
SecurityConsole:1 Service Template 
For UPnP™ Device Architecture 1.0  1 
Status: Standardized DCP 
Date: November 17, 2003 
 

This Standardized DCP has been adopted as a Standardized DCP by the Steering 
Committee of the UPnP™ Forum, pursuant to Section 2.1(c)(ii) of the UPnP™ Forum 
Membership Agreement. UPnP™ Forum Members have rights and licenses defined by 
Section 3 of the UPnP™ Forum Membership Agreement to use and reproduce the 
Standardized DCP in UPnP™ Compliant Devices. All such use is subject to all of the 
provisions of the UPnP™ Forum Membership Agreement. 

THE UPNP™ FORUM TAKES NO POSITION AS TO WHETHER ANY 
INTELLECTUAL PROPERTY RIGHTS EXIST IN THE STANDARDIZED DCPS. 
THE STANDARDIZED DCPS ARE PROVIDED "AS IS" AND "WITH ALL 
FAULTS". THE UPNP™ FORUM MAKES NO WARRANTIES, EXPRESS, IMPLIED, 
STATUTORY, OR OTHERWISE WITH RESPECT TO THE STANDARDIZED DCPS, 
INCLUDING BUT NOT LIMITED TO ALL IMPLIED WARRANTIES OF 
MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A 
PARTICULAR PURPOSE, OF REASONABLE CARE OR WORKMANLIKE 
EFFORT, OR RESULTS OR OF LACK OF NEGLIGENCE. 
 

 

Authors Company 
Carl Ellison Intel Corporation 

 

                                                           
1 UPnP™ is a service mark of the UPnP™ Implementers Corporation. 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 



SecurityConsole:1 2 

Contents 

1. OVERVIEW AND SCOPE ..................................................................................................................3 
1.1. SECURITY CONSOLE ACTIONS ..........................................................................................................3 

1.1.1. Control Point Discovery..........................................................................................................4 
1.1.2. Local Dictionary Communication ...........................................................................................4 
1.1.3. Certificate Processing .............................................................................................................4 

2. SERVICE MODELING DEFINITIONS ............................................................................................6 
2.1. SERVICE TYPE ..................................................................................................................................6 
2.2. NAMESPACES ...................................................................................................................................6 
2.3. STATE VARIABLES ...........................................................................................................................6 

2.3.1. PendingCPList.........................................................................................................................6 
2.3.2. NameListVersion .....................................................................................................................7 
2.3.3. A_ARG_TYPE_string ..............................................................................................................7 
2.3.4. A_ARG_TYPE_base64 ............................................................................................................7 

2.4. EVENTING AND MODERATION ..........................................................................................................7 
2.5. ACTIONS...........................................................................................................................................7 

2.5.1. PresentKey...............................................................................................................................8 
2.5.2. GetNameList ............................................................................................................................9 
2.5.3. GetMyCertificates..................................................................................................................10 
2.5.4. RenewCertificate ...................................................................................................................12 

2.6. RELATIONSHIPS BETWEEN ACTIONS ...............................................................................................13 
2.7. COMMON ERROR CODES ................................................................................................................14 

3. THEORY OF OPERATION ..............................................................................................................15 
3.1. CONTROL POINT DISCOVERY .........................................................................................................15 
3.2. “MY DOMAIN” AND COMPONENT NAMING ....................................................................................15 

3.2.1. Hardware alternatives...........................................................................................................16 
3.3. CERTIFICATES ................................................................................................................................16 
3.4. CERTIFICATE DELIVERY .................................................................................................................16 
3.5. CERTIFICATE RENEWAL .................................................................................................................17 
3.6. BASE32 ENCODING.......................................................................................................................18 
3.7. XML STRINGS AS UPNP ARGUMENTS ...........................................................................................18 

4. XML SERVICE DESCRIPTION ......................................................................................................19 

List of Tables 
Table 1: State variable .....................................................................................................................................6 

Table 2: Event Moderation..............................................................................................................................7 

Table 3: Actions ..............................................................................................................................................7 

 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 



SecurityConsole:1 3 

1. Overview and Scope 
This service is offered by a Security Console (SC).  The Security Console offers a user interface for 
administration of access control on security-aware UPnP devices.  [See DeviceSecurity:1 for a description 
of the actions used in the creation and editing of Access Control Lists (ACLs) and in taking security 
ownership of Devices.]  As a device the Security Console is self-owned.  If it has any access controlled 
actions, then those are to be administered by the human user and not by some other Security Console.  
Therefore, a Security Console does not need to include a DeviceSecurity service.  It does have a certificate 
cache, but it is an outgoing cache, rather than an incoming cache. 

A network built of the user’s own components with no connection to anything outside the user’s personal 
domain and with no control points belonging to anyone other than the user ever attached to the network 
would not require the features of UPnP Security.  Network isolation would already have achieved a level 
of physical security.  We are concerned in UPnP Security with networks in which more than the user’s own 
Control Points are present on the physical network and able to reach the user’s Devices with control 
messages.  These situations can include: 

1. use of wireless, power-line networking or cable modem without a firewall, allowing an attacker to 
join the network without the user’s knowledge or permission 

2. shared infrastructure networks, such as a college dorm or a condominium building wired for 
Ethernet as one network segment serving more than one person’s residence 

3. households of multiple adults or teens, in which each individual wants to establish a private 
security domain, in addition to any domain of devices or control points shared among them, while 
using a shared network domain 

4. connections to the Internet via devices or services that create single network segments of multiple 
subscribers as a side effect of offering network connectivity (such as some cable modems and 
some ISP connections) 

5. households in which guests might bring mobile devices or control points into the network 
temporarily 

In such networks of intentional or accidental sharing, one cannot rely on physical network security to 
protect devices or on discovery methods (e.g., multicast SSDP) to compile a list of “My Devices” or “My 
Control Points”.  This leaves it up to the user manually to select from physically accessible devices and 
control points, choosing those of interest to that user.  One primary function of the SC is to enable the user 
to make that selection.  This process requires two operations that were not anticipated in the original design 
of UPnP: 

1. discovery of control points; and  

2. naming of devices and control points on a per-user basis.  

