

1 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

[MC-CSDL]:
Conceptual Schema Definition File Format

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft's Open Specification Promise (available here:
http://www.microsoft.com/interop/osp) or the Community Promise (available here:
http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if
the technologies described in the Open Specifications are not covered by the Open Specifications

Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the

aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

2 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Revision Summary

Date Revision History Revision Class Comments

02/27/2009 0.1 Major First Release.

04/10/2009 0.1.1 Editorial Revised and edited the technical content.

05/22/2009 0.1.2 Editorial Revised and edited the technical content.

07/02/2009 0.2 Minor Updated the technical content.

08/14/2009 0.2.1 Editorial Revised and edited the technical content.

09/25/2009 1.0 Major Updated and revised the technical content.

11/06/2009 1.0.1 Editorial Revised and edited the technical content.

12/18/2009 1.0.2 Editorial Revised and edited the technical content.

01/29/2010 1.1 Minor Updated the technical content.

03/12/2010 1.1.1 Editorial Revised and edited the technical content.

04/23/2010 1.1.2 Editorial Revised and edited the technical content.

06/04/2010 1.1.3 Editorial Revised and edited the technical content.

07/16/2010 1.2 Minor Clarified the meaning of the technical content.

08/27/2010 1.3 Minor Clarified the meaning of the technical content.

10/08/2010 2.0 Major Significantly changed the technical content.

11/19/2010 3.0 Major Significantly changed the technical content.

01/07/2011 4.0 Major Significantly changed the technical content.

02/11/2011 4.1 Minor Clarified the meaning of the technical content.

3 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Contents

1 Introduction ... 5
1.1 Glossary ... 6
1.2 References .. 8

1.2.1 Normative References ... 8
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.4 Relationship to Protocols and Other Structures .. 9
1.5 Applicability Statement ... 9
1.6 Versioning and Localization ... 9
1.7 Vendor-Extensible Fields ... 9

2 Structures .. 11
2.1 Elements .. 11

2.1.1 Schema .. 11
2.1.2 EntityType ... 12
2.1.3 Property .. 14
2.1.4 NavigationProperty ... 16
2.1.5 Entity Key ... 17
2.1.6 PropertyRef ... 18
2.1.7 ComplexType ... 19
2.1.8 Association .. 20
2.1.9 Association End .. 21
2.1.10 OnDelete ... 22
2.1.11 ReferentialConstraint .. 23
2.1.12 ReferentialConstraint Role ... 24

2.1.12.1 Principal .. 25
2.1.12.2 Dependent ... 26

2.1.13 Using .. 27
2.1.14 EntityContainer .. 28
2.1.15 FunctionImport .. 29
2.1.16 FunctionImport Parameter ... 30
2.1.17 EntitySet ... 32
2.1.18 AssociationSet.. 33
2.1.19 AssociationSet End ... 34
2.1.20 Documentation ... 34
2.1.21 AnnotationElement ... 37
2.1.22 Model Functions ... 38
2.1.23 Model Function Parameter ... 40
2.1.24 CollectionType .. 41
2.1.25 TypeRef... 43
2.1.26 ReferenceType ... 44
2.1.27 RowType ... 46
2.1.28 RowType Property .. 47
2.1.29 Function ReturnType ... 49

2.2 Attributes ... 51
2.2.1 EDMSimpleType ... 51

2.2.1.1 Commonly Applicable Facets .. 51
2.2.1.1.1 Nullable ... 51
2.2.1.1.2 Default .. 51

2.2.1.2 Binary ... 51

4 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.1.2.1 Facets .. 52
2.2.1.2.1.1 MaxLength .. 52
2.2.1.2.1.2 FixedLength .. 52

2.2.1.3 Boolean ... 52
2.2.1.4 DateTime ... 52

2.2.1.4.1 Facets .. 52
2.2.1.4.1.1 Precision .. 52

2.2.1.5 Time ... 52
2.2.1.5.1 Facets .. 52

2.2.1.5.1.1 Precision .. 52
2.2.1.6 DateTimeOffset .. 52

2.2.1.6.1 Facets .. 53
2.2.1.6.1.1 Precision .. 53

2.2.1.7 Decimal ... 53
2.2.1.7.1 Facets .. 53

2.2.1.7.1.1 Precision .. 53
2.2.1.7.1.2 Scale ... 53

2.2.1.8 Single ... 53
2.2.1.9 Double .. 53
2.2.1.10 Guid .. 53
2.2.1.11 SByte .. 53
2.2.1.12 Int16 ... 53
2.2.1.13 Int32 ... 53
2.2.1.14 Int64 ... 54
2.2.1.15 Byte .. 54
2.2.1.16 String .. 54

2.2.1.16.1 Facets .. 54
2.2.1.16.1.1 Unicode .. 54
2.2.1.16.1.2 FixedLength .. 54
2.2.1.16.1.3 MaxLength .. 54
2.2.1.16.1.4 Collation ... 54

2.2.2 Action ... 55
2.2.3 Multiplicity ... 55
2.2.4 ConcurrencyMode ... 55
2.2.5 QualifiedName ... 56
2.2.6 SimpleIdentifier ... 56
2.2.7 AnnotationAttribute .. 56
2.2.8 OpenType.. 56

3 Structure Examples .. 57

4 Security Considerations .. 59

5 Appendix A: Product Behavior .. 60

6 Appendix B: Differences Between CSDL Version 1.0 and CSDL Version 1.1 61

7 Appendix C: Differences Between CSDL Version 1.1 and CSDL Version 1.2 62

8 Appendix D: Differences Between CSDL Version 1.2 and CSDL Version 2.0 63

9 Change Tracking... 64

10 Index ... 66

5 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

1 Introduction

This document describes the structure and semantics of the Conceptual Schema Definition Language
(CSDL) for the Entity Data Model (EDM). CSDL Version 2.0 is a language based on XML that can be
used for defining EDM-based conceptual models.

The EDM is an entity-relationship (ER) model. The ER model has existed for over 30 years and
differs from the more familiar relational model, because Associations and Entities are all first-class
concepts.

The EDM defines some well-known primitive types, such as Edm.String, which are used as the

building blocks for structural types like Entity Types and Complex Types.

Entities are instances of Entity Types (for example, Customer or Employee) which are richly
structured records with a key. The structure of an Entity Type is provided by its Properties. An entity
key is formed from a subset of the properties of the Entity Type. The key (for example, CustomerId
or EmployeeId) is a fundamental concept to uniquely identify and persist entity instances and to
allow entity instances to participate in relationships or associations.

Entities are grouped in Entity Sets; for example, the EntitySet Customers is a set of Customer

instances.

Associations (occasionally referred to as Relationships) are instances of Association Types.
Association Types are used to specify a named relationship between two Entity Types. Thus, an
Association is a named relationship between two or more Entities. Associations are grouped into
Association Sets.

Entity Types may include one or more Navigation Properties. A Navigation Property is tied to an

Association Type and allows the navigation from one end of an Association, the Entity Type that
declares the Navigation Property, to the other related end, which can be anything from 0 or more
related Entities. Unlike standard Properties, Navigation Properties are not considered to be
structurally part of an Entity.

Complex Types, which are structural types similar to an Entity Type, are also supported by the EDM.

The main difference is that Complex Types have no identity and can't support Associations. For
these reasons, Complex Types instances only exist as properties of Entity Types (or other Complex

Types).

The EDM also supports Entity Type and Complex Type inheritance.

Inheritance is a fundamental modeling concept that allows different types to be related in an "Is a"
relationship enabling extensibility and reuse of existing entity types. When type B inherits from type
A, then A is the base-type of B, and B is a sub-type or derived-type of A. The derived-type inherits
all properties of its base-type and these properties are called inherited-properties. The derived-type
can be extended to have more properties and these additional properties are called direct-

properties. A direct-property name has to be unique; it cannot be the same as an inherited-property
name. All valid derived-type instances at all times are also valid base-type instances and can be
substituted for the parent instance. In the EDM a derived Entity Type always inherits the definition
of its key from its base type.

Function Imports are also supported by the EDM. A Function Import is conceptually similar to a
method declaration in a header file, in that it defines a function signature, but includes no definition.

The parameters and Return Type of the Function Import must either be one of the EDM's built-in
primitive types, one of the structural types defined in the rest of the model or collection of these
types.

6 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Entity Sets, Association Sets and Function Imports are grouped into one or more Entity Containers.
Entity Containers are conceptually similar to databases, however since Entity Types, Association

Types and Complex Types are declared outside an EntityContainer this means they can be re-used
across Entity Containers.

An example of a Model defined using CSDL is shown in Section 3.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

.NET Framework
XML namespace

The following terms are specific to this document:

alias: A simple identifier that is typically used as a short name for a namespace.

alias qualified name: A QualifiedName that is used to refer to a StructuralType, except the
namespace is replaced by the namespace's alias. For example if an EntityType called
"Person" is defined in the "Model.Business" namespace, and that namespace has been
given the alias "Self", then the alias qualified name for the person EntityType is "Self.Person".

annotation: Any custom, application-specific extension to an instance of CSDL through the use
of custom attributes and elements that are not a part of this CSDL specification.

association: A named independent relationship between two EntityType definitions. Associations
in the EDM are first class concepts and are always bi-directional; indeed the first class nature
of associations helps distinguish the Entity Data Model from the Relational Model.

association end: Every association includes two association ends, which specify the
EntityTypes that are related, the roles of each of those EntityTypes in the association, and

the cardinality rules for each end of the association.

cardinality: The measure of the number of elements in a set.

collection: This element is used when declaring a FunctionImport whose parameter or return
type is not a single EDM type but many. For example, a FunctionImport may return a
collection of customers, that is, collection(Model.Customer).

conceptual schema definition language (CSDL): Conceptual schema definition language
(CSDL) is a language based on XML that can be used for defining conceptual models based on

the Entity Data Model.

CSDL Version 1.0: An older version of CSDL that has a slightly reduced set of capabilities,
which are called out in this document. Version 1.0 CSDL references this XML namespace:
http://schemas.microsoft.com/ado/2006/04/edm.

CSDL Version 1.1: An older version of CSDL defined immediately prior to Version 1.2. Version

1.1 CSDL documents references this XML namespace:

http://schemas.microsoft.com/ado/2007/05/edm.

CSDL Version 1.2: An older version of CSDL defined immediately prior to Version 2.0. Version
1.2 CSDL documents references this XML namespace:
http://schemas.microsoft.com/ado/2008/01/edm.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

7 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

CSDL Version 2.0: The version of CSDL that is the focus of this document. Version 2.0 CSDL
documents reference this XML namespace:

http://schemas.microsoft.com/ado/2008/09/edm.

declared property: A property statically declared by a <Property> element as part of the

definition of a StructuralType. For example, in the context of an EntityType, this property
includes all properties of an EntityType represented by the <Property> child elements of the
<EntityType> element which defines the EntityType.

derived type: All types with a specified BaseType are said to derive from the BaseType or be
derived types of the BaseType. Only ComplexType and EntityType can define a BaseType.

dynamic property: An instance of an OpenEntityType may include additional nullable properties
(of type EDMSimpleType or ComplexType) beyond its declared properties. The set of

additional properties, and the type of each, may vary between instances of the same
OpenEntityType. Such additional properties are referred to as dynamic properties and do not
have a representation in a CSDL document. If an instance of an OpenEntityType does not
include a value for a dynamic property named N, then the instance must be treated as if it

included N with a value of null. A dynamic property of an OpenEntityType must not have the
same name as a declared property on the same OpenEntityType.

