
UPnP-QoS Architecture:3
For UPnP Version 1.0

Status: Standardized DCP

Date: November 30, 2008

This Standardized DCP has been adopted as a Standardized DCP by the Steering Committee of
the UPnP Forum, pursuant to Section 2.1(c)(ii) of the UPnP Forum Membership Agreement.
UPnP Forum Members have rights and licenses defined by Section 3 of the UPnP Forum
Membership Agreement to use and reproduce the Standardized DCP in UPnP Compliant
Devices. All such use is subject to all of the provisions of the UPnP Forum Membership
Agreement.

THE UPNP FORUM TAKES NO POSITION AS TO WHETHER ANY INTELLECTUAL
PROPERTY RIGHTS EXIST IN THE STANDARDIZED DCPS. THE STANDARDIZED DCPS
ARE PROVIDED "AS IS" AND "WITH ALL FAULTS". THE UPNP FORUM MAKES NO
WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO
THE STANDARDIZED DCPS, INCLUDING BUT NOT LIMITED TO ALL IMPLIED WARRANTIES
OF MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR
PURPOSE, OF REASONABLE CARE OR WORKMANLIKE EFFORT, OR RESULTS OR OF
LACK OF NEGLIGENCE.

 © 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

Authors Member

Ally Yu-kyoung Song LGE

Amol Bhagwat CableLabs

Bruce Fairman Sony

Daryl Hlasny Sharp Labs of America

Dieter Verslype Ghent University

Fred Tuck (co-chair) EchoStar

Jelle Nelis Ghent University

Michael van Hartskamp (co-chair) Philips

Narm Gadiraju Intel Corporation

Puneet Sharma HP

Richard Chen Philips

Sherman Gavette Sharp Labs of America

Steve Wade Sharp Labs of America

Suman Sharma Intel Corporation

UPnP-QoS Architecture version 3 2

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

Authors Member

Zong Wu Entropic

The UPnP Forum in no way guarantees the accuracy or completeness of this author list and in no way

implies any rights for or support from those members listed. This list is not the specifications’ contributor

list that is kept on the UPnP Forum’s website.

UPnP-QoS Architecture version 3 3

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

Contents

1. INTRODUCTION ... 6

1.1. VERSIONS OF THE UPNP-QOS SPECIFICATIONS .. 6
1.2. INFORMATIVE REFERENCES .. 6

2. ARCHITECTURE OVERVIEW ... 9

2.1. SCOPE ... 9
2.2. ASSUMPTIONS ... 9
2.3. ARCHITECTURE SUMMARY ... 9

3. ARCHITECTURE ... 11

3.1. POLICY-BASED QOS ... 11
3.2. TYPES OF QOS .. 11

3.2.1. Prioritized QoS .. 11
3.2.2. Parameterized QoS .. 12
3.2.3. Hybrid QoS .. 14

4. KEY CONCEPTS AND EXAMPLES ... 15

4.1. INTERFACES AND LINKS.. 15
4.2. PATH INFORMATION ... 15

4.2.1. Example – Bridge on the path ... 16
4.2.2. Example – Device not on the path ... 16
4.2.3. Example – Path Determination ... 16

4.3. QOS SEGMENTS .. 17
4.3.1. Example – Simple QoS Segment .. 18
4.3.2. Example – Multiple QoS Segments .. 18
4.3.3. Example – Homogeneous QoS Segment with L2 QoS Bridges .. 19
4.3.4. Example – Heterogeneous QoS Segment with L2 QoS Bridges ... 20
4.3.5. QosSegmentId generation examples .. 20

4.4. ADJACENCY OF QOSDEVICE SERVICES ... 21

5. UPNP-QOS SERVICES .. 23

5.1. THE QOSPOLICYHOLDER SERVICE .. 23
5.1.1. Overview .. 23
5.1.2. Traffic Stream QoS Policy Description ... 23
5.1.3. Multiple instances of the QosPolicyHolder Services ... 24
5.1.4. Preferred QosPolicyHolder Service .. 24
5.1.5. Maintaining the Preference of a QosPolicyHolder Service ... 24
5.1.6. Configuring the QosPolicyHolder Service .. 25

5.2. THE QOSMANAGER SERVICE ... 25
5.2.1. Overview .. 25
5.2.2. Behavior .. 26
5.2.3. Update the QoS reservation ... 26

5.3. THE QOSDEVICE SERVICE .. 27
5.3.1. Overview .. 27
5.3.2. Behavior .. 27
5.3.3. Configuring QoS .. 28
5.3.4. Path Information.. 28
5.3.5. Ancillary actions .. 28
5.3.6. Events .. 29

6. SYSTEM OPERATION .. 30

UPnP-QoS Architecture version 3 4

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

6.1. SELECTION OF A QOSMANAGER SERVICE .. 30
6.2. INVOKING THE QOSMANAGER SERVICE ... 31

6.2.1. Initiation of QoS Setup (I).. 31
6.2.2. Initiation QoS Setup (II) .. 31
6.2.3. Release of QoS Resources ... 32
6.2.4. Changing the QoS Setup .. 32
6.2.5. Integrated Control Point.. 32
6.2.6. Independent AV Control Point... 33
6.2.7. Determination of QosBoundary Source and Destination .. 33
6.2.8. Creation of the TSPEC (Traffic Specification) .. 34

6.3. DETERMINATION OF POLICY FOR THE TRAFFIC STREAM ... 34
6.3.1. Preferred QosPolicyHolder Service .. 34
6.3.2. CP-Indicated QosPolicyHolder Service .. 34
6.3.3. Single QosPolicyHolder Service .. 34
6.3.4. Priority Order of QosPolicyHolder Services for Prioritized QoS ... 34
6.3.5. Priority Order of QosPolicyHolder Services for Parameterized QoS and Hybrid QoS 35
6.3.6. The QosPolicyHolder Service .. 35
6.3.7. Default Policy .. 35

6.4. DETERMINATION OF QOSDEVICE SERVICES THAT HAVE TO BE MANAGED 36
6.4.1. Configuration of QoS Devices ... 36
6.4.2. Path Determination ... 36
6.4.3. QoS Segment Identification ... 36

6.5. ADMISSION CONTROL ... 37
6.5.1. Decomposition of End-to-End Requirements into Per-QoS Segment Requirements 37
6.5.2. Determination of adjacent QosDevice services within a QoS Segment 38
6.5.3. Configuring QosDevice Services within a QoS Segment – release 39
6.5.4. Configuring QosDevice Services within a QoS Segment ... 39
6.5.5. Device resources managed by the QosDevice Service .. 40
6.5.6. Collecting the results of all QoS Segments .. 40
6.5.7. The QosDevice Service and the QD:AdmitTrafficQos() action ... 41
6.5.8. The QosDevice Service and the QD:ReleaseAdmittedQos() action 42
6.5.9. The QosDevice Service and the QD:UpdateAdmittedQos() action 42

6.6. PREEMPTION ... 43
6.6.1. Identifying the Blocking Traffic Streams ... 43
6.6.2. Determining Candidates for Preemption ... 43
6.6.3. The Preemption and notification ... 45
6.6.4. Re-Attempt To Admit the Traffic Stream .. 45

6.7. RUN TIME OPERATION .. 45
6.7.1. Traffic Lease Management and Link failures .. 45
6.7.2. Violation and Policing of the TSPEC .. 46
6.7.3. Being Preempted .. 46

7. QOS BOUNDARY ADDRESSES .. 47

UPnP-QoS Architecture version 3 5

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

List of Figures

Figure 1: UPnP-QoS Architecture Overview ...10
Figure 2: An Example Interaction Diagram for RequestTrafficQos() action for prioritized QoS setup.12
Figure 3: An Example Interaction Diagram for RequestTrafficQos() (without preemption).13
Figure 4: An Example Interaction Diagram for RequestExtendedTrafficQos() with preemption capability. 13
Figure 5: Example of Interfaces and Links. Device A has 1 interface that contains 3 links. Device B, C, and

D each contain an interface with only a single link. ...15
Figure 6: A bridge is on the path if and only if it reports the MAC address of the source on a different link

than the MAC address of the sink and these two links are bridged. ...16
Figure 7: Laptop is not bridging its interfaces and therefore not on the path...16
Figure 8: Example network for path determination ...17
Figure 9: A simple network with one QoS Segment ..18
Figure 10: A network with two different technologies and two QoS Segments ...19
Figure 11: A network with Ethernet Layer-2-QoS bridges, L2Q-end point devices and legacy Ethernet

bridges and legacy Ethernet devices ..19
Figure 12: A network with all L2Q-end point devices but with different underlying technologies: MoCA

(left hand side) and Ethernet (Right hand side), respectively ..20
Figure 13: QoS Segment with two QosDevice services ...21
Figure 14: QoS Segment with only one QosDevice Service ..22
Figure 15: Example of Adjacent QosDevice services ..38
Figure 16: Example of Adjacent QosDevice Services. Note that only A and C are QosDevice Services.39
Figure 17: Examples of approaches to determine candidates for preemption ..44

UPnP-QoS Architecture version 3 6

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

1. Introduction
This architecture document describes the motivation, use and interaction of the three services that comprise

version 3 of the UPnP-QoS Framework:

 The QosDevice:3 Service [QD:3],

 The QosPolicyHolder:3 Service [QPH:3], and

 The QosManager:3 Service [QM:3].

While UPnP-QoS defines three services (listed above), it does not define a new device type. Since Quality

of Service issues need to be solved for multiple usage scenarios, it is expected that vendors could use any

UPnP device as a container for the services defined by UPnP-QoS.

The UPnP-QoS Framework is compliant with the UPnP Device Architecture version 1.0.

This document is INFORMATIVE. This document is derived from the specifications and it does not

describe what is required or optional. For required and optional functionalities, refer to the service

definition documents. When there is a conflict between this document and (one of) the service definition

documents, the latters prevail. This document avoids the words must, should, and may. Implementers are

therefore referred to the appropriate service definition documents for requirements.

Definitions for terms used in this document can be found in [QM:3].

1.1. Versions of the UPnP-QoS Specifications

There are currently three versions of UPnP-QoS.

UPnP-QoS version 1 defines a framework for policy-based prioritized QoS.

UPnP-QoS version 2 extends the version 1 framework with

 A rotameter service to measure network performance and assist in the diagnosis of network

problems, and

 A mechanism to indicate a QosPolicyHolder Service that will be used by the QosManager Service

UPnP-QoS version 3 extends the version 2 framework with

 Support for Admission Control,

 A mechanism to support a Preferred QosPolicyHolder Service,

 A way to configure the policy in the QosPolicyHolder Service.

This document describes UPnP-QoS version 3, please refer to the version 2 [QA:2] or version 1 [QA:1]

architecture documents for more information on those versions.

1.2. Informative References

 [Annex_G] –IEEE 802.1D-2004, Annex G, IEEE Standard for Information technology -

Telecommunications and information exchange between systems - IEEE standard for local and

metropolitan area networks - Common specifications - Media access control (MAC) Bridges, 2004.

UPnP-QoS Architecture version 3 7

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

[XML] – Extensible Markup Language (XML) 1.0 (Second Edition), T. Bray, J.Paoli, C. M. Sperberg-

McQueen, E Maler, eds. W3C Recommendations, 6 October 2000.

Available at: http://www.w3.org/TR/2000/REC-xml-20001006

Latest version available at: http://www.w3.org/TR/REC-xml/

[QM:1] – UPnP QosManager:1 Service Document,

Available at: http://www.upnp.org/standardizeddcps/documents/UPnP_Qos_Manager1_000.pdf

[QM:2] – UPnP QosManager:2 Service Document,

Available at: http://www.upnp.org/specs/qos/UPnP-qos-QosManager-v2-Service-20061016.pdf

Latest version available at: http://www.upnp.org/specs/qos/UPnP-qos-QosManager-v2-Service.pdf

[QM:3] – UPnP QosManager:3 Service Document,

Available at: http://www.upnp.org/specs/qos/UPnP-qos-QosManager-v3-Service-20081130.pdf

Latest version available at: http://www.upnp.org/specs/qos/UPnP-qos-QosManager-v3-Service.pdf

[QD:1] – UPnP QosDevice:1 Service Document

Available at: http://www.upnp.org/standardizeddcps/documents/UPnP_Qos_Device1_000.pdf

[QD:2] – UPnP QosDevice:2 Service Document

Available at: http://www.upnp.org/specs/qos/UPnP-qos-QosDevice-v2-Service-20061016.pdf

Latest version available at: http://www.upnp.org/specs/qos/UPnP-qos-QosDevice-v2-Service.pdf

[QD:3] – UPnP QosDevice:3 Service Document

Available at: http://www.upnp.org/specs/qos/UPnP-qos-QosDevice-v3-Service-20081130.pdf

Latest version available at: http://www.upnp.org/specs/qos/UPnP-qos-QosDevice-v3-Service.pdf

[QDA:3] – UPnP QosDevice:3 Underlying Technology Interface Addendum

Available at: http://www.upnp.org/specs/qos/UPnP-qos-QosDevice-v3-Addendum-20081130.pdf

Latest version available at: http://www.upnp.org/specs/qos/UPnP-qos-QosDevice-v3-Addendum.pdf

[QPH:1] – UPnP QosPolicyHolder:1 Service Document

Available at: http://www.upnp.org/standardizeddcps/documents/UPnP_Qos_Policy_Holder1.pdf

[QPH:2] – UPnP QosPolicyHolder:2 Service Document

Available at: http://www.upnp.org/specs/qos/UPnP-qos-QosPolicyHolder-v2-Service-20061016.pdf

Latest version available at: http://www.upnp.org/specs/qos/UPnP-qos-QosPolicyHolder-v2-Service.pdf

[QPH:3] – UPnP QosPolicyHolder:3 Service Document

Available at: http://www.upnp.org/specs/qos/UPnP-qos-QosPolicyHolder-v3-Service-20081130.pdf

Latest version available at: http://www.upnp.org/specs/qos/UPnP-qos-QosPolicyHolder-v3-Service.pdf

[AV]– UPnP AV Architecture:1 Document version 1.0

Available at: http://www.upnp.org/specs/av/UPnP-av-AVArchitecture-v1-20020625.pdf.

[DEVICE] – UPnP Device Architecture, version 1.0.

Available at: http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0-20060720.pdf

Latest version available at: http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf

[DSCP] – IETF RFC 2474, Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6

Headers, K. Nichols et al., December 1998.

Available at: http://www.ietf.org/rfc/rfc2474.txt

[RFC3339] – Date and Time on the Internet: Timestamps, G. Klyne et al., July 2002.

