
UPnP Security Ceremonies Version 1.0 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 
 1 

UPnP™ Security Ceremonies 
Design Document 
For UPnP™ Device Architecture 1.0  1 
Date: October 3, 2003  
 
This design document is being made available to UPnP Members pursuant to Section 2.1(c)(ii) of the UPnP 
Membership Agreement for review and comment by Members to the UPnP Steering Committee regarding 
the Steering Committee's consideration of the Proposed template as a Standardized service. Pursuant to 
Section 3.1 of the UPnP Membership Agreement, Member has limited rights to use or reproduce the 
Proposed template during the comment period and only in furtherance of this review and comment. All 
such use is subject to all of the provisions of the UPnP Membership Agreement. 
THE UPNP FORUM TAKES NO POSITION AS TO WHETHER ANY INTELLECTUAL PROPERTY 
RIGHTS EXIST IN THE DESIGN DOCUMENT, IMPLEMENTATIONS OR IN ANY ASSOCIATED 
TEST SUITES. THIS UPNP DESIGN DOCUMENT IS PROVIDED "AS IS" AND "WITH ALL 
FAULTS". THE UPNP FORUM MAKES NO WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR 
OTHERWISE WITH RESPECT TO THE DESIGN DOCUMENT, IMPLEMENTATIONS, AND 
ASSOCIATED TEST SUITES INCLUDING BUT NOT LIMITED TO ALL IMPLIED WARRANTIES 
OF MERCHANTABILITY, NON-INFRINIGEMENT AND FITNESS FOR A PARTICULAR PURPOSE, 
OF REASONABLE CARE OR WORKMANLIKE EFFORT, OR RESULTS, OR LACK OF RESULTS, 
OR NEGLIGENCE. 
 
Authors Company 
Carl Ellison Intel Corporation 

 

 

                                                           
1 UPnP™ is a service mark of the UPnP™ Implementers Corporation. 



UPnP Security Ceremonies Version 1.0 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 
 2 

 

Table of Contents 
1 Background ............................................................................................................................................ 3 
2 Security Model ....................................................................................................................................... 3 

2.1 Security Policy Data......................................................................................................................... 5 
3 Secure Component Discovery ................................................................................................................ 6 

3.1 Discovery of Secured Devices ......................................................................................................... 6 
3.1.1 How to read the ceremony diagram........................................................................................ 7 

3.2 Discovery of a Secured CP or SC .................................................................................................... 8 
4 Ownership .............................................................................................................................................. 8 

4.1 TakeOwnership ................................................................................................................................ 9 
4.1.1 Note on Figure 4 ..................................................................................................................... 9 

4.2 ListOwners ..................................................................................................................................... 10 
4.3 GrantOwnership ............................................................................................................................. 11 
4.4 RevokeOwnership .......................................................................................................................... 12 
4.5 FactorySecurityReset ..................................................................................................................... 13 

5 Session Keys......................................................................................................................................... 13 
6 ACL Editing ......................................................................................................................................... 14 
7 Certificate caching................................................................................................................................ 16 
8 INDEX.................................................................................................................................................. 18 
9 REFERENCES..................................................................................................................................... 18 
 

List of Figures 
Figure 1: Message Security Flowchart ........................................................................................................... 4 
Figure 2: Device discovery ceremony and TakeOwnership ........................................................................... 6 
Figure 3: Discovery of CP and SC nodes ....................................................................................................... 8 
Figure 4: Taking ownership via private cable ................................................................................................ 9 
Figure 5: ListOwners.................................................................................................................................... 10 
Figure 6: GrantOwnership............................................................................................................................ 11 
Figure 7: RevokeOwnership......................................................................................................................... 12 
Figure 8: FactorySecurityReset .................................................................................................................... 13 
Figure 9: Setting Session Keys..................................................................................................................... 14 
Figure 10: ACL Editing................................................................................................................................ 15 
Figure 11: Certificate caching on the device ................................................................................................ 16 
Figure 12: Delivering certificates to the CP ................................................................................................. 17 
 



UPnP Security Ceremonies Version 1.0 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 
 3 

