
UPnP AV Architecture:0.83 
For UPnP™ Version 1.0 
Status: Preliminary Design (TPD) 
Date: June 12, 2002 
 

This design document is being made available to UPnP™ Forum Members pursuant to Section 2.1(c)(ii) of 
the UPnP™ Forum Membership Agreement for review and comment by Members to the UPnP™ Forum 
Steering Committee regarding the Steering Committee's consideration of the Proposed template as a 
Standardized service. Pursuant to Section 3.1 of the UPnP™ Forum Membership Agreement, Member has 
limited rights to use or reproduce the Proposed template during the comment period and only in 
furtherance of this review and comment. All such use is subject to all of the provisions of the UPnP™ 
Forum Membership Agreement. 

THE UPNP™ FORUM TAKES NO POSITION AS TO WHETHER ANY INTELLECTUAL 
PROPERTY RIGHTS EXIST IN THE PROPOSED TEMPLATES, IMPLEMENTATIONS OR IN ANY 
ASSOCIATED TEST SUITES. THE DESIGN DOCUMENT IS PROVIDED "AS IS" AND "WITH ALL 
FAULTS". THE UPNP™ FORUM MAKES NO WARRANTIES, EXPRESS, IMPLIED, STATUTORY, 
OR OTHERWISE WITH RESPECT TO THE PROPOSED DESIGN DOCUMENT INCLUDING BUT 
NOT LIMITED TO ALL IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE, OF REASONABLE CARE OR 
WORKMANLIKE EFFORT, OR RESULTS OR OF LACK OF NEGLIGENCE. 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 

 

Author Company 
John Ritchie Intel Corporation 
Thomas Kuehnel Microsoft Corporation 



UPnP AV Architecture:0.83 2 

Contents 

1. INTRODUCTION .................................................................................................................................3 

2. GOALS...................................................................................................................................................3 

3. NON-GOALS.........................................................................................................................................3 

4. OVERVIEW ..........................................................................................................................................3 

5. PLAYBACK ARCHITECTURE .........................................................................................................5 
5.1. MEDIA SERVER ................................................................................................................................7 

5.1.1. Content Directory Service .......................................................................................................7 
5.1.2. ConnectionManager Service ...................................................................................................7 
5.1.3. AVTransport Service ...............................................................................................................7 

5.2. MEDIARENDERER.............................................................................................................................8 
5.2.1. RenderingControlService ........................................................................................................8 
5.2.2. ConnectionManagerService ....................................................................................................8 
5.2.3. AVTransport Service ...............................................................................................................8 

5.3. CONTROL POINT...............................................................................................................................9 
6. EXAMPLE PLAYBACK SCENARIOS ...........................................................................................12 

6.1. ISOCHRONOUS-PUSH TRANSFER PROTOCOLS (IEC61883 / IEEE1394)..........................................12 
6.2. ASYNCHRONOUS-PULL TRANSFER PROTOCOLS (E.G. HTTP GET) ................................................13 
6.3. NO CM::PREPAREFORCONNECTION() ACTION...............................................................................16 
6.4. RENDERER COMBO DEVICE USING ISOCHRONOUS-PUSH (E.G. IEEE-1394) ...................................18 
6.5. RENDER COMBO DEVICE USING ASYNCHRONOUS-PUSH (E.G. HTTP GET) ...................................19 
6.6. SERVER COMBO DEVICE USING ASYNCHRONOUS-PUSH (E.G. HTTP GET)....................................19 
6.7. SERVER COMBO DEVICE USING ISOCHRONOUS-PUSH (E.G. IEEE-1394) ........................................21 
6.8. SIMPLEST INTERACTION MODEL SUPPORTED .................................................................................22 

7. RECORDING ARCHITECTURE.....................................................................................................22 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 



UPnP AV Architecture:0.83 3 

 

1. Introduction 
This document describes the overall UPnP AV Architecture, which forms the foundation for the UPnP AV 
Device and Service templates.  The AV Architecture defines the general interaction between UPnP Control 
Points and UPnP AV devices.  It is independent of any particular device type, content format, and transfer 
protocol. It supports a variety of devices such as TVs, VCRs, CD/DVD players/jukeboxes, settop boxes, 
stereos systems, MP3 players, still-image cameras, camcorders, electronic picture frames (EPFs), and the 
PC.  The AV Architecture allows devices to support different types of formats for the entertainment 
content (such as MPEG2, MPEG4, JPEG, MP3, Windows Media Architecture (WMA), bitmaps (BMP), 
NTSC, PAL, ATSC, etc.) and multiple types of transfer protocols (such as IEC-61883/IEEE-1394, HTTP 
GET, RTP, HTTP PUT/POST, TCP/IP, etc.).  The following sections describe the AV Architecture and 
how the various UPnP AV devices and services work together to enable various end-user scenarios. 

