the BootstrapModule.

3.2.6.2.1.1 Cloud Size Estimation

To calculate the estimated cloud size, a DRT node SHOULD repeat the following process for every
locally registered key.

Select the numerically nearest leaf set entry on each side (call their keys A and B). If no such

entries exist, skip this locally registered key. Otherwise, compute a cloud size estimate as
2*(2^256)/(B-A). If the cloud size estimate is greater than or equal to 2^32 the node MUST ignore
those values.

At the completion of the preceding process for all locally registered keys, a DRT node MUST take the
average of all the cloud size estimates that are not ignored. This will be the estimated cloud size in
terms of the number of keys in the cloud. To find the estimated cloud size in terms of the number of
DRT nodes, a DRT node SHOULD divide the preceding estimated cloud size by the number of locally

registered keys.

57 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3.2.6.3 Message Retransmission Timer Expiry

When the Message Retransmission Timer expires, the DRT node MUST follow the rules as specified
in section 3.1.6.2. In addition to those rules, a Publisher MUST also take additional actions for

specific message types, specified as follows.

If the message stored is an INQUIRE message, and the Retry Count is decremented to 0, The

ROUTE_ENTRY MUST be found in the Pending Route Entry Add List element based on the
MessageID of the timed out INQUIRE message and MUST be silently discarded.

If the message stored is a SOLICIT message, and the Retry Count is decremented to 0, the

conversation MUST be located in the Conversation table element by using the

SolicitMessageId field. If found, the conversation state MUST be released.

If the message stored is a FLOOD message, and the Retry Count is decremented to 0, and the

Route Entry for the key in the Validate Key field of the FLOOD message is in the route cache,
the route MUST be removed to prevent future attempts to send messages to the unresponsive
node.

3.2.7 Other Local Events

3.2.7.1 Resolving a Key

The rules for resolving a key are specified in section 3.1.4.4. In addition, whenever a Publisher
resolves a key and its Locally Registered Key List is not empty, it MUST do the following.

If no InitialBestMatchRouteEntry is supplied and PickBestMatchFromLocalIds is set, the Publisher
MUST generate a ROUTE_ENTRY for the nearest locally registered key and store it as the

CurrentBestMatch when initializing the resolve entry.

The first entry in the ResolvePath MUST be (any) one of the network endpoints in the Publisher's
Local Endpoint List. This prevents other nodes from referring this node back to itself.

3.2.7.2 Processing Address Change Notifications

A publisher MUST follow the same procedure as specified in section 3.1.7.1 for processing address
changes. In addition, for every entry in its Locally Registered Key List, it MUST advertise a

ROUTE_ENTRY with the new address list via the procedure as specified in step 5 of section 3.2.4.1.

58 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4 Protocol Examples

4.1 Resolving a Key

An application asks a DRT node (hereafter, the Resolver) to resolve a key. The Resolver then
performs the steps discussed in the following topics.

4.1.1 Opening a Cloud

The Resolver, not yet a member of the clouds first joins the cloud by performing the following steps:

The Resolver creates a new entry. It does this by selecting a port and a set of four IPv6

Addresses or as many as the local system has, not exceeding four, to use for DRT
communication.

The Resolver begins listening for incoming UDP messages on the chosen port, looking for

messages sent to the chosen IPv6 Addresses.

4.1.2 Cache Synchronization

Having successfully opened a cloud, the DRT node must first synchronize its cache before initiating
key resolution.

The Resolver sends a SOLICIT message to another node within the cloud (the discovered node). The
two nodes then use keys to negotiate which route entries to exchange. The discovered node returns
a Route Entry for each node of interest to the Resolver.

A synchronization conversation includes SOLICIT, ADVERTISE, REQUEST, ACK, and FLOOD

messages. The following illustration shows the sequence of messages sent between the Resolver
and the discovered node.

59 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Figure 1: Node Communication with Discovered Node

Note The FLOOD messages in this conversation are not synchronous; the discovered node may
send a second or third FLOOD message before it has received an ACK message for a previous
FLOOD message.

The following is an example of what happens during a sample synchronization conversation:

1. The Resolver sends a SOLICIT message to the discovered node to initiate the conversation. The

SOLICIT message contains the following data:

Hashed nonce used to identify the conversation.

Route Entry for a locally registered key, if any.

2. The discovered node responds with an ADVERTISE message that contains an array of node keys
that it selected from its own cache.

The discovered node keeps track of the hashed nonce that identifies the conversation.

The discovered node also adds the Route Entry from the SOLICIT message to its own cache.

3. When the Resolver receives the ADVERTISE message, it first uses the hashed nonce in the
message to verify that it sent a corresponding SOLICIT message.