The actions provided in this service allow the SC to perform those two functions. 

In addition, the sharing of devices across security domains sometimes calls for the use of authorization 
certificates, as described in sections 1.1.3 and 3.3.  This service provides actions for the delivery of such 
certificates (or certificate chains) (see 2.5.3) and for the revocation (via renewal) of certificates (see 2.5.4). 

1.1. Security Console Actions 
When the Security Console interacts with a security-aware device, it does so through actions offered by 
that device.  However, the Security Console must also interact with control points (CPs).  Instead of 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 



SecurityConsole:1 4 

forcing CPs to become devices as well, in order to support these interactions, we define actions that a SC 
offers.  The actions of this service fall in three functional categories: 

1. discovery of control points 

2. communication of dictionaries of local names 

3. processing of certificates 

1.1.1. Control Point Discovery 
UPnP 1.0 includes a protocol, SSDP, for discovery of devices by control points.  However, there is no 
protocol for discovery of control points by other control points or devices. 

The Security Console needs to discover control points so that it can identify those that should receive 
access rights on devices in the local security domain.  We achieve this discovery by reversing the logic of 
UPnP discovery.  A security-aware control point will discover a SC that offers the PresentKey action and 
will then invoke that action to announce itself to the SC.  Since a CP might act within multiple security 
domains, it should announce itself to every SC it detects.  The mere act of announcing itself does not imply 
that it will receive any rights, since the assignment of rights is an expression of a user’s decision.  
However, a CP cannot know ahead of time whether a particular SC will choose to grant it some rights and 
must therefore announce itself to all SCs. 

1.1.2. Local Dictionary Communication 
One primary function of the SC is to identify devices and control points in the user’s local network.  In at 
least one implementation of the SC, this process includes permitting the user to assign names of the user’s 
own choosing (local names) to those devices and control points.  Since devices and control points might be 
visible to (and therefore named within) different security domains operated by different users, a single 
device or control point could have different local names.  Therefore, these names remain the property of 
the user (specifically the SC) rather than the named device or control point itself.  Normally, they would 
reside within and not be released from the SC. 

For example, consider two roommates, Joe and Sue, sharing a network in their Cambridge apartment.  
Each has a personal domain of UPnP devices and control points, but some components are shared between 
them.  One shared device is Joe’s archive of digital photos.  Joe refers to it by the name “pix”, while Sue 
names it “Joe’s Snapshot Archive”.  Neither name fits the preferences of the other user; therefore, neither 
name is appropriate as the sole friendly name for the shared device.  Meanwhile, the archive device is 
known on the network by a unique name such as DE7Z-GVGK-QTYR-TWPO-YF54-GB4M-OGFH-
XJYM that neither user wants to deal with.  The mapping from friendly name to unique name is the 
function of each user’s user interface (the Security Console, in this case).  That mapping is referred to here 
as a “local dictionary”. 

It is possible that this local dictionary of “My Devices and Control Points” might be useful to other 
components within the user’s domain.  For example, Joe might have two computers on the network, on one 
of which he named his personal devices, but on the second computer he would prefer just to import all 
names from the first computer, rather than go to all the work of manually assigning names again to each of 
his devices.  To support such cases, we provide for access to that dictionary, via the GetNameList action, 
and we also provide for an event notification whenever that name list changes. 

1.1.3. Certificate Processing 
The Security Console is responsible for granting access rights to devices under its control.  If a device is 
shared among multiple domains, there will be multiple Security Consoles that need to grant rights on that 
device.  This sharing of the right to grant access can be achieved through co-ownership (see 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 



SecurityConsole:1 5 

GrantOwnership, in DeviceSecurity:1), but a co-owner has total access to a device and is, among other 
things, capable of removing all access rights of the first owner including its ownership status.  If that is too 
much power to share with some other SC, that other SC can be granted permissions via the device’s Access 
Control List, just like any control point.  In that case, that SC will grant rights to CPs (or still other SCs) 
not by adding ACL entries, since it does not have the right to edit the ACL, but rather via authorization 
certificates.  (See DeviceSecurity:1 for a definition of authorization certificates.) 

It is possible that a Security Console that does have ownership of a device might also grant rights by 
certificate, for example if that device has too little storage for a detailed ACL or if the device is offline at 
the time the access right needs to be granted. 

The authorization certificate is like an ACL entry, but it is digitally signed and includes an issuer and 
specification of the device(s) to which it applies.  It will probably also include at least an expiration date 
and time. 

There are two actions provided here to facilitate the processing of certificates: 

1. GetMyCertificates: which serves as a post office mechanism to allow a control point or other 
security console to fetch certificates that have been issued to it by this SC (This action is backed 
up by an evented variable, PendingCPList, by which the CP or other SC can learn that there are 
certificates waiting.); and 

2. RenewCertificate: by which a control point can request an updated copy of an expired (or soon 
to expire) certificate.  For more details about renewal, see section 3, Theory of Operation. 

Although GetMyCertificates provides a communication mechanism for certificates, that does not preclude 
other communication mechanisms to be implemented by Security Console applications.  For example, one 
might use e-mail, sneaker-net, some directory service or HTTP for this communication function.  In a truly 
complex network with a large number of certificates, one might have an intelligent directory service that 
returns to a CP precisely the certificate chain it needs to access a particular action on a particular device.  
These are application design issues and out of scope of this protocol specification.  GetMyCertificates 
stands as a common denominator, to insure interoperability (assuming components that share a network at 
least occasionally). 