Available at: http://www.ietf.org/rfc/rfc3339.txt

[RFC3927] – Dynamic Configuration of IPv4 Link-Local Addresses. S. Cheshire et al., May 2005.

Available at: http://www.ietf.org/rfc/rfc3927.txt

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/REC-xml/
http://www.upnp.org/standardizeddcps/documents/UPnP_Qos_Manager1_000.pdf
http://www.upnp.org/specs/qos/UPnP-qos-QosManager-v2-Service-20061016.pdf
http://www.upnp.org/specs/qos/UPnP-qos-QosManager-v2-Service.pdf
http://www.upnp.org/specs/qos/UPnP-qos-QosManager-v3-Service-20081130.pdf
http://www.upnp.org/specs/qos/UPnP-qos-QosManager-v3-Service.pdf
http://www.upnp.org/standardizeddcps/documents/UPnP_Qos_Device1_000.pdf
http://www.upnp.org/specs/qos/UPnP-qos-QosDevice-v2-Service-20061016.pdf
http://www.upnp.org/specs/qos/UPnP-qos-QosDevice-v2-Service.pdf
http://www.upnp.org/specs/qos/UPnP-qos-QosDevice-v3-Service-20081130.pdf
http://www.upnp.org/specs/qos/UPnP-qos-QosDevice-v3-Service.pdf
http://www.upnp.org/specs/qos/UPnP-qos-QosDevice-v3-Addendum-20081130.pdf
http://www.upnp.org/specs/qos/UPnP-qos-QosDevice-v3-Addendum.pdf
http://www.upnp.org/standardizeddcps/documents/UPnP_Qos_Policy_Holder1.pdf
http://www.upnp.org/specs/qos/UPnP-qos-QosPolicyHolder-v2-Service-20061016.pdf
http://www.upnp.org/specs/qos/UPnP-qos-QosPolicyHolder-v2-Service.pdf
http://www.upnp.org/specs/qos/UPnP-qos-QosPolicyHolder-v3-Service-20081130.pdf
http://www.upnp.org/specs/qos/UPnP-qos-QosPolicyHolder-v3-Service.pdf
http://www.upnp.org/specs/av/UPnP-av-AVArchitecture-v1-20020625.pdf
http://www.upnp.org/download/UPnPDA10_20000613.htm
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0-20060720.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf
http://www.ietf.org/rfc/rfc2474.txt
http://www.ietf.org/rfc/rfc2474.txt
http://www.ietf.org/rfc/rfc3339.txt
http://www.ietf.org/rfc/rfc3927.txt

UPnP-QoS Architecture version 3 8

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

[MoCA 1.0] – MoCA Mac/Phy Specification v1.0 2006.

[MoCA 1.1] – MoCA Mac/Phy Specification v1.1 Extensions 2007.

[HPAV] – HPAV HomePlug AV Specification Version 1.1.00.

[CDS:1] – UPnP AV ContentDirectory Service Definition document version 1.0.

Available at: http://www.upnp.org/standardizeddcps/documents/ContentDirectory1.0.pdf

Latest version available at:

[CDS:2] – UPnP AV ContentDirectory Service Definition document version 2.0.

Available at: http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v2-Service.pdf

Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v2-Service-

20060531.pdf

[QA:1] – UPnP-QoS Architecture version 1.0

Available at: http://www.upnp.org/standardizeddcps/documents/UPnP_QoS_Architecture1.pdf

[QA:2] – UPnP-QoS Architecture version 2.0

Available at: http://www.upnp.org/specs/qos/UPnP-qos-Architecture-v2-20061016.pdf

Latest version available at: http://www.upnp.org/specs/qos/UPnP-qos-Architecture-v2.pdf

http://www.upnp.org/standardizeddcps/documents/ContentDirectory1.0.pdf
http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v2-Service.pdf
http://www.upnp.org/standardizeddcps/documents/UPnP_QoS_Architecture1.pdf
http://www.upnp.org/specs/qos/UPnP-qos-Architecture-v2.pdf

UPnP-QoS Architecture version 3 9

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

2. Architecture Overview
This section provides an overview of UPnP-QoS v3.

2.1. Scope

The UPnP-QoS specifications are designed with a network in mind that consists of a single IP subnet.

Therefore routing between devices in the network is out of scope for UPnP-QoS.

The UPnP-QoS specifications support QoS setup for all traffic streams and UPnP-AV traffic streams in

particular. The UPnP-QoS specifications also support QoS management on the LAN for traffic streams

originating from or terminating in a WAN.

2.2. Assumptions

UPnP-QoS starts from the basic assumption that a typical UPnP network is heterogeneous in its Admission

Mechanisms. Obviously, a homogeneous Admission Mechanism is also accommodated.

2.3. Architecture Summary

This section is a brief overview of the UPnP-QoS Architecture. In Chapter 3 more details are provided on

the high-level architecture. Chapter 4 describes and illustrates the key concepts. Chapter 5 presents the three

services in detail and Chapter 6 provides details on the interaction between Control Points and the services.

UPnP-QoS defines three services. These are the QosPolicyHolder Service [QPH:3], the QosManager

Service [QM:3] and the QosDevice Service [QD:3]. All three services are shown in Figure 1. In this figure,

the numbers in parenthesis indicate the order in which the UPnP-QoS actions are invoked.

To illustrate the relationships of various UPnP-QoS components, an example scenario with a simple

sequence of setup steps is described below. The detailed operations are described in Chapter 6.

Fundamentally, UPnP-QoS manages the QoS for a traffic stream that flows between a source and a sink

device. A traffic stream is viewed as a uni-directional flow from a source device to a sink device, possibly

passing through intermediate devices.

In the interaction described in this section, a Control Point application is assumed to have the knowledge of

source, sink and content characteristics to be streamed, along with the content’s Traffic Specification

(TSPEC). The Control Point constructs a TrafficDescriptor structure and requests a QosManager Service

on the UPnP network to setup QoS for a traffic stream (step 1). The Control Point in the QosManager

Service (from hereon referred to as QoS Manager) requests the QosPolicyHolder Service (step 2) to

provide appropriate policy for the traffic stream described by the TrafficDescriptor structure (step 3).

Based on this policy, the QoS Manager configures the QosDevice Service(s) for establishing the QoS for

the new traffic stream (step 4).

UPnP-QoS Architecture version 3 10

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

Figure 1: UPnP-QoS Architecture Overview

The QosPolicyHolder Service provides traffic policy for the UPnP network on which it resides. It is used to

set the importance of a traffic stream by returning a TrafficImportanceNumber and a

UserImportanceNumber (these are elements of the TrafficPolicy structure).

For requests for prioritized streams, the TrafficDescriptor structure containing the

TrafficImportanceNumber is conveyed to QosDevice Service(s) by the QoS Manager and is used by the

QosDevice Service to derive the technology specific L2 priority.

The internal mechanism used by the QosDevice Service for applying the TrafficImportanceNumber is L2

technology specific and is out of scope.

For requests to admit streams, the TrafficDescriptor structure containing the TSPEC is conveyed to the

QosDevice Service(s) by the QoS Manager and is used by the QosDevice Service to request admission and

possibly a reservation of resources in accordance with the requested TSPEC. If the admission fails because

there are insufficient resources, the preferred QosPolicyHolder Service (see Section 5.1.4) can be consulted

to determine the UserImportanceNumber for every Blocking UPnP stream. These numbers are used to rank

Blocking traffic streams and to determine whether a new traffic stream can be admitted at the expense of

existing Blocking traffic streams. The process of taking away resources from existing traffic streams to

admit a new traffic streams based on their ranking is called preemption.

QosPolicyHolder
Service

QosManager
Service

S

Control
Point

Layer 2
802.3 / 802.11

Device

Source Intermediate Sink

Traffic Policy (3)

Set Policy

Traffic Descriptor (4)

Traffic
Descriptor
converted to
specific Layer
2 QoS

Layer 2
802.3 / 802.11

Device

Layer 2
802.3 / 802.11

Device

Traffic

Streams
 Traffic

Streams

QosDevice Service QosDevice Service QosDevice Service

Request QoS (1)

Traffic Descriptor (2)

UPnP-QoS Architecture version 3 11

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

3. Architecture

3.1. Policy-based QoS

Policy-based QoS provides a way to assign priority for traffic streams and is also the basis for preemption.

A policy-based QoS system allows an individual or entity to define rules, based on traffic characteristics

and to manage the traffic’s QoS in the context of the policy system. These rules are then applied to the

characteristics of a request to determine the QoS applied. The rules utilize characteristics such as network

address or application type.

The QosPolicyHolder Service provides the mechanism for classifying and ranking traffic streams according

to information provided with the action to request QoS for a particular traffic stream. The type of

information provided in the TrafficDescriptor structure includes, among other items, traffic class (best-

effort, video, voice, etc.), the source and destination IP addresses for the stream, the TSPEC structure,

application name, username, etc. The QosPolicyHolder Service examines the information provided in the

TrafficDescriptor structure and returns the importance, in the form of a TrafficPolicy structure.

3.2. Types of QoS

UPnP-QoS supports three types of QoS: Prioritized QoS, Parameterized QoS and Hybrid QoS. Prioritized

QoS is the default. Prioritized QoS means end-to-end prioritized QoS. Parameterized QoS requests that

network resources are reserved for a traffic stream end-to-end. If there is a non-parameterized QoS

technology on the path, then parameterized QoS is not possible end-to-end on the entire path. Hybrid QoS

addresses this issue. A request for Hybrid QoS is a request for parameterized QoS on QoS Segments that

support parameterized QoS and prioritized QoS on other QoS Segments. If a Hybrid QoS admission fails

on a parameterized QoS Segment then Hybrid QoS is not established and an explicit request for Prioritized

QoS could be attempted by the Control Point. Note that a request for Hybrid QoS can also fail on a

prioritized QoS Segment.

3.2.1. Prioritized QoS

This section describes the interaction between the services for a request for prioritized QoS. Figure 2

illustrates the interaction. First the Control Point composes a request to the QosManager Service based, for

instance, on the information in the ContentDirectory Service [CDS:1]. Then the control point invokes the

QM:RequestTrafficQos() action.

The QoS Manager collects information from the various QosDevice Services in the network. It obtains path

information, with the QD:GetPathInformation() action or other QoS related information with the

QD:GetExtendedQosState() action.

The TrafficImportanceNumber is determined by the QosPolicyHolder Service and returned following the

QPH:GetTrafficPolicy() request. Based on the information available in the traffic descriptor (in particular

Traffic Class) the QosPolicyHolder Service provides the TrafficImportanceNumber. In the case where the

QosPolicyHolder Service cannot be used, TrafficImportanceNumber is determined by the QoS Manager

using default policies.

The QoS Manager communicates with the QD:SetupTrafficQos() and QD:AdmitTrafficQos() actions to the

QosDevice Services with a TrafficDescriptor structure containing a TrafficImportanceNumber consistent

with the QoS Policy. The following diagram depicts the sequence of messaging for the setting up QoS for a

given traffic stream.

The mapping of the TrafficImportanceNumber to the priority tag value used for the layer-2 network is

dependent on the particular L2 technology. The TrafficImportanceNumber has been defined to be

UPnP-QoS Architecture version 3 12

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

consistent with the IEEE 802.1D, Annex G, so it is expected to be a one-to-one mapping from the

TrafficImportanceNumber to the priority tag value.

UPnP CDS Control Point QosManager QosDeviceQosPolicyHolder

RequestTrafficQos()

GetTrafficPolicy()

GetExtendedQosState()

GetPathInformation()

AdmitTrafficQos() / SetupTrafficQos()

CDS:Browse()

This diagram is an example

(e.g. Browse() is optional).

This example does not address error cases

and assumes all actions are successful.

Figure 2: An Example Interaction Diagram for RequestTrafficQos() action for prioritized QoS setup.

3.2.2. Parameterized QoS

This section describes the interaction between the services for a request for Parameterized QoS. Figure 3

illustrates the interaction for admission only, whereas Figure 4 includes the interaction for additional QoS

Manager capabilities such as preemption and reporting of blocking streams.

In response to a request for Parameterized QoS, the QoS Manager identifies the QosDevice Services on the

path. The QoS Manager also identifies the QoS Segments. Further details are provided in Chapter 6.

The QoS Manager attempts to admit the traffic descriptor to the QosDevice Services on the path of the

traffic stream using the most preferred TSPEC in the list.

In admitting a TrafficDescriptor for a certain TSPEC, the QoS Manager decomposes the end-to-end TSPEC

parameters to per-QoS Segment parameters. The QoS Manager subsequently invokes the AdmitTrafficQos()

action on the QosDevice Service(s) on each QoS Segment. The QosDevice Service will in turn invoke the

appropriate Admission Mechanisms to request resources on the underlying L2 Technology.

If admission fails for the TrafficDescriptor, then the RequestTrafficQos() action fails at any QosDevice,

Service. If the QosManager Service supports reporting of blocking traffic streams and/or preemption and if

the Control Point has requested the use of these capabilities using the RequestExtendedTrafficQos() action,

then: (1) the QoS Manager gathers the information about the blocking traffic streams; (2) the QosManager

invokes the preferred QosPolicyHolder Service to determine the importance order of these existing traffic

streams in relation to the new traffic stream; (3) The gathered information is reported to a Control Point.

The Control Point can use this information to inform the user about the state of the network.

UPnP-QoS Architecture version 3 13

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

UPnP CDS Control Point QosManager QosDeviceQosPolicyHolder

RequestTrafficQos()

GetExtendedQosState()

GetPathInformation()

AdmitTrafficQos()

CDS:Browse()

This diagram is an example

(e.g. Browse() is optional).

This example does not address error cases

and assumes all actions are successful.

This example only shows requests and does

not show responses.

Figure 3: An Example Interaction Diagram for RequestTrafficQos() (without preemption).

UPnP CDS Control Point QosManager QosDeviceQosPolicyHolder

RequestExtendedTrafficQos()

GetExtendedQosState()

GetPathInformation()

AdmitTrafficQos()

GetListOfTrafficPolicies()

GetExtendedQosState()

ReleaseAdmittedQos()

AdmitTrafficQos()

CDS:Browse()

This diagram is an example

(e.g. Browse() is optional).

These actions comprise the

preemption. They follow the

failure of AdmitTrafficQos()

Figure 4: An Example Interaction Diagram for RequestExtendedTrafficQos() with preemption

capability.

If preemption is requested, the QoS Manager determines which traffic streams can be preempted to provide

sufficient resources for the least preferred TSPEC of the new traffic stream to be admitted on the network.