60 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The Resolver then goes through the array of keys in the ADVERTISE message and selects the
ones to include in its own cache. If it selects all of them, for example, it returns a REQUEST

message to specify which keys it would like to obtain.

After the REQUEST message is sent, any state or context information held for the conversation is

released.

4. When the REQUEST message is received, the discovered node immediately returns an ACK
message to indicate receipt and to avoid retransmission of the REQUEST message by the
Resolver.

5. The discovered node attempts to verify that the nonce in the REQUEST message is valid. This is
done by hashing the nonce and comparing it with the state information saved from the SOLICIT
message (see step 2). Because they match, the nonce is valid and the receiving node sends a

FLOOD message for each key that is listed in the REQUEST message.

6. The Resolver inspects each FLOOD message as it is received. If the D bit is clear (as specified in
section 2.2.2.4) the Resolver returns an ACK message to indicate that it has received the FLOOD

message. The Resolver then adds to its cache the ROUTE_ENTRY in the message.

4.1.3 Key Resolution

The Resolver now attempts key resolution via the following steps:

61 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Figure 2: Key resolution

1. The Resolver, seeking endpoint information for a key registered by Node 3, creates a LOOKUP
message. It first computes a corresponding key (which is named 3 in this example), specifies 3
as the Target Key, and sets itself as the first entry in the path. It then sets the Validate Key

field to be the (numerically) closest key it has in its cache to the Target Key, and sends the
packet to the corresponding node (in this case, Node 1).

2. Upon receiving the LOOKUP message, Node 1 first searches its cache and determines if it

contains the key found in the Validate Key field. It does not, so it instead finds three route
entries that are closer to the Target Key than the Validate Key. It creates an AUTHORITY
message and randomly selects one of the three route entries to put in the RouteEntry field. It
then returns the AUTHORITY message to the Resolver.

3. The Resolver extracts the key (Node 2) from the RouteEntry field in the returned AUTHORITY
message, and creates a new LOOKUP message, adding Node 1 to the path. It sets the Validate

62 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Key field to the DRT found in the RouteEntry field of the AUTHORITY message, and sends it to
the corresponding node (Node 2).

4. Upon receiving the LOOKUP message, Node 2 first searches its cache and determines if it
contains the key found in the Validate Key field. It does not, and also has no keys in its cache

that are closer to the Target Key than the Validate Key. It returns an AUTHORITY message with
the RouteEntry field set to NULL.

5. Finding the RouteEntry field in the returned AUTHORITY message empty, the Resolver
backtracks by creating a new LOOKUP message, adding Node 2 to the path, and sending it to the
previous node in the path (Node 1).

6. Upon receiving the LOOKUP message, Node 1 responds exactly as it did in step 2, making certain
not to return any keys that are already in the path (for example, Node 2 will not be returned). In

this case, it returns Node 2a.

7. The Resolver extracts the key from the RouteEntry field in the returned AUTHORITY message.
Since Node 2 is already added to the path in step 7, it is not added to the path a second time.

The Resolver creates a LOOKUP message, setting the Validate Key field to the key found in the
RouteEntry field of the AUTHORITY message, and sends it to the corresponding node (Node 2a).

8. Upon receiving the LOOKUP message, Node 2a first searches its cache and determines if it

contains the key found in the Validate Key field. It does, and it creates an AUTHORITY message
with the RouteEntry field set to the target node (Node 3). It then returns the AUTHORITY
message to the Resolver.

9. The Resolver, finding the key in the RouteEntry field of the returned AUTHORITY message equal
to the Target Key, initiates validation by sending an INQUIRE message to Node 3.

Node 3 searches its Locally Registered Key List for the presence of the Target Key. When it is
found, it constructs an AUTHORITY_BUFFER calling upon the SecurityModule of the higher-layer

application to generate structures to authenticate the target key.

The AUTHORITY_BUFFER message is 2000 bytes (exceeding the 1188 byte limit), sp the buffer is

split into two fragments: the first has 1188 bytes, and the second has 812 bytes. Each fragment
is sent in a separate AUTHORITY message.

10.The Resolver, seeing that the value of the Size field (2000) exceeds 1188, knows that the
AUTHORITY_BUFFER message will arrive in multiple AUTHORITY messages. After receiving all the
AUTHORITY messages, reassembling the AUTHORITY_BUFFER message, and validating that the

CPA corresponds to the Key of interest, the Resolver reports the endpoint information back to the
application.