1 Background 
This white paper describes the ceremonies of which UPnP Security consists. 
The term ceremony was coined by Jesse Walker of Intel Corporation.  It refers to something that looks 
exactly like a network protocol.  Network protocols, however, refer to messages among computers – or, 
more generally, among network nodes.  The term “ceremony” refers to messages among computers, people 
and possibly the environment. However, the resemblance to a network protocol diagram and description is 
intentional. The same tools that one uses to design and analyze network protocols can be used to design and 
analyze ceremonies. 
Ceremonies were created first for security protocols, like the UPnP Security protocol. This is because every 
security protocol needs human interactions. In a security protocol, there are decisions to be made (e.g., 
access control decisions).  These decisions are made by network nodes, based on data held in those nodes 
(possibly augmented by data provided to them) and that data is generally called the security policy. That 
policy can not be built into the equipment. It is formulated in the mind of a human and must be 
communicated from that human to the network node(s).  Therefore, at least for parts of a security protocol 
that specify security policy, a human is an essential component. 
We have discovered over the years that carefully designed security protocols can fail miserably because of 
flaws in the human behavior or the human-computer interface.  See for example the paper by Whitten[1].  
Part of the reason for this failure is that the careful security design and analysis is often applied only to the 
security protocol (among network nodes) and not the full security ceremony. 
When one analyzes the behavior of a ceremony, the human components need special attention. One can not 
assume that the human will behave like a computer. A human user is likely to do incomplete comparisons 
of values, for example.  If there is some human step that is optional, then one can assume the human will 
not perform it.  Some will and some won’t, but for the purpose of security analysis, one must assume the 
worst case. 
In UPnP Security, efforts were made to design and analyze the full ceremonies, not just the protocols. This 
can not be complete without an understanding of the details of the user interface and UPnP does not specify 
user interfaces. Therefore, the final security analysis of the ceremonies presented in this white paper needs 
to be done for each implementation. 

2 Security Model 
In UPnP™, there are devices and control points.  Devices advertise themselves via a discovery protocol 
and offer services: collections of SOAP actions that the control points invoke. 
UPnP Security concerns itself with the control protocol, SOAP. It secures SOAP control messages and their 
replies. This message security consists of: 

1. identification 
2. integrity 
3. authentication 
4. freshness 
5. authorization and 
6. secrecy 

Control message security is depicted in the flowchart of Figure 1, below.  Since UPnP specifies protocols 
rather than program structure, any UPnP implementation can use a different flowchart for its processing, 
provided the resulting code has the same functional behavior. 



UPnP Security Ceremonies Version 1.0 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 
 4 

 

Signed?

Good?

Verify
signature

Set sender
= unknown

Auth’d?

Verify
authorization

Action 1 Action 2 DAEFail . . .

N

Y

Y

N

N

Y

 
Figure 1: Message Security Flowchart 

The sender of a message is identified by its SecurityID (the hash of its public key).  An ID=unknown can 
be achieved in a number of ways, e.g., by using a quantity the size of a hash but of value = 0 or = the 
ASCII “unknown”.  This is an implementation choice that does not affect any other nodes and is therefore 
free to make. 
If the message is signed by PK methods, then one computes the hash based on the public key that is 
provided in the <KeyInfo> field.  If the message is Session-key signed, then the SecurityID can be 
available via indirection from the session key ID. 
Control message security flow is as follows (referring to Figure 1): 

1. A message arrives and is parsed.  If there is a <SecurityInfo> element in the SOAP header, then 
this message is assumed to be signed. 

2. If the message is not signed, then set its owner to “unknown” and proceed with testing for 
authorization. [Some actions are made available to unknown senders, at the discretion of the 
device working committee, device manufacturer or device owner.] 

3. If the message is signed, then the device verifies its signature and its freshness.  Verification of the 
signature verifies both integrity of the message and origin authentication.  The sender is indicated 
by its SecurityID – the hash of its public key. 

4. If the signature and freshness are good, then the owner is set to the SecurityID of the signer of the 
message. Otherwise, the message fails and an error return message is generated. 