The QoS Manager releases the QoS resources of the traffic streams it determined to preempt and retries

admission of the new traffic stream.

Parameterized traffic streams contains a finite traffic lease time. The traffic lease time can be updated during

the lifetime of the traffic stream. When the traffic lease time has expired, the QosDevice Service releases the

UPnP-QoS Architecture version 3 14

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

resources. Having a finite traffic lease time ensures that the system can return to a clean state if Control

Points or QoS Managers that had set up QoS for certain traffic streams are no longer active.

3.2.3. Hybrid QoS

The setup of Hybrid QoS is similar to the setup of Parameterized QoS.

The difference is that on prioritized QoS Segments, QoS setup is done by the QoS Manager through the

QosDevice Services actions SetupTrafficQos() or AdmitTrafficQos() action. The reason is that prioritized

QoS Segments can have QosDevice:1 Service [QD:1], QosDevice:2 Service [QD:2], or QosDevice:3

Services [QD:3]. Even if a device implements a QosDevice:3 Service it does not necessarily mean that it

supports parameterized QoS.

UPnP-QoS Architecture version 3 15

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

4. Key Concepts and Examples
This section provides examples for the key concepts of UPnP-QoS.

4.1. Interfaces and Links

Every QosDevice Service will have at least one interface which is defined as the point of interconnection

between a device and a network. Incoming or outgoing traffic streams use an interface to get from or to the

network. Within a QosDevice Service, Interfaces are identified by their InterfaceId. Example values for

InterfaceId are “eth0” or “Wireless Network Connection”. An interface is of a single technology such as

Ethernet.

An interface connects the device to the network and thereby to other devices.

A link is an (possibly bidirectional) direct connection between two devices for data exchange. An interface

can contain multiple links. In a device, a link can only belong to one interface. Different links can have

different properties. For example, in a wireless network the link from the Access Point to one station can

have a different signal level and different throughput than the link from the same Access Point to another

station. Within an Interface, links are identified through their LinkId.

A

`

B

C

D

Link

Link

Link

Interface

Interface

Interface

Interface

Figure 5: Example of Interfaces and Links. Device A has 1 interface that contains 3 links. Device B,

C, and D each contain an interface with only a single link.

Prior to UPnP-QoS v3, the terms Interface and Link have been used interchangeably. UPnP-QoS v3 defines

an interface container as the container for links.

4.2. Path Information

The path, as defined in [QM:3], can be determined on the basis of the path information supplied by the

QosDevice Service. The path is ordered from source to sink by the sequence of QosDevice Services through

which it passes.

UPnP-QoS Architecture version 3 16

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

The QosDevice Service reports a PathInformation structure that contains for each interface, the MAC

addresses that have been observed on each of the link(s) that interface contains and whether links are

actively bridged within the device.

UPnP-QoS is limited to QoS on a single subnet, therefore the following holds: An intermediate device is on

the path if and only if it reports the MAC address of the path’s source on a different link than the MAC

address of the path’s sink and these two links are bridged.

The path from source to sink can now be composed, by the QoS Manager, by sorting all of the devices in

the order in which traffic flows starting with the source. This path information can be used to determine

adjacency for purposes of invoking an admission request on a QosDevice Service.

4.2.1. Example – Bridge on the path

Consider the example in Figure 6. The QosDevice Service in this bridge reports that the bridge has one

interface containing 4 links: p1, p2, p3, and p4. It reports that the source is on p1 and the sink is on p3. It

also reports that p1, p2, and p3 are bridged by the same internal bridge but p4 is not (this is not illustrated in

the figure). Since the source and the sink are on different link (p1 and p3 respectively) and the bridge

between p1 and p3 is active, this bridge is on the path.

Bridge
p1

p4

p3

p2

Source
Sink

Figure 6: A bridge is on the path if and only if it reports the MAC address of the source on a

different link than the MAC address of the sink and these two links are bridged.

4.2.2. Example – Device not on the path

Consider the example in Figure 7. In this example the laptop is not the source nor the sink of the stream.

The QosDevice Service in the laptop reports that the laptop has 2 interfaces, each containing a link: p1 (e.g.,

its wireless interface) and p2 (e.g., its wired interface). It reports that the source is on p1 and the sink is on

p2. However, p1 and p2 are not bridged by the laptop. The laptop is therefore not on any path as an

intermediate device.

p1 p2

Source Sink

Figure 7: Laptop is not bridging its interfaces and therefore not on the path

4.2.3. Example – Path Determination

In this example we perform the complete path determination in a larger example: There are three devices

(Source, Sink, and Dev 3) and three bridges (Bridge A, Bridge B, and Bridge C) in the network. They are

depicted by hashed boxes in Figure 8. Every device also implements the QosDevice Service.

UPnP-QoS Architecture version 3 17

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

Bridge B Bridge C

Bridge A
Dev 3

Source Sink

q1: M(Source), M(B)

q3: M(Sink), M(C)

u1: M(Source), M(Sink),

M(A), M(B), M(C)

s1: M(Sink), M(A), M(B), M(C), M(3)

q2: M(3)

r1: M(Source), M(A), M(B)

t1: M(Source), M(A), M(B), M(C), M(3)

p2: M(Sink), M(A), M(C), M(3)

r3: M(Sink)
p1: M(Source)

Figure 8: Example network for path determination

The blue solid boxes indicate what is reported by the QosDevice Service per link in the path information

structure. The M(x) refers to the MAC address of x. For example “p1: M(Source)” means that the MAC

address of the Source is reported on link p1.

As explained above, the bridges A, B, and C are part of the path from Source to Sink. For bridge A, the

involved links are q1 and q3. For bridge B the involved links are p1 and p2. Finally for bridge C, the

involved links are r1 and r3.

Note that Bridge A is further downstream than Bridge B (written B < A), because for Bridge A, both Bridge

B and the Source are on link q1. Also note that B < C, this is because for Bridge C, both Bridge B and the

Source are on link p1. Finally note that A < C, because for Bridge C, both Bridge A and the Source are on

link p1. The bridges can now be sorted into B < A < C and the path is: Source – B – A – C – Sink.

In the example every device implements a QosDevice Service and therefore the path could be completely

determined because each QosDevice Service is supplying path information. When there are bridges without

a QosDevice Service the complete determination of the devices path is not possible from a UPnP-QoS

perspective and the QoS Manager will consider just the parts of the path that it has determined.

4.3. QoS Segments

A QoS Segment is the (sub)set of QosDevice Service's interfaces that are under a single Admission

Mechanism. The path from a source to a sink is composed of zero (this is the legacy case of non-UPnP-QoS

v3 QosDevice Services) or more QoS Segments. When a QosDevice Service has more than one interface

and those interfaces are in different QoS Segments, each interface is considered separately for QoS setup. A

QoS Segment is needed for an Admission Mechanism that manages resources that are contained on the

Segment and not solely on a QosDevice Service. An example is a technology that has a central coordinator

that manages the network resources (e.g., transmission opportunities (TXOPs)) for that technology and is

only accessible via signaling on that technology segment and not at layer 3 and above. A QoS Segment

could contain ingress and egress interfaces when a stream is instantiated on that QoS Segment. The

discovery of the path from source to sink produces an ordered list of QosDevice Service's interfaces through

which the traffic passes. Each of these QosDevice:3 Services’ interfaces identifies the QoS Segment on

UPnP-QoS Architecture version 3 18

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

which it resides. The identifier is called the QosSegmentId. It is unique for each QoS Segment on the

network and is identical for all QosDevice Service's interfaces on a given Qos Segment. The QosSegmentId

is generated by each QosDevice Service by rules defined in the Technology Addendum.

The QosDevice Services on the path are queried for the QosSegmentId for each of their interfaces. The

QosSegmentId is passed to a QosDevice Service when admission, update, or release is performed for a QoS

Segment. The recipient QosDevice Service uses the QosSegmentId for purposes of managing Segment

resources, in addition to managing any resources local to the QosDevice Service (e.g, buffers).

The following sections provide examples of QoS Segments.

4.3.1. Example – Simple QoS Segment

In Figure 9 a simple network consisting of four power line devices is drawn. The network contains three

devices that contain the QosDevice Service and a fourth infrastructure device that does not contain a UPnP

service and is indicated by the term “CCo”.

According to the QosSegmentId formation rules (see [QDA:3]), the three QosDevice Services

independently report the same QosSegmentId. It can therefore be concluded that the three devices are in the

same QoS Segment. The “CCo” is also in that QoS Segment. However if there is no QosDevice Service on

the “CCo”-device, this “CCo” cannot be managed directly by UPnP-QoS and its existence is therefore (at

the UPnP-QoS level) irrelevant.

QosDevice

QosDevice

QosDevice

CCo

Figure 9: A simple network with one QoS Segment

4.3.2. Example – Multiple QoS Segments

In Figure 10 the network is extended with an additional Wi-Fi network. The QosDevice C reports two

QosSegmentIds, one starting with 174 on one interface and one starting with 071 on the other interface.

QosDevice D reports the same QosSegmentId (starting with 071). This network contains two QoS

Segments. When a stream traverses both QoS Segments, both QoS Segments will require QoS setup via the

QosDevice Services on the Segments. Thus QosDevice C will be setup for QoS twice, once for each

interface. For example, suppose that QosDevice A is the source and QosDevice D is the sink. The path is: A

then C (first the interface on the 174-Segment, then the interface on the 071 Segment) and then D

UPnP-QoS Architecture version 3 19

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

QosDevice A

QosDevice C

QosDevice B

Cco

QosSegmentId = 174a...

QosSegmentId =

071... QosDevice D

Figure 10: A network with two different technologies and two QoS Segments

4.3.3. Example – Homogeneous QoS Segment with L2 QoS Bridges

Another network is shown in Figure 11. This network consists of five devices and three bridges. The

bridges are special bridges in that they also bridge L2 QoS setup requests; such a bridge is called, in this

example, an L2Q bridge (for Layer-2-QoS Bridge). Every interface of every device is wired Ethernet. In the

architecture, no distinction of links within the interface is made. For ease of explanation, we assume all

devices implement the QosDevice Service.

Devices A, B, and C are end points in a QoS Segment bridged by an L2Q bridge and report the same

QosSegmentId. Bridge 2 has four interfaces, two in the QoS Segment bridged by an L2Q bridge and a third

and a fourth interface in the “006” Segment. Device D reports a QosSegmentId starting with “006” for

Ethernet. Device D is therefore in another QoS Segment. Because Device D also connects to Bridge 2, the

interface from Bridge 2 reports a QosSegmentId starting with “006” and the interface of Bridge 2 to Device

D is not part of the L2Q QoS Segment with QosSegmentId “L2Q000000”.

Bridge 3 and Device E are attached to the “006” Segment. Therefore Bridge 3 and Device E will report a

QosSegmentId starting with “006” for Ethernet.

L2Q Bridge 1

Device A

Device C

L2Q Bridge 2

Device D

Bridge 3

Device E

Device B

QosSegmentId = L2Q000000

Figure 11: A network with Ethernet Layer-2-QoS bridges, L2Q-end point devices and legacy

Ethernet bridges and legacy Ethernet devices

UPnP-QoS Architecture version 3 20

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

4.3.4. Example – Heterogeneous QoS Segment with L2 QoS Bridges

The fourth example is a network where different L2 technologies are bridged through Layer-2-QoS bridges.

An example is shown in Figure 12, where L2Q-end point devices over Ethernet are bridged to L2Q-end

point devices over MoCA. For ease of explanation, we assume all devices implement the QosDevice

Service.

D
e

v
ic

e
 F

Device E

L2Q Bridge 1

Device D

L
2

Q
 B

ri
d

g
e

 2

Device A

Device C

 L2Q Bridge 0

MoCA – Eth.

D
e

v
ic

e
 B

Figure 12: A network with all L2Q-end point devices but with different underlying technologies:

MoCA (left hand side) and Ethernet (Right hand side), respectively

The L2Q Bridge 0 between MoCA and Ethernet (in the middle of the figure) bridges both traffic and L2Q

QoS setup. A QosDevice Service implemented on the L2Q Bridge 0 (not shown) exposes the same

QosSegmentId on both interfaces and hence does not divide the two sides into two QoS Segments.

Therefore, the entire network in the figure will be treated as a single QoS Segment.

It is now demonstrated that all devices indeed are part of the same QoS Segment. On the left hand side,

devices A, B, and C are connected via MoCA to a shared medium. The device A, B, and C are end point

devices in a QoS Segment bridged by an L2Q bridge and report the same QosSegmentId. The devices D, E,

and F are also devices in a QoS Segment bridged by L2Q Bridge 1 and L2Q Bridge 2 that have the same

QosSegmentId..

4.3.5. QosSegmentId generation examples

The QosDevice Service Addendum [QDA:3] lays out the rules for creating a QosSegmentId for the

technologies that were considered at the time of creating the UPnP-QoS specifications. The QosSegmentId

is the same for interfaces that are connected to each other within the same QoS Segment but differs for

interfaces in another QoS Segment, even if the interfaces use the same Layer 2 technology.

For Layer 2 technologies not described in the Addendum the following conditions are considered:

 Every QosDevice Service implementation on top of the Layer 2 technology has to generate a

string.

 This string has to be identical for all interfaces of all QosDevice Service instances within the same

QoS Segment.

 This string has to be unique to identify the QoS Segment from other QoS Segments in the same

network.

UPnP-QoS Architecture version 3 21

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

There is no supporting technology provided by UPnP-QoS to do this. The QosSegmentId typically starts

with 3 digits to indicate the IANA technology type and it is followed by a technology specific string.

Typical examples are by using a network name, a string representation of a MAC address of the scheduler,

the outcome of a Layer 2 leader election.

4.4. Adjacency of QosDevice Services

The concept of QoS Segment is introduced to hide the Layer 2 dependencies of QoS setup on the Segment,

from the QoS Manager. A typical QoS Segment is illustrated in Figure 13 where on both the ingress as well

as the egress end of the QoS Segment a QosDevice Service is located. The subject that is addressed in this

section is: which service is responsible for performing (which part of) the Layer 2 QoS setup.The Layer 2

protocols define the capabilities of the devices.

If, for example, the Layer 2 technology for this QoS Segment requires the sink and not the source within the

QoS Segment to setup QoS, then QosDevice Service B is able and needs to perform the Layer 2 request for

a traffic stream that flows from A to B. Similarly the QosDevice Service A is able and needs to perform the

Layer 2 request for a traffic stream that flows from B to A. For other Layer 2 technologies, it could be the

source but not the sink that has to setup QoS, either the source or the sink that sets up QoS, or the source

and the sink together that have to setup QoS.