Entity Data Model (EDM): The Entity Data Model (EDM) as described in section 1.0.

EDM type: A categorization that includes all of the following types: EDMSimpleType,
ComplexType, EntityType, and association.

entity: An instance of an EntityType element that has a unique identity and an independent
existence, and is an operational unit of consistency.

facet: This element provides information that specializes the usage of a type – for instance, you
can use the precision (that is, accuracy) facet to define the precision of a DateTime property.

identifier: A string value that is used to uniquely identify a component of the CSDL and is of
type SimpleIdentifier.

in scope: This document refers to various XML constructs as being in scope. When something is
in scope, it is visible or can be referenced, assuming all other applicable rules are satisfied.
Types that are in scope include all EDMSimpleType types and StructuralType types that are
defined in namespaces that are in scope. Namespaces that are in scope include the
namespace of the current schema and other namespaces referenced in the current

schema with <Using> elements.

namespace: A name defined on the schema that is then subsequently used to prefix
identifiers to form the namespace qualified name of a StructuralType. CSDL enforces a
maximum length of 512 characters for namespace values.

namespace qualified name: A QualifiedName that is used to refer to StructuralTypes using
the name of the namespace, followed by a period, followed by the name of the

StructuralType.

property: An EntityType can have one or more properties of the specified EDMSimpleType, or
ComplexType. A property can be a declared property or a dynamic property. (In CSDL
version 1.2, dynamic properties are only defined for use with OpenEntityType instances.)

referential constraint: A constraint on the keys contained in the association type. The
ReferentialConstraint CSDL construct is used for defining referential constraints.

%5bMS-GLOS%5d.pdf

8 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

schema: All EDM types are contained within some namespace. The schema concept defines a
namespace that describes the scope of EDM types.

StructuralType: A type that has members that define its structure. ComplexTypes, EntityTypes
and Associations are all StructuralTypes.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an

additional source.

[ECMA-334] ECMA International, "C# Language Specification", ECMA-334, June 2006,

http://www.ecma-international.org/publications/standards/Ecma-334.htm

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

[XML1.0] Bray, T., Paoli, J., Sperberg-McQueen, C.M., and Maler, E., "Extensible Markup Language
(XML) 1.0 (Second Edition)", W3C Recommendation, October 2000,
http://www.w3.org/TR/2000/REC-xml-20001006

[XMLNS-2ED] World Wide Web Consortium, "Namespaces in XML 1.0 (Second Edition)", August

2006, http://www.w3.org/TR/2006/REC-xml-names-20060816/

[XMLSCHEMA1] Thompson, H.S., Ed., Beech, D., Ed., Maloney, M., Ed., and Mendelsohn, N., Ed.,

"XML Schema Part 1: Structures", W3C Recommendation, May 2001,
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/

1.2.2 Informative References

[MC-EDMX] Microsoft Corporation, "Entity Data Model for Data Services Packaging Format",

February 2009.

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary", March 2007.

[MS-ODATA] Microsoft Corporation, "Open Data Protocol (OData) Specification", January 2011.

1.3 Overview

Conceptual Schema Definition Language (CSDL) is an XML-based file format that describes the
Entity Data Model, and is based on standards defined in [XML1.0] and [XMLSCHEMA1]. The root of

the CSDL is a <Schema> element. Below that root, these sub-elements are supported: <Using>,
<EntityType>, <ComplexType>, <Association> and <EntityContainer>. In CSDL 2.0 and higher
versions, <Schema> elements may have <Function> as a sub-element. <EntityContainers>
conceptually represent a <DataSource>, and can contain <EntitySet>, <AssociationSet> and
<FunctionImport> sub-elements.

http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=93452
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90599
http://go.microsoft.com/fwlink/?LinkId=90602
http://go.microsoft.com/fwlink/?LinkId=90608
%5bMC-EDMX%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ODATA%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90599
http://go.microsoft.com/fwlink/?LinkId=90608

9 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Conceptually a CSDL file has an overall structure that resembles the following:

<Schema>

 <Using/>

 <Using/>

 <EntityType/>

 <EntityType/>

 <ComplexType/>

 <Association/>

 <Association/>

 <Function/>

 <Function/>

 <EntityContainer>

 <EntitySet/>

 <EntitySet/>

 <AssociationSet/>

 <AssociationSet/>

 <FunctionImport/>

 <FunctionImport/>

 </EntityContainer>

 <EntityContainer/>

</Schema>

Note This is not a detailed specification, which follows. It is only meant to provide a visual
overview.

1.4 Relationship to Protocols and Other Structures

Both Entity Data Model for Data Services Packaging Format [MC-EDMX] and Atom Publishing

Protocol: Data Services URI and Payload Extensions [MS-ODATA] use the structures defined in
CSDL.

1.5 Applicability Statement

CSDL is an XML format that describes the structure and semantics of the Entity Data Model

schemas. Identifiers, such as Names, Namespaces, and so on, are all case sensitive.

EDM is a specification for defining conceptual data models. Applications can use the EDM to define a
conceptual model that describes the entity, relationships, and sets required in the domain served
by the application.

1.6 Versioning and Localization

This document describes CSDL version 1.0, CSDL version 1.1, CSDL version 1.2, and CSDL

version 2.0. Aspects of older CSDL version that do not apply to newer versions are specifically
highlighted.

1.7 Vendor-Extensible Fields

CSDL supports application-specific customization and extension through the use of Annotations.
These Annotations allow applications to embed application-specific or vendor-specific information

%5bMC-EDMX%5d.pdf
%5bMS-ODATA%5d.pdf

10 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

into CSDL. The format does not specify how to process these custom-defined structures or how to
distinguish structures from multiple vendors or layers. Parsers of the CSDL can ignore Annotations

that are not expected or not understood.

Annotations can be of two types: AnnotationAttribute and AnnotationElement.

An AnnotationAttribute is a custom XML attribute applied to a CSDL Element. The attribute can
belong to any XML namespace (as defined in [XML Namespaces1.0]) that is not in the list of
reserved XML namespaces for CSDL. Consult the reference for each CSDL element within this
document to determine whether AnnotationAttribute can be used for that element.

The reserved XML namespaces for CSDL are:

http://schemas.microsoft.com/ado/2006/04/edm

http://schemas.microsoft.com/ado/2007/05/edm

http://schemas.microsoft.com/ado/2008/01/edm

http://schemas.microsoft.com/ado/2008/09/edm

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=93449

11 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2 Structures

2.1 Elements

2.1.1 Schema

The <Schema> is the top-level CSDL construct that allows creation of namespace.

The contents of a namespace can be defined by one or more <Schema> instances. The identifiers
used to name types MUST be unique within a Namespace. For instance, an EntityType cannot

have the same name as a ComplexType within the same namespace. The Namespace forms a
part of the type's fully qualified name.

Example:

<Schema Alias="Model" Namespace="Test.Simple.Model"

xmlns:edm="http://schemas.microsoft.com/ado/2008/01/edm"

xmlns="http://schemas.microsoft.com/ado/2008/09/edm">

The following rules apply to the <Schema> element.

The CSDL document MUST have the <Schema> element as its root element.

The Namespace attribute MUST be defined for each <Schema> element. Namespace is of type

QualifiedName. A namespace is a logical grouping of EntityTypes, ComplexTypes, and
Associations.

A schema Namespace MUST NOT be "System", "Transient" or "Edm".

A schema definition can span across more than one CSDL document.

Alias attribute can be defined on <Schema> element. Alias is of the type SimpleIdentifier.

<Schema> can contain any number of AnnotationAttributes. The full names of

AnnotationAttributes MUST NOT collide.

<Schema> can contain 0 or more of the following subelements. The elements can appear in any

given order.

<Using>

<Association>

<ComplexType>

<EntityType>

<EntityContainer>

In CSDL 2.0 and higher versions, <Schema> can contain 0 or more of the following sub-element.

<Function>

<Schema> can contain any number of AnnotationElement elements.

12 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

AnnotationElement elements MUST only appear after all other Schema sub-elements.

All sub-elements MUST appear in the order indicated. For all sub-elements within a given Choice,

the sub-elements can be ordered arbitrarily.

2.1.2 EntityType

An entity is an instance of an <EntityType>. It has a unique identity, independent existence and
forms the operational unit of consistency. Intuitively, <EntityTypes> model the top-level concepts
within a data model - such as Customers, Orders, Suppliers, and so on (to take the example of a

typical line-of-business system). An entity instance represents one particular instance of the

<EntityType> such as a specific customer or a specific order. An <EntityType> can be either
abstract or concrete. An abstract <EntityType> cannot be instantiated.

An <EntityType> has a Name, a payload consisting of one or more declared properties, and a
<Key> that describes the set of properties whose values uniquely identify an entity within an
entity set.

In CSDL 1.2 and higher versions, an <EntityType> can be an OpenEntityType, denoted by the

presence of an OpenType="true" attribute; if so, then the set of properties associated with the
<EntityType> can, in addition to declared properties, include dynamic properties.

The type of a <Property> can be an EDMSimpleType or ComplexType.

Example

 <EntityType Name="Customer">

 <Key>

 <PropertyRef Name="CustomerId" />

 </Key>

 <Property Name="CustomerId" Type="Int32" Nullable="false" />

 <Property Name="FirstName" Type="String" Nullable="true" />

13 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 <Property Name="LastName" Type="String" Nullable="true" />

 <Property Name="AccountNumber" Type="Int32" Nullable="true" />

 <NavigationProperty Name="Orders" Relationship="Model1.CustomerOrder" FromRole="Customer"

ToRole="Order" />

 </EntityType>

The following rules apply to the <EntityType> element.

<EntityType> MUST have a Name attribute defined. Name attribute is of type SimpleIdentifier.

Name attribute represents the name of this <EntityType>.

The Name of an <EntityType> MUST be unique across all <EntityType> types, Association

types, and ComplexType types defined in the same namespace.

<EntityType> can derive from a BaseType, which is used to specify the parent type of a

derived type. The derived type inherits properties from the parent type.

If a BaseType is defined, it MUST be a Namespace Qualified Name or an Alias Qualified

Name of an <EntityType> that is in scope.

An <EntityType> MUST NOT introduce an inheritance cycle via the BaseType attribute.

An <EntityType> can have its Abstract attribute set to true. By default, the Abstract attribute

is false.

An <EntityType> can contain any number of AnnotationAttribute attributes. The full name of

AnnotationAttribute MUST NOT collide.

An <EntityType> element can contain at most one <Documentation> element.

An <EntityType> MUST either define a <Key> or derive from a BaseType. Derived

<EntityTypes> MUST NOT define a <Key>. A key forms the identity of the <Entity>.