2. Goals 
The UPnP AV Architecture was explicitly defined to meet the following goals: 

• To support arbitrary transfer protocols and content formats. 

• To enable the AV content to flow directly between devices without any intervention from the 
Control Point. 

• To enable Control Points to remain independent of any particular transfer protocol and content 
format.  This allows Control Points to transparently support new protocols and formats. 

• Scalability, i.e. support of devices with very low resources, especially memory and processing 
power as well as full-featured devices. 

3. Non-Goals 
The UPnP AV Architecture does not enable any of the following: 

• Two-way Interactive Communication, such as audio and video conferencing, Internet gaming, etc. 
• Access Control, Content Protection, and Digital Rights Management  
• Synchronized playback to multiple rendering devices. 

4. Overview 
In most (non-AV) UPnP scenarios, a Control Point controls the operation of one or more UPnP devices in 
order to accomplish the desired behavior.  Although the Control Point is managing multiple devices, all 
interactions occur in isolation between the Control Point and each device.  The Control Point coordinates 
the operation of each device to achieve an overall, synchronized, end-user effect.  The individual devices 
do not interact directly with each another.  All of the coordination between the devices is performed by the 
Control Point and not the devices themselves. 

 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 



UPnP AV Architecture:0.83 4 

Device 2Device 1

Control Point

UPnP Actions

 

Figure 1: Typical UPnP Device Interaction Model 

 

 

AV
Control Point

Out-of-Band
Transfer Protocol

UPnP Actions AV
Device 2

(Sink)

AV
Device 1
(Source)

 

Figure 2: UPnP AV Device Interaction Model 

 

Most AV scenarios involve the flow of (entertainment) content (i.e. a movie, song, picture, etc.) from one 
device to another.  As shown in Figure 2, an AV Control Point interacts with two or more UPnP devices 
acting as source and sink, respectively.  Although the Control Point coordinates and synchronizes the 
behavior of both devices, the devices themselves interact with each other using a non-UPnP (“out-of-
band”) communication protocol.  The Control Point uses UPnP to initialize and configure both devices so 
that the desired content is transferred from one device to the other.  However, since the content is 
transferred using an “out-of-band” transfer protocol, the Control Point is not directly involved in the actual 
transfer of the content.  The Control Point configures the devices as needed, triggers the flow of content, 
then gets out of the way.  Thus, after the transfer has begun, the Control Point can be disconnected without 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 



UPnP AV Architecture:0.83 5 

disrupting the flow of content.  In other words, the core task (i.e. transferring the content) continues to 
function even without the Control Point present. 

As described in the above scenario, three distinct entities are involved: the Control Point, the source of the 
media content (called the “MediaServer”), and the sink for the content (called the “MediaRenderer”).  
Throughout the remainder of the document, all three entities are described as if they were independent 
devices on the network.  Although this configuration may be common (i.e. a remote control, a VCR, and a 
TV), the AV Architecture supports arbitrary combinations of these entities within a single physical device.  
For example, a TV can be treated as a rendering device (e.g. a display).  However, since most TVs contain 
a built-in tuner, the TV can also act as a server device because it could tune to a particular channel and 
send that content to a MediaRenderer (e.g. its local display or some remote device such as a tuner-less 
display).  Similarly, many MediaServers and/or MediaRenderers may also include Control Point 
functionality.  For example, an MP3 Renderer will likely have some UI controls (e.g. a small display and 
some buttons) that allow the user to control the playback of music. 

5. Playback Architecture 
 

 

Figure 3 

The most common task that end-users want to perform is to render (i.e. play) individual items of content on 
a specific rendering device.  As shown in,  

Figure 3, a content playback scenario involves three distinct UPnP components: a MediaServer, a 
MediaRenderer, and a UPnP Control Point.  These three components (each with a well-defined role) work 
together to accomplish the task.  In this scenario, the MediaServer contains (entertainment) content that the 
user wants to render (e.g. display or listen to) on the MediaRenderer.  The user interacts with the Control 
Point’s UI to locate and select the desired content on the MediaServer and to select the target 
MediaRenderer. 