The adjacency determination is performed by the QoS Manager and used to signal a QosDevice Service that

there are adjacent QosDevice Services within the Segment. A QosDevice Service can use the adjacency

information to avoid the situation where two QosDevice Services would accidentally reserve the resource

twice, without requiring QosDevice Service to search for other QosDevice Services and without making a

QoS Manager dependent on the specifics of Layer 2 technologies.

The QoS Manager supplies an input parameter to the QosDevice Service that contains two Boolean

variables. The first Boolean variable QDUpstream indicates whether there exists another QosDevice

Service further Upstream for the stream within the same QoS Segment. The second Boolean variable

QDDownstream indicates whether there exists another QosDevice Service further Downstream for the

stream within the same QoS Segment. The invoked QosDevice Service can make a determination, based on

the Admission Mechanism that it implements, of the correct action for resource management; the

QosDevice Addendum provides details for specific Admission Mechanisms.

Consider a traffic stream that enters the QoS Segment at A and leaves the QoS Segment again at B as in

Figure 13. The QosDevice Service A is informed that there exists a QosDevice Service further downstream

but not further upstream. Also QosDevice Service B is informed that there exists a QosDevice Service

further upstream but not further downstream. If the Layer 2 requires the sink in the QoS Segment to setup

QoS, then QosDevice Service B is responsible for performing the Layer 2 request for a traffic stream that

flows from A to B and therefore requested to do so. In this case QosDevice Service A does not perform any

action.

QosDevice A QosDevice B

Figure 13: QoS Segment with two QosDevice services

Now consider the situation of Figure 14, where the sink in the Segment does not implement a QosDevice

Service. In this case, the QosDevice Service A is informed that it has neither downstream nor upstream

neighbors within the same QoS Segment. If the Layer 2 requires the sink in the Segment to setup QoS and

does not allow the source to do so, then no QoS for the traffic stream from A to B can be requested.

UPnP-QoS Architecture version 3 22

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

However, if the Layer 2 merely prefers the sink in the Segment to setup QoS, but allows the sources to also

do so, the QosDevice Service A will perform the setup because there is no other capable device.

The [QDA:3] document describes the requirements for certain technologies. They could be helpful to the

reader as examples in understanding the general theory.

QosDevice A Device B

Figure 14: QoS Segment with only one QosDevice Service

The rules for the QoS Segment that are applied by the QosDevice Service for Admission Mechanism

invocation are summarized in Table 4-1. For example if the Admission Mechanism for which the

QosDevice Service needs to setup QoS requires the sink to setup QoS, the initiating QosDevice Service is

the most downstream QosDevice Service. This QosDevice Service invokes resource managment because it

is the only QosDevice Service that receives “QDDownstream = 0”.

Adm.Mech. Initiation Initiating QosDevice Service Characterization

Only by the sink Most downstream QosDevice Service QDDownstream = 0

Only by the source Most upstream QosDevice Service QDUpstream = 0

By source OR sink Most downstream QosDevice Service QDDownstream = 0

By source

AND

sink

Most upstream QosDevice Service QDUpstream = 0

Most downstream QosDevice Service QDDownstream = 0.

Table 4-1 Overview of the Admission Mechanism invocation

See [QDA:3] for how the rules apply to certain Layer 2 technologies.

UPnP-QoS Architecture version 3 23

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

5. UPnP-QoS Services
UPnP-QoS defines three UPnP services. The services are the QosPolicyHolder Service, the QosManager

Service and the QosDevice Service. This section provides an overview of these three services, respectively.

5.1. The QosPolicyHolder Service

5.1.1. Overview

The UPnP QosPolicyHolder Service is a repository of QoS policies for the UPnP network. These QoS

policies can be configured by the user or a third party on behalf of the user to indicate the treatment of

traffic on the UPnP-QoS network. The QosPolicyHolder Service provides a UPnP-defined interface for a

QoS Manager to access the network QoS policies. The policy within the QosPolicyHolder Service can be

populated through a UPnP-QoS defined configuration mechanism (see Section 5.1.6).

The main function of this service in a prioritized network is to judiciously allocate the use of traffic

importance numbers by traffic streams so that traffic importance levels are not overused. In a prioritized

system the traffic importance number is mapped into a priority and if a given priority were overused, it

would essentially lose differentiation.

The other role of the QosPolicyHolder Service is to provide information to differentiate various traffic

streams on the network by their importance for the purposes of Preemption.

The QosPolicyHolder Service also provides additional information to identify the source of the QoS policy.

In UPnP-QoS v3 a mechanism is introduced for the user to prefer a QosPolicyHolder Service. The

QosPolicyHolder Service also plays a role in maintaining this preference over time while devices are turned

on or off.

5.1.2. Traffic Stream QoS Policy Description

The QoS traffic policy consists of elements specific to QoS and elements to identify the source of the QoS

policy.

The QoS specific elements are

 AdmissionPolicy (a string),

 TrafficImportanceNumber (an integer in the range of 0-7), and

 UserImportanceNumber (an integer in the range of 0-255).

The elements of the QoS policy that identify the source of the QoS policy were introduced in UPnP-QoS

version 2. These are

 PolicyHolderId (a string containing UDN and ServiceId),

 PolicyLastModified (a string with a date),

 PolicyModifyingUserName (a string), and

 PolicyHolderConfigUrl (a string with a URL).

UPnP-QoS Architecture version 3 24

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

The value of the AdmissionPolicy string is ignored for the version 3 QosPolicyHolder Service and its value

is always “enabled”. A version 3 QoS Manager requests admission control for parameterized QoS on the

applicable QosDevice:3 Services.

The value TrafficImportanceNumber indicates a traffic stream’s priority. The QosDevice Service maps

TrafficImportanceNumber to a Layer 2 priority as per the Addendum [QDA:3].

The value UserImportanceNumber is used by the QoS Manager as the basis for admission policy decisions

when the network resources are saturated. The UserImportanceNumber value is used by the QoS Manager

in admitting new traffic streams by preempting the QoS for existing traffic streams so that traffic streams

with higher UserImportanceNumber values are accommodated first. A value of 255 indicates the highest

importance and a value of 0 indicates lowest importance.

The PolicyLastModified string indicates with a date value when the policy was last modified, while the

PolicyModifyingUserName string identifies the user or other entity that modified the policy for the last time.

The PolicyHolderConfigUrl string contains a URL that points to the policy configuration page of the

device.

5.1.3. Multiple instances of the QosPolicyHolder Services

The QosPolicyHolder Service provides an interface to supply the QoS policy for a given traffic stream,

described by the TrafficDescriptor.

In UPnP-QoS version 1, the assumption was that there is exactly one QosPolicyHolder Service in the

network.

In UPnP-QoS version 2, the existence of multiple instances of the QosPolicyHolder Service is allowed. The

Control Point could indicate a QosPolicyHolder Service of its choice to the QosManager Service.

In UPnP-QoS version 3, the user has the ability to prefer a QosPolicyHolder Service. From then on every

QoS Manager uses that Preferred QosPolicyHolder Service to determine traffic policy for requests for

hybrid or parameterized QoS. For Prioritized QoS, the behavior of UPnP-QoS version 2 is maintained.

The behavior of the QoS Manager in the presence of different versions of the QosPolicyHolder Service is

described in 6.3. The requirements can be found in the [QM:3].

5.1.4. Preferred QosPolicyHolder Service

In UPnP-QoS version 3, the user has the ability to prefer a QosPolicyHolder Service. From then on every

QoS Manager uses that Preferred QosPolicyHolder Service to determine policy for requests for hybrid or

parameterized QoS.

In order to select a preferred QosPolicyHolder Service, a control point invokes the QPH:SetAsPreferred()

action with SelectAsPreferred = 1 parameter on the QosPolicyHolder Service it wants to make the preferred

QosPolicyHolder Service. The QosPolicyHolder Service will then ensure that this preference is maintained

in the network even when some devices are turned on or off. Any control point can also revoke the earlier

preference of a QosPolicyHolder Service by invoking the QPH:SetAsPreferred() action with

SelectAsPreferred = 0 parameter on any active QosPolicyHolder Service (i.e., not necessarily the Preferred

QosPolicyHolder Service) in the network.

A non-preferred QosPolicyHolder Service will still respond to UPnP requests for QoS policy.

5.1.5. Maintaining the Preference of a QosPolicyHolder Service

This section describes how to maintain the preference of a QosPolicyHolder Service in a network where

devices tend to come and go.

UPnP-QoS Architecture version 3 25

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

When a QosPolicyHolder Service is selected as preferred with the QPH:SetAsPreferred() action or when a

Preferred QosPolicyHolder Service is rebooted then it performs the Preferred QosPolicyHolder Service

propagation mechanism which is described below.

In this propagation mechanism process, the QosPolicyHolder searches for instances of the QosDevice

Service on the network and invokes the QD:SetPreferredQph() action on each of them. This action needs to

be invoked only once per advertised QosDevice Service. The QosDevice Service stores this information

persistently across reboots. As soon as the action fails on a QosDevice Service with “Invalid Preferred

QosPolicyHolder service” error, the QosPolicyHolder Service completes the propagation mechanism

process and knows that it is no longer the Preferred QosPolicyHolder Service. If the QD:SetPreferredQph()

action fails on a QosDevice Service for reasons other than those stated above then the QosPolicyHolder

Service is still considered preferred.

5.1.6. Configuring the QosPolicyHolder Service

The policy in the QosPolicyHolder Service can be configured through a set of UPnP actions. The

underlying model is that an ordered list of policy rules are maintained and used while responding to

GetTrafficPolicy() and GetListOfTrafficPolicies() actions. To determine the policy, the QosPolicyHolder

Service evaluates the list in order until there is a match.

The AddQphPolicy() action allows to insert a rule in a certain position in the table. The rule provides the

filter conditions, the TrafficImportanceNumber and ImportanceNumber. The ImportanceNumber is a static

priority that is used by the QosPolicyHolder Service to derive a relative UserImportanceNumber (see

[QPH:3]).

The evented state variable PolicyVersion enables tracking the changes to the policy database. This allows a

Control Point to detect asynchronous changes to the policy database.

5.2. The QosManager Service

The QosManager Service defines a set of actions for a Control Point to setup, release, and update the

Quality of Service for a traffic stream. The QosManager Service performs those activities over the entire

path of the traffic stream by making use of the QosDevice Services in the network. To control those

QosDevice Services, a UPnP Control Point is needed. The behavior of this Control Point is driven by the

actions invoked on the QosManager Service. This Control Point is called QoS Manager even if there is no

exposed QosManager Service.

5.2.1. Overview

The QoS Manager is responsible for managing QoS assigned to various traffic streams. To fulfill its role,

the QoS Manager acting as a Control Point discovers and invokes actions advertised by QosDevice Services

and the QosPolicyHolder Services on the network.

The main function of the QosManager Service in a prioritized network is to request, for a traffic stream, the

TrafficImportanceNumber value from the appropriate QosPolicyHolder service on the network. Based on

the TrafficImportanceNumber returned from the QosPolicyHolder service, the QoS Manager configures the

relevant QosDevice Services to assign the appropriate priority to the traffic stream.

In a network with admission control, the role of the QoS Manager is to admit a traffic stream to the network

on the basis of the traffic stream’s requirements from the traffic specification (TSPEC). The Control Point

can supply a list of TSPECs with which the traffic stream can operate so that if one TSPEC cannot be

admitted another can be attempted. For example two TSPECs can be provided for certain TV content: one

for High Definition, and one for Standard Definition.

UPnP-QoS Architecture version 3 26

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

If admission fails, the QoS Manager performs preemption provided the preemption feature is implemented

by the QosManager Service, requested by the Control Point and allowed by the QosPolicyHolder Service.

5.2.2. Behavior

When a QoS Manager completes setting up QoS for a traffic stream, all QosDevice Service(s) in the

network path will have stored the traffic descriptor (more details are provided in the QosDevice Service

section). Any QoS Manager can query the QosDevice Service(s) and determine the state of a traffic stream.

This enables a QosManager Service to operate without maintaining any state.

Some QosManager Services implement the RequestExtendedTrafficQos() and UpdateExtendedTrafficQos()

actions which support additional capabilities such as reporting of blocking streams and preemption. A

Control Point can determine whether a QosManager Service implements the features “reporting of blocking

streams” and “preemption”, by invoking the QM:GetQmCapabilities() action.

A Control Point invokes the QM:RequestTrafficQos() or QM:RequestExtendedTrafficQos() actions to setup

QoS by providing (among other things) a TrafficDescriptor.

The Control Point uses the RequestedQosType parameter to indicate that the Control Point wants to request

parameterized QoS, or hybrid QoS (parameterized where available, prioritized where parameterized is not

supported). If the RequestedQosType parameter is omitted, then prioritized QoS is requested.

The Control Point can also request that the QosManager Service reports which traffic streams are blocking

admission or ask for preemption of the less important traffic streams in the case of failure to admit the

requested traffic stream.

If a Control Point indicates a QosPolicyHolder Service of its choice and requests for prioritized QoS, then

the QosManager Service will retrieve the TrafficImportanceNumber from the indicated QosPolicyHolder

Service.

For requests for parameterized QoS, the QoS Manager determines the network path, the QoS Segments and

will admit the traffic stream at all appropriate QosDevice Services.

The QosManager Service provides an interface (the RequestTrafficQos() and RequestExtendedTrafficQos()

actions) for a Control Point to request QoS for a traffic stream identified by a TrafficDescriptor. The

QosManager Service will return the TrafficDescriptor (in addition to other parameters) which will contain

additional information such as the TSPEC that is currently active. If the QosManager Service is not

successful, then it returns a corresponding error code.

Lastly, the QosManager Service provides an action for removing the QoS for a traffic stream.

5.2.3. Update the QoS reservation

The QosManager Service supports actions to update QoS of existing streams. If the update fails because the

resources are not available, then the QosManager Service maintains the stream’s current reservation.

In general, but specifically for update, it is the Control Point’s responsibility to ensure that resources are

requested before they are used and resources are no longer used before released. This is especially relevant

when using Layer 2 Technologies that do not police actual resource usage.

UPnP-QoS Architecture version 3 27

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

5.3. The QosDevice Service

5.3.1. Overview

The QosDevice Service is implemented in a source, sink or intermediate network device. A QosDevice

Service is responsible for managing the resources in the device. The QosDevice Service can also be

responsible for managing and reporting the resources for other devices in the same QoS Segment.