4.2 Registering a Key

To register a Key, a node performs the resolve operation as specified in section 4.1.3, with the
Target ID set to the key to be registered + 1. For example, if key 6 is being registered, it would

perform a resolve operation seeking key 7.

As other nodes receive LOOKUP messages from the registering node, they add the registering

node's key to their leaf sets when appropriate. Likewise, the registering node will populate its own
leaf set with the keys it finds in the received AUTHORITY messages.

63 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4.3 Unregistering a Key

When a key is unregistered, a Revoke CPA is sent to two entries from the leaf set of the ID being
unregistered. One entry is the numerically closest ID greater than the local ID and the other entry is

the numerically closest ID less than the local ID. Each recipient checks its cache to determine
whether an entry exists for the key. If one is found, the recipient removes it from its cache. If the
entry is in a leaf set of a locally registered ID, the node sends FLOOD messages with the Revoke
CPA on to other members of its leaf set.

Figure 3: DRT Name Revocation Process

1. The unregistering node (Node 6) creates a Revoke CPA for the Key. The R field of the CPA is

set to indicate that this is a Revoke CPA. It puts the Revoke CPA in a FLOOD message and
sends it to the node in its leaf set with the closest registered key lower than its own (for
example, Node 5). Upon receiving the FLOOD message, Node 5 removes the key of the
unregistering node from its local cache. If Node 5 has the key of the unregistering node in its leaf
set, it forwards the Revoke CPA to the node in its leaf set with the closest registered key lower
than its own (for example, Node 4), where it is processed exactly as described here. This

continues until the Revoke CPA reaches a node that does not have the key of the unregistering
node in either its cache or its leaf set, at which point possessing (and forwarding) of the Revoke
CPA ceases.

2. Node 6 sends an identical FLOOD message to the node in its leaf set with the closest registered
key greater than its own (for example, Node 7). Node 7 processes the Revoke CPA exactly as
described in step 1, except all Revoke CPA forwards will be converted to nodes with numerically
greater keys.

3. The unregistration of Node 6 produces gaps in the leaf sets of its nearby nodes. Node 6 therefore
sends a FLOOD message to the node in its leaf set with the smallest key (for example, Node 1).
The FLOOD message informs the recipient of the node with the next greater key than the
unregistering node (for example, Node 7). Node 1 will place the Node 7 key in its leaf set where
the Node 6 key used to reside.

4. Node 6 repeats step 3, notifying the node in its leaf set with the greatest key (for example, Node
11) of the node with the next lower key than the unregistering node (for example, Node 5),

allowing Node 11 to repair its leaf set as well.

4.4 Flooding a New Leaf Set Member

Assume there is a registered node with a Local ID of Y, and that its leaf set consists of {B, C, D, E,
F} on one side and {G, H, I, J, K} on the other. Assume that Node Y learns about a new
ROUTE_ENTRY with the ID of X, which is closer than G currently is.

64 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Figure 4: Leaf Set Node arrangement example

Note This sequence illustrates the cascading flood activity when a new ID is discovered. Prior to
any node propagating a FLOOD message, the node will send an INQUIRE message to the newly
discovered node. It will only propagate the FLOOD message when an AUTHORITY message has been
received back from the new node.

The following events will take place.

1. X displaces K in Y's leaf set.

2. This is the first wave of flooding for Node X.

3. Y selects the two nearest route entries in its cache with one being less than Y and one being
greater than Y. In this case, nodes F and G are chosen.

4. Y builds a FLOOD message with an Already Flooded List containing the address that Y is using
and the addresses of F and G. The FLOOD message is sent to F and G.

5. When F receives the FLOOD message from Y of Node X, Y determines whether it already knows
about X. If it does, it drops the FLOOD message with no further action. It does not, it adds X to

its leaf set.

6. F selects the two nearest route entries to its local ID, which do not have addresses in the Already
Flooded List, with one being less than F and one being greater than F. E and H will be chosen.

7. F builds a FLOOD message with the Already Flooded List having an address of E and H appended
to it. The list now contains {Y, F, G, E, H}.

8. F sends the FLOOD message of X to E and H.

9. When G receives the FLOOD message from Y of Node X, Y determines whether it already knows

about X. If it does, it drops the FLOOD message with no further action. It does not, it adds X to
its leaf set.

10.G selects the two nearest route entries to its local key, which do not have addresses in the
Already Flooded List with one being less than F and one being greater than F. E and H are
chosen.

65 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

11.G will build a FLOOD message with the Already Flooded List having an address of E and H
appended to it. The list will now contain {Y, F, G, E, H}.

12.G will now send the FLOOD message of X to E and H.

13.This begins the second wave of flooding for Node X.