An <EntityType> can have any number of <Property> and <NavigationProperty> elements in

any given order.

<EntityType> <Property> sub-elements MUST be uniquely named within the inheritance

hierarchy for the <EntityType>. <Property> sub-elements and <NavigationProperty> sub-

elements MUST NOT have the same name as their declaring <EntityType>.

An <EntityType> can contain any number of AnnotationElement element block.

In CSDL 1.2 and higher versions, an <EntityType> representing an OpenEntityType MUST have

an OpenType attribute defined with its value equal to "true".

In CSDL 1.2 and higher versions, an <EntityType> which derives from an OpenEntityType is itself

an OpenEntityType. Such a derived <EntityType> MUST NOT have an OpenType attribute with
its value equal to "false", but can have an OpenType attribute defined with its value equal to
"true".

14 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

All sub-elements MUST appear in the order indicated. For all sub-elements within a given Choice,
the sub-elements can be ordered arbitrarily.

2.1.3 Property

The declared properties of an <EntityType> or <ComplexType> are defined using the <Property>
element. <EntityType> and <ComplexType> can have <Property> elements. <Property> can be an
EDMSimpleType or <ComplexType>. A declared property description consists of its name, type

and a set of facets, such as Nullable or Default. Facets describe further behavior of a given type;

they are optional to define.

Example:

<Property Name="ProductName" Type="String" Nullable="false" MaxLength="40">

The following rules apply to the <Property> element.

<Property> MUST define Name attribute.

<Property> MUST have the Type defined.

<Property> Type MUST be either an EDMSimpleType or a Namespace Qualified Name or Alias

Qualified Name of a ComplexType that is in scope.

<Property> can define a Nullable facet. The default value is Nullable=true. (Any Property that

has a Type of ComplexType, MUST also define a Nullable attribute which MUST be set to false.)

The following facets are optional to define on <Property>:

Default

15 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

MaxLength

FixedLength

Precision

Scale

Unicode

Collation

In CSDL 1.1 and higher versions, a <Property> element can define CollectionKind. The possible

values are "None", "List" and "Bag".

<Property> can define ConcurrencyMode. The possible values are "None" and "Fixed".

However, for an <EntityType> that has a corresponding <EntitySet> defined, any <EntityTypes>
derived from it MUST NOT define any new <Property> with ConcurrencyMode set to a value
other than "None".

<Property> can contain any number of AnnotationAttribute attributes. The full names of these

AnnotationAttributes MUST NOT collide.

<Property> element can contain maximum of one <Documentation> element.

<Property> can contain any number of AnnotationElements.

Sub-elements for <Property> MUST appear in this sequence: <Documentation>,

AnnotationElements.

16 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

All sub-elements MUST appear in the order indicated.

2.1.4 NavigationProperty

<NavigationProperty> elements define non-structural properties on entities that allow for navigation
from one <Entity> to another via a relationship. Standard properties describe a value associated
with an entity, while navigation properties describe a navigation path over a relationship. For
example, given a relationship between Customer and Order entities, an Order <EntityType> may
describe a <NavigationProperty> "OrderedBy" that represents the Customer instance associated
with that particular Order instance.

Example:

<NavigationProperty Name="Orders" Relationship="Model1.CustomerOrder" FromRole="Customer"

ToRole="Order" />

The following rules apply to the <NavigationProperty> element.

<NavigationProperty> MUST have a Name defined.

<NavigationProperty> MUST have a Relationship attribute defined.

17 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Relationship MUST be either a Namespace Qualified Name or an Alias Qualified Name of an

<Association> that is in scope.

<NavigationProperty> MUST have a ToRole defined. ToRole specifies the other end of the

relationship. ToRole MUST refer to one of the Role names defined on the <Association>.

<NavigationProperty> MUST have a FromRole defined. FromRole is used to establish the

starting point for the navigation and MUST refer to one of the Role names defined on the
<Association>.

<NavigationProperty> can contain any number of AnnotationAttribute attributes. The full names

of AnnotationAttribute MUST NOT collide.

<NavigationProperty> element can contain a maximum of one <Documentation> element.

<NavigationProperty> can contain any number of AnnotationElement elements.

Sub-elements for <NavigationProperty> MUST appear in this sequence: <Documentation>,

AnnotationElement.

All sub-elements MUST appear in the order indicated.

2.1.5 Entity Key

<Key> describes which <Property> elements form a key that can uniquely identify instances of an
<EntityType>. Any set of non-nullable, immutable, <EDMSimpleType> declared properties can
serve as the key.

Example:

 <Key>

 <PropertyRef Name="CustomerId" />

 </Key>

The following rules apply to the <Key> element.

18 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<Key> can contain any number of AnnotationAttribute attributes. The full names of

AnnotationAttributes MUST NOT collide.

<Key> MUST have one or more <PropertyRef> sub-elements.

In 2.0 and higher versions, <Key> can contain any number of AnnotationElement elements.

All sub-elements MUST appear in the order indicated.

2.1.6 PropertyRef

<PropertyRef> element refers to a declared property of an EntityType.

Example:

 <PropertyRef Name="CustomerId" />

The following rules apply to the <PropertyRef> element.

<PropertyRef> can contain any number of AnnotationAttribute attributes. The full names of

AnnotationAttributes MUST NOT collide.

<PropertyRef> MUST define the name attribute. Name attribute refers to the name of a

<Property> defined in the declaring <EntityType>.

In 2.0 and higher versions, <PropertyRef> can contain any number of AnnotationElement

elements.

All sub-elements MUST appear in the order indicated.

19 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.1.7 ComplexType

A <ComplexType> element represents a set of related information. Like an <EntityType> element,
a <ComplexType> element consists of one or more properties of EDMSimpleType or complex type.

However, unlike an <EntityType> element, a <ComplexType> element cannot have a <Key>
element or any <NavigationProperty> elements.

A <ComplexType> element provides a mechanism to create declared properties with a rich
(structured) payload. Its definition includes its name and payload. The payload of a <ComplexType>
is very similar to that of an <EntityType>.

Example:

 <ComplexType Name="CAddress">

 <Documentation>

 <Summary>This complextype describes the concept of an Address</Summary>

 <LongDescription>This complextype describes the concept of an Address for use with

Customer and other Entities</LongDescription>

 </Documentation>

 <Property Name="StreetAddress" Type="String">

 <Documentation>

 <LongDescription>StreetAddress contains the string describing the address of the

street associated with an address</LongDescription>

 </Documentation>

 </Property>

 <Property Name="City" Type="String" />

 <Property Name="Region" Type="String" />

 <Property Name="PostalCode" Type="String" />

 </ComplexType>

The following rules apply to the ComplexType element.

<ComplexType> MUST have a Name attribute defined. Name attribute is of type

SimpleIdentifier. <Name> attribute represents the name of this <ComplexType>.

<ComplexType> Name MUST be unique across all <EntityType> types, <Association> types and

<ComplexType> types defined in the same namespace.

In CSDL 1.1 and higher versions, a <ComplexType> can derive from a BaseType. BaseType

MUST be either the NamespaceQualifiedName or AliasQualifiedName of another
<ComplexType> that is in scope.

A <ComplexType> MUST NOT introduce an inheritance cycle via the BaseType attribute.

In CSDL 1.1 and higher versions, <ComplexType> can have its Abstract attribute set to true. By

default, Abstract is false.

<ComplexType> can contain any number of AnnotationAttribute attributes. The full name of the

AnnotationAttributes MUST NOT collide.

A <ComplexType> element can contain a maximum of one <Documentation> element.

<ComplexType> can have any number of <Property> elements.

In CSDL 1.1 and higher versions, (CSDL version 1.0 does not support inheritance) the property

names of a <ComplexType> MUST be uniquely named within the inheritance hierarchy for the

20 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<ComplexType>. <ComplexType> properties MUST NOT have the same name as their declaring
<ComplexType> or any of its base types.

<ComplexType> can contain any number of AnnotationElement elements.

Subelements for <ComplexType> MUST appear in this sequence: <Documentation>,

<Property>, AnnotationElements.

All sub-elements MUST appear in the order indicated.

2.1.8 Association

<Association> defines a peer-to-peer relationship between participating <EntityTypes> and can
support different multiplicities at the two ends. OnDelete operational behavior can be specified at

any end of the relationship.

A classic example of an association is the relationship between the Customer and Order entities.
Typically, this relationship has the following characteristics:

Multiplicity: each Order is associated with exactly one Customer. Every Customer has zero or

more Orders.

Operational Behavior: OnDelete Cascade; when an Order with one or more OrderLines is deleted,

the corresponding OrderLines also get deleted.

Example:

 <Association Name="CustomerOrder">

 <End Type="Model1.Customer" Role="Customer" Multiplicity="1" />

 <End Type="Model1.Order" Role="Order" Multiplicity="*" />

 </Association>

The following rules apply to the <Association> element.

21 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<Association> MUST have a Name attribute defined. Name attribute is of type

SimpleIdentifier.

An <Association> Name MUST be unique across all <EntityTypes>, <Associations> and

<ComplexTypes> defined in the same namespace.

<Association> can contain any number of AnnotationAttributes. The full names of the

AnnotationAttributes MUST NOT collide.

An <Association> element can contain a maximum of one <Documentation> element.

<Association> MUST have exactly two <End> elements defined.

<Association> can have one <ReferentialConstraint> defined.

<Association> can contain any number of AnnotationElements.

Sub-elements for <Association> MUST appear in this sequence: <Documentation>,

<AssociationEnds>, <ReferentialConstraint>, AnnotationElements.

All sub-elements MUST appear in the order indicated.

2.1.9 Association End

For a given <Association>, <End> defines one side of the relationship. <End> defines what type is
participating in the relationship, multiplicity or the cardinality, and if there are any operation
associations, like cascade delete.

Example:

 <End Type="Model1.Customer" Role="Customer" Multiplicity="1" />

The following rules apply to the <Association> <End> element.

<End> MUST define the <EntityType> for this end of the relationship.

22 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<EntityType> MUST be either a Namespace Qualified Name or an Alias Qualified Name of an

<EntityType> that is in scope.

<End> MUST specify the Multiplicity of this end.

<End> can specify the Role name.

<End> can contain any number of AnnotationAttributes. The full names of AnnotationAttribute

MUST NOT collide.

<End> can contain a maximum of one <Documentation> element.

At most, one <OnDelete> operation can be defined on a given <End>.

<End> can contain any number of AnnotationElements.

Sub-elements for <End> MUST appear in this sequence: <Documentation>, <OnDelete>,

AnnotationElements.

All sub-elements MUST appear in the order indicated.

2.1.10 OnDelete

<OnDelete> is a trigger that is associated with a relationship. The action is performed on one end of
the relationship when the state of the other side of the relationship changes.

Example:

 <Association Name="CProductCategory">

 <End Type="Self.CProduct" Multiplicity="*" />

 <End Type="Self.CCategory" Multiplicity="0..1">

 <OnDelete Action="Cascade" />

 </End>

The following rules apply to the OnAction element.