5.3.2. Behavior

The QosDevice Service provides an interface for Control Points to execute actions on the device to admit

traffic streams to setup QoS, to query the QoS capabilities and state of the QosDevice Service, to remove a

traffic stream’s QoS, and to register for events that the QosDevice Service generates. Typically, a QoS

Manager acts as a Control Point for QosDevice Service. The QosDevice Service has an interface to

configure and report per interface rotameter observations.

A QosDevice Service exposes its QoS capabilities through the GetExtendedQosState() action. This action

supersedes the v1-defined GetQosDeviceCapabalities(), GetQosState(), and GetQosDeviceInfo() actions.

The GetExtendedQosState() action exposes QoS capabilities such as the type of Native QoS support, the

maximum PHY bandwidth, IANA technology type, MAC address, InterfaceId and AdmitCntrlNet.

The run time QoS state is reported by returning a list of TrafficDescriptor structures for every traffic stream

admitted or registered on the QosDevice Service..

The AdmitTrafficQos(), ReleaseAdmittedQos() and UpdateAdmittedQos() actions provide the core

functionality to request admission, to release resources and to update the resource requests respectively. The

AdmitTrafficQos() action sets up QoS. If RequestedQosType = 0 or absent, then Prioritized QoS is

requested and a traffic stream is always admitted. For parameterized QoS Segments and RequestedQosType

= 1 or 2, the QosDevice Service is requested to reserve the requested resource for the indicated TSPEC of

the provided TrafficDescriptor. If this admission succeeds, the QosDevice Service reports success. If the

resource cannot be reserved, then the request will fail. If a QoS Manager wants to establish prioritized QoS

on QoS Segments where the admission fails, it therefore has to explicitly request Prioritized QoS.

The UpdateAdmittedQos() action can be used to request a change in reservation for an existing admitted

traffic stream. The UpdateAdmittedQos() action has the following two properties:

 If the UpdateAdmittedQos() action fails, the current reservation will be maintained.

 If the UpdateAdmittedQos() action requests fewer resources than the original reservation (for

example, decreasing the bandwidth requirement or increasing the maximum end-to-end delay

requirement) then the request will be successful.

These two properties of the QosDevice Service allow a QoS manager to ensure that either an update

requested by the Control Point succeeds or the current reservation is maintained in case of failure (see also

Section 5.2.3 and Section 6.5.9).

For backward compatibility with version 1 and 2, the SetupTrafficQos() and ReleaseTrafficQos() actions are

maintained. Their behavior is available through the AdmitTrafficQos() and ReleaseAdmittedQos() actions as

well. The SetupTrafficQos() action of the QosDevice Service allows the QoS Manager to setup QoS

associated with a particular traffic stream. The ReleaseTrafficQos() action of the QosDevice Service allows

the QoS Manager to release QoS associated with a particular traffic stream.

The topology information known to the QosDevice Service is exposed via the GetPathInformation() action.

The GetQosDeviceInfo() and GetExtendedQosState() actions allows the QosDevice Service to expose the IP

addresses, port numbers and IP protocol of a particular traffic stream.

UPnP-QoS Architecture version 3 28

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

A QosDevice Service can collect information about network flows (rotameter) from its interfaces.

If a Control Point is interested in querying these rotameter observations, it first configures the service using

the ConfigureRotameterObservation() action, then subsequently (e.g. a user initiated diagnostic session)

request one or more observations using the GetRotameterInformation() action. The rotameter service has to

be configured well before observations are requested (otherwise there could be insufficient data to provide

diagnostic value).

The rotameter report contains counters that report the total traffic count for each device attached to a given

interface or separate counters for each implemented priority queue. For parameterized QoS,

ROBitsParameterized and ROPacketsParameterized provide the number of bits and packets related to

parameterized QoS streams. There are also a number of parameters that are specific per traffic stream.

These are the StreamBitsTransmitted, StreamPacketsTransmitted, StreamPacketsReceived, and

StreamPacketsDropped.

These counters are useful for diagnostic purposes, i.e. ascertaining which device(s) on the network are most

active (sending or receiving the most data), and therefore likely candidates for causing congestion. Because

no distinction is made between bits sent or received in each counter, other UPnP-QoS methods are used to

ascertain the source (versus the sink) of traffic (this can be done by simply querying the QosDevice for

active TrafficDescriptor instances).

5.3.3. Configuring QoS

When the QosDevice Service action AdmitTrafficQos() or SetupTrafficQos() is invoked, the request is for a

specific TSPEC. The QosDevice Service only attempts that TSPEC. The selection of different TSPECs is

up to the QoS Manager. The QosDevice Service also does not perform preemption itself. If requested by the

Control Point, preemption is performed by the QosManager Service (provided it supports that feature). The

QoS Manager uses the ReleaseAdmittedQos() and/or UpdateAdmittedQos() action. .

5.3.4. Path Information

The QosDevice Service has an action that provides information regarding the devices in the network that are

reachable through each of its active interfaces. This information is for a QosManager Service to correctly

detect the topology, adjacency and the QoS Segments.

When there is a change in PathInformation, the QosDevice Service issues an event and sends the updated

PathInformation variable in the body of the event.

5.3.5. Ancillary actions

In this section we describe four actions in the QosDevice Service that support the operations of the QoS

system. The SetL2Map() action provides a QosDevice Service with a mapping from a TrafficHandle to a

Layer2StreamId. With this mapping devices can filter on Layer2StreamId which is generally simpler than

filtering on TrafficId.

The VerifyTrafficHandle() action is provided as an mechanism to verify whether a specific TrafficHandle is

still valid on the QosDevice Service without searching in the complete list as returned by the

GetExtendedQosState() action.

The UpdateTrafficLeaseTime() action allows to update only the traffic lease time of a TrafficDescriptor

without doing a full UpdateAdmittedQos() action.

The SetPreferredQph() action supports the selection of a preferred QosPolicyHolder Service.

UPnP-QoS Architecture version 3 29

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

5.3.6. Events

The QosDevice Service can implement two evented state variables to keep track of the registered and

admitted traffic streams: MostRecentStreamAction and UnexpectedStreamChange. The

MostRecentStreamAction state variable contains counters that track whether the SetupTrafficQos() and

ReleaseTrafficQos() actions are successfully invoked. The UnexpectedStreamChange state variable is a

counter which is incremented after unexpected stream changes which could either be because unexpected

things happen at the L2 Technology or when a traffic stream’s resources are otherwise removed. Both these

events are moderated to avoid flooding the network with repeated events. After receiving the event that

indicates a change for UnexpectedStreamChange, a subscribed QoS Manager or other Control Point

invokes the GetUnexpectedStreamChanges() action to obtain more information on what has happened.

UPnP-QoS Architecture version 3 30

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

6. System Operation
An overview of the operational flow of UPnP-QoS control messages is given below, more detailed

information is provided in the related subsections.

1. Initiation of the QoS setup for a traffic stream – The QosManager Service requires a minimum

set
2
 of information from a Control Point to perform the QoS setup. The method used to gather

this information for different usage environments is described in Sections 6.1 and 6.2.

2. Determination of Policy for the traffic stream – The QoS Manager determines the appropriate

policy by requesting this information from the QosPolicyHolder Service. In some situations, the

QoS manager will have to apply default policy.

3. Determination of QosDevice Services that have to be managed – Based on the source and

destination information for the traffic stream the QoS Manager determines which QosDevice

Services play a role in the transport of the traffic stream.

4. Configuration of QosDevice Service – the QoS Manager will interact with each applicable

QosDevice Service to setup QoS for the traffic stream on the device. The device’s setup will

depend on the capabilities of the device and could include setting of packet handling priorities,

other setup functions, allocation of resources, as well as Admission Mechanism signaling to

request admission.

5. Return the results of the QoS setup to the Control Point invoking the QosManager Service – the

success or failure of setup is provided to allow user feedback or other possible corrective actions.

6.1. Selection of a QosManager Service

The Control Point firsts select a QosManager Service. To find all QosManager Services, a Control Point

performs an M-SEARCH for a QosManager Service embedded in any UPnP device type.

Control Points that do not select a QosManager Service, implement or provide a QoS Manager. There are

zero or more QosManager Services in the network. These are known through standard UPnP discovery

methods. The method for selection of a QosManager:1 Service [QM:1] or a QosManager:2 Service

[QM:2] is not defined in the UPnP-QoS specification.

The selection of the QosManager:3 Service typically depends on the capabilities of the QosManager

Service. The QM:GetQmCapabilities() action is used to obtain the capabilities of the QosManager Service.

The following capabilities are currently defined:

 The QosManager Service can perform admission on a First-Come-First-Served basis.

 The QosManager Service can, if capable, preempt existing traffic streams if their

UserImportanceNumber is smaller than that of the new traffic stream to make room for the new

traffic stream.

 The QosManager Service can report a list of existing blocking traffic streams so that the Control

Point could perform some QoS management itself.

Every QosManager:3 Service is capable of performing admission on a First-Come-First-Served basis.

2
 see the TrafficDescriptor Matrix in QosManager Service document [QM:3] for examples

UPnP-QoS Architecture version 3 31

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

6.2. Invoking the QosManager Service

When a QosManager Service is selected, its QoS setup operation is triggered either through the

QM:RequestTrafficQos() action or through the QM:RequestExtendedTrafficQos() action. The

QM:RequestExtendedTrafficQos() action was introduced in QosManager:3 Service. The behavior of the

QM:RequestTrafficQos() action is a subset of the QM:RequestExtendedTrafficQos() action.

It is recommended that Control Points that need to setup parameterized QoS for multiple traffic streams,

invoke the QM:RequestTrafficQos() and/or QM:RequestExtendedTrafficQos() action serially. This reduces

unnecessary competition for reservations. QosManager Services could also defer execution of the

QM:RequestTrafficQos() and/or QM:RequestExtendedTrafficQos() action when they are still working on

the completion of an earlier invocation.

The control point provides a TrafficDescriptor structure to the QosManager Service. This structure contains

both the TrafficId which determines for which traffic stream QoS is requested and the TSPEC(s) that

specifies resource requirements for the traffic stream. The RequestedQosType parameter is used to specify

which type of QoS is requested (prioritized QoS, parameterized QoS, or hybrid QoS) as defined in Section

3.2.

The information provided in the TrafficDescriptor by the Control Point to the QosManager Service and the

related process steps are described in the subsections. A generic process for any Control Point is described

in Section 6.2.5. However, since streaming in UPnP AV is out-of-band in the specific case of an

independent AV Control Point such a requester of QoS could not know all details of the specific traffic

stream for which QoS is requested. The UPnP-QoS services add specific support to deal with this case by

allowing an AV Control Point to supply an incomplete TrafficId and providing means for the QosManager

Service to complete the TrafficId. This is described in Section 6.2.6.

6.2.1. Initiation of QoS Setup (I)

The QM:RequestTrafficQos() action sets up QoS. This provides the QosManager Service with a (partially

complete) TrafficDescriptor. Upon completion of the QM:RequestTrafficQos() action, the QosManager

Service returns the TrafficHandle, NumPolicyHolders and UpdatedTrafficDescriptor to the Control Point.

 The TrafficHandle is a unique identifier associated with that TrafficDescriptor to be used in all

future interactions.

 The NumPolicyHolders value indicates the number of QosPolicyHolder Services that are available

in the network if neither a preferred QosPolicyHolder Service exists nor a QosPolicyHolder

Service was selected by the CP. A value other than “1” indicates that the default policies have been

used by the QosManager Service. A value of “1” indicates that the policy provided by the

preferred QosPolicyHolder Service or the Control Point selected QosPolicyHolder Service has

been used or that exactly one QosPolicyHolder Service was found on the network.

6.2.2. Initiation QoS Setup (II)

The QM:RequestExtendedTrafficQos() action can also be used to setup QoS. Similar as with the

QM:RequestTrafficQos() action, this provides the QosManager Service with a (partially complete)

TrafficDescriptor. In addition to this, the SelectedQmCapabilities argument contains the options governing

QoS setup. This contains the following information,

 The control point allows the QosManager Service to preempt (Preemption=1) or forbids the

QosManager Service to preempt existing traffic streams (Preemption=0).

 The QosManager Service returns a list of blocking traffic streams if its admission was not

successful (ReportBlockingStreams=1).

UPnP-QoS Architecture version 3 32

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

Upon completion of the QM:RequestExtendedTrafficQos() action, the QosManager Service returns the

TrafficHandle, (an updated) UpdatedTrafficDescriptor, an integer ResultedQosType, and the

ExtendedTrafficQosInfo including a (possibly empty) list of Blocking Traffic Streams to the Control Point.

 The TrafficHandle is a unique identifier associated with that TrafficDescriptor to be used in all

future interactions.

 The returned UpdatedTrafficDescriptor is the one that was completed by the QosManager Service

and was used in the setup of QoS.

 The ResultedQosType argument describes the result of the admission. It for example reports

whether the end-to-end path passes through prioritized QoS Segments.

 The ListOfBlockingStreams in ExtendedTrafficQosInfo is populated when the QosManager

Service was unable to admit the new traffic stream and the Control Point had requested a list of

blocking streams.

The behavior of the QM:RequestTrafficQos() action is the subset of the QM:RequestExtendedTrafficQos()

action with Preemption=0 and ReportBlockingStreams=0.

6.2.3. Release of QoS Resources

The QM:ReleaseTrafficQos() action requests the QosManager Service to release QoS for the traffic stream

that corresponds to the provided TrafficHandle. It is recommended that a QosManager Service process this

invocation as soon as possible, as there could be ongoing QoS setup activities that benefit from the released

resources.

6.2.4. Changing the QoS Setup

The QM:UpdateTrafficQos() and QM:UpdateExtendedTrafficQos() actions request a change in QoS. The

behavior of the QM:UpdateTrafficQos() action is a subset of the QM:UpdateExtendedTrafficQos() action

just like the behavior of the QM:RequestTrafficQos() action is a subset of the

QM:RequestExtendedTrafficQos() action. The high-level properties of the update are that

1. Even if the QM:UpdateTrafficQos() or QM:UpdateExtendedTrafficQos() action fails, the

reservation is maintained.

2. If the requested update results in a request of fewer resources, the QM:UpdateTrafficQos() or

QM:UpdateExtendedTrafficQos() action succeeds.

6.2.5. Integrated Control Point

In the case of an integrated Control Point (a Control Point that is located in an endpoint), the UPnP-QoS

architecture assumes Control Point will manage the binding between the traffic stream and the

TrafficDescriptor. This means that the invocation of the QosManager Service is done by a Control Point

that has knowledge of the setup of the transport method. The control point has to provide the QosManager

Service with the complete TrafficId information and the TSPEC.