14.Node E and Node H both receive two copies of the FLOOD message of X, one forwarded from F
and one from G. When processing the second instance of the flood, E and H ignore the second
one because X is either in their leaf set or in a list of route entries being checked.

15.E and H basically repeat the process FLOOD to D and I. The Already Flooded List contains {Y, F,
G, E, H, D, I}.

16.This begins the third wave of flooding for Node X.

17.Nodes D and I receive the FLOOD message of X. D and I both forward the FLOOD message to

two neighbors, but because the Already Flooded List contains all the nodes in half or each node's
leaf set, one of the flood targets will likely not be the next nearest neighbor in that direction.

18.D forwards to C, which is in its leaf set, but it is not necessarily going to flood to J because J is
outside of its leaf set. In this example, it forwards to L because it does not recognize J or K. The
Already Flooded List contains {Y, F, G, H, D, I, C, L}.

19.I forwards to J, which is in its leaf set, but is not necessarily going to forward to C because C is

outside of its leaf set. In this example, it forwards to A because it does not recognize B and C.
The Already Flooded List contains {Y, F, G, H, D, I, A, J }.

20.This begins the fourth wave of flooding for Node X.

21.Nodes A, C, J, and L will receive the FLOOD message of X. A and L will not forward the FLOOD
message because X will fall outside their leaf sets.

22.Nodes C and J will forward the FLOOD message because X is still in their leaf sets.

23.C will FLOOD message to B and to some other node falling outside the leaf set.

24.J will FLOOD message to K and some other node falling outside the leaf set.

25.This begins the fifth wave of flooding for Node X.

26.B does not forward the FLOOD message because X does not fall in its leaf set.

27.K will end of forwarding the FLOOD message because X still falls in its leaf set. K will FLOOD to L
and some other node that is outside its leaf set.

28.This begins the sixth wave of flooding for Node X.

29.L does not forward the FLOOD message because X does not fall in its leaf set.

30.Any of the other more remote nodes also do not forward the FLOOD message.

31.Additionally, all of the nodes that added X to their leaf set will FLOOD message their own route
entry back to X. That way X will discover all the nodes that consider X to be in their leaf set.
These transactions are not included in the diagram to reduce the clutter.

66 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

5 Security

5.1 Security Considerations for Implementers

Many Denial-of-Service (DoS) attack mechanisms exist (for example, duplicate address detection or
switch port map poisoning) beyond DRT. This makes Dos attacks from on-link nodes less important.
This class of attacks must be dealt with at layer 2, or administratively (socially).

Section 3.2.5.3 includes mitigation against denial-of-service attacks where an attacker sends
SOLICIT messages to cause a DRT node to create state.

Another potential threat is pollution of a node's Route Entry Cache with bad entries. DRT mitigates
this by doing a return routability check to ensure that the DRT node with the address that it will use
in the ROUTE_ENTRY actually claims to be publishing the key in each new route entry, before adding
it to the cache.

5.2 Index of Security Parameters

None.

67 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows® 7 operating system

Windows Server® 2008 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior

also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 3.1.2: Windows performs periodic cache maintenance every 15 seconds when the

number of cache entries is more than 2; otherwise, it performs periodic cache maintenance every 10
seconds.

<2> Section 3.1.4.2: Windows picks ten (or as many as exist, if less than ten) randomly chosen
nodes that are in the Route Entry Cache (see sections 3.1.1 and 3.2.1.1).

<3> Section 3.1.6.1: Windows attempts to maintain a cache of at least 10 route entries (or all route
entries in the cloud, if there are fewer than 10), the keys of which are evenly distributed around the

number space.

<4> Section 3.2.1.1: Windows achieves Requirement 1 by implementing a multi-level cache where
each cache level contains a fixed number of keys that covers a progressively smaller fragment of the
total key space. The lowest level of the cache (which is the leaf set) is the densest and it is centered
on a key published by the local node.

<5> Section 3.2.6.2: Windows attempts to "balance" its cache. Balancing the cache involves
checking each cache level to determine that no large gaps exist between entries. The allowable gap

size depends on the cache level; it is expected to be smaller for each level down. If a large gap is
found, an attempt is made to fill it by sending a LOOKUP message for a key in the middle of the
gap. The precision level of the LOOKUP message match is set to be just sufficient to fill the gap.

68 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

7 Change Tracking

This section identifies changes that were made to the [MC-DRT] protocol document between the
January 2011 and February 2011 releases. Changes are classified as New, Major, Minor, Editorial, or
No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A document revision that incorporates changes to interoperability requirements or functionality.

An extensive rewrite, addition, or deletion of major portions of content.