The MediaServer contains or has access to a variety of entertainment content, either stored locally or stored 
on an external device that is accessible via the MediaServer.  The MediaServer is able to access its content 
and transmit it to another device via the network using some type of transfer protocol.  The content 
exposed by the MediaServer may include arbitrary types of content including video, audio, and/or still 
images.  The content is transmitted over the network using a transfer protocol and data format that is that is 
understood by the MediaServer and MediaRenderer.  MediaServers may support one or multiple transfer 
protocols and data formats for each content item or be able to convert the format of a given content item 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 



UPnP AV Architecture:0.83 6 

into another formats on the fly.  Examples of a MediaServer include a VCR, CD/DVD player/jukebox, 
camera, camcorder, PC, set-top box, satellite receiver, audio tape player, etc.   

The MediaRenderer obtains content from a MediaServer via network. Examples of a MediaRenderer 
include TV, stereo, network-enabled speakers, MP3 players, Electronic Picture Frame (EPF), a music-
controlled water fountain, etc.  The type of content that a MediaRenderer can receive depends on the 
transfer protocols and data formats that it supports.  Some MediaRenderers may only support one type of 
content (e.g. audio or still images), where as other MediaRenderers may support a wide variety of content 
including video, audio, still images.   

The Control Point coordinates and manages the operation of the MediaServer and MediaRenderer as 
directed by the user (e.g. play, stop, pause) in order to accomplish the desired task (e.g. play “MyFavorite” 
music).  Additionally, the Control Point provides the UI (if any) for the user to interact with in order to 
control the operation of the device(s) (e.g. to select the desired content).  The layout of the Control Point’s 
UI and the functionality that it exposes is implementation dependent and determined solely by the Control 
Point’s manufacturer.  Some examples of a Control Point might include a TV with a traditional remote 
control or a wireless PDA-like device with a small display. 

Note: The above descriptions talk about devices “sending/receiving content to/from the home network.”  In 
the context of the AV Architecture, this includes point-to-point connections such as an RCA cable that is  
used to connect a VCR to a TV.  The AV Architecture treats this type of connection as a small part (e.g. 
segment) of the home network.  Refer to the ConnectionManager Service Template for more details [?]. 

As described above, the AV Architecture consists of three distinct components that perform well-defined 
roles.  In some cases, these components will exist as separate, individual UPnP devices.  However, this 
need not be the case.  Device manufacturers are free to combine any of these logical entities into a single 
physical device.  In such cases, the individual components of these combo devices may interact with each 
other using either the standard UPnP control protocols (e.g. SOAP over HTTP) or using some private 
communication mechanism.  In either case, the function of each logical entity remains unchanged.  
However, in the later case, since the communication between the logical entities is private, the individual 
components will not be able to communicate with other UPnP AV devices that do not implement the 
private protocol. 

As shown in Figure 3, the Control Point is the only component that initiates UPnP actions.  The Control 
Point requests to configure the MediaServer and MediaRenderer so that the desired content flows from the 
MediaServer to the MediaRenderer (using one of the transfer protocols and data formats that are supported 
by both the MediaServer and MediaRenderer).  The MediaServer and MediaRenderer do invoke any UPnP 
actions to the Control Point.  However, if needed, the MediaServer and/or MediaRenderer may send event 
notifications to the Control Point in order to inform the Control Point of a change in the 
MediaServer’s/MediaRenderer’s internal state. 

The MediaServer and MediaRenderer do not control each other via UPnP actions.  However, in order to 
transfer the content, the MediaServer and MediaRenderer use an “out-of-band” (e.g. a non-UPnP) transfer 
protocol to directly transmit the content.  The Control Point is not involved in the actual transfer of the 
content.  It simply configures the MediaServer and MediaRenderer as needed and initiates the transfer of 
the content.  Once the transfer begins, the Control Point “gets out of the way” and is no longer needed to 
complete the transfer. 

However, if desired by the user, the Control Point is capable of controlling the flow of the content by 
invoking various AVTransport actions such as Stop, Pause, FF, REW, Skip, Scan, etc.  Additionally, the 
Control Point is also able to control the various rendering characteristics on the Renderer device such as 
Brightness, Contrast, Volume, Balance, etc. 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 



UPnP AV Architecture:0.83 7 

5.1. Media Server 
The MediaServer is used to locate content that is available via the home network.  MediaServers include a 
wide variety of devices including VCRs, DVD players, satellite/cable receivers, TV tuners, radio tuners, 
CD players, audio tape players, MP3 players, PCs, etc.  A MediaServer’s primary  purpose is to allow 
Control Points to enumerate (i.e. browse or search for) content items that are available for the user to 
render.  The MediaServer contains a ContentDirectoryService, a ConnectionManager Service, and an 
optional AVTransport Service (depending on the supported transfer protocols). 