The integrated Control Point is present in the following applications:

 UPnP AV services, two box model: In the two box model there is a MediaServer device (MSD) and a

Media Server Control Point. The device that hosts the Media Server Control Point (MSCP) is the

initiator of the QoS setup. The MSCP will locate content on the MSD, retrieve its URI and start

playback. The initiation of QoS Setup can be done after the establishment of an AV session for the

traffic stream but before the content transfer starts.

UPnP-QoS Architecture version 3 33

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

 Generic case (not UPnP AV services): Any application is able to initiate QoS setup as long as it can

provide the information needed by the QosManager Service.

6.2.6. Independent AV Control Point

This AV Control Point case refers to the situation where there is an AV Control Point that is not necessarily

co-resident with the Media Render device (MRD) or the Media Server device (MSD). The AV Control

Point contains a Media Server Control Point and a Media Renderer Control Point. This is referred to

typically as the three box model. For further information refer to the UPnP AV architecture [AV].

In the three box model case, the AV Control Point initiating the RequestTrafficQos() action on the

QosManager Service could be unaware of the complete TrafficId. The AV Control Point knows the UDN

of the MediaServer device (typically the source) and the MediaRenderer device (the destination). The AV

control point includes these addresses in its request.

The QosManager Service uses the QD:GetQosDeviceInfo() or QD:GetExtendedQosState() actions on the

QosDevice Service instances in the MediaServer and the MediaRenderer device to query for the TrafficId.

The QosDevice Service in the MediaServer device returns the SourceAddress it will use for the traffic

stream. This address could be different from the address the MediaServer uses for its UPnP

communications. The QosDevice Service in the MediaServer also reports the port numbers and the

IpProtocol. The destination reports the information from its side.

The UDN of the MediaServer and of the MediaRenderer device are typically not sufficient to uniquely

identify the traffic stream in the QosDevice Services. Therefore the AV Control Point needs to include other

AV specific information to help the QosDevice in the MediaServer and MediaRenderer devices to relate the

QoS request to the AV requests. The items that can be provided are

 MediaServerConnectionId – this is the ConnectionId as provided by the ConnectionManager

Service of the MediaServer device.

 MediaRendererConnectionId – this is the ConnectionId as provided by the ConnectionManager

Service of the MediaRenderer device.

 AVTransportInstanceId – this is the InstanceId of the AVTransport Service on the MediaServer or

MediaRenderer that is responsible for the AV transport of this traffic stream.

 AVTransportUri – this is the URI of the content which originates in the ContentDirectory Service.

To facilitate the identification by the QosDevice Service as many of the above parameters as possible have

to be supplied.

6.2.7. Determination of QosBoundary Source and Destination

The QosManager will setup QoS on the network bounded by the QosBoundarySourceAddress /

QosBoundarySourceUuid and QosBoundaryDestinationAddress / QosBoundaryDestinationUuid

If the Control Point provides the QosBoundarySourceUuid and not the QosBoundarySourceAddress, then

the IP Address needs to be determined. It can be obtained from the QosDevice Service at the UPnP device

with the provided UUID (likely a gateway).

If neither Address nor UUID format are provided, the QosManager assumes it manages the subnet on which

it itself is located and determines the QosBoundarySourceAddress and QosBoundaryDestinationAddress if

necessary.

UPnP-QoS Architecture version 3 34

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

6.2.8. Creation of the TSPEC (Traffic Specification)

The Control Point is responsible for providing the TSPEC (Traffic Specification) to the QosManager

Service. These TSPEC parameters define the desired performance characteristics. The generation of the

TSPEC parameters is left to the Control Point.

Parameters specific to content exposed via the AV ContentDirectory:2 Service could have an associated

res@tspec property.

6.3. Determination of Policy for the Traffic Stream

The QoS Manager communicates with the QosPolicyHolder Service to obtain the TrafficPolicy. In this

section we describe how the QoS Manager determines the QosPolicyHolder Service that it needs to use.

6.3.1. Preferred QosPolicyHolder Service

In UPnP-QoS 3, the user can initially determine which QosPolicyHolder Service the user prefers and sets

this preference through the QPH:SetAsPreferred() action. This QosPolicyHolder Service is called the

Preferred QosPolicyHolder Service.

The QosDevice Services store this preference in persistent memory. The QoS Manager invokes the

QD:SetPreferredQph() action to retrieve the PreferredQphId containing the UDN and serviceId of the

QosPolicyHolder Service most recently set as preferred by the user and the QphPreferenceCount which

quantifies this “recentness” of the user’s selection. The QoS Manager now determines which

QphPreferenceCount is the largest of all those reported by QosDevice Services on the network and uses the

PreferredQphId associated to that number. If there are 2 (or more) QosDevice Services with the same

QphPreferenceCount number but a different PreferredQPHId then there was a synchronization error. This

error can occur in the rare case that two (or more) users simultaneously selected a new QosPolicyHolder

Service and this error lasts until one user successfully reselects a QosPolicyHolder Service.

If the PreferredQphId value is “NULL”, then the user did not prefer any QosPolicyHolder Service.

When the QosPolicyHolder Service associated with the PreferredQphId is not available or there are two

QosDevice Services reporting a different PreferredQphId for the same largest QphPreferenceCount, the

QoS Manager applies default policy (see Section 6.3.7).

6.3.2. CP-Indicated QosPolicyHolder Service

Since UPnP-QoS v2, the Control Point can indicate a QosPolicyHolder Service which is the

QosPolicyHolder Service that has to be used. If a Control Point indicates a QosPolicyHolder Service, but

that QosPolicyHolder Service is not currently available on the network, an error occurs and the Control

Point’s request for QoS fails.

6.3.3. Single QosPolicyHolder Service

In UPnP-QoS v1, if there is exactly one QosPolicyHolder Service on the network, that policy will be

applied. If there are more QosPolicyHolder Services on the network or there is no QosPolicyHolder Service

on the network the default policy is applied. The default policy is described in Section 6.3.7.

6.3.4. Priority Order of QosPolicyHolder Services for Prioritized QoS

For requests for Prioritized QoS, the following ordering is applied by the QoS Manager

1. CP-indicated QosPolicyHolder Service

UPnP-QoS Architecture version 3 35

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

2. Preferred QosPolicyHolder Service (if CP did not indicate QosPolicyHolder Service)

3. Single available QosPolicyHolder Service (if CP did not indicate QosPolicyHolder Service and

Preferred QosPolicyHolder Service = “NULL”)

If none of the above applies, default policy is used.

6.3.5. Priority Order of QosPolicyHolder Services for Parameterized QoS

and Hybrid QoS

For requests for Hybrid QoS or Parameterized QoS, the following ordering is applied by the QoS Manager

1. Preferred QosPolicyHolder Service

2. CP-indicated QosPolicyHolder Service (if Preferred QosPolicyHolder Service = “NULL”)

3. Single available QosPolicyHolder Service (if CP did not indicate QosPolicyHolder Service and

Preferred QosPolicyHolder Service = “NULL”)

If none of the above applies, default policy is used.

6.3.6. The QosPolicyHolder Service

The QoS Manager uses the GetTrafficPolicy() or GetListOfTrafficPolicies() actions of the QosPolicyHolder

Service to retrieve the policy for the traffic stream defined by the information in the TrafficDescriptor. The

QosPolicyHolder Service will provide the following information:

 AdmissionPolicy for prioritized QoS is compatible with UPnP-QoS versions 1 and 2. For all streams

with RequestedQosType > 0, the AdmissionPolicy is ignored.

 TrafficImportanceNumber this parameter is used to determine the packet priority value (for prioritized

and hybrid QoS requests) for the traffic stream. The QoS Manager provides it to the QosDevice

Services, to allow priority tagging of the packets.

 UserImportanceNumber provides a relative ranking of the traffic stream’s user importance compared to

that of the other traffic streams. These numbers are used in the context of preemption (see Section 6.6)

 PolicyHolderId is a value that uniquely identifies a network device implementing the QosPolicyHolder

Service.

 PolicyLastModified is a string that identifies the date/time when the policy on a device with the

QosPolicyHolder Service was last modified.

 PolicyModifyingUserName is a string that identifies the user who last changed the policy

 PolicyHolderConfigUrl is a string containing the URL on the device that provides the QosPolicyHolder

Service.

6.3.7. Default Policy

This paragraph describes the default policy...

The TrafficImportanceNumber default is based on the TrafficClass. This default mapping of Traffic Class

to TrafficImportanceNumber is defined in the QosManager Service document.

The default UserImportanceNumber is 0, the lowest importance. The use of the same number for every

traffic stream leads to First-Come-First-Served admission control.

UPnP-QoS Architecture version 3 36

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

6.4. Determination of QosDevice Services that have to be

managed

To setup QoS for the traffic stream, the QoS Manager determines the devices that are directly involved in

the transport of the traffic stream and the type of QoS setup that is requested. The Control Points (including

QosManager and QosPolicyHolder) discover QosDevice Services embedded in any UPnP device type as it

is expected that QosDevice Services can be added to any UPnP device (MediaServer, MediaRenderer,

InternetGateway, Basic, etc.).

6.4.1. Configuration of QoS Devices

The configuration of the QosDevice Services is controlled by the QoS Manager. Depending on the

particular requirements of the traffic stream and capabilities of the QosDevice Services on the path of the

traffic stream, the QoS Manager determines the setup as described in the following sections.

6.4.1.1. Priority Setup Strategy

For prioritized QoS, configuring the traffic stream source device with the appropriate packet priority

(TrafficImportanceNumber) is typically sufficient for setup of QoS. Upon successful completion of

QD:SetupTrafficQos(), a source device implementing the QosDevice Service prioritizes the traffic

associated with the TrafficId, according to the TrafficImportanceNumber on its output interface.

Intermediate devices are also configured with the traffic stream’s TrafficDescriptor. Intermediate devices

implementing the QosDevice Service with PacketTaggingSupported ="Yes" reprioritize the traffic

associated with the TrafficId according to the TrafficImportanceNumber on their output interfaces

irrespective of the priority on the incoming packets.

6.4.2. Path Determination

The QoS Manager uses the TrafficId information together with the response from QD:GetPathInformation()

received from each QosDevice Service to determine which devices are on the path as described in Section

4.2. The information returned by QD:GetPathInformation() action can also be used to determine the

applicable network interfaces.

The QoS Manager first determines the source and sink QosDevice Services by comparing the source and

sink IP address in the TrafficId to the IP addresses of all discovered QosDevice Services available on the

network.

The QoS Manager then identifies which other QosDevice Services are on the path with the help of the

information returned by the QD:GetPathInformation() action (see the examples in Sections 4.2.1 and 4.2.2).

An intermediate device is on the path if and only if it reports the MAC address of the source on a different

interface than the MAC address of the sink and these two interfaces are bridged.

Finally the QoS Manager sorts the QosDevice Services based on the fact that for every QosDevice Service

A and QosDevice Service B, QosDevice Service B is farther from the source than QosDevice Service A (A

< B), if B reports that A and the source are on the same interface (see the example in Section 4.2.3).

6.4.3. QoS Segment Identification

When a traffic stream has to be setup, the QoS Manager determines the QoS Segments through which the

traffic stream traverses.

UPnP-QoS Architecture version 3 37

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

The QoS Manager identifies QoS Segments by querying every QosDevice Service on the network via

QD:GetExtendedQosState() action and comparing the QosSegmentIds of the different Interfaces. This

process provides the QoS Manager with a list of all QoS Segments.

6.5. Admission Control

This section describes the Admission Control in further detail. In this section the procedure is completed by

decomposing end-to-end requirements into per-QoS Segment requirements and setting up QoS on a

Segment.

6.5.1. Decomposition of End-to-End Requirements into Per-QoS Segment

Requirements

The QoS Manager sets up QoS on a per-QoS Segment basis but it needs to meet end-to-end requirements.

This means that the QoS Manager needs to decompose the end-to-end requirements into per-QoS Segment

requirements for some parameters. Other parameters apply globally.

Not every traffic stream has specific requirements on end-to-end delay, jitter or loss because the application

can work with any finite delay, jitter or loss as long as these values are known to the application. The

QosManager Service has to return the values for achieved upper bounds on end-to-end delays, jitter and

loss.

As an example, suppose the Control Point has specified E2EMaxDelayHigh = 100 and there are two QoS

Segments A and B. The QoS Manager could request a QosSegmentMaxDelayHigh = 50 at each QoS

Segment. If both requests succeed, the requirement that E2EMaxDelayHigh = 100 is obviously met. The

QosDevice Service returns the achieved MaxCommittedDelay and the QosManager Service returns the sum

of the individual MaxCommittedDelay values to the Control Point as the achieved E2EMaxDelayHigh.

Another method is that, the QoS Manager does not include a specific per-QoS Segment requirement in its

interaction with the QosDevice Service. The QosDevice Service minimizes delay when reserving resources

for the traffic stream with the given TSPEC characteristics and to return the achieved value. The result

could be that QoS Segment A achieves MaxCommittedDelay = 30 and QoS Segment B achieves

MaxCommittedDelay = 60. The sum of these is clearly less than 100 and hence the requirement is met.

Without further information a QosDevice Service provides the least QosSegmentMaxDelayHigh for its QoS

Segment which could lead to an unnecessary burden on the resources.

A third method the QoS Manager can follow is to first investigate what the QosDevice Service can likely

deliver. For this the QoS Manager invokes the QD:GetExtendedQosState() action which has the

TrafficDescriptor structure as a input argument. From the returned ProtoTspec structure the QoS Manager

can derive which maximum values for the QosSegmentMaxDelayHigh parameters would have worked if an

admission was made at the time the QD:GetExtendedQosState() action was invoked. There is no guarantee

that these values will work because the network state could have changed.

For some L2 technologies determining a ProtoTspec structure is straightforward because the values can be

derived from the operating mode the L2 technology is in, the specific implementation or even the standard.

But the determination of a ProtoTspec structure could for other L2 technologies amount to performing an

admission and releasing any resources. A QosDevice Service on those latter L2 technologies will likely not

return a useful ProtoTspec structure.