 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 



SecurityConsole:1 6 

2. Service Modeling Definitions 

2.1. Service Type 
The following service type identifies a service that is compliant with this template: 

urn:schemas-upnp-org:service:SecurityConsole:1 

The shorthand SecurityConsole:1 is used herein to refer to this service type. 

2.2. Namespaces 
The XML in this document should be read as if the following namespace definitions were in effect. 

xmlns=“urn:schemas-upnp-org:service:DeviceSecurity:1” 

xmlns:us=“urn:schemas-upnp-org:service:DeviceSecurity:1” 

xmlns:sc=“urn:schemas-upnp-org:service:SecurityConsole:1” 

xmlns:ds=“ http://www.w3.org/2000/09/xmldsig#” 

2.3. State Variables 
SecurityConsole:1 defines two state variables: PendingCPList and NameListVersion. 

 

Table 1: State variable 

Variable Name Req. or 
Opt. 1 

Data 
Type 

Default Value 

PendingCPList O string <CPList></CPList> 
NameListVersion O string  
A_ARG_TYPE_string R string  
A_ARG_TYPE_base64 R bin.base64  

1 R = Required, O = Optional, X = Non-standard. 

2.3.1. PendingCPList 
The PendingCPList is the string encoding of an XML document giving the list of Control Points 
(specifically the hashes of those Control Point keys) that have certificates waiting to be fetched via 
GetMyCertificates.  This variable is optional: not needed if there is no certificate processing done by this 
Security Console.  For example, the XML document might be as follows.  We use white space here for 
readability, but since this structure is for computer-to-computer communication it need have no white 
space. 

<CPList> 
  <hash> 
    <algorithm>SHA1</algorithm> 
    <value>dRDPBgZzTFq7Jl2Q2N/YNghcfj8=</value> 
  </hash> 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 



SecurityConsole:1 7 

  <hash> 
    <algorithm>SHA1</algorithm> 
    <value>Gd48BqQzAMPn4FkWnFslMMdxSG4=</value> 
  </hash> 
</CPList> 
 

2.3.2. NameListVersion 
The NameListVersion variable is modified whenever a change is made to the SC’s name definitions.  
Subscription to this variable allows a slaved SC to know when to ask for a new name definition list.  The 
variable value itself has no meaning.  Its purpose is merely to notify a subscribed SC that there is a 
modified name list to be fetched.  This variable is optional: not needed if there is no GetNameList action 
implemented.  The variable could, for example, be a counter that gets incremented or a BASE64 encoding 
of the hash of the name list. 

2.3.3. A_ARG_TYPE_string 
This is a dummy state variable, for being a related variable to indicate that an argument is a string, possibly 
escaped XML. 

2.3.4. A_ARG_TYPE_base64 
This is a dummy state variable, for being a related variable to indicate that an argument is a BASE64 
encoding of a (usually binary) byte string. 

2.4. Eventing and Moderation 

Table 2: Event Moderation 

Variable Name Evented Moderated
Event 

Max Event 
Rate1 

Logical 
Combination 

Min Delta 
per Event2 

PendingCPList yes N/A N/A N/A N/A 
NameListVersion yes N/A N/A N/A N/A 
Non-standard state 
variables implemented by 
an UPnP vendor go here. 

TBD TBD TBD TBD TBD 

1 Determined by N, where Rate = (Event)/(N secs). 
2 (N) * (allowedValueRange Step). 

2.5. Actions 
As the table below summarizes, SecurityConsole:1 defines actions used to communicate with control 
points or other security consoles.  These provide for discovery of control points, communication of the set 
of names of devices in a personal domain and processing of authorization certificates.  Some of these 
actions are optional, depending on how full the implementation of the Security Console is. 

Table 3: Actions 

Name Req. or Opt. 1 
PresentKey R 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 



SecurityConsole:1 8 

GetNameList O 
GetMyCertificates O 
RenewCertificate O 
Non-standard actions implemented by an UPnP vendor go here. X 

1 R = Required, O = Optional, X = Non-standard. 

2.5.1. PresentKey 
PresentKey accepts an offered key hash from a control point on the network, in order to do “discovery” of 
control points without forcing them to become UPnP Devices and announce their existence by SSDP.  
Other Security Consoles are expected to announce themselves to Security Consoles via PresentKey as well, 
since from the point of view of a Security Console, another SC is just a CP. 

2.5.1.1. Arguments 

Argument(s) Directio
n 

relatedStateVariable 

HashAlgorithm IN A_ARG_TYPE_string 
Key IN A_ARG_TYPE_string 
PreferredName IN A_ARG_TYPE_string 
IconDesc IN A_ARG_TYPE_string 

 

A Control Point (CP) or Security Console (SC) is identified by its public key.  The hash algorithm (SHA1 
for now, with others possible later) and key are given in the first two parameters.  The key is encoded as an 
XML structure, properly escaped for transmission.  This structure should be as described in 
DeviceSecurity:1, in the section entitled “Public Keys and their Hashes”.  It is hashed on receipt, using the 
indicated hash algorithm, and that hash value is stored.  It is also presented to the user under the guise of a 
“Security ID” (in BASE32 encoding) for comparison to the Security ID shipped with or displayed by the 
CP or SC calling PresentKey.  Using that Security ID, the user assigns a name to the key and therefore the 
CP or SC. 