Some MediaServers are capable of transferring multiple content items at the same time, e.g. a hard-disk-
based audio jukebox may be able to simultaneously stream multiple audio files to the network.  In order to 
support this type of MediaServer, the ConnectionManager assigns a unique Connection ID to each 
“connection” (i.e. each stream) that is made.  This ConnectionID allows a third-party Control Points to 
obtain information about active connections of the MediaServer. 

5.1.1. Content Directory Service 
This service provides a set of actions that allow the Control Point to enumerate the content that the Server 
can provide to the home network.  The primary action of this service is Browse().  This action allows 
Control Points to obtain detailed information about each Content Item that the Server can provide.  This 
information (i.e. meta-data) includes properties such as its name, artist, date created, size, etc.  
Additionally, the returned meta-data identifies the transfer protocols and data formats that are supported by 
the Server for that particular Content Item.  The Control Point uses this information to determine if a given 
MediaRenderer is capable of rendering that content in its available format. 

5.1.2. ConnectionManager Service 
This service is used to manage the connections associated with a particular device.  The primary action of 
this service (within the context of a MediaServer) is  PrepareForConnection().  When implemented, this 
optional action is invoked by the Control Point to give the Server an opportunity to prepare itself for an 
upcoming transfer.  Depending on the specified transfer protocol and data format, this action may return 
the InstanceID of an AVTransport service that the Control Point can use to control the flow of this content 
(e.g. Stop, Pause, Seek, etc).  As described below, this InstanceID is used to distinguish multiple (virtual) 
instances of the AVTransport service, each of which is associated with a particular connection to Renderer.  
Multiple (virtual) instances of the AVTransport service allow the MediaServer to support multiple 
Renderers at the same time.  When the Control Point wants to terminate this connection, it should invoke 
the MediaServer’s ConnectionComplete() action (if implemented) to release the connection. 

If the PrepareForConnection() action is not implemented, the Control Point is only able to support a 
single Renderer at an given time.  In this case, the Control Point should use InstanceID=0. 

5.1.3. AVTransport Service 
This (optional) service is used by the Control Point to control the “playback” of the content that is 
associated with the specified AVTransport.  This includes the ability to Stop, Pause, Seek, etc.  Depending 
on the supported transfer protocols and/or data formats, a MediaServer may or may not implement this 
service.  If supported, the MediaServer can distinguish between multiple instances of the service by using 
the InstanceID that is included in each AVTransport action.  New instances of the AVTransport service  
are created via the ConnectionManager’s PrepareForConnection().  A new Instance Id is allocated for 
each new Service Instance. 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 



UPnP AV Architecture:0.83 8 

5.2. MediaRenderer 
The MediaRenderer is used to render (e.g. display and/or listen to) content obtained from the home 
network.  This includes a wide variety of devices including TVs, stereos, speakers, hand-held audio 
players, music controlled water-fountain, etc.  Its main feature is that it allows the Control Point to control 
how content is rendered (e.g. Brightness, Contrast, Volume, Mute, etc).  Additionally, depending on the 
transfer protocol that is being used to obtain the content from the network, the MediaRenderer may also 
allow the user to control the flow of the content (e.g. Stop, Pause, Seek, etc).  The MediaRenderer includes 
a Rendering Control Service, a ConnectionManager Service, and an optional AVTransport Service 
(depending on which transfer protocols are supported). 

In order to support rendering devices that are capable of handling multiple content items at the same time 
(e.g. an audio mixer such as a Karaoke device), the Rendering Control and AVTransport Services contain 
multiple independent (logical) instances of these services.  Each (logical) instance of these services is 
bound to a particular incoming connection.  This allows the Control Point to control each incoming content 
independently from each other. 

Multiple logical instances of these services are distinguished by  a unique ‘InstanceID’ which references 
the logical instance.  Each action invoked by the Control Point contains the Instance ID that identifies the 
correct instance.. 

5.2.1. RenderingControlService 
This service provides a set of actions that allow the Control Point to control how the Renderer renders a 
piece of incoming content.  This includes rendering characteristics such as Brightness, Contrast, Volume, 
Mute, etc.  The Rendering Control service supports multiple, dynamic instances, which allows a Renderer 
to “mix together” one or more content items (e.g. a Picture-in-Picture window on a TV or an audio mixer 
device).  New instances of the service are created by the ConnectionManager’s PrepareForConnection() 
action. 