5. If the message is to be tested for authorization, then authorization information is gathered. This 
consists of the owner list, ACL, any cached certificates and any certificates provided in the 
message’s <KeyInfo> element. The message’s action name is retrieved and used to discover the 
abstract permission needed by the sender to perform this action.  The authorization information of 
the sender is then tested to determine if that permission has been granted and is still in force. 

6. If the sender is not authorized, then the message fails and an error return message is generated. If 
the sender is authorized, then the desired action is executed. 

7. If the desired action is DecryptAndExecute (indicated in Figure 1 as “DAE”), then its ciphertext 
argument is deciphered and the resulting plaintext is recursively sent back to the start of the 



UPnP Security Ceremonies Version 1.0 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 
 5 

process for processing.  Usually, DecryptAndExecute will not be a signed message but the 
message inside its argument could be. 

 

2.1 Security Policy Data 
The message security processing described in Figure 1, above, relies on certain data that is collectively 
referred to as security policy.  This data includes: 

1. the device’s owner list 
2. the device’s ACL 
3. any cached certificates 
4. any certificates provided by the sender (control point) as part of the message 

This data originates in the mind of a human being (or set of human beings) that UPnP Security refers to as 
the device owner.  This data must reside in the device at the time of security decision (Figure 1). It 
therefore must be communicated from the owner to the device. 
To achieve that communication, UPnP Security defines two things: 

1. the DeviceSecurity service, which specifies actions to permit the setting of that data 
2. the Security Console (SC) – a component that is both a UPnP Device and Control Point, whose 

function is to provide the user interface for the (a) human owner of a device  [The UPnP Device in 
the SC runs a UPnP service called SecurityConsole.] 

An owner is indicated by the hash of the public key of a SC2. An owner list is a list of such hash values. 
A device’s ACL is a list of entries (possibly empty) that specify the following: 

1. Subject: a SecurityID or name of a group of SecurityIDs – indicating the (single, group of) CP or 
SC to which rights are being granted by this ACL entry 

2. Authorization: a list of permission elements, specifying what the Subject is being granted by this 
entry 

3. May-not-delegate: an optional flag indicating that the Subject may not delegate any of the rights 
granted in this entry on to other CPs, SCs or groups 

4. Validity: an optional set of elements that could include a not-before date/time and/or a not-after 
date/time, limiting the period of validity of the entry 

There are two kinds of certificate defined in UPnP Security: named group membership and 
authorization. 
A named group membership certificate contains the following entries: 

1. Issuer: the SecurityID of the issuing SC 
2. Name: the textual name of the group 
3. Subject: a SecurityID or name (as in an ACL entry) of the individual key or group of keys being 

given membership in this group 
4. Validity: an optional list of elements that could include a not-before date/time, a not-after 

date/time and/or a <Renew/> element (noting that this certificate was issued to be valid for an 
artificially short interval of time and can be renewed by sending it to the Issuer). 

An authorization certificate has the same elements as an ACL entry, but also an Issuer field and all the 
same Validity options as the name certificate.  The authorization field is slightly different because it must 
indicate the device(s) to which the grant of authorization applies while the ACL can apply only to the one 
device in which it is resident. 

                                                           
2 The phrase “the public key of a component” is shorthand for “the public key that corresponds to the 
private key unique to and kept protected within that component and used to sign or decrypt messages”. In 
UPnP Security, Control Points and Security Consoles have signature private keys while Devices have 
decryption private keys. 



UPnP Security Ceremonies Version 1.0 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 
 6 

3 Secure Component Discovery 
In order to grant rights on some Device to a CP or SC, those components must first be discovered by the 
device owner’s SC. 
UPnP Discovery is not symmetric. That is, Control Points discover Devices, but not the other way around. 
UPnP Security, however, needs to discover both Devices and Control Points. Therefore, actions are defined 
for this purpose. 

3.1 Discovery of Secured Devices 
A secured Device can be discovered in the normal UPnP way. A secured device can be distinguished from 
an unsecured device because the secured device will include a DeviceSecurity service. 
This normal discovery process via SSDP is not secure, however.  To secure the discovery process there is a 
ceremony as shown in Figure 2, below. 