The removal of a document from the documentation set.

Changes made for template compliance.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are

updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the language and formatting in the technical content was
changed. Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical or language changes were introduced.
The technical content of the document is identical to the last released version, but minor editorial
and formatting changes, as well as updates to the header and footer information, and to the revision

summary, may have been made.

Major and minor changes can be described further using the following change types:

New content added.

Content updated.

Content removed.

New product behavior note added.

Product behavior note updated.

Product behavior note removed.

New protocol syntax added.

Protocol syntax updated.

Protocol syntax removed.

New content added due to protocol revision.

Content updated due to protocol revision.

Content removed due to protocol revision.

New protocol syntax added due to protocol revision.

69 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Protocol syntax updated due to protocol revision.

Protocol syntax removed due to protocol revision.

New content added for template compliance.

Content updated for template compliance.

Content removed for template compliance.

Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please

contact protocol@microsoft.com.

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

1.1

Glossary

55971

Added "network endpoint" to the list of terms

specific to this document.

Y Content

updated.

1.3

Overview

55971

Changed "endpoint" to "network endpoint" in

the description.

Y Content

updated.

2.2

Message Syntax

60050

Changed KEYTOKEN description by replacing

"The encrypted session key" with "A Keytoken

structure follows".

N Content

updated.

2.2

Message Syntax

57212

Changed "Acked Message ID" to "Acked

MessageID".

N Content

updated.

2.2.1

DRT Header

57213

Updated MessageID definition.

N Content

updated.

2.2.2.1

SOLICIT

60045

Updated variable in the packet diagram and

noted that the fields are optional in the

description text.

N Content

updated.

2.2.2.2

ADVERTISE

57212

Changed "Message ID" to "MessageID".

N Content

updated.

2.2.2.4 60045 N Content

mailto:protocol@microsoft.com

70 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

FLOOD Updated appropriate fields to show variable in

the packet diagram and noted that the fields

are optional in the description text.

updated.

2.2.2.5

INQUIRE

60099

Updated X field description by replacing "CPA"

with "Extended Payload" and C field description

by spelling out Certificate Chain.

N Content

updated.

2.2.2.5

INQUIRE

57403

Added Field4, Length4, Field5, Length5, Field6,

and Length6 fields.

Y Content

updated.

2.2.2.6

AUTHORITY

57212

Changed "Message ID" to "MessageID".

Y Content

updated.

2.2.2.6.1

AUTHORITY_BUFFER

60067

Updated structure diagram to show FieldID4

and Length4 fields as optional.

Y Content

updated.

2.2.2.7

ACK

57212

Changed "Message ID" to "MessageID".

N Content

updated.

2.2.2.8

LOOKUP

56011

Changed the name of the Reason_Code field to

ResolveReasonCode.

Y Content

updated.

2.2.2.8

LOOKUP

56877

Changed "Flagged Path" to "FlaggedPath".

N Content

updated.

2.2.2.8

LOOKUP

60045

Updated variable in the packet diagram and

noted that the fields are optional in the

description text.

N Content

updated.

2.2.2.8

LOOKUP

57403

Added FieldID6, Length6, FieldID7, Length7,

FieldID8, and Length8 fields.

Y Content

updated.

2.2.3.5

IPV6_ENDPOINT_ARRAY

58307

Changed the range in the NumEntries field

description from 0-22 to1-22.

N Content

updated.

2.2.3.6

FIELD_ARRAY

59677

Changed the NumEntries field description to

specify the elements in the array.

N Content

updated.

3.1.1

Abstract Data Model

55971

Updated the description for Local Endpoint List,

ResolvePath, and Route Entry Cache.

Y Content

updated.

3.1.1

Abstract Data Model

57212

Changed "Message ID" to "MessageID".

N Content

updated.

3.1.1 60777 Y Content

71 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

Abstract Data Model Added VersionMajor and VersionMinor to the

list of ADM elements.

updated.

3.1.4.1

Opening a Cloud

57350

Changed the number of port and IPv6

Addresses in the first node initialization

procedure.

N Content

updated.

3.1.4.1

Opening a Cloud

56013

Changed DRT to PNRP and changed

punctuation for clarification in the instructions

for initializing the node.

Y Content

updated.

3.1.4.3

Initiating a DRT

Synchronization Conversation

57212

Changed "Message ID" to "MessageID".

N Content

updated.

3.1.4.4

Resolving a Key

56878

Clarified content regarding CurrentBestMatch

and TotalUsefulHops.

Y Content

updated.

3.1.4.4

Resolving a Key

57212

Changed "message ID" and "Message ID" to

"Message-ID".