5.2.2. ConnectionManagerService 
This service is used to manage the connections associated with a device.  Within the context of a 
MediaRenderer, the primary action of this service is the GetProtocolInfo() action.  This action allows a 
Control Point to enumerate the transfer protocols and data formats that are supported by the 
MediaRenderer.  This information is used to predetermine if a MediaRenderer is capable of rendering a 
specific content item.  A MediaRenderer may also implement the optional PrepareForConnection() 
action.  This action is invoked by the Control Point to give the Render an opportunity to prepare itself for 
an upcoming transfer.  Additionally, this action assigns a unique ConnectionID that can be used by a 3rd-
party Control Point to obtain information about the connections that the MediaRenderer is using.  Also, 
depending on the specified transfer protocol and data format being used, this action may return a unique 
AVTransport InstanceID that the Control Point can use to control the flow of the content (e.g. Stop, Pause, 
Seek, etc).  (Refer to the AVTransport section below for additional details).  Lastly, 
PrepareForConnection() also returns a unique Rendering Control InstanceID which can be used by the 
Control Point to control the rendering characteristics of the associated content as described above.  When 
the Control Point wants to terminate a connection, it should invoke the Renderer’s ConnectionComplete() 
action (if implemented) to release the connection. 

5.2.3. AVTransport Service 
This (optional) service is used by the Control Point to control the flow of the associated content.  This 
includes the ability to Play, Stop, Pause, Seek, etc.  Depending on transfer protocols and/or data formats 
that are supported, the Renderer may or may not implement this service.  In order to support 
MediaRenderers that can simultaneously handle multiple content items, the AVTransport service may 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 



UPnP AV Architecture:0.83 9 

support multiple logical instances of this service.  As described above, AVTransport InstanceIDs are 
allocated by the ConnectionManager’s PrepareForConnection() action to distinguish between multiple 
service instances.  

5.3. Control Point 
Control Points coordinate the operation of the MediaServer and the MediaRenderer, usually in response to 
user interaction with the Control Point’s UI.  The following describes a generic Control Point algorithm 
that can be used to interact with a wide variety of MediaServer and MediaRenderer implementations. 

1. Discover AV Devices:  Using UPnP’s  Discovery mechanism, MediaServers and MediaRenderers  
in the home network are discovered. 

2. Locate Desired Content:  Using the Server’s ContentDirectory::Browse() or Search() actions, a 
desired Content Item is located.  The information returned by Browse()/Search() includes the 
transfer protocols and data formats that the MediaServer supports to transfer the content to the 
home network. 

3. Get Renderer’s Supported Protocols/Formats:  Using the MediaRenderer’s 
ConnectionManager::GetProtocolInfo() action a list of transfer protocols and data formats 
supported by the MediaRenderer is returned to the Control Point. 

4. Compare/Match Protocols/Formats:  The protocol/format information returned by the 
ContentDirectory for the desired Content Item is matched with the protocol/format information 
returned by the MediaRenderer’s GetProtocolInfo() action. The Control Point selectsa transfer 
protocol and data format that are supported by both the MediaServer and MediaRenderer. 

5. Configure Server/Renderer:  The device’s ConnectionManager::PrepareForConnection() action 
(if implemented) informs the MediaServer and MediaRenderer that an outgoing/incoming 
connection is about to be made using the specified transfer protocol and data format that was 
previously selected.  Depending on the selected transfer protocol, either the MediaServer or 
MediaRenderer will return an AVTransport InstanceID.  This InstanceID is used in conjunction 
with the device’s AVTransport Service (i.e. the device returning the AVTransport InstanceID) to 
control the flow of the content (e.g. Play, Stop, Pause, Seek, etc).  Additionally, the Renderer will 
return a Rendering Control InstanceID that is used by the Control Point to control the Rendering 
characteristics of the content. 

Note:  Since PrepareForConnection() is an optional action, there may be situations in which either 
the MediaServer and/or MediaRenderer do not implement PrepareForConnection().  When this 
occurs and neither MediaServer nor MediaRenderer return an AVTransport InstanceID, the 
Control Point uses an InstanceID=0 to control the flow of the content.  Refer to the 
ConnectionManager and AVTransport Service Templates for details [?]. 

6. Select Desired Content:  Using the AVTransport service (whose InstanceID is returned by either 
the Server or Renderer), invoke the SetAVTransportURI() action to identify the content item that 
needs to be transferred. 