23 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<OnDelete> MUST specify the Action.

<OnDelete> can contain any number of AnnotationAttributes. The full names of the

AnnotationAttributes MUST NOT collide.

<OnDelete> element can contain a maximum of one <Documentation> element.

<OnDelete> can contain any number of AnnotationElement elements.

Sub-elements for <OnDelete> MUST appear in this sequence: <Documentation>,

AnnotationElement.

All sub-elements MUST appear in the order indicated.

2.1.11 ReferentialConstraint

In EDM, <ReferentialConstraints> can exist between the key of one entity type and primitive
property (or properties) of another associated entity type (In 1.2 and earlier versions the
<ReferentialConstraint> can only exist between the key properties of associated entities). The two

entity types are in a Principal-to-Dependent relationship, which can also be thought of as a type of

parent-child relationship. When entities are related by an <Association> that specifies a
<ReferentialConstraint> between the keys of the two entities, then the dependent entity object
cannot exist without a valid relationship to a parent entity object.

The <ReferentialConstraint> MUST specify which of the ends is the <Principal> Role and which of
the ends is the <Dependent> Role for the <ReferentialConstraint>.

Example:

 <Association Name="FK_Employee_Employee_ManagerID">

 <End Role="Employee" Type="Adventureworks.Store.Employee" Multiplicity="1" />

 <End Role="Manager" Type="Adventureworks.Store.Manager" Multiplicity="0..1" />

 <ReferentialConstraint>

 <Principal Role="Employee">

 <PropertyRef Name="EmployeeID" />

 </Principal>

 <Dependent Role="Manager">

 <PropertyRef Name="ManagerID" />

 </Dependent>

 </ReferentialConstraint>

 </Association>

24 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The following rules apply to the <ReferentialConstraint> element.

<ReferentialConstraint> MUST define exactly one <Principal> end element and exactly one

<Dependent> end element.

<ReferentialConstraint> can contain any number of AnnotationAttribute attributes. The full name

AnnotationAttribute MUST NOT collide.

A <ReferentialConstraint> element can contain maximum of one <Documentation> element.

<ReferentialConstraint> can contain any number of AnnotationElement elements.

Subelements for <ReferentialConstraint> MUST appear in this sequence: <Documentation>,

<Principal>, <Dependent>, AnnotationElement.

All sub-elements MUST appear in the order indicated.

2.1.12 ReferentialConstraint Role

When defining <ReferentialConstraints>, Role MUST be used to indicate which end of the
association is the Principal and which end of the relationship is the Dependent. Thus, the
<ReferentialConstraint> MUST contain two Role definitions: the <Principal> and <Dependent>.

<ReferentialConstraint> Role usage MUST also conform to the ordering rules for the sub-elements
of <ReferentialConstraint> as defined in the <ReferentialConstraint> section (2.1.11).

An example of the <ReferentialConstraint> role is shown below, which defines <Principal> and

<Dependent> elements.

Example:

 <ReferentialConstraint>

 <Principal Role="Employee">

 <PropertyRef Name="EmployeeID" />

 </Principal>

 <Dependent Role="Manager">

 <PropertyRef Name="ManagerID" />

 </Dependent>

 </ReferentialConstraint>

25 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.1.12.1 Principal

The following example shows the usage of the <Principal> role in defining a
<ReferentialConstraint>.

Example:

 <Principal Role="Employee">

 <PropertyRef Name="EmployeeID" />

 </Principal>

The following rules apply to the <Principal> role element.

One <Principal> role MUST be used to define the <Principal> end of the <ReferentialConstraint>.

Each <Principal> role MUST specify one and only one <Role> attribute. <Role> is of type

SimpleIdentifier.

<Principal> MUST have one or more <PropertyRef> elements. Each <PropertyRef> element

MUST specify a name using the Name attribute.

For each <Principal>, a <PropertyRef> definition MUST NOT have the same Name value

specified as another <PropertyRef>.

<PropertyRef> MUST be used to specify the properties that participate in the <Principal> role of

the <ReferentialConstraint>.

Each <PropertyRef> element on the <Principal> MUST correspond to a <PropertyRef> on the

<Dependent>. The <Principal> and the <Dependent> of the <ReferentialConstraint> MUST
contain the same number of <PropertyRef> elements. The <PropertyRef> elements on the
<Dependent> MUST be listed in the same order as the corresponding <PropertyRef> elements
on the <Principal>.

The <Principal> of a <ReferentialConstraint> MUST specify all properties constituting the <Key>

of the <EntityType> that forms the <Principal> of the <ReferentialConstraint>.

The Multiplicity of the <Principal> role MUST be 1. For CSDL 2.0 and higher versions, the

Multiplicity of the <Principal> <Role> can be 1 or 0..1.

The datatype of each property defined in the <Principal> role MUST be the same as the datatype

of the corresponding property specified in the <Dependent> role.

In 2.0 and higher versions, <Principal> can contain any number of AnnotationElement elements.

Sub-elements for <Principal> MUST appear in this sequence: <PropertyRef>,

AnnotationElement.

26 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

All sub-elements MUST appear in the order indicated.

2.1.12.2 Dependent

The following example shows the usage of the <Dependent> role element in defining a
<ReferentialConstraint>.

Example:

 <Dependent Role="Manager">

 <PropertyRef Name="ManagerID" />

 </Dependent>

The following rules apply to the <Dependent> role:

One <Dependent> role MUST be used to define the <Dependent> end of the

<ReferentialConstraint>. This element name MUST be <Dependent>.

Each <Dependent> role MUST specify one and only one <Role> attribute. <Role> is of type

SimpleIdentifier.

<Dependent> MUST have one or more <PropertyRef> elements. Each <PropertyRef> element

MUST specify a name using the Name attribute.

For each <Dependent>, a <PropertyRef> definition MUST NOT have the same Name value

specified as another <PropertyRef>.

<PropertyRef> MUST be used to specify the properties that participate in the <Dependent> role

of the <ReferentialConstraint>.

Each <PropertyRef> element on the <Principal> MUST correspond to a <PropertyRef> on the

<Dependent>. The <Principal> and the <Dependent> of the <ReferentialConstraint> MUST
contain the same number of <PropertyRef> elements. The <PropertyRef> elements on the

<Dependent> MUST be listed in the same order as the corresponding <PropertyRef> elements
on the <Principal>.

The data type of each property defined in the <Principal> <Role> MUST be the same as the data

type of the corresponding property specified in the <Dependent> <Role>.

27 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

In 2.0 and higher versions, <Dependent> can contain any number of AnnotationElement

elements.

Subelements for <Dependent> MUST appear in this sequence: <PropertyRef>,

AnnotationElement.

All subelements MUST appear in the order indicated.

2.1.13 Using

<Using> imports the contents of the specified namespace. A schema can refer to contents of

another schema or namespace by importing it with the <Using> clause. The imported namespace
can be associated with an alias which is then used to refer to its types, or the types can be directly
used by specifying its fully qualified name.

Note Semantically, <Using> is closer to a merge; unfortunately, the name does not reflect this. If
it was truly "using", structures in the schema being used would be unaffected. However, because a
dependent schema can derive an <EntityType> from an <EntityType> declared in the original
schema, this has the potential side-effect of changing what might be found in <EntitySets> declared

in the schema being used.

Example:

<Using Namespace="Microsoft.Samples.Northwind.Types" Alias="Types" />

The following rules apply to the <Using> element.

<Using> MUST have a Namespace attribute defined. Namespace is of type QualifiedName.

<Using> MUST have an Alias attribute defined. Alias is of type SimpleIdentifier. The Alias can

be used as a short hand for referring to the Namespace linked to that alias via the <Using>
element.

<Using> can contain any number of AnnotationAttributes. The full names of the

AnnotationAttributes MUST NOT collide.

<Using> can contain a maximum of one <Documentation> element.

<Using> can contain any number of AnnotationElement elements.

If a <Documentation> element is defined, it MUST come before any AnnotationElements.

28 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

All sub-elements MUST appear in the order indicated.

2.1.14 EntityContainer

<EntityContainer> is conceptually similar to a database or data source. It groups <EntitySet>,
<AssociationSet> and <FunctionImport> sub-elements that represent a data source.

Example:

 <EntityContainer Name="Model1Container" >

 <EntitySet Name="CustomerSet" EntityType="Model1.Customer" />

 <EntitySet Name="OrderSet" EntityType="Model1.Order" />

 <AssociationSet Name="CustomerOrder" Association="Model1.CustomerOrder">

 <End Role="Customer" EntitySet="CustomerSet" />

 <End Role="Order" EntitySet="OrderSet" />

 </AssociationSet>

 </EntityContainer>

The following rules apply to the <EntityContainer> element.

<EntityContainer> MUST have a Name attribute defined. The Name attribute is of type

SimpleIdentifier.

<EntityContainer> can define an Extends attribute, which MUST, if present, refer to another

<EntityContainer> in scope by name.

<EntityContainers> that extend another <EntityContainer> inherit all the extended <EntitySet>,

<AssociationSet> and <FunctionImport> sub-elements from that <EntityContainer>.

<EntityContainer> can contain maximum of one <Documentation> element.

<EntityContainer> can contain any number of AnnotationAttributes. The full name of these

AnnotationAttributes MUST NOT collide.

<EntityContainer> can contain any number of <FunctionImport>, <EntitySet> and

<AssociationSet> elements, which can be defined in any order.

<FunctionImport>, <EntitySet> and <AssociationSet> names within an <EntityContainer> MUST

NOT collide.

29 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

If present, the <Documentation> sub-element MUST precede <FunctionImport>, <EntitySet>

and <AssociationSet> sub-elements.

In 2.0 and higher versions, <EntityContainer> can contain any number of AnnotationElement

elements.

In the sequence of sub-elements under <EntityContainer>, AnnotationElement MUST follow all

other elements.

All sub-elements MUST appear in the order indicated. For all sub-elements within a given Choice,

the sub-elements can be ordered arbitrarily.

2.1.15 FunctionImport

<FunctionImport> element is used to import Stored Procedures or Functions defined in Store
Schema Model into Entity Data Model.

Example:

<FunctionImport Name="annualCustomerSales" EntitySet="result_annualCustomerSalesSet"

ReturnType="Collection(Self.result_annualCustomerSales)">

 <Parameter Name="fiscalyear" Mode="In" Type="String" />

</FunctionImport>

The following rules apply to the <FunctionImport> element.

<FunctionImport> MUST have a Name attribute defined. Name attribute is of type

SimpleIdentifier.

<FunctionImport> can define a ReturnType.

If defined, the Type of ReturnType MUST be an EDMSimpleType, EntityType or

ComplexType that is in scope or a Collection of one of these in scope types. (In CSDL version
1.0 the ReturnType MUST be a Collection of either EDMSimpleType or EntityType).

30 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Types in scope for a <FunctionImport> include: All EDMSimpleTypes, and all EntityTypes and

ComplexTypes that are defined in the declaring <Schema> Namespace, or schemas that are

in scope of the declaring <Schema>.