DevSC

Select & name

Security ID

Password

SSDP

Security ID

Password

TakeOwnership

GetPublicKeys

G L S B

 
Figure 2: Device discovery ceremony and TakeOwnership 

The discovery of security-enabled devices is more than the basic discovery that is performed by UPnP’s 
SSDP.  The purpose of this discovery process is to make sure that the user’s SC (acting as the user’s 
window into the security administration of the UPnP network) associates with the correct device(s) and that 
each device of the user’s network associates with the correct SC.  The security of the UPnP protocol is 
assured by industry standard practices, but it does no good to have a secure protocol between the wrong 
elements.  Secure discovery addresses that latter problem. 
With reference to Figure 2, the process for secure discovery is: 

1. The user reads the target device’s SecurityID from the device (from a label or display on the 
device or from a card shipped with the device). 

2. The SC discovers the target device (possibly among others) via SSDP. 
3. For each device offering DeviceSecurity, the SC gets the device’s public key by a call to 

GetPublicKeys. 
4. The SC computes each device’s SecurityID from its public key and displays that to the user, for 

comparison with the SecurityID obtained in step 1. 



UPnP Security Ceremonies Version 1.0 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 
 7 

5. The user selects the target device from a list of available devices (those devices with public keys 
not already named by that user at that SC) and names it. The SC then remembers that name for 
that device and no longer displays it as an available device. 

If, in addition to discovering and naming the security-aware device, the user wants to take security 
ownership of that device, the process continues with: 

6. The user reads the target device’s initial password from the device (from a label or display on the 
device or from a card shipped with the device). 

7. The user provides that password to the SC, which uses it to compute the values needed for a 
TakeOwnership call. 

8. The SC executes the GetLifetimeSequenceBase call, to get the current LifetimeSequenceBase 
value to use in computing the arguments for the TakeOwnership call. 

9. The SC executes the TakeOwnership call.  [See section 4.1 for more details about TakeOwnership 
and its options.] 

3.1.1 How to read the ceremony diagram 
Figure 2 is a good sample of a full ceremony diagram.   
Every time there is a connection between a computer component and a human user, one can not use a 
standard network layer.  Humans don’t have network interfaces. 
In the figure, there are three different colors for “network layers”: 

• Black: a normal network connection 
• Red: a normal user interface 
• Green dotted: a static user interface (reading a label or a print-out, maybe reading a display on the 

device, but copying down the information to bring over to another display (the one on the SC) for 
use there) 



UPnP Security Ceremonies Version 1.0 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 
 8 

3.2 Discovery of a Secured CP or SC 

CPSC

Select & name

Security ID

SSDP

Security ID

PresentKey

 
Figure 3: Discovery of CP and SC nodes 

UPnP does not define a way to discover control points (CP). However, for security purposes, we must 
discover security-aware CPs (and other SCs, which act like CPs in this context).  To remedy this lack, the 
SC is also a UPnP device that a security-aware CP discovers in the normal way (by SSDP).  The full 
process is: 

1. The user reads the Security ID from the target CP or SC (from a label or display on the CP or from 
a card shipped with the CP).   

2. The CP discovers the user’s SC (and any others) via SSDP. 
3. The CP offers its public key to each SC it finds, via the PresentKey action. 
4. The SC computes a Security ID from the CP’s public key and displays that to the user. 
5. The user compares the Security ID computed by the SC to the one obtained in step 1, selects the 

appropriate CP (or other SC), and names it.  The user’s SC remembers this name and no longer 
displays that CP as an unknown device in need of a name, even when it offers its public key again 
in the future via PresentKey. 