The PreferredName argument is a descriptive, friendly name for the calling CP or SC.  It is available for 
the SC to use until the SC’s user chooses a personal name for that caller.  Note: in any large network with 
no physical security, it is easy to discover multiple callers with the same friendly name, either by popularity 
of some control point or by deliberate attack.  Therefore, it is important that the process by which a 
Security Console accepts a presented key into the category of “My Control Points” (or whatever it would 
be called) should include examination of the full hash of the key.  For presentation of this value to users, 
we have defined a BASE32 mapping, as described in section 3.6, below. 

The CP can also offer its own icon for display, but the IconDesc is allowed to be empty.  If it is non-empty, 
it should be an (escaped) XML structure of the form: 

<icon> 
  <mimetype>image/format</mimetype> 
  <width>horizontal pixels</width> 
  <height>vertical pixels</height> 
  <depth>color depth</depth> 
  <url>URL to icon</url> 
</icon> 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 



SecurityConsole:1 9 

2.5.1.2. Effect on State 
Unless the offered key hash is already known, it is added to the pool of CP key hashes waiting to be 
named.  If the offered key is already known, there is no action.  Naming of key hashes from that pool is a 
manual operation that may occur sometime after the completion of this action. 

2.5.1.3. Errors 

errorCode errorDescription Description 
402 Invalid Args See UPnP Device Architecture section on Control. 
501 Action Failed See UPnP Device Architecture section on Control. 
800-899 TBD (Specified by UPnP vendor.) 

2.5.2. GetNameList 

2.5.2.1. Arguments 

Argument(s) Directio
n 

relatedStateVariable 

Names OUT R A_ARG_TYPE_string 
R = RetVal 

The action returns an XML element, encoded as a string as per section 3.7 below, containing all of the 
names defined by the SC.  Group names, defined by certificate (as described in DeviceSecurity:1), are not 
listed since they are available by certificate. 

The data structure returned in the Names argument is digitally signed by the originating Security Console. 

If the user’s network is to be protected from inventory-taking, then this action should be access controlled 
– with the ACL controlling it edited manually by the user who operates this Security Console. 

This XML element is of the form of a list of name definitions, with the whole list signed by the Security 
Console signature key.  For example, a name list of one device and one control point (including its 
signature) might be: 

<SignedNameList> 
  <Names us:Id=“NameList”> 
    <Device> 
      <name>Joe’s Snapshot Archive</name> 
      <hash> 
        <algorithm>SHA1</algorithm> 
        <value>Gd48BqQzAMPn4FkWnFslMMdxSG4=</value> 
      </hash> 
    </Device> 
    <CP> 
      <name>Joe’s PC</name> 
      <hash> 
        <algorithm>SHA1</algorithm> 
        <value>CC0FQNQuS2S5S22aQnFdmST4tnw=</value> 
      </hash> 
    </CP> 
  </Names> 
  <Signature xmlns="http://www.w3.org/2000/09/xmldsig#"> 
    <SignedInfo> 
      <CanonicalizationMethod Algorithm="minimal"/> 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 



SecurityConsole:1 10 

      <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-
sha1"/> 
      <Reference URI="#NameList"> 
        <DigestMethod 
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 
        <DigestValue>SiGg1/kFmfx7aQ4XWq56rdUQfyo=</DigestValue> 
      </Reference> 
    </SignedInfo> 
<SignatureValue>Tx3dGYKl8UWjx00Q+fE0aYKlMcr2UTO96shC/duR9xYkFY2za5UEVrf8
o22mBEq7LQg3LQF9L5EpLpChtXZEgQ==</SignatureValue> 
    <KeyInfo> 
      <KeyValue> 
        <RSAKeyValue> 
<Modulus>tPK7xYLJqm77saltSus77darlxIHHWNajVEdxlwV7YmlnUyp/plhKltFr1jXzoz
XfPWc3ZwN6JfpdbyDwlJ74Q==</Modulus> 
          <Exponent>AQAB</Exponent> 
        </RSAKeyValue> 
      </KeyValue> 
    </KeyInfo> 
  </Signature> 
</SignedNameList> 
 
Note that the digest and signature values in the example above were not calculated from this example, so 
they will fail to verify.  Note also that we use white space to make the XML more readable, while we 
expect real XML on the wire to use no unnecessary white space, since this structure is for communication 
between two machines. 

The caller needs to verify the signature before displaying or otherwise relying on those names. 

2.5.2.2. Effect on State 
None. 

2.5.2.3. Errors 

errorCode errorDescription Description 
402 Invalid Args See UPnP Device Architecture section on Control. 
501 Action Failed See UPnP Device Architecture section on Control. 
701 Not authorized Authorization failure (action probably not signed by trusted 

control point public key). 
800-899 TBD (Specified by UPnP vendor.) 

 

2.5.3. GetMyCertificates 
GetMyCertificates retrieves and returns the full set of certificates being held for the indicated CP, if any.  
The purpose is to provide for communications of certificates, not for a directory of all certificates ever 
issued.  It is the responsibility of the CP to store the certificates that empower it, whether internally or via 
some network directory or backup service.  At the discretion of the Security Console application developer, 
other delivery mechanisms may be used, but this one is provided as a common denominator among 
components from different manufacturers.  It is also up to the discretion of the Security Console developer 
whether and how to back up all working data of that SC, possibly including the set of all certificates it has 
generated.  It is up to either the Security Console developer or the human user operating the SC to 
determine when a given certificate will no longer be returned to the caller by this action.  That is, the 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 



SecurityConsole:1 11 

developer or end user decides when to flush a given certificate from the cache of certificates held for a 
given CP. 