To support the decomposition of E2EMaxDelayHigh the parameter E2EMaxDelayLow can be used by the

QosManager Service. The E2EMaxDelayLow parameter, if supplied by a Control Point, means that actual

E2EMaxDelayHigh values below E2EMaxDelayLow are not needed. This is useful for Admission

Mechanisms that would otherwise reserve with the smallest delay possible. For example, if the Control

Point specifies E2EMaxDelayHigh = 1000 and E2EMaxDelayLow = 700, then this means that the

QosManager Service has to achieve an E2EMaxDelayHigh of at most 1000 but it also means that it is not

UPnP-QoS Architecture version 3 38

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

necessary to achieve an E2EMaxDelayHigh below 700. If the QoS Manager can choose between achieving

E2EMaxDelayHigh of 500 or 900, then 900 is preferable because it will typically pose a lower burden on

the resources. Since 500 is also allowed, the E2EMaxDelayLow is therefore NOT the minimal delay.

The E2EMaxDelayHigh is returned to the Control Point. This specific information is computed by the

QosManager Service after the admission at the QosDevice Services. If a new QoS Manager joins the

network, it can only retrieve per-QoS Segment information from the QosDevice Services. It therefore has to

calculate the actual E2EMaxDelayHigh itself.

6.5.2. Determination of adjacent QosDevice services within a QoS Segment

The Resource argument to the QD:AdmitTrafficQos() action and QD:UpdateAdmittedQos() action contains

the adjacency of QosDevice Services. The Adjacency determination is explained in Section 4.4.

QosDevice A QosDevice C
QosDevice D

QosDevice B

Figure 15: Example of Adjacent QosDevice services

As a first example consider Figure 15 with the traffic stream flowing from A to D. The QoS Manager

provides the following information to the respective QosDevice Services.

QosDevice Service QosDevice Service

Downstream?

QosDevice Service

Upstream?

A 1 0

B 1 1

C 1 1

D 0 1

We will now look at another example. Consider Figure 16 where device B and D do not implement the

QosDevice Service. Here the QoS Manager provides the following information to the respective QosDevice

Services.

QosDevice Service QosDevice Service

Downstream?

QosDevice Service

Upstream?

A 1 0

C 0 1

There is a QosDevice Service downstream of QosDevice Service A (namely C) even though it is not a direct

neighbor of A. For the determination of the values in the table, the devices that do not implement the

QosDevice Service are irrelevant for the purpose of filling this table.

UPnP-QoS Architecture version 3 39

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

QosDevice A QosDevice C
Device D

Device B

Figure 16: Example of Adjacent QosDevice Services. Note that only A and C are QosDevice Services.

6.5.3. Configuring QosDevice Services within a QoS Segment – release

When the QoS Manager releases QoS within a QoS Segment, it invokes the QD:ReleaseAdmittedQos()

action for each QosDevice Service on the path within the QoS Segment. A QosDevice Service that is part of

two (or more) QoS Segments has each of its interfaces managed separately, on a per QoS Segment basis.

The QosSegmentId is used as input argument of the QD:ReleaseAdmittedQos() action to identify the QoS

Segment for which the release of resources is requested. A QoS Manager can have more than one

QD:ReleaseAdmittedQos() invocation outstanding at any time.

6.5.4. Configuring QosDevice Services within a QoS Segment

When the QoS Manager sets up QoS within a QoS Segment, it invokes the QD:AdmitTrafficQos() action for

each QosDevice Service on the path within the QoS Segment. When the QoS Manager modifies an existing

QoS reseveration within a QoS Segment, it invokes the QD:UpdateAdmittedQos() action for each

QosDevice Service on the path within the QoS Segment. In the remainder of this section only the

QD:AdmitTrafficQos() action is used. The interaction with the QD:UpdateAdmittedQos() action is similar.

A QosDevice Service that is part of two (or more) QoS Segments has each of its interfaces managed

separately, on a per QoS Segment basis. The QosSegmentId is used as input argument of the

QD:AdmitTrafficQos() action and QD:UpdateAdmittedQos() action to identify the QoS Segment for which

the admission is requested. The reason for invoking the action once per QoS Segment, is that the per-QoS

Segment Traffic Specification is possibly different for the involved QoS Segments. A QoS Manager can

have more than one QD: AdmitTrafficQos () invocation outstanding at any time.

The other input arguments of the QD:AdmitTrafficQos() action are explained above.

After the QD:AdmitTrafficQos() action completes, the AdmitTrafficQosSucceeded return argument contains

the status report. If its value is 0 (success), the action was successful. If it is not zero, the

AdmitTrafficQosExtendedResult return argument contains more information. In AdmissionStatusDev a

reason code provides more details on why the admission failed if it failed for the device resources. In

AdmissionStatusNet a reason code provides more details on why the admission failed if it failed for the

network resources. If AdmissionStatusNet is “insufficient resources” then the network resources or device

resources are currently insufficient to admit the traffic stream. A value “admission control not supported”

means that this QosDevice Service does not support admission control for this traffic stream in this network

configuration. This value can occur in several cases:

 The QosDevice Service is on a device that is intrinsically capable of performing admission control,

but the QoS Segment this device is in lacks the supporting infrastructure and therefore the QoS

Segment does not deploy admission control at this time.

 The QosDevice Service is on a device in two QoS Segments and supports admission control on one

QoS Segment but not on the other QoS Segment and the request was for the QoS Segment in which

it does not support admission control.

UPnP-QoS Architecture version 3 40

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

 The QosDevice Service is not at the boundary of a QoS Segment and it was asked to perform

admission control because there was no suitable QosDevice Service at the boundary of the

Segment (see Section 4.4 and Section 6.5.2).

In all cases, the QoS Manager concludes that no admission control can be performed on this QoS Segment

and the QoS Manager has to rely on other QoS mechanisms such as Prioritized QoS.

6.5.5. Device resources managed by the QosDevice Service

Apart from network resources, the QosDevice Service can manage local device resources. The available

device resources are accessible through the QD:GetExtendedQosState() action. The admission for a device

resource is similar to the admission for a network resource, except that the Resource field is populated with

the name of the device resource.

6.5.6. Collecting the results of all QoS Segments

When the QoS Manager has received a Success reason for every QosDevice Service on the path, the traffic

stream is successfully admitted to the network and the QosManager Service can report a success to the

Control Point. If there is a QosDevice Service where the traffic stream failed with a non-zero reason code

the QoS Manager revokes the successful reservations it made at other QosDevice Services for this traffic

stream.

The ReasonCode “insufficient resources” from a QosDevice Service could be caused by a transient

limitation of resources. An example is that another QoS Manager was also in the process of admitting a

traffic stream. A QoS Manager can retry admission up to three times, provided it obeys a random backoff

time before retrying. Retries are not necessary, for example a QoS Manager that is confronted with denied

admission at all QosDevice Services could decide it is not worth retrying at all.

Another reason for the indication “insufficient resources” is a persistent shortage of resources. The QoS

Manager can proceed to attempt admission for a TSPEC with lower resource demands for the same

TrafficDescriptor. For this to be possible, the Control Point has to supply an ordered list with multiple

traffic specifications corresponding to different qualities of the same content in the original request.

While in the process of handling an admission request, a QoS Manager can have its successful reservations

on one or more QoS Segments removed by another QoS Manager. This could mean that a Control Point has

already decided to terminate the traffic stream and QoS is no longer needed or that another QoS Manager is

performing preemption on this traffic stream (see Section 6.6). In both cases, the QoS Manager immediately

ceases making admission requests and revokes its successful reservations.

If the QD:AdmitTrafficQos() action does not result in admission, then the return parameter list of blocking

traffic streams provides useful information on traffic streams currently admitted on the QoS Segment. This

list does not contain the TrafficDescriptor of such a traffic stream, but the traffic stream’s Layer2StreamId.

The Layer2StreamId value is the identification of the traffic stream at Layer 2. Not all Layer 2 technologies

are able to report such stream identifiers. The QoS Manager needs to obtain the TrafficDescriptor for this

traffic stream if it needs to report back to the Control Point (when ReportBlockingStreams=1) or to start the

Preemption procedure (when preemption=1). In the case when the TrafficDescriptor cannot be obtained for

a Layer2StreamId, then only the Layer2StreamId is returned.

A QoS Manager invokes the QD:GetExtendedQosState() action to obtain TrafficDescriptor to

Layer2StreamId mappings. The TrafficDescriptor is typically only available at those QosDevice Services

that are on the path of the traffic stream corresponding to that TrafficDescriptor. This means that the QoS

Manager could have to invoke QD:GetExtendedQosState() action at all QosDevice Services on the same

QoS Segment. If the QosDevice Service where the original QD:AdmitTrafficQos() action failed contains the

TrafficDescriptor it will indicate this in the TrafficDescriptorAvailable field, this relieves the QoS Manager

from searching for a TrafficDescriptor.

UPnP-QoS Architecture version 3 41

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

6.5.7. The QosDevice Service and the QD:AdmitTrafficQos() action

Following the invocation of the QD:AdmitTrafficQos() action, the QosDevice Service determines whether it

is connected to the QoS Segment for which the admission is requested. Then the QosDevice Service

determines on the basis of the adjacency of other QosDevice Services within the QoS Segment whether it is

the appropriate QosDevice Service and has to perform the admission. If so the UPnP-QoS request is

translated and issued as an appropriate Layer 2 request and the QosDevice Service returns an appropriate

response to the QoS Manager.

The determination of whether this QosDevice Service is the most appropriate QosDevice Service to allocate

the resources in the QoS Segment depends on the Layer 2 technology as defined in its Addendum. The table

summarizes some cases.

Adm.Mech. Initiation Initiating QosDevice Service Characterization

Only by the sink Most downstream QosDevice Service QDDownstream = 0

Only by the source Most upstream QosDevice Service QDUpstream = 0

By source OR sink Most downstream QosDevice Service QDDownstream = 0

By source

AND

sink

Most upstream QosDevice Service QDUpstream = 0

Most downstream QosDevice Service QDDownstream = 0.

If the Layer 2 technology requires the sink of a traffic stream to admit the traffic stream to the QoS Segment

or the Layer 2 technology makes no choice, then the following happens. The QosDevice Service determines

on the basis of the Resource argument to the QD:AdmitTrafficQos() action whether there exists a

QosDevice Service farther downstream within the QoS Segment. If so, the QosDevice Service will not

invoke the underlying Admission Mechanism for the traffic stream but rely on the QosDevice Service

farther downstream to do this. If this QosDevice Service is the farthest downstream QosDevice Service, it

will admit the traffic stream on the QoS Segment. This QosDevice Service is not necessarily located on the

farthest downstream physical device within the QoS Segment, but it is the candidate defined by the

technology addendum.

Analogously, if the Layer 2 technology requires the source of a traffic stream to admit the traffic stream, the

QosDevice Service determines on the basis of the Resource argument to the QD:AdmitTrafficQos() action

whether there exists a QosDevice Service further upstream within the QoS Segment. If so, it will not invoke

the underlying Admission Mechanism for the traffic stream but rely on the QosDevice Service further

upstream to do this. If this QosDevice Service is the furthest upstream QosDevice Service it will admit the

traffic stream on the QoS Segment.

For a Layer 2 technology that requires both source and sink of a traffic stream to admit the traffic stream,

both of the above will happen.

The next step the QosDevice Service performs is to translate the request into a Layer 2 admission request.

This translation is specific to the Layer 2 technology. For example IP addresses can be converted to MAC

addresses using ARP. Mappings from the UPnP-QoS Traffic Specification to certain Layer 2 technologies

are provided in the QosDevice Service Underlying Technologies Addendum [QDA:3]. Certain UPnP-QoS

traffic specification parameters are only to improve efficiency. Parameters not supported by a specific Layer

2 technology can be ignored.

When multiple Layer 2 requests are outstanding, the book-keeping to be performed by the QosDevice

Service becomes more difficult. All QosDevice Service actions can be processed serially. QosDevice

Service can process multiple action requests in parallel if they wish. .

UPnP-QoS Architecture version 3 42

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

6.5.7.1. Admission and the TSPEC

The QosDevice Service uses the TSPEC to determine whether the traffic stream can be admitted. The inputs

in the TSPEC are the requirements from the application. The provided Quality of Service has to meet the

requirements but this does not imply that it has to be exactly equal to the values in the TSPEC. For example,

if the DataRate of 1 Mbps is requested, it is acceptable to provide a DataRate of 10 Mbps. Of course,

providing more than what was requested could be inefficient.

For delay, the QosSegmentMaxDelayHigh parameter provides a requirement on the maximum delay over

the QoS Segment. The minimum delay is not a parameter specifiable in the TSPEC and is assumed to be

zero. In some L2 technologies this could lead to a difficult trade off because smaller delays can be realized

but come with more inefficient use of the medium. In UPnP-QoS v3, no TSPEC parameter is provided that

puts a requirement on the minimum delay. Such a requirement would lead to non-conformance if packets

happened to be delivered faster than the requested minimum delay. To provide some guidance to

implementers, the QosSegmentMaxDelayLow parameter is provided and is an indication similar to the

E2EMaxDelayLow parameter. An actual QoS Segment delay that is less than QosSegmentMaxDelayLow is

allowed but is not necessary.

6.5.8. The QosDevice Service and the QD:ReleaseAdmittedQos() action

Following the invocation of the QD:ReleaseAdmittedQos() action, the QosDevice Service determines

whether it is connected to the QoS Segment for which the release is requested. Then it determines on the

basis of the adjacency of other QosDevice Services within the QoS Segment whether it is the responsible

QosDevice Service and has to perform the release. If so the UPnP-QoS request is translated and issued as an

appropriate Layer 2 request and the QosDevice Service returns an appropriate response to the QoS

Manager.

The determination of whether this QosDevice Service is the most appropriate QosDevice Service depends

on the Layer 2 technology and the availability of neighbors that are better suited.

The next step the QosDevice Service performs is to translate the release request into a Layer 2 release

request and perform the request. This translation is specific to the Layer 2 technology.

The QosDevice Service implementations can perform Layer 2 requests serially or in parallel. It is strongly

recommended to process the QD:ReleaseAdmittedQos() action as soon as possible as it could be intended to

free resources for other ongoing QoS set ups.

A successful invocation of the QD:ReleaseAdmittedQos() action with a populated argument

PreemptingTrafficInfo results in an increase of the (evented) UnexpectedStreamChange state variable.

6.5.9. The QosDevice Service and the QD:UpdateAdmittedQos() action

Following the invocation of the QD:UpdateAdmittedQos() action, the QosDevice Service determines

whether it is the responsible QosDevice Service and has to perform the update. This depends on the Layer 2

technology. The approach is similar as described for the QD:AdmitTrafficQos() action.

The next step the QosDevice Service performs is to translate the request into a Layer 2 admission request

similar as in the implementation of the QD:AdmitTrafficQos() action. This translation is specific to the

Layer 2 technology.