 

4 Ownership 
An SC is said to own a device if the SC’s public key is listed in the device’s owner list.  An SC that owns a 
device is permitted to do everything on that device, including manipulate the owner list and the device’s 
ACL. 
DeviceSecurity defines five actions that allow manipulation of the device’s owner list: 

1. TakeOwnership 
2. ListOwners 
3. GrantOwnership 
4. RevokeOwnership 



UPnP Security Ceremonies Version 1.0 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 
 9 

5. FactorySecurityReset 

4.1 TakeOwnership 
TakeOwnership is available only if the device is unowned.  Once a device has a non-empty owner list, 
TakeOwnership is no longer honored and instead owners must be added via GrantOwnership (section 4.3). 
The default TakeOwnership process is described in section 3.1, above. 
Alternate methods of taking ownership could be more convenient, if the manufacturer wants to provide 
extra hardware for that purpose. These methods have not been standardized as part of UPnP, but remain 
available for manufacturers to provide, if desired, in addition to the standardized mechanism. 
For example, a device and SC could each have USB connectors and TakeOwnership could occur over a 
point-to-point cable dedicated to this function, as shown in Figure 4, below.  The security of this method 
depends on the cable’s connecting exactly two entities – the device and the SC. 

DevSC

Name

Prompt

Plug in cable

Public key
Plug in cable

Public key

Unplug cable
Unplug cable

 
Figure 4: Taking ownership via private cable 

This process has the following steps: 
1. The user plugs a cable into both the device and the SC. This might be, for example, a USB cable 

with the device showing up on the PC that is running the SC as any USB device would. 
2. Over that private cable, the device delivers its public key to the SC. 
3. The user is prompted for a name for the device and a decision of whether to take ownership. 
4. The user provides a name for that device. 
5. If the user also wanted to take ownership, then the SC provides its public key to the device for 

immediate insertion into the owner list. 
6. In either case, the user then unplugs the cable, since device discovery, naming and possibly 

ownership have been established. From then on, the device is accessed over the network. 

4.1.1 Note on Figure 4 
Figure 4 uses a color code, as the one exception to the general expectation set in section 3.1.1.  The 
connection between SC and Dev in this case is not over the normal network link, but rather over a private 
point-to-point cable. That link is colored blue in the figure. 



UPnP Security Ceremonies Version 1.0 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 
 10 

4.2 ListOwners 

DevSC

owner list

owner list

Ask for owners
of named device

ListOwners

 
Figure 5: ListOwners 

The ListOwners action is invoked by the SC as the user’s client and agent. The flow is as shown in Figure 5 
and assumes that the device whose owners are being listed is already known to the user, having been 
discovered and named, as shown in Figure 2. 
It is assumed that the SC will display the owner list to the user using names that the user has already 
assigned to the various SCs that are in the owner list, assuming these have been discovered and named (as 
per Figure 3).  If there are owners listed in the owner list that have not been named, the SC can display 
those as raw SecurityIDs. 



UPnP Security Ceremonies Version 1.0 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 
 11 

4.3 GrantOwnership 

DevSC

Select named
SC and device
to grant
ownership

GrantOwnership

 
Figure 6: GrantOwnership 

Having named some other SC (see Figure 3) and some target device (see Figure 2) of which the user’s SC 
is an owner, the user selects that other SC and device for a grant of ownership and then the user’s SC 
performs a GrantOwnership action. 



UPnP Security Ceremonies Version 1.0 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 
 12 

4.4 RevokeOwnership 

DevSC

Select SC from
owner list of
named device,
to revoke

RevokeOwnership

 
Figure 7: RevokeOwnership 

From a display of the owner list of a device of which the user’s SC has ownership, the user selects some SC 
whose ownership is to be revoked. That SC can be listed by name or SecurityID.  The RevokeOwnership 
action will not allow the user’s SC to revoke its own ownership. 



UPnP Security Ceremonies Version 1.0 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 
 13 

4.5 FactorySecurityReset 

DevSC

Select a
named device
to reset.

FactorySecurityReset

 
Figure 8: FactorySecurityReset 

FactorySecurityReset can be performed only by an owner of the device. It returns the device to unowned 
state, with all security policy erased. Because this could result in an annoying loss of information, if applied 
inappropriately, the user’s SC may ask for extra confirmation before permitting this action. However, from 
a security point of view, FactorySecurityReset is relatively innocuous. 