7. Start Content Transfer:  Using the AVTransport service, invoke one of the transport control 
actions as desired by the user (e.g. Play, Stop, Seek, etc). 

8. Adjust Rendering Characteristics:  Using the MediaRenderer’s Rendering Control service, 
invoke any rendering control actions as desired by the user (e.g. adjust brightness, contrast, 
volume, mute, etc). 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 



UPnP AV Architecture:0.83 10 

9. Repeat: Select Next Content:  Using either the AVTransport::SetAVTransportURI() or 
AVTransport::SetNextAVTRansportURI() actions, identify the next content item that is to be 
transferred from the same Server to the same Renderer.  Repeat as needed. 

10. Cleanup Server/Renderer:  When the session is terminated and MediaServer and 
MediaRenderer are no longer needed in the context of the session, the MediaServer’s and 
MediaRenderer’s ConnectionMgr::ConnectionComplete() action is invoked to close the 
MediaServer’s connection. 

Based on the interaction sequence shown above, the following diagram chronologically illustrates the 
typical interaction sequence between the three Control Point and the MediaServer and MediaRenderer. 

 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 



UPnP AV Architecture:0.83 11 

Media
Server

Media
Renderer

Control
Point

Playback: General Interaction Diagram

Any RCS rendering
control operation
(e.g. volume, mute,
brightness, contrast)

Content Objects

CDS::Browse/Search()

Protocol/Format List

CM::GetProtocolInfo()

AVT InstanceID

CM::PrepareForConnection()

AVT,RCS InstanceIDs

CM::PrepareForConnection()

RCS::SetVolume()

Any AVT flow control
operation, as needed
(e.g. stop,pause,seek)

CM::TransferComplete()

CM::TransferComplete()

 Choose Matching
Protocol and Format

 Content Transfer
Complete

Out-Of-Band
Content Transfer

<invoke only one>

AVT::SetAVTransportURI()

AVT::Play()

<invoke only one>

Repeat as Needed

 

 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 



UPnP AV Architecture:0.83 12 

6. Example Playback Scenarios 
As described above, the AV Architecture is designed to support arbitrary transfer protocols and data 
formats.  However, in some cases, certain devices are intentionally designed to support a single transfer 
protocol and/or data format only.  For example, a manufacturer may want to deliver a product that targets a 
particular price-point and/or market segment.  In these cases, some AV devices may combine one or more 
logical entities into a single physical device. 

The following sub-sections illustrate the flexibility of the generic Device Interaction Model algorithm.  
Each of the following interaction diagrams are variations of the generic diagram with various steps 
omitted.  These omitted steps are not included because the particular scenario does not require them. 

6.1. Isochronous-Push Transfer Protocols (IEC61883 / 
IEEE1394) 

When using an isochronous transfer protocol (e.g.IEC61883/ IEEE1394), the underlying transfer 
mechanism provides real-time content transfer between the MediaServer and MediaRenderer.  This ensures 
that individual packets of content are transferred  within a certain (relatively small) period of time.  This 
real-time behavior allows the MediaRenderer to provide the user with smooth-flowing rendering of the 
content without implementing a read-ahead buffer.  In this environment, the flow of the content is 
controlled by the MediaServer. The MediaRenderer immediately renders the content that it receives from 
the MediaServer.  Refer to the diagram below for details. 

 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 



UPnP AV Architecture:0.83 13 

Media
Server

Media
Renderer

Control
Point

Content Objects

CDS::Browse/Search()

Protocol/Format List

CM::GetProtocolInfo()

AVT InstanceID

CM::PrepareForConnection()

RCS InstanceID

CM::PrepareForConnection()

RCS::SetVolume()

CM::TransferComplete()

CM::TransferComplete()

Out-Of-Band
Content Transfer

AVT::SetAVTransportURI()

AVT::Play()

Isochronous-Push
requires Server (not
Renderer) to return
AVT InstanceID.
Renderer only returns
an RCS InstanceID.