N Content

updated.

3.1.4.4

Resolving a Key

56492

Added parameter definitions.

Y Content

updated.

3.1.5.3

Receiving an ACK Message

57212

Changed "Message ID" to "MessageID".

N Content

updated.

3.1.5.5

Receiving an AUTHORITY

Message

57212

Changed "Message ID" to "MessageID".

N Content

updated.

3.1.5.5.1

Receiving an

AUTHORITY_BUFFER

56878

Changed SuspiciousHops to SuspiciousCount in

the content about when the L flag in the

AUTHORITY_BUFFER message is clear.

N Content

updated.

3.1.5.5.1

Receiving an

AUTHORITY_BUFFER

61549

Added prescription that the AUTHORITY

message MUST be dropped if it contains a

malformed buffer.

Y Content

updated.

3.1.5.5.1

Receiving an

AUTHORITY_BUFFER

57212

Changed "Acked Message ID" to "Acked

MessageID".

N Content

updated.

3.1.5.5.1.2

Completing a Route Entry

Cache Addition

57212

Changed "Acked Message ID" to "Acked

MessageID".

N Content

updated.

3.1.5.6

Receiving a New

57212

Changed "Message ID" to "MessageID".

N Content

updated.

72 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

ROUTE_ENTRY

3.1.6.1

Maintenance Timer Expiry

57212

Changed "message ID" to "MessageID".

N Content

updated.

3.1.6.1

Maintenance Timer Expiry

60579

Clarified the inquiry instructions.

Y Content

updated.

3.1.6.2

Message Retransmission

Timer Expiry

57212

Changed "Message ID" to "MessageID".

N Content

updated.

3.2.1

Abstract Data Model

58430

Clarified the description of the Cloud State

extension.

Y Content

updated.

3.2.5.4

Receiving a REQUEST

Message

56484

Added prescriptive information to the

instructions for verifying the nonce.

Y Content

updated.

3.2.6.3

Message Retransmission

Timer Expiry

57212

Changed "Message ID" to "MessageID".

N Content

updated.

3.2.7.1

Resolving a Key

56483

Changed "endpoints" to "network endpoints" in

the instructions for resolving a path.

Y Content

updated.

3.2.7.1

Resolving a Key

56883

Changed element name resolve path to

ResolvePath.

N Content

updated.

4.1.1

Opening a Cloud

56013

Clarified information regarding the number of

IPv6 Addresses in the instructions for joining a

cloud.

Y Content

updated.

4.1.3

Key Resolution

61403

Changed NextHopRouteEntry to RouteEntry in

nine places.

Y Content

updated.

73 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

8 Index

A

Abstract data model
Publisher

cache 50
overview 49

Resolver 39
ACK packet 29
ADVERTISE packet 16
Applicability 10
AUTHORITY packet (section 2.2.2.6 25, section

2.2.2.6.1 26)

C

Capability negotiation 11
Change tracking 68
Conversation Timer expiry - Publisher 55

D

Data model - abstract
Publisher

cache 50
overview 49

Resolver 39
DRT_HEADER packet 14
DrtMessages packet 12

E

Examples
flooding new leaf set member 63
registering key 62
resolving key

cache synchronization 58
key resolution 60
opening cloud 58
overview 58

unregistering key 63

F

FIELD_ARRAY packet 37
Fields - vendor-extensible 11
FLOOD packet 20
Flooding new leaf set member example 63

G

Glossary 6

H

Higher-layer triggered events
Publisher

registering key 50
unregistering key 51

Resolver
closing cloud 44
discovering other nodes in cloud 42
initiating DRT synchronization conversation 42
opening cloud 41
overview 41
resolving key 42

I

Implementer - security considerations 66
Index of security parameters 66
Informative references 7
Initialization

Publisher 50
Resolver 41

INQUIRE packet 22
Introduction 6
IPV6_ENDPOINT packet 36
IPV6_ENDPOINT_ARRAY packet 37

L

Local events
Publisher

overview 57
processing address change notifications 57
resolving key 57

Resolver 49
LOOKUP packet 30

M

Maintenance Timer expiry - Publisher
detecting cloud splits

cloud size estimation 56
overview 55

Maintenance Timer expiry - Resolver 48
Message processing

Publisher
FLOOD message 53
receiving AUTHORITY message 54
receiving INQUIRE message 53
receiving LOOKUP message 52
receiving new ROUTE_ENTRY 51
receiving SOLICIT message 52
REQUEST message 53
sending AUTHORITY_BUFFER 54

Resolver
receiving ACK message 45
receiving ADVERTISE message 44
receiving AUTHORITY message 45
receiving DRT message 44
receiving FLOOD message 45
receiving new ROUTE_ENTRY message 48