If the return type of <FunctionImport> is a Collection of Entities, then EntitySet attribute

MUST be defined.

If the return type of <FunctionImport> is ComplexType or EDMSimpleType then EntitySet

attribute MUST NOT be defined.

<FunctionImport> can contain any number of AnnotationAttributes. The full names of

AnnotationAttributes MUST NOT collide.

<FunctionImport> element can contain maximum of one <Documentation> element.

<FunctionImport> can have any number of <Parameter> elements.

<Parameter> element names inside a <FunctionImport> MUST NOT collide.

In 2.0 and higher versions, <FunctionImport> can contain any number of AnnotationElement

elements.

Sub-elements for <FunctionImport> MUST appear in this sequence: <Documentation> (if

present), <Parameter>, AnnotationElement.

All sub-elements MUST appear in the order indicated.

2.1.16 FunctionImport Parameter

Functions defined in CSDL optionally accept both in and out <Parameters>. Each <Parameter>
element MUST have an associated Name and Type defined.

Example:

31 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<FunctionImport Name="GetScalar" ReturnType="Collection(String)">

 <Parameter Name="count" Type="Int32" Mode="Out" />

 <ValueFunctionImport Anything="bogus1" xmlns="FunctionImportAnnotation"/>

</FunctionImport>

The following rules apply to the FunctionImport Parameter element.

<Parameter> MUST have a Name defined.

Type of the <Parameter> MUST be defined. Type MUST be an EDMSimpleType or

ComplexType.

<Parameter> can define the Mode of the parameter. Possible values are "In", "Out", and

"InOut".

For a given <Parameters>, MaxLength value can be specified.

Precision can be specified for a given <Parameter>.

Scale can be specified for a given <Parameter>.

<Parameter> can contain any number of AnnotationAttributes. The full name of

AnnotationAttribute MUST NOT collide.

<Parameter> can contain a maximum of one <Documentation> element.

<Parameter> can contain any number of AnnotationElements.

Sub-elements for <Parameter> MUST appear in this sequence: <Documentation>,

AnnotationElement.

All sub-elements MUST appear in the order indicated.

32 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.1.17 EntitySet

An <EntitySet> is a named set that can contain instances of a specified EntityType and any of the
specified EntityType subtypes. More than one <EntitySet> for a particular EntityType can be

defined.

Example:

 <EntitySet Name="CustomerSet" EntityType="Model1.Customer" />

The following rules apply to the <EntitySet> element.

<EntitySet> MUST have a <Name> attribute defined. <Name> attribute is of type

SimpleIdentifier.

<EntitySet> MUST have an EntityType defined.

The EntityType of an <EntitySet> MUST be in scope of the <Schema> which declares the

<EntityContainer> in which this <EntitySet> resides.

<EntitySet> can have an abstract EntityType. An <EntitySet> for a given EntityType can

contain instances of that EntityType and any of its subtypes.

Multiple <EntitySets> can be defined for a given EntityType.

<EntitySet> can contain any number of AnnotationAttributes. The full names of

AnnotationAttributes MUST NOT collide.

<EntitySet> elements can contain a maximum of one <Documentation> element.

<EntitySet> can contain any number of AnnotationElements.

Sub-elements for <EntitySet> MUST appear in this sequence: <Documentation>,

AnnotationElement.

All sub-elements MUST appear in the order indicated.

33 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.1.18 AssociationSet

An <AssociationSet> contains relationship instances of the specified Association. The Association
specifies the EntityTypes of the two end points while <AssociationSet> specifies the <EntitySet>

that corresponds to either these EntityTypes directly, or to derived EntityTypes. The association-
instances contained in the <AssociationSet> relate entity instances belonging to these EntityTypes.

Example:

 <AssociationSet Name="CustomerOrder" Association="Model1.CustomerOrder">

 <End Role="Customer" EntitySet="CustomerSet" />

 <End Role="Order" EntitySet="OrderSet" />

 </AssociationSet>

The following rules apply to the <AssociationSet> element.

<AssociationSet> MUST have a Name attribute defined. Name attributes are of type

SimpleIdentifier.

<AssociationSet> MUST have anAssociation attribute defined. The Association attribute should

specify a Namespace Qualified Name or an Alias Qualified Name of the Association that the
<AssociationSet> is being defined for.

The Association of an <AssociationSet> MUST be in scope of the <Schema> which declares the

<EntityContainer> in which this <AssociationSet> resides.

<AssociationSet> can contain any number of AnnotationAttributes. The full name of

AnnotationAttributes MUST NOT collide.

<AssociationSet> element can contain a maximum of one <Documentation> element.

<AssociationSet> MUST have EXACTLY two <Ends> defined.

<AssociationSet> can contain any number of AnnotationElements.

Sub-elements for <AssociationSet> MUST appear in this sequence: <Documentation>, <End>,

AnnotationElement.

34 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

All sub-elements MUST appear in the order indicated.

2.1.19 AssociationSet End

The <End> element defines the two sides of the <AssociationSet>. This association is defined

between the two EntitySets declared in an EntitySet attribute.

Example:

 <End Role="Customer" EntitySet="CustomerSet" />

The following rules apply to <End> elements inside an <AssociationSet>.

<End> element can have the Role attribute specified. All <End> elements MUST have the

EntitySet attribute specified.

The EntitySet MUST be the Name of an EntitySet defined inside the same <EntityContainer>.

The <End> element's Role MUST map to a Role declared on one of the <Ends> of the

<Assocation> referenced by the <End> element's declaring <AssociationSet>.

Each <End>declared by an <AssociationSet> MUST refer to a different Role.

The EntitySet for a particular <AssociationSet> <End>, MUST contain either the same

EntityType as the related <End> EntityType on the <Assocation> element, or an EntityType
derived from that EntityType. An <End> element can contain a maximum of one
<Documentation> element.

<End> can contain any number of AnnotationElements.

Sub-elements for <End> MUST appear in this sequence: <Documentation>, AnnotationElement.

All sub-elements MUST appear in the order indicated.

2.1.20 Documentation

The <Documentation> element is used to provide documentation of comments on the contents of
the CSDL file.

35 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Example 1: Documentation on <EntityContainer>

<EntityContainer Name="TwoThreeContainer">

 <Documentation>

 <Summary>Summary: Entity Container for storing Northwind instances</Summary>

 <LongDescription>LongDescription: This Entity Container is for storing Northwind

instances</LongDescription>

 </Documentation>

 <EntitySet Name="Products" EntityType="Self.Product" />

</EntityContainer>

Example 2: Documentation on <EntitySet>

<EntitySet Name="Products" EntityType="Self.Product">

 <Documentation>

 <Summary>EntitySet Products is for storing instances of EntityType Product</Summary>

 <LongDescription>This EntitySet having name Products is for storing instances of

EntityType Product</LongDescription>

 </Documentation>

</EntitySet>

Example 3: Documentation on <AssociationSet> and <End> role

<AssociationSet Name="CategoryProducts" Association="Self.CategoryProduct">

 <Documentation>

 <Summary>AssociationSet CategoryProducts is for storing instances of Association

CategoryProduct</Summary>

 <LongDescription>This AssociationSet having name=CategoryProducts is for storing

instances of Association CategoryProduct</LongDescription>

 </Documentation>

 <End Role="Category" EntitySet="Categories">

 <Documentation>

 <Summary>This end of the relationship-instance describes the Category role for

AssociationSet CategoryProducts</Summary>

 </Documentation>

 </End>

 <End Role="Product" EntitySet="Products">

 <Documentation>

 <LongDescription>This end of the relationship-instance describes the Product role

for AssociationSet CategoryProducts</LongDescription>

 </Documentation>

 </End>

</AssociationSet>

Example 4: Documentation on <EntityType>, <Property> and <NavigationProperty>

<EntityType Name="Product">

 <Documentation>

 <Summary>Summary: EntityType named Product describes the content model for

Product</Summary>

 <LongDescription>LongDescription: The EntityType named Product describes the content

model for Product</LongDescription>

36 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 </Documentation>

 <Key>

 <PropertyRef Name="ProductID" />

 </Key>

 <Property Name="ProductID" Type="Int32" Nullable="false">

 <Documentation>

 <Summary>Summary: This is the key property of EntityType Product</Summary>

 <LongDescription>LongDescription: This is the key property of EntityType

Product</LongDescription>

 </Documentation>

 </Property>

 <Property Name="ProductName" Type="String">

 <Documentation>

 <Summary>Summary: This property describes the name of the Product</Summary>

 </Documentation>

 </Property>

 <Property Name="QuantityPerUnit" Type="String">

 <Documentation>

 <LongDescription>LongDescription: This property describes the quantity per unit

corresponding to a product</LongDescription>

 </Documentation>

 </Property>

 <Property Name="PriceInfo" Nullable="false" Type="Self.PriceInfo" />

 <Property Name="StockInfo" Nullable="false" Type="Self.StockInfo" />

 <NavigationProperty Name="Category" Relationship="Self.CategoryProduct" FromRole="Product"

ToRole="Category">

 <Documentation>

 <Summary>This navigation property allows for traversing to Product-instances

associated with a Category-instance</Summary>

 <LongDescription> </LongDescription>

 </Documentation>

 </NavigationProperty>

</EntityType>

Example 5: Documentation on <Association> element

<Association Name="CategoryProduct">

 <Documentation>

 <Summary>Association CategoryProduct describes the participating end of the

CategoryProduct relationship</Summary>

 </Documentation>

 <End Role="Category" Type="Self.Category" Multiplicity="1">

 <Documentation>

 <Summary>This end of the relationship-instance describes the Category role for

Association CategoryProduct</Summary>

 </Documentation>

 </End>

 <End Role="Product" Type="Self.Product" Multiplicity="*">

 <Documentation>

 <LongDescription>This end of the relationship-instance describes the Product role

for Association CategoryProduct</LongDescription>

 </Documentation>

 </End>

</Association>

The following rules apply to the <Documentation> element.

37 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<Documentation> can contain any number of AnnotationAttributes. The full names of the

AnnotationAttributes MUST NOT collide.

<Documentation> can specify summary of the document inside a <Summary> element.

<Documentation> can specify description of the documentation inside <LongDescription>

element.

Sub-elements for <Documentation> MUST appear in this sequence: <Summary>,

<LongDescription>, AnnotationElement.

All sub-elements MUST appear in the order indicated.

2.1.21 AnnotationElement

An AnnotationElement is a custom XML element applied to a CSDL element. The element and its
sub-elements can belong to any XML namespace that is not in the list of reserved XML namespaces
for CSDL. Consult the reference for each CSDL element within this document to determine whether
an AnnotationElement can be used for that element.

Example:

<EntityType Name="Content">

 <Key>

 <PropertyRef Name="ID" />

 </Key>

 <Property Name="ID" Type="Guid" Nullable="false" />

 <Property Name="HTML" Type="String" Nullable="false" MaxLength="Max" Unicode="true"

 FixedLength="false" />

 <CLR:Attributes>

 <CLR:Attribute TypeName="System.Runtime.Serialization.DataContract"/>

 <CLR:Attribute TypeName="MyNamespace.MyAttribute"/>

 </CLR:Attributes>

 <RS:Security>

 <RS:ACE Principal="S-0-123-1321" Rights="+R+W"/>

 <RS:ACE Principal="S-0-123-2321" Rights="-R-W"/>

 </RS:Security>

</EntityType>

The following rules apply to Annotation elements:

38 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The namespace used in annotations MUST be declared or the namespace declaration MUST be in-

lined with the annotation.