Any RCS rendering
control operation, as
needed (e.g. volume,
brightness, contrast)

Any AVT flow control
operation, as needed
(e.g. seek,stop,pause)

 Choose Matching
Protocol and Format

 Content Transfer
Complete

Repeat as Needed

 

 

6.2. Asynchronous-Pull Transfer Protocols (e.g. HTTP GET) 
In this example, the transfer protocols that are used do not provide real-time guarantees.  The arrival of a 
particular packet of content is unpredictable relative to the previous packets.  Unless corrected, this causes 
the content to be rendered with certain undesirable anomalies (e.g. detectable latencies, jitter, etc.).  In 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 



UPnP AV Architecture:0.83 14 

order to compensate for these types of transfer mechanisms, a Renderer device typically implements a 
read-ahead storage buffer in which the Renderer reads-ahead of the current output and places the data into 
a buffer until the contents are needed.  This allows the MediaRenderer to smooth out any rendering 
anomalies that might otherwise exist.  Since the MediaRenderer must control the flow of the content, it is 
obligated to provide the instance of the AVTransport service that will be used. 

 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 



UPnP AV Architecture:0.83 15 

Media
Server

Media
Renderer

Control
Point

Content Objects

CDS::Browse/Search()

Protocol/Format List

CM::GetProtocolInfo()

CM::PrepareForConnection()

AVT,RCS InstanceIDs

CM::PrepareForConnection()

RCS::SetVolume()

CM::TransferComplete()

CM::TransferComplete()

Out-Of-Band
Content Transfer

AVT::SetAVTransportURI()

AVT::Play()

Asychronous-Pull
requires Renderer
(not Server) to return
a AVT InstanceID.
Server does not return
an AVT InstanceID

 Choose Matching
Protocol and Format

 Content Transfer
Complete

Repeat as Needed

Any RCS rendering
control operation, as
needed (e.g. volume,
brightness, contrast)

Any AVT flow control
operation, as needed
(e.g. seek,stop,pause)

 

 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 



UPnP AV Architecture:0.83 16 

6.3. No CM::PrepareForConnection() Action 
In some circumstances, vendors may choose to not implement the PrepareForConnection() action, which 
(among other tasks) provides a mechanism for the Control Point to obtain the InstanceID of the 
AVTransport and Rendering Control Service to use for controlling the flow and rendering characteristics 
of the content.  When the PrepareForConnection() action is not implemented, the Control Point must “fall-
back” and assume an InstanceID=0.  The following diagram illustrates how the general Device Interaction 
Model gracefully scales to handle this situation. 

 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 



UPnP AV Architecture:0.83 17 

Media
Server

Media
Renderer

Control
Point

Content Objects

CDS::Browse/Search()

Protocol/Format List

CM::GetProtocolInfo()

RCS::SetVolume()

Out-Of-Band
Content Transfer

AVT::SetAVTransportURI()

AVT::Play()

- No AVT or RCS
InstanceIDs are
returned.

- For AVT actions, use
InstanceID=0 on
Renderer's AVT (if it
available). Otherwise
use Server's AVT.

- For RCS actions,
use InstanceID=0 on
Renderer's RCS.

 Choose Matching
Protocol and Format

 Content Transfer
Complete

Repeat as Needed

CM::PrepareForConnection() not
implemented by either device

CM::TransferComplete()
also not implemented

Any RCS rendering
control operation, as
needed (e.g. volume,
brightness, contrast)

Any AVT flow control
operation, as needed
(e.g. seek,stop,pause)

 

 

 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 



UPnP AV Architecture:0.83 18 

6.4. Renderer Combo Device using Isochronous-Push (e.g. 
IEEE-1394) 

The following example illustrates how the general Device Interaction Algorithm is used to handle devices 
that also include integrated Control Point functionality (e.g. a TV). 

 

Media
Server

Media Renderer,
Control Point

Combo Device

Content Objects

CDS::Browse/Search()

AVT InstanceID

CM::PrepareForConnection()

CM::TransferComplete()

 Choose Matching
Protocol and Format

 Content Transfer
Complete

Out-Of-Band
Content Transfer

AVT::SetAVTransportURI()

AVT::Play()

Repeat as Needed

Control Point knows which
protocols/formats are
supported by the (internal)
Renderer device.

Renderer prepares itself to
receive the content

Any RCS rendering control
operation, as needed (e.g.
volume, brightness, contrast)

Any AVT flow control
operation, as needed
(e.g. seek,stop,pause)

 

 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 



UPnP AV Architecture:0.83 19 

6.5. Render Combo Device using Asynchronous-Push (e.g. 
HTTP GET) 

 

Media
Server

Media Renderer,
Control Point

Combo Device

Rendering characteristics (e.g.
volume, brightness) controlled
internally as direct by user.

Content Objects

CDS::Browse/Search()

CM::PrepareForConnection()

CM::TransferComplete()

Out-Of-Band
Content Transfer

Asychronous/Pull requires
Renderer (not Server) to
return an AVTransport
InstanceID.