2.5.3.1. Arguments 

Argument(s) Directio
n 

relatedStateVariable 

HashAlgorithm IN A_ARG_TYPE_string 
Hash IN A_ARG_TYPE_base64 
Certificates OUT R A_ARG_TYPE_string 

R = RetVal 

The argument Hash is the hash of the key of the CP whose certificates are being fetched.  HashAlgorithm 
gives the algorithm used in that hash, currently SHA1.  The hash is BASE64 encoded, for example: 

Gd48BqQzAMPn4FkWnFslMMdxSG4= 
The Certificates argument is an escaped XML document containing the returned set of certificates, in the 
following format: 
<Sequence>{<cert>…</cert><ds:Signature>…</ds:Signature>}*</Sequence> 
where <cert> is defined in DeviceSecurity:1. 

2.5.3.2. Effect on State 
When a CP gets its own certificates, its hash is removed from the PendingCPList.  That hash is added back 
to the PendingCPList when a new CP certificate is added or an old one is changed.  A CP’s retrieval of its 
own certificates is established only if the CP signed the call to GetMyCertificates.  If GetMyCertificates is 
called by some other CP (or SC) or by an anonymous caller, then the CP’s hash is not removed from the 
PendingCPList. 

How GetMyCertificates is implemented is up to the Security Console developer.  For example, one might 
maintain what looks like a local copy of an ACL and note, internally, for each ACL entry whether it is an 
actual ACL entry or a certificate.  When an entry changes in that local ACL ghost copy, if it is a real ACL 
entry, the SC can call ReplaceACLEntry, and if it is a certificate entry, the SC can add the subject CP to 
the PendingCPList.  In such an implementation, some certificate entries would be enabled by a chain of 
certificates allowing the SC to grant some set of privileges.  In that case, this chain of empowering 
certificates would be referred to by the ghost ACL entry and GetMyCertificates would return the entire 
empowering chain, not just the final certificate. 

More complex certificate chain discovery can be done by a service yet to be defined, if we discover 
installations that require complex certificate chains, large named groups of CPs, etc.  We do not anticipate 
such installations at this time. 

2.5.3.3. Errors 

errorCode errorDescription Description 
402 Invalid Args See UPnP Device Architecture section on Control. 
501 Action Failed See UPnP Device Architecture section on Control. 
732 No certificates There were no certificates at this SC for this caller. 
800-899 TBD (Specified by UPnP vendor.) 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 



SecurityConsole:1 12 

2.5.4. RenewCertificate 
We assume that the user of a Security Console will appear to be editing ACL entries empowering various 
control points or other security consoles, whether those authorizations happen by ACL editing or certificate 
issuance.  In the case that the authorization is by certificate, it becomes necessary to model the act of 
deleting a specific entry.  Rather than use elaborate certificate revocation mechanisms, we use the simple 
renewal mechanism.  A certificate is issued with a short lifetime.  The actual lifetime used is established by 
the Security Console that issues that certificate, perhaps with user input.  However, the certificate is 
marked as being subject to renewal.  The lifetime used is not a true expiration date for the certificate, but 
rather a length of time after which the certificate needs to be synchronized with the SC’s image of what the 
ACL would have been, had authorization been performed by ACL editing. 

A certificate that is subject to renewal will have an additional element, <renew/> in its <valid> 
element: 

<valid> 
  <not-before> … </not-before> 
  <not-after> … </not-after> 
  <renew></renew> 
</valid> 
 
The <renew/> element indicates that the certificate in question can be renewed.  To renew it, one sends 
the old certificate body to the issuer’s RenewCertificate action and, if the authorization has not been 
deleted, the issuer SC generates and returns a new certificate with validity period starting at the present 
time and ending after the renewal interval from the present time.  [See section 3.5 for a definition of 
renewal interval.]  How much ahead of time a CP chooses to renew an existing certificate is not specified 
here.  For example, the CP can renew a certificate when it is half-way through its lifetime, assuming the 
issuing SC is available.  As long as the SC is expected to be online and in operation at least once in half the 
renewal interval, that algorithm would allow service to continue uninterrupted. 

2.5.4.1. Arguments 

Argument(s) Directio
n 

relatedStateVariable 

OldCertificate IN A_ARG_TYPE_string 
NewCertificate OUT R A_ARG_TYPE_string 

R = RetVal 

Note: the XML in this document is formatted for reading.  We expect that real XML on the wire will not 
use any extra white space. 

The OldCertificate argument is an XML element such as: 

<cert> 
  <issuer> 
    <hash> 
      <algorithm>SHA1</algorithm> 
      <value>Gd48BqQzAMPn4FkWnFslMMdxSG4=</value> 
    </hash> 
  </issuer> 
  <subject> 
    <hash> 
      <algorithm>SHA1</algorithm> 
      <value>dRDPBgZzTFq7Jl2Q2N/YNghcfj8=</value> 
    </hash> 
  </subject> 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 



SecurityConsole:1 13 

  <may-not-delegate/> 
  <tag> 
    <device> 
      <hash> 
        <algorithm>SHA1</algorithm> 
        <value>2jmj7l5rSw0yVb/vlWAYkK/YBwk=</value> 
      </hash> 
    </device> 
    <access><p1/><p2/></access> 
  </tag> 
  <valid> 
    <not-before>2001-09-01T17:00:00Z</not-before> 
    <not-after>2001-10-01T17:00:00Z</not-after> 
    <renew></renew> 
  </valid> 
</cert> 
 

The old certificate needs to have been issued by the SC being called.  The <Signature> normally 
associated with a certificate is not to be present in the OldCertificate.  The us:Id attribute in <cert> is 
therefore not needed. 