5 Session Keys 
For all secured actions on a device, except TakeOwnership and SetSessionKeys, the SC (or a CP) needs 
session keys.  Session keys are acquired with a straight protocol, as shown in Figure 9, below. 



UPnP Security Ceremonies Version 1.0 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 
 14 

DevSC or CP

SetSessionKeys

GetAlgorithmsAndProtocols

GetPublicKeys

GetLifetimeSequenceBase

 
Figure 9: Setting Session Keys 

The protocol for setting session keys consists of 4 steps, the first two of which gather data that is relatively 
constant and can therefore be cached. 

1. The CP gets the device’s public key. 
2. The CP gets the device’s list of supported algorithms and protocols. There may be optional 

protocols offered by the device that the CP wishes to use and for which session keys must be 
established. 

3. The CP gets the device’s LifetimeSequenceBase. This value changes over the life of the device 
and is used to provide freshness for any public-key-authenticated actions (TakeOwnership and 
SetSessionKeys). 

4. The CP generates session keys that it wants to use and sends those to the device, encrypted using 
the device’s public key, in a SetSessionKeys action call. 

6 ACL Editing 
The main purpose of security ownership (see section 4) is to establish who is permitted to edit a device’s 
ACL. The ACL is the root of the device’s security policy and must be established by a human user (the 
security owner of the device). 
The owner list is a special case ACL – in which all entries are ACL subjects who receive all permissions on 
the device. 
A normal ACL grants some set of permissions on a device, typically not total permissions, to a selected CP, 
SC or named group of those. 
 



UPnP Security Ceremonies Version 1.0 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 
 15 

DevSC

Edit operation 1

ACL

GetDefinedPermissions

ReadACL

(edit)

(edit)

(edit)

(edit)

ReadACL

Edit operation 3
ACL

Select device

Edit operation 2

Edit operation 3

 
Figure 10: ACL Editing 

ACL editing is a user-driven operation, so we can not prescribe a full ceremony for it.  Figure 10 gives a 
sample of what an involved editing session might entail.  This ceremony assumes that the SC has already 
established session keys with the device.  It also assumes that the user has named all CPs or SCs to which it 
cares to grant access on this device and that any named CP or SC groups have been created already. 

1. This session starts with the user selecting a device by name.  The device selected must be one this 
SC already owns. 

2. The SC asks the device for its set of defined permissions (so that the SC can give the user tool tips 
and other documentation about the permissions). This information is cacheable, so the SC is not 
required to ask for it every time. 

3. The SC must read the device’s ACL.  An ACL might be cached but if there is more than one 
device owner, then the ACL could have been changed by some other SC. It is therefore safest to 
read the ACL before an editing session.  If the SC is going to add entries to the ACL, it may also 
need to call GetACLSizes, to make sure that there is room for the ACL to grow. 

4. The SC presents the ACL to the user. 
5. The user gives an editing operation (1). 
6. The SC performs that edit operation via one of the editing actions: WriteACL, DeleteACLEntry, 

ReplaceACLEntry or AddACLEntry. 
7. The user gives a second editing operation (2). 
8. The SC performs it. 
9. The user gives a third editing operation (3). 
10. The SC attempts to perform it, but gets an error message that the ACLVersion is out of date. 
11. The SC re-reads the ACL, because it was changed from what the SC had been dead-reckoning 

through the editing commands. 
12. The SC presents the updated ACL to the user. 
13. The user gives the third editing operation (3) again. 
14. The SC performs that third editing operation. 



UPnP Security Ceremonies Version 1.0 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 
 16 

7 Certificate caching 
There are two purposes for a certificate in UPnP Security: 

1. to define named groups of control points (or security consoles) 
2. to grant an authorization to some CP, SC or named group of those when it is not possible to edit 

the ACL, because: 
a. there is too little room in the ACL for a new entry, or 
b. the SC does not have permission to edit the ACL 

To be effective, certificates must be at the device on which they grant authorization.  They can be delivered 
either via the device’s CacheCertificate action or in the <KeyInfo> field of the XML-Signature of the 
incoming message to which they are to apply. 
Certificate caching on the device is a straight-forward protocol, as shown in Figure 11, below. 