Annotations MUST follow all other sub-elements. For example, when annotating an <EntityType>

element the annotation element should follow all <Key>, <Property>, and <NavigationProperty>
elements.

More than one named Annotation can be defined per CSDL element.

For a given CSDL element, Annotation element names can collide, so long as the combination of

namespace + element name is unique for a particular element.

Annotation is an XML element. It MUST contain a valid XML structure.

2.1.22 Model Functions

The <Function> element is used to define or declare a user function. These functions are defined as
subelements of the <Schema> element.

Example:

<Function Name="GetAge" ReturnType="Edm.Int32">

 <Parameter Name="Person" Type="Model.Person" />

 <DefiningExpression>

 Edm.DiffYears(Edm.CurrentDateTime(), Person.Birthday)

 </DefiningExpression>

</Function>

<Function> MUST have a Name attribute defined. The Name attribute is of type

SimpleIdentifier. The Name attribute represents the name of this <Function>.

<Function> MUST define a return type as an attribute or as a subelement.

A <Function> MUST NOT contain both an attribute and a subelement defining the return type.

A single <DefiningExpression> element can be defined for a given <Function>. A

<DefiningExpression> is any expression that is intended to be the body of the function. The
CSDL file format does not specify rules and restrictions regarding what language is to be used for

specifying function bodies.

All Functionparameters MUST be inbound.

<Function> can contain any number of AnnotationAttributes. The full names of these

AnnotationAttributes MUST NOT collide.

Functions are declared as Global Items inside the <Schema> element.

The function parameters and return type MUST be of the following types:

An EDMSimpleType or collection of EDMSimpleTypes.

An entity type or collection of entity types.

A complex type or collection of complex types.

A row type or collection of row types.

39 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

A ref type or collection of ref types.

<Function> can contain any number of <Parameter> elements.

<Function> can contain any number of AnnotationElements.

<Parameter>, <DefiningExpression>, <ReturnType>, and AnnotationElements can appear in any

order.

All subelements MUST appear in the order indicated. For all subelements within a given Choice, the
subelements can be ordered arbitrarily.

40 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.1.23 Model Function Parameter

<Function> elements in CSDL only support inbound parameters. CSDL does not allow setting the
<Function> <Parameter> mode; it is always set to Mode="In".

The type of a <Parameter> can be declared either as an attribute (example 1) or as a subelement
(example 2):

Example 1

<Parameter Name="Age" Type="Edm.Int32"/>

Example 2

<Parameter Name="Owner">

 <TypeRef Name="Model.Person" />

</Parameter>

<Parameter> MUST have a Name attribute defined. A Name attribute is of type SimpleIdentifier,

and represents the name of this <Parameter>.

<Parameter> MUST define the Type, either as an attribute or as a subelement.

<Parameter> can define Facets if the type is an EDMSimpleType.

<Parameter> can contain any number of AnnotationAttributes. The full name of these

AnnotationAttributes MUST NOT collide.

A function parameter MUST be one of the following types:

An EDMSimpleType or collection of EDMSimpleTypes.

An entity type or collection of entity types.

A complex type or collection of complex types.

A row type or collection of row types.

A ref type or collection of ref types.

<Parameter> can contain a maximum of one <CollectionType> element.

<Parameter> can contain a maximum of one <ReferenceType> element.

<Parameter> can contain a maximum of one <RowType> element.

<Parameter> can contain any number of AnnotationElements.

AnnotationElements MUST be last in the sequence of subelements of a <Parameter>.

41 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

All subelements MUST appear in the order indicated. For all subelements within a given Choice, the
subelements can be ordered arbitrarily.

2.1.24 CollectionType

If the type of the <Function> <Parameter> or <ReturnType> is a collection, it can be expressed
either as an attribute (example 1) or by using subelement syntax (example 2).

Example 1

Type=”Collection(Model.Person)”

Example 2

<Parameter Name="Owners">

42 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 <CollectionType>

 <TypeRef Name="Model.Person" />

 </CollectionType>

</Parameter>

<CollectionType> MUST define the type, either as an attribute or as a subelement.

Attribute syntax MUST only be used if the collection is of a named type (that is, not of

<RowType>).

<CollectionType> can define Facets if the type is an EDMSimpleType.

<CollectionType> can contain any number of AnnotationAttributes. The full name of these

AnnotationAttributes MUST NOT collide.

<CollectionType> can define one of the following as a sub-element:

<CollectionType>

<ReferenceType>

<RowType>

<TypeRef>

<CollectionType> elements can contain any number of AnnotationElements.

AnnotationElement MUST be last in the sequence of sub-elements of <CollectionType>.

43 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

All sub-elements MUST appear in the order indicated. For all sub-elements within a given Choice,
the sub-elements can be ordered arbitrarily.

2.1.25 TypeRef

<TypeRef> is used to reference an existing named type.

Example 1

<TypeRef Name="Model.Person" />

Example 2

<TypeRef Name="Edm.String" Nullable="True" MaxLength="50"/>

44 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<TypeRef> MUST have a Type attribute defined. The Type attribute defines the fully qualified

name of the referenced type.

<TypeRef> MUST be used to reference an existing named type. Named types include:

EntityType

ComplexType

Primitive Type

<TypeRef> can define Facets if the type is an EDMSimpleType.

<TypeRef> can contain any number of AnnotationAttributes. The full names of these

AnnotationAttributes MUST NOT collide.

<TypeRef> elements can contain at most one <Documentation> element.

<TypeRef> elements can contain any number of AnnotationElements.

AnnotationElement MUST be last in the sequence of sub-elements of <TypeRef>.

All sub-elements MUST appear in the order indicated.

2.1.26 ReferenceType

<ReferenceType> is used to specify the reference to an actual entity, either in the return type or in
a parameter definition.

45 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Example 1:

<ReferenceType Type="Model.Person" />

Example 2:

<ReturnType>

 <CollectionType>

 <ReferenceType Type="Model.Person" />

 </CollectionType>

</ReturnType>

The <Type> attribute on a <ReferenceType> element MUST always be defined.

The <Type> of the reference MUST always be of EntityType.

<ReferenceType> can contain any number of AnnotationAttributes. The full names of these

AnnotationAttributes MUST NOT collide.

<ReferenceType> elements can contain at most one <Documentation> element.

<ReferenceType> elements can contain any number of AnnotationElements.

AnnotationElement MUST be last in the sequence of sub-elements of <ReferenceType>.

All sub-elements MUST appear in the order indicated.

46 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.1.27 RowType

A <RowType> is an unnamed structure. <RowType> is always declared inline.

Example 1

<Parameter Name="Coordinate" Mode="In">

 <RowType>

 <Property Name="X" Type="int" Nullable="false"/>

 <Property Name="Y" Type="int" Nullable="false"/>

 <Property Name="Z" Type="int" Nullable="false"/>

 </RowType>

</Parameter>

Example 2

<ReturnType>

 <CollectionType>

 <RowType>

 <Property Name="X" Type="int" Nullable="false"/>

 <Property Name="Y" Type="int" Nullable="false"/>

 <Property Name="Z" Type="int" Nullable="false"/>

 </RowType>

 </CollectionType>

</ReturnType>

<RowType> can contain any number of AnnotationAttributes. The full names of these

AnnotationAttributes MUST NOT collide.

<RowType> MUST contain at least one <Property> element.

<RowType> can contain more than one <Property> element.

The Type of a Property belonging to a RowType MUST be one of the following:

EntityType

ReferenceType

RowType

CollectionType

<RowType> can contain any number of AnnotationElements.

47 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

All subelements MUST appear in the order indicated. For all subelements within a given Choice, the
subelements can be ordered arbitrarily.

2.1.28 RowType Property

One or more <Property> elements are used to describe the structure of <RowType>.

Example 1

<ReturnType>

 <CollectionType>

 <RowType>

 <Property Name="C" Type="Customer"/>

 <Property Name="Orders" Type="Collection(Order)"/>

 </RowType>

 </CollectionType>

</ReturnType>

Example 2

<ReturnType>

 <CollectionType>

 <RowType>

 <Property Name="Customer" Type="Customer"/>

 <Property Name="Orders">

 <CollectionType>

 <RowType>

 <Property Name="OrderNo" Type="Int32"/>

 <Property Name="OrderDate" Type="Date"/>

 <RowType>

 <CollectionType>

 </Property>

48 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 </RowType>

 </CollectionType>

</ReturnType>

The Type of a Property belonging to a RowType MUST be one of the following:

EDMSimpleType

EntityType

ReferenceType

RowType

CollectionType

<RowType> MUST have a Name attribute defined. The Name attribute is of type

SimpleIdentifier. The Name attribute represents the name of this <Property>.

<RowType> MUST define a type as an attribute or as a subelement.

<RowType> MUST NOT contain both an attribute and a subelement defining the type.

<RowType> can define Facets if the type is an EDMSimpleType.

<RowType> can contain any number of AnnotationAttributes. The full names of these

AnnotationAttributes MUST NOT collide.

<RowType> can contain any number of AnnotationElements.

AnnotationElements MUST be last in the sequence of subelements of <RowType>.

49 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

All subelements MUST appear in the order indicated. For all subelements within a given Choice, the

subelements can be ordered arbitrarily.

2.1.29 Function ReturnType

<ReturnType> describes the shape of data returned from a <Function>. The return type of a
function can be declared as a ReturnType attribute on a <Function> (example 1), or as a
subelement (example 2).

Example 1

<Function Name="GetAge" ReturnType="Edm.Int32">

Example 2

<Function Name="GetAge">

 <ReturnType Type="Edm.Int32" />

</Function>

50 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

<ReturnType> MUST define type declaration as an attribute or as a subelement.

<ReturnType> MUST NOT contain both an attribute and a subelement defining the type.

<ReturnType> can contain any number of AnnotationAttributes. The full names of these

AnnotationAttributes MUST NOT collide.

The return type of <Function> MUST be one of the following:

An EDMSimpleType or collection of EDMSimpleTypes.

An entity type or collection of entity types.

A complex type or collection of complex types.

A row type or collection of row types.

<ReturnType> can contain a maximum of one <CollectionType> element.

<ReturnType> can contain a maximum of one <ReferenceType> element.

<ReturnType> can contain a maximum of one <RowType> element.

A ref type or collection of ref types.

<ReturnType> can contain any number of AnnotationElements.

AnnotationElements MUST be last in the sequence of subelements of <ReturnType>.

51 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

All sub-elements MUST appear in the order indicated. For all subelements within a given Choice, the
subelements can be ordered arbitrarily.

2.2 Attributes

2.2.1 EDMSimpleType

The Entity Data Model (EDM) defines an abstract type system that defines the primitive types listed

in the following sections.