On output, if the indicated authorization is still in force, a new <cert> is returned, with new dates and a 
new, valid <Signature> element, using the XML form: 

<Sequence><cert>…</cert><ds:Signature>…</ds:Signature></Sequence> 

2.5.4.2. Effect on State 
There is no effect on visible state.  Depending on the Security Console developer, there may be a record 
kept of the last time a given certificate was renewed.  Alternatively, one might keep a ghost ACL, as 
described in section 2.5.3.2 and include in a renewable certificate entry the length of time that any issued 
certificate should live, so that the certificate actually generated would be set to expire at that length of time 
after the time of the RenewCertificate call.  See section 3.5 for more information about the certificate 
renewal process. 

2.5.4.3. Errors 

errorCode errorDescription Description 
402 Invalid Args See UPnP Device Architecture section on Control. 
501 Action Failed See UPnP Device Architecture section on Control. 
733 Revoked Certificate has been revoked. 
734 Not issued here Certificate provided was not issued by this SC 
800-899 TBD (Specified by UPnP vendor.) 

 

2.6. Relationships between Actions 
The actions presented here are independent, except indirectly in that a certificate must be delivered to 
someone before it would be renewed and that a CP or SC must be known before a certificate can be given 
to it. 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 



SecurityConsole:1 14 

2.7. Common Error Codes 
The following table lists error codes common to actions for this service type. If an action results in multiple 
errors, the most-specific error should be returned.  

errorCode errorDescription Description 
401 Invalid Action See UPnP Device Architecture section on Control. 
402 Invalid Args See UPnP Device Architecture section on Control. 
501 Action Failed See UPnP Device Architecture section on Control. 
800-899 TBD (Specified by UPnP vendor.) 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 



SecurityConsole:1 15 

3. Theory of Operation 
From the point of view of UPnP, the Security Console is a user application that is both a device and a 
control point.  Its function is to give the user an interface by which to administer access control on the 
user’s own devices.  As part of that function, the Security Console maintains a list of all devices, control 
points and other Security Consoles that constitute the user’s “own” domain.  No network protocol or 
physical mechanism can be counted on to define that set, since it amounts to capturing information from 
the user’s mind.  Therefore, the Security Console enables the user to define that set manually. 

As a Control Point, the Security Console invokes Ownership and Access Control List (ACL) Editing 
actions, as defined in DeviceSecurity:1.  Sometimes, the grant of authorization by a Security Console to a 
Control Point (or other Security Console) cannot be achieved by ACL editing.  For example, a device 
might not have memory to hold any more ACL entries or the Security Console doing the grant of 
authorization might not have been granted ACL editing permission or the device might be offline.  In those 
circumstances, the grant of authorization must be by authorization certificate.  These certificates must be 
communicated to the grantee (or to the affected device, if it has room in its certificate cache, but that 
operation is described in DeviceSecurity:1). 

Also, as a Control Point, each Security Console must announce its own keys to any other Security Console 
it discovers, by use of PresentKey.  However, a Security Console is also a device.  As a device it is self-
owned.  If it has any access controlled actions, then those are to be administered by the human user and not 
by some other Security Console.  Therefore, a Security Console does not need to include a DeviceSecurity 
service. 

3.1. Control Point Discovery 
In pre-security UPnP, there were no components that would need a list of control points and control points 
could be completely anonymous.  With UPnP Security, the user must grant access rights to control points 
and must therefore both list and name them.  The discovery of the list of control points and the assignment 
of names to them is performed by the Security Console. 

Rather than change the nature of control points, by having them engage in SSDP advertising, the Security 
Console advertises itself and offers an action, PresentKey, by which a security-aware CP announces itself 
to the SC. 

3.2. “My Domain” and Component Naming 
In pre-security UPnP, there was no provision for distinguishing between “My Devices” and the devices 
that were discoverable by SSDP.  With UPnP Security, we make a distinction between components 
(devices, control points or Security Consoles) that are in “my domain” and those that are physically on the 
same network but not “mine”.  This definition of “my domain” is performed manually by the user, via the 
Security Console. 

Since a component might act or be acted upon in multiple domains simultaneously, components are named 
by UPnP Security by a fixed, globally unique ID (the hash of a public key).  These globally unique IDs are 
not meant to be used by a human user, except once during an act of verification to thwart imposters.  
Instead, the human uses a name he or she assigns to the component.  Components can offer “friendly 
names” to the user to help in that name assignment, but such offered names are potential avenues of attack 
and should not be relied upon since those offered names can be spoofed or can simply collide.  The unique 
ID cannot be spoofed or accidentally collide and verification of that ID is therefore a valuable part of the 
component discovery and naming process. 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 



SecurityConsole:1 16 

3.2.1. Hardware alternatives 
If the UPnP Security Working Committee were free to specify that every UPnP component were to have an 
extra hardware port, such as a USB connector, then one could devise physically secured hardware channels 
for introduction of components and secure transfer of their keys to a Security Console, without requiring 
the user ever to see the globally unique ID, much less verify it. 

If some manufacturer chooses to build components with such a second channel, for security uses, and 
deliver a security console capable of using those second channels, then the user would no doubt welcome 
the ease of use.  This document in general and the PresentKey mechanism in particular are not meant to 
preclude some manufacturer from providing such a channel.  However, PresentKey is required, rather than 
optional, so that an SC can deal with Control Points that are not so equipped or that cannot be brought into 
range of the SC for the physical second channel to be used. 

3.3. Certificates 
The most straight-forward method of granting access permission is through modification of the device’s 
Access Control List (ACL).  Actions that enable that modification are described in the DeviceSecurity:1 
service definition. 

In some cases, it is not possible or not desirable to grant permission by modifying an ACL.  These include: 

• when the Security Console (SC) that is granting that permission (that is, is in communication with 
the CP that is being granted the permission), does not have permission to edit the ACL of the 
device 

• when the granting SC is not in communication with the target device 

• when the device does not have enough memory to hold any more ACL entries 

In these cases, access is granted by authorization certificate.  An authorization certificate can be thought of 
as a digitally signed ACL entry.  It is defined more formally in DeviceSecurity:1. 