Renderer prepares itself to
receive the desired content
and starts/controls the flow of
the content as directed by
user.

Control Point knows which
protocols/formats are
supported by the internal
Renderer device.

 Choose Matching
Protocol and Format

 Content Transfer
Complete

Repeat as Needed

 

 

6.6. Server Combo Device using Asynchronous-Push (e.g. 
HTTP GET) 

 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 



UPnP AV Architecture:0.83 20 

Media
Renderer

Media Server,
Control Point

Combo Device

Protocol/Format List

CM::GetProtocolInfo()

AVT,RCS InstanceIDs

CM::PrepareForConnection()

RCS::SetVolume()

CM::TransferComplete()

Out-Of-Band
Content Transfer

AVT::SetAVTransportURI()

AVT::Play()

Asychronous-Pull requires
Renderer to return both AVT
and RCS InstanceIDs

 Choose Matching
Protocol and Format

 Content Transfer
Complete

Repeat as Needed

Control Point knows which
protocols/formats are
supported by the internal
Server device.

Server prepares itself to
transfer content using the
specified protocol/format

Any AVT flow control
operation, as needed
(e.g. seek,stop,pause)

Any RCS rendering control
operation, as needed (e.g.
volume, brightness, contrast)

 

 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 



UPnP AV Architecture:0.83 21 

6.7. Server Combo Device using Isochronous-Push (e.g. IEEE-
1394) 

 

Media
Renderer

Media Server,
Control Point

Combo Device

Any RCS rendering
control operation (e.g.
SetBrightness)

Protocol/Format List

CM::GetProtocolInfo()

RCS InstanceID

CM::PrepareForConnection()

RCS::SetVolume()

CM::TransferComplete()

Out-Of-Band
Content Transfer

Isochronous-Push requires
Server to provide AVT
InstanceID, so Renderer only
returns an RCS InstanceID

 Choose Matching
Protocol and Format

 Content Transfer
Complete

Repeat as Needed

Control Point knows which
protocols/formats are
supported by the internal
Server device.

Server prepares itself to
transmit the desired content
and starts/controls the flow of
the content as directed by user

 

 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 



UPnP AV Architecture:0.83 22 

6.8. Simplest Interaction Model Supported 
 

Media
Server

Media Renderer,
Control Point

Combo Device

Rendering characteristics (e.g.
volume, brightness) controlled
internally as direct by user.

Content Objects

CDS::Browse/Search()

 Choose Matching
Protocol and Format

 Content Transfer
Complete

Out-Of-Band
Content Transfer

Repeat as Needed

Renderer prepares itself to
receive the desired content
and starts/controls the flow of
the content as directed by user

Control Point knows which
protocols/formats are
supported by the internal
Renderer device.

- No AVT or RCS InstanceIDs
are returned.

- For AVT actions, use
InstanceID=0 on  Renderer's
AVT (if it available).
Otherwise use Server's AVT.

- For RCS actions, use
InstanceID=0 on Renderer's
RCS.

CM::PrepareForConnection() not
implemented by either device

 

 

 

7. Recording Architecture 
The UPnP AV Architecture defines a rudimentary Recording capability.  A Record action is defined within 
the AVTranport Service().  As content is being transferred from the MediaServer to the MediaRenderer, a 
Control Point may issue the ‘Record’ action.  This results in the device ‘recording’ that content to some 
type of unspecified storage.  The details of the Record feature depend completely on the recording device 
and can range dramatically from device to device.  

 

© 2000 Contributing Members of the UPnP™ Forum. All rights Reserved. 


	Introduction
	Goals
	Non-Goals
	Overview
	Playback Architecture
	Media Server
	Content Directory Service
	ConnectionManager Service
	AVTransport Service

	MediaRenderer
	RenderingControlService
	ConnectionManagerService
	AVTransport Service

	Control Point

	Example Playback Scenarios
	Isochronous-Push Transfer Protocols (IEC61883 / IEEE1394)
	Asynchronous-Pull Transfer Protocols (e.g. HTTP GET)
	No CM::PrepareForConnection() Action
	Renderer Combo Device using Isochronous-Push (e.g. IEEE-1394
	Render Combo Device using Asynchronous-Push (e.g. HTTP GET)
	Server Combo Device using Asynchronous-Push (e.g. HTTP GET)
	Server Combo Device using Isochronous-Push (e.g. IEEE-1394)
	Simplest Interaction Model Supported

	Recording Architecture