2.2.1.1 Commonly Applicable Facets

2.2.1.1.1 Nullable

The Nullable facet is a Boolean, which indicates whether the Type can be null.

2.2.1.1.2 Default

The Default facet is a string. Valid values for this facet depend upon the type being referenced.

2.2.1.2 Binary

The binary data type is used to represent fixed or variable length binary data.

52 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.1.2.1 Facets

The EDM simple type facets applicable for this type are FixedLength and MaxLength.

2.2.1.2.1.1 MaxLength

The MaxLength facet is a positive integer with value ranging from 1 to 2^31. The maximum size of
the declared binary data type value is specified by the value of the MaxLength facet.

2.2.1.2.1.2 FixedLength

The FixedLength facet is a Boolean that indicates whether the length can vary.

2.2.1.3 Boolean

The Boolean data type is used to represent the mathematical concept of binary valued logic. There
are no applicable facets for this type.

2.2.1.4 DateTime

The DateTime type represents date and time with values ranging from 12:00:00 midnight, January
1, 1753 A.D. through 11:59:59 P.M, December 31, 9999 A.D..

2.2.1.4.1 Facets

2.2.1.4.1.1 Precision

The Precision facet indicates the degree of granularity of the DateTime in fractions of a second,
based on the number of decimal places supported. The actual values allowed will depend on the
data provider. As an example, the Microsoft database allows a Precision of 3, meaning that the

granularity supported is milliseconds.

2.2.1.5 Time

The Time type represents the time of day with values ranging from 0:00:00.x to 23:59:59.y, where
x and y depend upon the precision.

2.2.1.5.1 Facets

2.2.1.5.1.1 Precision

The Precision facet indicates the degree of granularity of the Time in fractions of a second, based on
the number of decimal places supported. The actual values allowed will depend on the data
provider. As an example, the Microsoft database allows a Precision of 3, meaning that the
granularity supported is milliseconds. If the Precision is 3, the minimum value for time is
0:00:00:001 and the maximum is 23:59:59.999.

2.2.1.6 DateTimeOffset

The DateTimeOffset type represents date and time as an Offset in minutes from GMT, with values
ranging from 12:00:00 midnight, January 1, 1753 A.D. through 11:59:59 P.M, December 9999 A.D.

53 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.1.6.1 Facets

2.2.1.6.1.1 Precision

The Precision facet indicates the degree of granularity of the DateTimeOffset in fractions of a
second, based on the number of decimal places supported. For example, a Precision of 3 means the
granularity supported is milliseconds.

2.2.1.7 Decimal

The Decimal type represents numeric values with fixed precision and scale. The required precision
and scale can be specified using its optional Precision and Scale facets. This type can describe a

numeric value ranging from negative 10^255 + 1 to positive 10^255 -1.

2.2.1.7.1 Facets

2.2.1.7.1.1 Precision

This is a positive integer that specifies the maximum number of decimal digits that an instance of
the decimal type can have, both to the left and to the right of the decimal point. Possible values for

Precision are 1, 2, or 3.

2.2.1.7.1.2 Scale

This is a positive integer that specifies the maximum number of decimal digits to the right of the
decimal point that an instance of this type can have. The Scale value can range from 0 through the
specified Precision value. The default Scale is 0.

2.2.1.8 Single

The Single type represents a floating point number with 7 digits precision that can represent values
with approximate range of ± 1.18e -38 through ± 3.40e +38.

2.2.1.9 Double

The Double type represents a floating point number with 15 digits precision that can represent
values with approximate range of ± 2.23e -308 through ± 1.79e +308.

2.2.1.10 Guid

This Guid type, as specified in [RFC4122], represents a 16-byte (128-bit) unique identifier value.

2.2.1.11 SByte

The SByte type represents a signed 8-bit integer value.

2.2.1.12 Int16

The Int16 type represents a signed 16-bit integer value.

2.2.1.13 Int32

The Int32 type represents a signed 32-bit integer value.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90460

54 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

2.2.1.14 Int64

The Int64 type represents a signed 64-bit integer value.

2.2.1.15 Byte

The Byte type represents an unsigned 8-bit integer value.

2.2.1.16 String

The String type represents fixed or variable length character data. The EDMSimpleType facets
applicable to String type are described below.

2.2.1.16.1 Facets

The EDM simple type facets applicable for this type are Unicode, Collation, FixedLength and
MaxLength. The other facets, Unicode and Collation, are optional.

2.2.1.16.1.1 Unicode

The Unicode facet is a Boolean value. This value, when set to true, dictates the string type that an
instance will store. By default, UNICODE characters are used, otherwise standard ASCII encoding is

used. The default value for this facet is true.

Note The string data type does not support the kind of UNICODE to be specified, leaving it to the
concrete type systems hosting EDM to choose the appropriate UNICODE type.

2.2.1.16.1.2 FixedLength

The FixedLength facet is a Boolean value. The value indicates whether the store requires a string to
be fixed length or not (that is, in SqlServer setting this facet to true would require a fixed-length

field (char or nchar) instead of variable-length (varchar or nvarchar)).

2.2.1.16.1.3 MaxLength

The MaxLength facet specifies the maximum length of an instance of the string type. For Unicode
equal to True, the Maxlength can range from 1 to 2^30, or if False, 1 to 2^31.

2.2.1.16.1.4 Collation

The Collation facet is a string value that specifies the collating sequence (or sorting sequence) to be
used for performing comparison and ordering operations over string values.

EDMSimpleType (restriction base="xs:string")

Binary

Boolean

Byte

DateTime

DateTimeOffset

Time

%5bMS-DTYP%5d.pdf

55 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

EDMSimpleType (restriction base="xs:string") Binary

Decimal

Double

Single

Guid

Int16

Int32

Int64

String

SByte

2.2.2 Action

Action can either be "Cascade" or "None".

The Cascade action implies that the operation to delete an Entity should delete the relationship
instance and then apply the action on the entity-instance at the other end of the relationship. For

instance, when a Customer is deleted, delete all Orders belonging to that Customer.

Action

Cascade

None

2.2.3 Multiplicity

The Multiplicity of a relationship describes the cardinality or number of instances of an

<EntityType> that can be associated with the instances of another <EntityType>. The possible
types of multiplicity are: one-to-one, one-to-many, zero-one to one, zero-one to many, and many-
to-many.

Multiplicity

0..1

1

*

2.2.4 ConcurrencyMode

ConcurrencyMode is a special facet which can be applied to any primitive Entity Data Model (EDM)
type. Possible values are "None", which is the default, and "Fixed".

When used on an <EntityType> property, it indicates that the value of that declared property should
be used for optimistic concurrency checks. Essentially, declared properties marked with a "Fixed"
ConcurrencyMode become part of a ConcurrencyToken.

The following rules apply to ConcurrencyMode:

56 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

The property's type MUST be a simple type; it can't be applied to properties of a ComplexType.

The property MUST be a declared property.

ConcurrencyMode

None

Fixed

2.2.5 QualifiedName

QualifiedName is a string-based representation of the name of the element or attribute.

The pattern below represents the allowed identifiers for QualifiedName:

Pattern:

Value="[\p{L}\p{Nl}][\p{L}\p{Nl}\p{Nd}\p{Mn}\p{Mc}\p{Pc}\p{Cf}]{0,}(\.[\p{L}\p{Nl}][\p{L}\p{N

l}\p{Nd}\p{Mn}\p{Mc}\p{Pc}\p{Cf}]{0,}){0,}"

2.2.6 SimpleIdentifier

SimpleIdentifier is a string-based representation. The maximum length of the identifier MUST be
less than 480.

The below pattern represents the allowed identifiers in ECMA specification:

Pattern:

value="[\p{L}\p{Nl}][\p{L}\p{Nl}\p{Nd}\p{Mn}\p{Mc}\p{Pc}\p{Cf}]{0,}"

2.2.7 AnnotationAttribute

An AnnotationAttribute is a custom XML attribute applied to a CSDL Element. The attribute can
belong to any XML namespace (as defined in [XMLNS-2ED]) that is not in the list of reserved XML
namespaces for CSDL. Consult the reference for each CSDL element within this document to

determine whether AnnotationAttribute may be used for that element.

2.2.8 OpenType

OpenType is a facet which can be applied to any <EntityType>. Possible values are "false", which is
the default, and "true".

<EntityType> elements marked with OpenType="false" or <EntityType> elements which do not
explicitly include an OpenType attribute indicate that the element defines an EntityType.

<EntityType> elements marked with OpenType="true" indicate that the element defines an

OpenEntityType.

OpenType

true

false

http://go.microsoft.com/fwlink/?LinkId=90602

57 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

3 Structure Examples

The following example shows a CSDL that defines:

Customer, Order, and Product entity types.

Association (CustomerOrder) that associates Customer and Order entity types.

SalesOrder entity type that has Order as the BaseType.

Address complex type.

<Schema xmlns="http://schemas.microsoft.com/ado/2008/09/edm" Namespace="Model1" Alias="Self">

 <EntityContainer Name="Model1Container" >

 <EntitySet Name="CustomerSet" EntityType="Model1.Customer" />

 <EntitySet Name="OrderSet" EntityType="Model1.Order" />

 <AssociationSet Name="CustomerOrder" Association="Model1.CustomerOrder">

 <End Role="Customer" EntitySet="CustomerSet" />

 <End Role="Order" EntitySet="OrderSet" />

 </AssociationSet>

 </EntityContainer>

 <EntityType Name="Customer">

 <Key>

 <PropertyRef Name="CustomerId" />

 </Key>

 <Property Name="CustomerId" Type="Int32" Nullable="false" />

 <Property Name="FirstName" Type="String" Nullable="true" />

 <Property Name="LastName" Type="String" Nullable="true" />

 <Property Name="AccountNumber" Type="Int32" Nullable="true" />

 <Property Name="Address" Type="Self.Address" Nullable="false" />

 <NavigationProperty Name="Orders" Relationship="Model1.CustomerOrder" FromRole="Customer"

ToRole="Order" />

 </EntityType>

 <EntityType Name="Order">

 <Key>

 <PropertyRef Name="OrderId" />

 </Key>

 <Property Name="OrderId" Type="Int32" Nullable="false" />

 <Property Name="OrderDate" Type="Int32" Nullable="true" />

 <Property Name="Description" Type=" String" Nullable="true" />

 <NavigationProperty Name="Customer" Relationship="Model1.CustomerOrder" FromRole="Order"

ToRole="Customer" />

 </EntityType>

 <EntityType Name="SalesOrder" BaseType="Self.Order">

 <Property Name="Paid" Type="Boolean" Nullable="false" />

 </EntityType>

 <EntityType OpenType="true" Name="Product">

 <Key>

 <PropertyRef Name="ProductId" />

 </Key>

 <Property Name="ProductId" Type="Int32" Nullable="false" />

 <Property Name="Name" Type="String" Nullable="false" />

 <Property Name="Description" Type="String" Nullable="true" />

 </EntityType>

 <Association Name="CustomerOrder">

 <End Type="Model1.Customer" Role="Customer" Multiplicity="1" />

58 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

 <End Type="Model1.Order" Role="Order" Multiplicity="*" />

 </Association>

 <ComplexType Name="Address">

 <Property Name="Street" Type="String" Nullable="false" />

 <Property Name="City" Type="String" Nullable="false" />

 <Property Name="State" Type="String" Nullable="false" />

 <Property Name="Zip" Type="String" Nullable="false" />

 </ComplexType>

</Schema>

59 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

4 Security Considerations

None.