Message Retransmission Timer expiry - Publisher 57
Message Retransmission Timer expiry - Resolver 49
Messages

74 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

syntax
data structures 34
DRT messages 15
overview 12

transport 12

N

Normative references 6

O

Overview (synopsis)
clouds

active participation in cloud 9
cloud discovery 9

joining cloud 9
leaving cloud 10
overview 9

identifiers 8
modularity 8
overview 7
security

authenticated key security mode 8
confidential security mode 8
membership security mode 8
overview 8

P

Parameters - security index 66
Preconditions 10
Prerequisites 10
Product behavior 67
Publisher

abstract data model
cache 50
overview 49

higher-layer triggered events
registering key 50
unregistering key 51

initialization 50
local events

overview 57
processing address change notifications 57
resolving key 57

message processing
receiving AUTHORITY message 54
receiving FLOOD message 53
receiving INQUIRE message 53
receiving LOOKUP message 52
receiving new ROUTE_ENTRY 51
receiving REQUEST message 53
receiving SOLICIT message 52
sending AUTHORITY_BUFFER 54

overview 49
sequencing rules

FLOOD message 53
receiving AUTHORITY message 54
receiving INQUIRE message 53
receiving LOOKUP message 52
receiving new ROUTE_ENTRY 51

receiving SOLICIT message 52
REQUEST message 53
sending AUTHORITY_BUFFER 54

timer events
Conversation Timer expiry 55
Maintenance Timer expiry 55
Message Retransmission Timer expiry 57

timers 50

R

Receiving ACK message - Resolver 45
Receiving ADVERTISE message - Resolver 44
Receiving AUTHORITY message - Publisher

overview 54
receiving AUTHORITY_BUFFER 55

Receiving AUTHORITY message - Resolver
overview 45
receiving AUTHORITY_BUFFER

completing route entry cache addition 47
overview 46
receiving response to INQUIRE 47

Receiving DRT message - Resolver 44
Receiving FLOOD message - Publisher 53
Receiving FLOOD message - Resolver 45
Receiving INQUIRE message - Publisher 53
Receiving LOOKUP message - Publisher 52
Receiving new ROUTE_ENTRY - Publisher 51
Receiving new ROUTE_ENTRY message - Resolver

48
Receiving REQUEST message - Publisher 53
Receiving SOLICIT message - Publisher 52
References

informative 7
normative 6

Registering key example 62
Relationship to other protocols 10
REQUEST packet 17
Resolver

abstract data model 39
higher-layer triggered events

closing cloud 44
discovering other nodes in cloud 42
initiating DRT synchronization conversation 42
opening cloud 41
overview 41
resolving key 42

initialization 41
local events 49
message processing

receiving ACK message 45
receiving ADVERTISE message 44
receiving AUTHORITY message 45
receiving DRT message 44
receiving FLOOD message 45
receiving new ROUTE_ENTRY message 48

sequencing rules
receiving ACK message 45
receiving ADVERTISE message 44
receiving AUTHORITY message 45
receiving DRT message 44
receiving FLOOD message 45

75 / 75

[MC-DRT] — v20110204
 Distributed Routing Table (DRT) Version 1.0 Specification

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

receiving new ROUTE_ENTRY message 48
timer events

Maintenance Timer expiry 48
Message Retransmission Timer expiry 49

timers 41
Resolving key example

cache synchronization 58
key resolution 60
opening cloud 58
overview 58

ROUTE_ENTRY packet 35

S

Security
implementer considerations 66
parameter index 66

Security profile data structures
Credential 35

Encoded CPA 34
Key Identifier 35
Keytoken 35
overview 34
PAYLOAD 35
Signature 35

Sending AUTHORITY_BUFFER - Publisher 54
Sequencing rules

Publisher
FLOOD message 53
receiving AUTHORITY message 54
receiving INQUIRE message 53
receiving LOOKUP message 52
receiving new ROUTE_ENTRY 51
receiving SOLICIT message 52
REQUEST message 53
sending AUTHORITY_BUFFER 54

Resolver
receiving ACK message 45
receiving ADVERTISE message 44
receiving AUTHORITY message 45
receiving DRT message 44
receiving FLOOD message 45
receiving new ROUTE_ENTRY message 48

SOLICIT packet 15
Standards assignments 11
Syntax

data structures
DRT data structures 35
security profile data structures 34

DRT messages 15
overview 12

T

Timer events
Publisher

Conversation Timer expiry 55
Maintenance Timer expiry 55
Message Retransmission Timer expiry 57