For ease of administration, a Security Console might define named groups of control points.  Such named 
groups are defined via group-membership Name Certificates, defined in DeviceSecurity:1. 

3.4. Certificate Delivery 
A certificate (or a chain of such certificates) must be available at the device at the time of any request 
authorized by that certificate, in order to prove the right to perform the requested action.  This certificate 
must somehow be communicated from the SC that generates it to the device that applies it.  UPnP supports 
two methods: 

• The certificate can be cached by the target device, directly. 

• The certificate can be held by the Control Point (or Security Console) to which the permission is 
being granted. 

If the certificate is to be communicated to a device, then it can be written to that component via a SOAP 
CacheCertificate action, as defined in DeviceSecurity:1.  A Control Point, however, does not offer SOAP 
actions.  To overcome this lack, when the granting SC has a certificate to communicate to a CP, it caches 
that certificate itself, advertises the existence of that certificate (via the PendingCPList evented variable) 
and waits for the CP to fetch its pending certificates via the GetMyCertificates action.  The same method is 
available to be used to communicate a certificate to another SC (since to a security console, an SC looks 
just like a CP). 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 



SecurityConsole:1 17 

3.5. Certificate Renewal 
When access is granted by modification of an ACL, one is free to delete an ACL entry.  We imagine that a 
user, operating a Security Console, may be given the impression of editing an ACL whether authorizations 
are granted by ACL edit or by issuance of authorization certificates. 

If the user wants to delete one of these authorizations and it had been issued by certificate, there is a 
problem.  The certificate is not under the control of the user’s SC.  It is in the hands of the CP that was 
granted the authorization involved.  There could have been an unlimited number of copies made of the 
certificate, so deleting one copy of the certificate does not delete the authorization the way deletion of an 
ACL entry does. 

In general, there are three ways to effectively delete a certificate: 

1. to have it expire, by way of its <not-after> date and time; 

2. to have a certificate validator keep an up to date revocation list; or 

3. to have the certificate validator do an online test (as in OCSP2) with every validation. 

Of these methods, UPnP Security has chosen to implement #1, as the simplest.  Method #2, a revocation 
list (or CRL), is very complex and has been generally discounted in the industry.  Method #3 works, but 
requires a certificate processing service that is available on the network at all times and incurs the overhead 
of an online test with each access controlled action call.  In effect, this would double the network traffic for 
all secured actions. 

No matter which method of certificate “deletion” one chooses, one must first answer the question: 

 How long am I willing to let someone else act on information I know to be false? 

That length of time is here called the renewal interval. 

The knee-jerk answer is “zero time”, but that is not an option.  Even in the OCSP case, it takes time to 
communicate the result from the validation server to the relying party and during the time the response 
message is in transit, the server may learn that the message just sent was false.  This assumes, of course, 
that the validation server learns instantly that some certificate is to be revoked.  That information, however, 
is in the head of some human being and that human being may not be in communication with the validation 
server for some length of time after learning that a certificate needs to be revoked.  If the network 
containing the validation server and the user of that service (the secured device) happens to be partitioned, 
momentarily, or the validation server is down for some reason, the time #3 takes could be considerable 
(even days).  The online test cannot proceed until both machines are in communication with each other.  If 
we were to design in such an online test, then the home network could become inoperative until the 
validation server is brought up. 

Complicating the choice of renewal interval is the fact that home UPnP devices are not all going to have 
calendar clocks.  Such devices would have to rely on the SetTimeHint action of DeviceSecurity:1 and we 
cannot predict how many days would elapse between invocations of that action to update the device’s 
concept of the current date and time. 

A user should probably choose this renewal interval, but that assumes that the user understands all the 
implications and can make a proper decision.  That decision is a matter for application / GUI designers and 
not in the scope of this spec.  Too small an interval would lead to periods of unavailability of secured 
devices.  Too long an interval would lead to noticeable periods in which a revocation had not taken effect. 

                                                           
2 OCSP: Online Certificate Status Protocol (see the IETF RFC database) 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 



SecurityConsole:1 18 

Once that renewal interval is chosen, however, its use is clear. 

One issues certificates with a limited lifetime – specifically with a lifetime equal to the renewal interval.  
This is the maximum length of time that it would take the SC operator to have a change of mind take 
complete effect.  However, it is not desirable to force the SC operator to re-issue a certificate every renewal 
interval.  Therefore, the certificate is issued with the <renew/> element in its <valid> field, indicating that 
it can be renewed automatically.  The SC that issued it would have to be online for the renewal to happen, 
but a CP is free to ask for renewal before the old certificate expires. 

A true computation of renewal interval might require formal risk analysis.  It is unlikely that a home user 
would engage in that, although a manufacturer might and might express the results in a Security Console’s 
code. 

3.6. BASE32 Encoding 
For display of a Security ID (CP or SC key hash) to the user, in order to minimize confusion, we have 
chosen BASE32 encoding.  A 160-bit hash value is represented as a sequence of 32 5-bit quantities, with 
the left-most 5-bits being the 5 most significant bits of the 160-bit quantity, etc.  The 5-bit quantity is 
encoded using 32 characters: A..Z, 2..5, 7, 9, in that order, so that 0 becomes “A”, 1 becomes “B”, 31 
becomes “9”.  The resulting string of letters and numbers will resemble a product registration key, with 
which the user is expected to be familiar, and omits the digits 0, 1, 6 and 8 which can be confused with O, 
I, G and B.  These can be printed as a sequence of 8 groups of 4 characters each, separated by dashes.  In 
some cases, e.g., in a summary listing of devices or control points, one might use only the left-most group 
of 4 characters, which should be enough to resolve most ambiguities. 