60 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

5 Appendix A: Product Behavior

This document specifies version-specific details in the Microsoft® .NET Framework. For information
about which versions of .NET Framework are available in each released Microsoft Windows® product
or as supplemental software, see .NET Framework.

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft® .NET Framework 3.5

Microsoft® .NET Framework 4.0

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

%5bMS-GLOS%5d.pdf

61 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

6 Appendix B: Differences Between CSDL Version 1.0 and CSDL

Version 1.1

CSDL version 1.1 is a superset of CSDL version 1.0.

This section outlines the differences between CSDL version 1.0 and CSDL version 1.1.

For CSDL version 1.0, the following rules apply.

ComplexType must not define an Abstract attribute.

ComplexType must not define a BaseType attribute.

ReturnType for a <FunctionImport> must be a Collection.

ReturnType for a <FunctionImport> must not be a Collection of ComplexType.

<Property> must not define a CollectionKind attribute.

<Property> of type ComplexType must not be Nullable.

62 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

7 Appendix C: Differences Between CSDL Version 1.1 and CSDL

Version 1.2

CSDL version 1.2 is a superset of CSDL version 1.1.

This section outlines the differences between CSDL version 1.1 and CSDL version 1.2.

For CSDL version 1.1, the following rules apply:

<EntityType> must not define an <OpenType> attribute.

63 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

8 Appendix D: Differences Between CSDL Version 1.2 and CSDL

Version 2.0

CSDL version 2.0 is a superset of CSDL version 1.2.

This section outlines the differences between CSDL version 1.2 and CSDL version 2.0.

For CSDL version 1.2, the following rules apply:

<Schema> must not contain any <Function> sub-elements

Entity <Key> must not define any AnnotationElement elements

In CSDL 1.2 and lower versions binary data type is not supported for defining <Key>.

Entity <PropertyRef> must not define any AnnotationElement elements

<ReferentialConstraints>, <Role> must not define any AnnotationElement elements

<EntityContainer> must not define any AnnotationElement elements

<FunctionImport> must not define any AnnotationElement elements

<ReferentialConstraint> must only exist between the key properties of associated entities

64 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

9 Change Tracking

This section identifies changes that were made to the [MC-CSDL] protocol document between the
January 2011 and February 2011 releases. Changes are classified as New, Major, Minor, Editorial, or
No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A document revision that incorporates changes to interoperability requirements or functionality.

An extensive rewrite, addition, or deletion of major portions of content.

The removal of a document from the documentation set.

Changes made for template compliance.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are

updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the language and formatting in the technical content was
changed. Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical or language changes were introduced.
The technical content of the document is identical to the last released version, but minor editorial
and formatting changes, as well as updates to the header and footer information, and to the revision

summary, may have been made.

Major and minor changes can be described further using the following change types:

New content added.

Content updated.

Content removed.

New product behavior note added.

Product behavior note updated.

Product behavior note removed.

New protocol syntax added.

Protocol syntax updated.

Protocol syntax removed.

New content added due to protocol revision.

Content updated due to protocol revision.

Content removed due to protocol revision.

New protocol syntax added due to protocol revision.

65 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Protocol syntax updated due to protocol revision.

Protocol syntax removed due to protocol revision.

New content added for template compliance.

Content updated for template compliance.

Content removed for template compliance.

Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please

contact protocol@microsoft.com.

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

2.1.28

RowType

Property

55602

Added EDMSimpleType to the Type list for the RowType

property.

N Content

updated.

2.2.1.2.1

Facets

58288

Changed fixedLength to FixedLength and maxLength to

MaxLength.

N Content

updated.

2.2.1.2.1.1

MaxLength

58288

Changed maxLength to MaxLength.

N Content

updated.

2.2.1.2.1.2

FixedLength

58288

Changed fixedLength to FixedLength.

N Content

updated.

2.2.1.16.1

Facets

58288

Changed unicode to Unicode, fixedLength to FixedLength,

maxLength to MaxLength, and collation to Collation.

N Content

updated.

2.2.1.16.1.1

Unicode

58288

Changed "unicode" to "Unicode".

N Content

updated.

2.2.1.16.1.2

FixedLength

58288

Changed fixedLength to FixedLength.

N Content

updated.

2.2.1.16.1.3

MaxLength

58288

Changed unicode to Unicode and maxLength to MaxLength.

N Content

updated.

2.2.1.16.1.4

Collation

58288

Changed collation to Collation.

N Content

updated.

mailto:protocol@microsoft.com

66 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

10 Index

A

Action attribute 55
AnnotationAttribute attribute 56
AnnotationElement element 37
Applicability 9
Association element 20
Association End element 21
AssociationSet element 33
AssociationSet End element 34

B

Binary data type
facets

FixedLength 52
MaxLength 52
overview 52

overview 51
Boolean data type 52
Byte data type 54

C

Change tracking 64
Collation facet - String data type 54
CollectionType element 41
ComplexType element 19
ConcurrencyMode attribute 55

D

DateTime data type
overview 52
Precision facet 52

DateTimeOffset data type
overview 52
Precision facet 53

Decimal data type
facets

Precision 53
Scale 53

overview 53
Default facet 51
Documentation element 34
Double data type 53

E

EDMSimpleType attribute
binary data type 51
Boolean data type 52
Byte data type 54
commonly applicable facets

Default 51
Nullable 51

DateTime data type 52
DateTimeOffset data type 52

Decimal data type 53
Double data type 53
Float data type 53
Guid data type 53
Int16 data type 53
Int32 data type 53
Int64 data type 54
overview 51
SByte data type 53
String data type 54
Time data type 52

Entity Key element 17
EntityContainer element 28
EntitySet element 32
EntityType element 12
Examples - overview 57

F

Fields - vendor-extensible 9
FixedLength facet

binary data type 52
String data type 54

Float data type 53
Function ReturnType element 49
FunctionImport element 29
FunctionImport Parameter element 30

G

Glossary 6
Guid data type 53

I

Informative references 8
Int16 data type 53
Int32 data type 53
Int64 data type 54
Introduction 5

L

Localization 9

M

MaxLength facet
binary data type 52
String data type 54

Model Function Parameter element 40
Model Functions element 38
Multiplicity attribute 55

N

NavigationProperty element 16
Normative references 8

67 / 67

[MC-CSDL] — v20110204
 Conceptual Schema Definition File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Friday, February 4, 2011

Nullable facet 51

O

OnDelete element 22
Overview (synopsis) 8

P

Precision facet
DateTime data type 52
DateTimeOffset data type 53
Decimal data type 53
Time data type 52

Product behavior 60
Property element 14

PropertyRef element 18

Q

QualifiedName attribute 56

R

References
informative 8
normative 8

ReferenceType element 44
ReferentialConstraint element 23
ReferentialConstraint Role element

Dependent 26
overview 24
Principal 25

Relationship to protocols and other structures 9
RowType element 46
RowType Property element 47

S

SByte data type 53
Scale facet - Decimal data type 53
Schema element 11
Security 59
SimpleIdentifier attribute 56
String data type

facets
Collation 54
FixedLength 54
MaxLength 54

overview 54
Unicode 54

overview 54

T

Time data type
overview 52
Precision facet 52

Tracking changes 64
TypeRef element 43

U

Unicode facet - String data type 54
Using element 27

V

Vendor-extensible fields 9
Versioning 9
Version-specific behavior (section 6 61, section 7

62)

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Protocols and Other Structures
	1.5 Applicability Statement
	1.6 Versioning and Localization
	1.7 Vendor-Extensible Fields

	2 Structures
	2.1 Elements
	2.1.1 Schema
	2.1.2 EntityType
	2.1.3 Property
	2.1.4 NavigationProperty
	2.1.5 Entity Key
	2.1.6 PropertyRef
	2.1.7 ComplexType
	2.1.8 Association
	2.1.9 Association End
	2.1.10 OnDelete
	2.1.11 ReferentialConstraint
	2.1.12 ReferentialConstraint Role
	2.1.12.1 Principal
	2.1.12.2 Dependent

	2.1.13 Using
	2.1.14 EntityContainer
	2.1.15 FunctionImport
	2.1.16 FunctionImport Parameter
	2.1.17 EntitySet
	2.1.18 AssociationSet
	2.1.19 AssociationSet End
	2.1.20 Documentation
	2.1.21 AnnotationElement
	2.1.22 Model Functions
	2.1.23 Model Function Parameter
	2.1.24 CollectionType
	2.1.25 TypeRef
	2.1.26 ReferenceType
	2.1.27 RowType
	2.1.28 RowType Property
	2.1.29 Function ReturnType

	2.2 Attributes
	2.2.1 EDMSimpleType
	2.2.1.1 Commonly Applicable Facets
	2.2.1.1.1 Nullable
	2.2.1.1.2 Default

	2.2.1.2 Binary
	2.2.1.2.1 Facets
	2.2.1.2.1.1 MaxLength
	2.2.1.2.1.2 FixedLength

	2.2.1.3 Boolean
	2.2.1.4 DateTime
	2.2.1.4.1 Facets
	2.2.1.4.1.1 Precision

	2.2.1.5 Time
	2.2.1.5.1 Facets
	2.2.1.5.1.1 Precision

	2.2.1.6 DateTimeOffset
	2.2.1.6.1 Facets
	2.2.1.6.1.1 Precision

	2.2.1.7 Decimal
	2.2.1.7.1 Facets
	2.2.1.7.1.1 Precision
	2.2.1.7.1.2 Scale

	2.2.1.8 Single
	2.2.1.9 Double
	2.2.1.10 Guid
	2.2.1.11 SByte
	2.2.1.12 Int16
	2.2.1.13 Int32
	2.2.1.14 Int64
	2.2.1.15 Byte
	2.2.1.16 String
	2.2.1.16.1 Facets
	2.2.1.16.1.1 Unicode
	2.2.1.16.1.2 FixedLength
	2.2.1.16.1.3 MaxLength
	2.2.1.16.1.4 Collation

	2.2.2 Action
	2.2.3 Multiplicity
	2.2.4 ConcurrencyMode
	2.2.5 QualifiedName
	2.2.6 SimpleIdentifier
	2.2.7 AnnotationAttribute
	2.2.8 OpenType

	3 Structure Examples
	4 Security Considerations
	5 Appendix A: Product Behavior
	6 Appendix B: Differences Between CSDL Version 1.0 and CSDL Version 1.1
	7 Appendix C: Differences Between CSDL Version 1.1 and CSDL Version 1.2
	8 Appendix D: Differences Between CSDL Version 1.2 and CSDL Version 2.0
	9 Change Tracking
	10 Index