The QD:UpdateAdmittedQos() action returns successfully when the change has been made. This action is

atomic to UPnP, but not necessarily atomic at Layer 2. Consequently the QD:UpdateAdmittedQos() action

can fail if the resource allocation on the QoS Segment is changed while the action is processed at Layer 2.

When multiple Layer 2 requests are outstanding, the book-keeping to be performed by the QosDevice

Service becomes more difficult. All QosDevice Service actions can be processed serially. QosDevice

Service can process multiple action requests in parallel if they wish. .

UPnP-QoS Architecture version 3 43

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

6.6. Preemption

When the admission request of the traffic specification fails due to the lack of resources, the QoS Manager

could attempt to free resources necessary to allow the new traffic stream to reserve them. The process of

taking resources from existing admitted traffic streams is called preemption.

The process of preemption consists of three steps:

 identify the Blocking traffic streams (if the candidate traffic stream is not blocking, taking away its

resources will not help in the admission of the new traffic stream),

 determine candidates for preemption, by applying policy to determine which Blocking traffic

streams are less important and could be preempted,

 preempt traffic streams by releasing the QoS resources that are associated with identified traffic

streams.

6.6.1. Identifying the Blocking Traffic Streams

The set of preemption candidates is initially populated by determining which traffic streams are blocking the

admission of the new traffic stream. A list of those Blocking traffic streams is part of the

AdmitTrafficQosExtendedResult return argument of the QD:AdmitTrafficQos() action. To be more precise,

the ListOfLayer2StreamIds structure contains tupels of a Layer2StreamId value and a

TrafficDescriptorAvailable Boolean value for Blocking traffic streams. A Layer2StreamId value first has to

be converted to a TrafficDescriptor structure. If TrafficDescriptorAvailable equals true, the same

QosDevice Service can provide the entire TrafficDescriptor structure. Otherwise, the QoS Manager has to

find out the TrafficDescriptor structure corresponding to a Layer2StreamId value itself by querying other

QosDevice Services on the QoS Segment. The QD:GetExtendedQosState() action provides the mapping

between TrafficDescriptor structures and Layer2StreamId values as part of the ListOfAdmittedTraffic return

argument. Certain underlying Layer 2 technologies are unable to determine a Layer2StreamId of a Blocking

traffic stream. In that case, the QoS Manager has to fully rely on the QD:GetExtendedQosState() action to

determine all traffic streams on the QoS Segment, which could include non-Blocking traffic streams.

6.6.2. Determining Candidates for Preemption

Next the QoS Manager ranks the individual traffic streams according to policy. The QoS Manager can do

this by invoking the QPH:GetListOfTrafficPolicies() action on the list (determined in Section 6.6.1) of

TrafficDescriptor structures that contains a TrafficDescriptor structure for every Blocking traffic stream and

the TrafficDescriptor structure for the new traffic stream. The result of this step is precisely the return

argument of the RequestExtendedTrafficQos() action of the QosManager Service when

ReportBlockingStreams=1 (but Preemption=0).

The list of traffic policies associates a certain UserImportanceNumber value x with the traffic descriptor for

the new traffic stream. Only traffic streams with UserImportanceNumber value strictly smaller than x could

be preempted. Between those traffic streams, the precise determination of which ones are preempted and

which ones are not is dependent on the QoS Manager.

A simple example is to preempt traffic streams from the lowest value of UserImportanceNumber upwards

until sufficient resources become available or the traffic stream has a UserImportanceNumber value of x or

higher whichever is earlier. An example is shown in Figure 17.(a). A disadvantage of this approach is that

the QoS Manager could end up unnecessarily preempting many traffic streams with only modest resource

requirements before preempting the traffic streams with the larger resource requirements. Another possible

method is to preempt the smallest set of traffic streams that provide sufficient bandwidth for which an

example is shown in Figure 17 (b).

UPnP-QoS Architecture version 3 44

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

In the examples in Figure 17, the available bandwidth on the network is 3 Mbps. The existing traffic streams

are indicated by ellipses. The new traffic stream is indicated by the square box and has a bandwidth

requirement of 15 Mbps. The preemption approach has to work towards freeing 12 Mbps. The traffic

streams are ordered by their UserImportanceNumber (UIN). Only the traffic streams with

UserImportanceNumber < 50 can be preempted. Approach (a) preempts 3 traffic streams and frees 4+2+9 =

15 Mbps, which is sufficient. Approach (b) preempts the smallest set of traffic streams and frees 12 Mbps.

Finally approach (c) determines that y = 30 and preempts 2 traffic streams freeing 4+9 = 13 Mbps.

UIN = 60

UIN = 40

UIN = 30

UIN = 20

UIN = 10

UIN = 50

Bw = 15

Bw = 12

Bw = 9

Bw = 2

Bw = 4

Bw = 15

Available: 3

Bw = 15

Bw = 12

Bw = 9

Bw = 2

Bw = 4

Bw = 15

Bw = 15

Bw = 12

Bw = 9

Bw = 2

Bw = 4

Bw = 15

(b) (c)(a)

Available: 3 Available: 3

Figure 17: Examples of approaches to determine candidates for preemption

The following approach is suggested because its impact on existing traffic streams is relatively small and it

follows UserImportanceNumber as much as possible. It is illustrated in Figure 17 (c). Calculate the highest

value y of UserImportanceNumber for the traffic streams that would be preempted according to the

previous approach, but do not actually preempt the traffic streams. Now preempt the smallest number of

traffic streams with a UserImportanceNumber at most y that provides sufficient resources.

QoS Managers could have more advanced approaches and decide to modify (reduce) the Quality of Service

of existing traffic streams rather than removing all resources.

In this section it is assumed that there is only a single blocking QoS Segment. Clearly there could be

multiple blocking QoS Segments in which case other approaches could be preferable for reasons of book-

keeping or user impact.

The Critical element of the TrafficDescriptor structure indicates,whether this traffic stream is critical and

never to be preempted. This element is taken into account by the QosPolicyHolder Service while deciding

the UIN of the stream and does not have to be inspected by the QoS Manager during preemption.

UPnP-QoS Architecture version 3 45

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

6.6.3. The Preemption and notification

The QoS Manager will now revoke the QoS resources associated to a traffic stream that has been selected

for preemption. This basically means that the QoS Manager performs all the steps it would perform if the

QM:ReleaseTrafficQos() action would have been invoked. In particular, the QoS Manager revokes the QoS

resources end-to-end and not just at the blocking QoS Segments. The QosManager includes an input

argument when invoking the QD:ReleaseAdmittedQos() actions to identify for which TrafficDescriptor the

traffic stream is preempted. This allows QoS Managers or Control Points to identify the TrafficDescriptor

of the preempting stream.

If the QoS Manager has decided to modify the Quality of Service of existing traffic streams, then it will

have to be aware that the actual traffic has not yet changed and that this could remain the case for an

indefinite period of time. Changing a resource reservation on a QoS Segment could result in a situation

where admitted traffic streams are not conforming to their modified reservations.

Recall that as part of the release of the traffic stream’s resources, the UnexpectedStreamChange state

variable is incremented.

6.6.4. Re-Attempt To Admit the Traffic Stream

After all selected traffic streams are preempted, the QoS Manager performs a new attempt at admitting the

new traffic stream as described in Section 6.5.4.

When the QoS Manager receives success for every QosDevice Service on the path, the traffic stream is

successfully admitted to the network and the QosManager Service can complete the admission by reporting

a success to the Control Point. If there is a QosDevice Service where the admission failed, the QoS Manager

revokes the (successful) reservations it made at other QosDevice Services for this traffic stream.

The indication of failure could again be caused by a temporary shortage of resources. An example is that

another QoS Manager was also in the process of admitting a traffic stream. The QoS Manager could retry

admission on the QoS Segment up to three times. However, it does need to obey a random back off time

before attempting again.

If a QoS Manager notes that its successful reservations (on other QoS Segments) have already been

removed by another QoS Manager, then this could mean that a Control Point has already decided to

terminate the traffic stream and QoS is no longer needed or that another QoS Manager is performing a

preemption on this traffic stream. In both cases, the QoS Manager immediately stops its activities and will

not retry admission.

If the admission still fails and ReportBlockingStreams=1, the QoS Manager returns the list of blocking

streams.

6.7. Run time Operation

6.7.1. Traffic Lease Management and Link failures

The TrafficDescriptor includes a TrafficLeaseTime for the QoS resources allocated to the traffic stream. For

parameterized and hybrid QoS requests, this lease time is bounded. The QosDevice Service revokes the

resources allocated to the traffic stream after the TrafficLeaseTime has expired. The

QD:UpdateLeaseTime() action provides a mechanism to update the traffic lease time with a single action.

The Control Point sets UpdateTrafficLeaseTime to “1” in the TrafficDescriptor and invokes the

QM:UpdateTrafficQos() action to update the TrafficLeaseTime of the existing traffic stream.

UPnP-QoS Architecture version 3 46

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

6.7.2. Violation and Policing of the TSPEC

When a traffic stream is admitted, this admission was based on the active TSPEC that was provided as part

of the TrafficDescriptor structure in the admission requests. The source device will transmit packets

according to the TrafficSpecification. This section explains what could happen if the source device does not

follow the TrafficSpecification.

If a source device sends less traffic than expressed by the TrafficSpecification, then network resources are

unnecessarily allocated, but the traffic stream can continue.

The behavior for the case where a source device for a traffic stream sends more traffic than expressed by the

TrafficSpecification is partially dependent on the underlying Layer-2 technology. Some Layer-2

technologies will still allow additional packets to be sent, provided there are sufficient resources. If there are

insufficient resources, some Layer-2 technologies will police the traffic.

6.7.3. Being Preempted

In Section 6.6, we have described how a QoS Manager can preempt existing traffic streams. The preemption

results in an increase of the evented NumberOfUnexpectedStreamChanges state variable of the impacted

QosDevice Services.

A Control Point that is subscribed to the events of the QosDevice Service along the path of a traffic stream

can then note that the traffic stream was preempted (see also Section 6.6.3). By querying the

QD:GetUnexpectedStreamChanges() action it can identify whether it was its traffic stream. The Control

Point can assume that all QoS resources for the traffic stream are freed in a clean manner. Following this,

the Control Point can take action to stop the traffic stream, attempt to (re)admit the traffic stream at a lower

quality, etc.

Finally, if a QoS Manager is preempting a traffic stream when it notices the traffic stream it wants to admit

is preempted, then the QoS Manager will complete the preemption so that all preempted traffic streams are

cleanly preempted and it will stop its attempt to admit the new traffic stream.

UPnP-QoS Architecture version 3 47

© 2008 Contributing Members of the UPnP Forum. All Rights Reserved.

7. QoS Boundary Addresses
In the case of a scenario where the traffic either originates or terminates on the WAN (i.e. WAN-to-LAN or

LAN-to-WAN traffic) the QosBoundarySourceAddress and/or QosBoundaryDestinationAddress fields of

TrafficDescriptor can be used. These values could be used by the QosManager Service for such tasks as

path determination. In such a scenario, the Traffic Identifier field of TrafficDescriptor enumerates the real

source / destination IP address of the stream (whether it is on the LAN or the WAN). In case where the

traffic originates on the WAN and ends up on the LAN, the Control Point will specify the

QosBoundarySourceAddress or QosBoundarySourceUuid as the IP address or UDN of the InternetGateway

Device. In case where the traffic originates on the LAN and ends up on the WAN, the Control Point will

specify the QosBoundaryDestinationAddress / QosBoundaryDestinationUuid as the IP address or UDN of

the InternetGateway Device.

This applies in particular to the InternetGateway Devices

	List of Figures
	Introduction
	Versions of the UPnP-QoS Specifications
	Informative References

	Architecture Overview
	Scope
	Assumptions
	Architecture Summary

	Architecture
	Policy-based QoS
	Types of QoS
	Prioritized QoS
	Parameterized QoS
	Hybrid QoS

	Key Concepts and Examples
	Interfaces and Links
	Path Information
	Example – Bridge on the path
	Example – Device not on the path
	Example – Path Determination

	QoS Segments
	Example – Simple QoS Segment
	Example – Multiple QoS Segments
	Example – Homogeneous QoS Segment with L2 QoS Bridges
	Example – Heterogeneous QoS Segment with L2 QoS Bridges
	QosSegmentId generation examples

	Adjacency of QosDevice Services

	UPnP-QoS Services
	The QosPolicyHolder Service
	Overview
	Traffic Stream QoS Policy Description
	Multiple instances of the QosPolicyHolder Services
	Preferred QosPolicyHolder Service
	Maintaining the Preference of a QosPolicyHolder Service
	Configuring the QosPolicyHolder Service

	The QosManager Service
	Overview
	Behavior
	Update the QoS reservation

	The QosDevice Service
	Overview
	Behavior
	Configuring QoS
	Path Information
	Ancillary actions
	Events

	System Operation
	Selection of a QosManager Service
	Invoking the QosManager Service
	Initiation of QoS Setup (I)
	Initiation QoS Setup (II)
	Release of QoS Resources
	Changing the QoS Setup
	Integrated Control Point
	Independent AV Control Point
	Determination of QosBoundary Source and Destination
	Creation of the TSPEC (Traffic Specification)

	Determination of Policy for the Traffic Stream
	Preferred QosPolicyHolder Service
	CP-Indicated QosPolicyHolder Service
	Single QosPolicyHolder Service
	Priority Order of QosPolicyHolder Services for Prioritized QoS
	Priority Order of QosPolicyHolder Services for Parameterized QoS and Hybrid QoS
	The QosPolicyHolder Service
	Default Policy

	Determination of QosDevice Services that have to be managed
	Configuration of QoS Devices
	Priority Setup Strategy

	Path Determination
	QoS Segment Identification

	Admission Control
	Decomposition of End-to-End Requirements into Per-QoS Segment Requirements
	Determination of adjacent QosDevice services within a QoS Segment
	Configuring QosDevice Services within a QoS Segment – release
	Configuring QosDevice Services within a QoS Segment
	Device resources managed by the QosDevice Service
	Collecting the results of all QoS Segments
	The QosDevice Service and the QD:AdmitTrafficQos() action
	Admission and the TSPEC

	The QosDevice Service and the QD:ReleaseAdmittedQos() action
	The QosDevice Service and the QD:UpdateAdmittedQos() action

	Preemption
	Identifying the Blocking Traffic Streams
	Determining Candidates for Preemption
	The Preemption and notification
	Re-Attempt To Admit the Traffic Stream

	Run time Operation
	Traffic Lease Management and Link failures
	Violation and Policing of the TSPEC
	Being Preempted

	QoS Boundary Addresses