For example, the SHA-1 hash value (in hex): 

193d9354 ca84f119 d9eec17b c3078c71 8a7ba70c 

would be (in BASE32):  

DE7Z-GVGK-QTYR-TWPO-YF54-GB4M-OGFH-XJYM 

and might be truncated to: DE7Z or DE7Z-GVGK for resolving ambiguities (e.g., in a list of discovered 
devices), while the full security ID might be used while verifying the correctness of a control point key. 

3.7. XML Strings as UPnP Arguments 
The UPnP 1.0 schemas for SOAP as a transport protocol for calling UPnP actions with their respective 
arguments do not permit arguments that are themselves XML.  Some of the security related actions 
described in this document require the arguments themselves to be XML strings.  These XML argument 
strings are embedded in the surrounding SOAP XML.  To ensure that embedded XML argument strings do 
not “break” the surrounding SOAP XML, it is necessary that the embedded XML is “escaped” as follows: 

• The ‘<’ character is encoded as ‘&lt;’ 

• The ‘>’ character is encoded as ‘&gt;’ 

• The ‘&’ character is encoded as ‘&amp;’ 

 

 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 



SecurityConsole:1 19 

4. XML Service Description 
<?xml version="1.0"?> 
<scpd xmlns="urn:schemas-upnp-org:service-1-0"> 
  <specVersion> <!-- UPnP version 1.x --> 
    <major>1</major> 
    <minor>0</minor> 
  </specVersion> 
  <actionList> 
    <action> 
      <name>PresentKey</name> 
      <argumentList> 
        <argument> 
          <name>HashAlgorithm</name> 
          <relatedStateVariable>A_ARG_TYPE_string</relatedStateVariable> 
          <direction>in</direction> 
        </argument> 
        <argument> 
          <name>Key</name> 
          <relatedStateVariable>A_ARG_TYPE_string</relatedStateVariable> 
          <direction>in</direction> 
        </argument> 
        <argument> 
          <name>PreferredName</name> 
          <relatedStateVariable>A_ARG_TYPE_string</relatedStateVariable> 
          <direction>in</direction> 
        </argument> 
        <argument> 
          <name>IconDesc</name> 
          <relatedStateVariable>A_ARG_TYPE_string</relatedStateVariable> 
          <direction>in</direction> 
        </argument> 
      </argumentList> 
    </action> 
    <action> 
      <name>GetNameList</name> 
      <argumentList> 
        <argument> 
          <name>Names</name> 
          <relatedStateVariable>A_ARG_TYPE_string</relatedStateVariable> 
          <direction>out</direction> 
     <retval/> 
        </argument> 
      </argumentList> 
    </action>  
    <action> 
      <name>GetMyCertificates</name> 
      <argumentList> 
        <argument> 
          <name>HashAlgorithm</name> 
          <relatedStateVariable>A_ARG_TYPE_string</relatedStateVariable> 
          direction< >in</direction> 
        </argument> 
        <argument> 
          <name>Hash</name> 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 



SecurityConsole:1 20 

          <relatedStateVariable>A_ARG_TYPE_base64</relatedStateVariable> 
          <direction>in</direction> 
        </argument> 
        <argument> 
          <name>Certificates</name> 
          <relatedStateVariable>A_ARG_TYPE_string</relatedStateVariable> 
          <direction>out</direction> 
     <retval/> 
        </argument> 
      </argumentList> 
    </action> 
    <action> 
      <name>RenewCertificate</name> 
      <argumentList> 
        <argument> 
          <name>OldCertificate</name> 
          <relatedStateVariable>A_ARG_TYPE_string</relatedStateVariable> 
          <direction>in</direction> 
        < argument/ > 
        <argument> 
          <name>NewCertificate</name> 
          <relatedStateVariable>A_ARG_TYPE_string</relatedStateVariable> 
          <direction>out</direction> 
     <retval/> 
        </argument> 
      </argumentList> 
    </action>  
  </actionList> 
  <serviceStateTable> 
    <stateVariable sendEvents="yes"> 
      <name>PendingCPList</name>  
      dataType< >string</dataType>  
    </stateVariable> 
    <stateVariable sendEvents="yes"> 
      <name>NameListVersion</name>  
      <dataType>string</dataType>  
    </stateVariable> 
    <stateVariable sendEvents="no"> 
      <name>A_ARG_TYPE_string</name>  
      <dataType>string</dataType>  
    </stateVariable> 
    <stateVariable sendEvents="no"> 
      <name>A_ARG_TYPE_base64</name>  
      <dataType>bin.base64</dataType>  
    </stateVariable> 
  </serviceStateTable> 
</scpd> 

© 2003 Contributing Members of the UPnP™ Forum. All Rights Reserved. 


	Overview and Scope
	Security Console Actions
	Control Point Discovery
	Local Dictionary Communication
	Certificate Processing


	Service Modeling Definitions
	Service Type
	Namespaces
	State Variables
	PendingCPList
	NameListVersion
	A_ARG_TYPE_string
	A_ARG_TYPE_base64

	Eventing and Moderation
	Actions
	PresentKey
	Arguments
	Effect on State
	Errors

	GetNameList
	Arguments
	Effect on State
	Errors

	GetMyCertificates
	Arguments
	Effect on State
	Errors

	RenewCertificate
	Arguments
	Effect on State
	Errors


	Relationships between Actions
	Common Error Codes

	Theory of Operation
	Control Point Discovery
	“My Domain” and Component Naming
	Hardware alternatives

	Certificates
	Certificate Delivery
	Certificate Renewal
	BASE32 Encoding
	XML Strings as UPnP Arguments

	XML Service Description