DevSC or CP

CacheCertificate

GetACLSizes

 
Figure 11: Certificate caching on the device 

If the certificate is delivered from the CP, in the message or by caching, the CP must get it from the SC that 
generated it. The CP does not offer any services, so it can not offer a CacheCertificate action. Instead, the 
CP pulls certificate from the SC, as shown in Figure 12, below. 



UPnP Security Ceremonies Version 1.0 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 
 17 

SCCP

GetMyCertificates

PendingCPList

RenewCertificate

 
Figure 12: Delivering certificates to the CP 

A control point that is capable of holding certificates gets those from any security console that happens to 
generate one.  These grants of authority or group memberships can come from any SC, not just a single 
one, so the CP must look for these certificates from every SC it can see on the network. 
The CP could poll for certificates by periodically issuing GetMyCertificates calls to all these SCs.  
However, in the interest of efficiency, each SC offers an evented variable, PendingCPList, that lists the ID 
of each CP that has certificates waiting to be fetched.  Assuming the CP makes use of that variable, the 
process for getting certificates, as shown in Figure 12, is: 

1. The CP receives a copy of PendingCPList from some SC. It scans that list, looking for its own ID. 
If it finds it, then it proceeds with this process. 

2. The CP calls the GetMyCertificates action, getting the set of all certificate the SC has available for 
that CP. 

3. At some time in the future, the CP may notice that it has a cached certificate that is renewable and 
is due to expire soon. In that case, assuming the SC capable of renewing it is online, the CP sends 
the expiring certificate body to the SC in a RenewCertificate action and gets a newly signed 
certificate with new expiration date in return – assuming the human owner of that SC has not 
decided to revoke that certificate. If the human user has revoked the certificate, the SC will return 
an error in response to the attempt to renew that certificate. 

 



UPnP Security Ceremonies Version 1.0 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 
 18 

8 INDEX 
<KeyInfo> ..........................................................4 
<SecurityInfo> ...................................................4 
access control list (ACL) ..........4, 5, 8, 14, 15, 16 
ACLVersion .....................................................15 
AddACLEntry ..................................................15 
authentication .................................................3, 4 
authorization.........................................3, 4, 5, 16 
CacheCertificate ...............................................16 
ceremony ..............................................3, 6, 7, 15 
certificate ............................................4, 5, 16, 17 
control point (CP) .........5, 6, 8, 13, 14, 15, 16, 17 
DecryptAndExecute ...........................................5 
decryption...........................................................5 
DeleteACLEntry...............................................15 
FactorySecurityReset....................................9, 13 
GetACLSizes....................................................15 
GetLifetimeSequenceBase .................................7 
GetMyCertificates ............................................17 
GetPublicKeys....................................................6 
GrantOwnership .......................................8, 9, 11 
identification.......................................................3 

LifetimeSequenceBase .................................7, 14 
ListOwners ...................................................8, 10 
owner ........4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17 
owner list ..............................4, 5, 8, 9, 10, 12, 14 
ownership .....................................7, 9, 11, 12, 14 
PendingCPList ................................................. 17 
PresentKey......................................................... 8 
private key ......................................................... 5 
public key .................................4, 5, 6, 7, 8, 9, 14 
RenewCertificate ............................................. 17 
ReplaceACLEntry ........................................... 15 
RevokeOwnership ........................................8, 12 
security console (SC).5, 6, 7, 8, 9, 10, 11, 12, 13, 

14, 15, 16, 17 
security policy ....................................3, 5, 13, 14 
SecurityID.........................................4, 5, 6, 8, 12 
session key........................................4, 13, 14, 15 
SetSessionKeys...........................................13, 14 
signature ........................................................ 4, 5 
TakeOwnership...........................6, 7, 8, 9, 13, 14 
WriteACL........................................................ 15 

 

9 REFERENCES 
[1] Alma Whitten and J.D. Tygar, “Why Johnny Can’t Encrypt”, USENIX Security Symposium.  
http://www-2.cs.cmu.edu/~alma/johnny.pdf  
 