Resolver
Maintenance Timer expiry 48

Message Retransmission Timer expiry 49

Timers
Publisher 50
Resolver 41

Tracking changes 68
Transport 12
Triggered events - higher-layer

Publisher
registering key 50
unregistering key 51

Resolver
closing cloud 44
discovering other nodes in cloud 42
initiating DRT synchronization conversation 42
opening cloud 41
overview 41
resolving key 42

U

Unregistering key example 63

V

Vendor-extensible fields 11
Versioning 11

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Identifiers
	1.3.2 Security
	1.3.2.1 Authenticated Key Security Mode
	1.3.2.2 Membership Security Mode
	1.3.2.3 Confidential Security Mode

	1.3.3 Modularity
	1.3.4 Clouds
	1.3.4.1 Cloud Discovery
	1.3.4.2 Joining a Cloud
	1.3.4.3 Active Participation in the Cloud
	1.3.4.4 Leaving a Cloud

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 DRT Header
	2.2.2 DRT Messages
	2.2.2.1 SOLICIT
	2.2.2.2 ADVERTISE
	2.2.2.3 REQUEST
	2.2.2.4 FLOOD
	2.2.2.5 INQUIRE
	2.2.2.6 AUTHORITY
	2.2.2.6.1 AUTHORITY_BUFFER

	2.2.2.7 ACK
	2.2.2.8 LOOKUP

	2.2.3 Data Structures
	2.2.3.1 Security Profile Data Structures
	2.2.3.1.1 Encoded CPA
	2.2.3.1.2 Keytoken
	2.2.3.1.3 Signature
	2.2.3.1.4 Credential
	2.2.3.1.5 Key Identifier
	2.2.3.1.6 PAYLOAD
	2.2.3.1.7 Encrypted Endpoint Array

	2.2.3.2 DRT Data Structures
	2.2.3.3 ROUTE_ENTRY
	2.2.3.4 IPV6_ENDPOINT
	2.2.3.5 IPV6_ENDPOINT_ARRAY
	2.2.3.6 FIELD_ARRAY

	3 Protocol Details
	3.1 Resolver Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Opening a Cloud
	3.1.4.2 Discovering Other Nodes in a Cloud
	3.1.4.3 Initiating a DRT Synchronization Conversation
	3.1.4.4 Resolving a Key
	3.1.4.5 Closing a Cloud

	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Receiving a DRT Message
	3.1.5.2 Receiving an ADVERTISE Message
	3.1.5.3 Receiving an ACK Message
	3.1.5.4 Receiving a FLOOD Message
	3.1.5.5 Receiving an AUTHORITY Message
	3.1.5.5.1 Receiving an AUTHORITY_BUFFER
	3.1.5.5.1.1 Receiving a Response to an INQUIRE
	3.1.5.5.1.2 Completing a Route Entry Cache Addition

	3.1.5.6 Receiving a New ROUTE_ENTRY

	3.1.6 Timer Events
	3.1.6.1 Maintenance Timer Expiry
	3.1.6.2 Message Retransmission Timer Expiry

	3.1.7 Other Local Events
	3.1.7.1 Processing Address Change Notifications

	3.2 Publisher Details
	3.2.1 Abstract Data Model
	3.2.1.1 Cache

	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.4.1 Registering a Key
	3.2.4.2 Unregistering a Key

	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Receiving a New ROUTE_ENTRY
	3.2.5.2 Receiving a LOOKUP Message
	3.2.5.3 Receiving a SOLICIT Message
	3.2.5.4 Receiving a REQUEST Message
	3.2.5.5 Receiving a FLOOD Message
	3.2.5.6 Receiving an INQUIRE Message
	3.2.5.7 Sending an AUTHORITY_BUFFER
	3.2.5.8 Receiving an AUTHORITY Message
	3.2.5.8.1 Receiving an AUTHORITY_BUFFER

	3.2.6 Timer Events
	3.2.6.1 Conversation Timer Expiry
	3.2.6.2 Maintenance Timer Expiry
	3.2.6.2.1 Detection of Cloud Splits
	3.2.6.2.1.1 Cloud Size Estimation

	3.2.6.3 Message Retransmission Timer Expiry

	3.2.7 Other Local Events
	3.2.7.1 Resolving a Key
	3.2.7.2 Processing Address Change Notifications

	4 Protocol Examples
	4.1 Resolving a Key
	4.1.1 Opening a Cloud
	4.1.2 Cache Synchronization
	4.1.3 Key Resolution

	4.2 Registering a Key
	4.3 Unregistering a Key
	4.4 Flooding a New Leaf Set Member

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

