ApplicationManagement:2 Service

For UPnP Version 1.0

Status: Standardized DCP (SDCP)
Date: September 30, 2014
Service Template Version 3.0

This Standardized DCP has been adopted as a Standardized DCP by the Steering Committee
of the UPnP Forum, pursuant to Section 2.1(c)(v) of the UPnP Forum Membership Agreement.
UPnP Forum Members have rights and licenses defined by Section 3 of the UPnP Forum
Membership Agreement to use and reproduce the Standardized DCP in UPnP Compliant
Devices. All such use is subject to all of the provisions of the UPnP Forum Membership
Agreement.

THE UPNP FORUM TAKES NO POSITION AS TO WHETHER ANY INTELLECTUAL
PROPERTY RIGHTS EXIST IN THE STANDARDIZED DCPS. THE STANDARDIZED DCPS
ARE PROVIDED "AS IS" AND "WITH ALL FAULTS". THE UPNP™ FORUM MAKES NO
WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO
THE STANDARDIZED DCPS, INCLUDING BUT NOT LIMITED TO ALL IMPLIED
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A
PARTICULAR PURPOSE, OF REASONABLE CARE OR WORKMANLIKE EFFORT, OR
RESULTS OR OF LACK OF NEGLIGENCE.

© 2014, UPnP Forum. All rights Reserved.

Authors Company
Clarke Stevens CableLabs
Wouter van der Beek Cisco Systems Inc.
Seung R. Yang (Chair) LG Electronics
Anders Klemets Microsoft
Nicholas Frame TP Vision
Note: The UPnP Forum in no way guarantees the accuracy or completeness of this author list and in no
way implies any rights for or support from those members listed. This list is not the specifications’
contributor list that is kept on the UPnP Forum’s website.

© 2014, UPnP Forum. All rights Reserved.

a b~ W N

6
7

Terms, definitions, symbols and abbreviations
Notations and Conventions
Service Modelling Definitions

51
5.2

5.3

54
5.5

CONTENTS

SIVICE Ty PO ettt
KEY CONCEPES ..ttt e
521 AMS fEAtUIeS ...
5,22 SECURITY feature ..o
State Variables ...
5.3 1 FeatureLlist..ccoiiiiii i
532 A ARG TYPE APPIDS .coiiriiiiiii i
5.3.3 APPINfOLIST.cvieie i
534 A ARG TYPE AppInfo...ccciiiiiiiiiiiii i
5.3.5 SupportedTargetFieldsScoovveveiiiiiiiii i
536 A ARG TYPE Target .ccovviiiiiiiiieii i i eieeie i e
537 A_ARG_TYPE_TargetFieldS......cccoveiiiiiiiiiiiiiiiieeens
5.3.8 RUNNINGAPPLIST. ccuvitie e
5.3.9 TranSitioniNQADDS «evveiriniie et e
5,310 A_ARG_TYPE URI ittt
5311 A_ARG_TYPE ParametersScccevviiiiiiiiiiiiiiiinannanans
5.3.12 A_ARG_TYPE_ConnectionIDS......ccvvviiiniiiiiiiiineinanns
Eventing and Moderationcccoiiiiii i
Y o3 {0 1 1
5,51 GetFeatureliSt()..iovviiiiiii i
552 GetApPINfOBYIDS() covuiriiriieeiieiii e e
5.5.3 GetSupportedTargetFields() ..ccocvvviiviiiiiiiiiiiieeens
554 GetAPPIDLISt() eueiriiieieii it
5,55 GetRunningAPPLISE() cvveriieiiii e
5,56 GetRunNnNingStatuS()..ovvveiieiiiii i
55.7 StartAPPBYID() .. ce et i
558 StartAPPOYURI .. e i
B5.5.9 SEOPADPD) ettt e
5.5.10 INnStallAPPBYID() . euinieieiiiee e
5.5.11 InStallAPPBYURI . iuieiiiiii e
5.5.12 UNINStAHAPD() ceeneteriieiaii it e eae e e aeaens
5.5.13 GetInstallationStatus() ...ccovvvviiieiiiiiiiei e e
5.5.14 GetAppConnectionInfo() «.ocovvvveiiiiiiiiiie
5.5.15 ConNeCtAPPLOADD() cveuerrrireieieiei et aenaaaas
5.5.16 DisconnectAPPLOAPD() ouvirrireieiei e
5.5.17 GetCurrentConnectionInfo()ooevvvieiiiiiiiiiiiiiieans
5.5.18 Non-Standard Actions Implemented by a UPnP Vendor
5.5.19 Common Error Codesc.oiiiiiiiiiiiiiiii i
XML Service Description

© 2014, UPnP Forum. All rights Reserved.

TaADIE 1 —— AM S A UINES .ot e et et e ettt e et ettt et e et e et e eaaeaaaas 6

Table 2 — Error Codes for ACHION LEVEI ACCESS ... vt e 7
Table 3 — ApplicationManagement ROIES ... 7
Table 4 — Action to Role Permission Mappingc.ouiuiuiuiiiniiii e 8
Table 5 —State variables ... 9
Table 6 — Allowed values for function element..........coooiiiii e 12
Table 7 — Allowed values for connectionAddress element..........cooooviiiiiiiiiii i, 12
Table 8 — Required fields for SupportedTargetFieldS......cooviiviiiii e 14
Table 9 — EVeNnt MOUEration ..o e 15
TADIE L0 — AT ONS ottt e 16
Table 11 — Arguments for GetFeatUreLiSt() ... v iu i 16
Table 12 — Error Codes for GetFeatUrELiSt() vvuue e e e e 17
Table 13 — Arguments for GetAPPINTOBYIDS() . .uuuunitiii i 17
Table 14 — Error Codes for GetAPPINTOBYIDS() .uviuineieiniie et e eaeeees 17
Table 15 — Arguments for GetSupportedTargetFieldS()....ccovrereeireieii e 18
Table 16 — Error Codes for GetSupportedTargetFieldS()...ovvveiiiiiii e 18
Table 17 — Arguments for GEtAPPIDLIST() «ovunininitiie e 18
Table 18 — Error Codes for GetAPPIDLIST() .. uuueiriie e e aaes 18
Table 19 — Arguments for GetRUNNINGAPPLIST() vvuvineieiiie e e e e 19
Table 20 — Error Codes for GetRUNNINGAPPLISE() . vvirinieiiiie e 19
Table 21 — Arguments for GetRUNNINGSTATUS() +vvvvneiriniie e e e e eees 19
Table 22 — Error Codes for GetRUNNINGSEATUS() «vvririnieiiii e 20
Table 23 — Arguments for StartAPPBYID() «.vrineiriiie e 20
Table 24 — Error Codes for StartAPPBYID() «uuininieiiiee e 21
Table 25 — Arguments for StartAPPBYURI() .ovvueiriii i e e e 21
Table 26 — Error Codes for StartAPPBYURI() . ovvieininiiie e 22
Table 27 — Arguments fOr StOPADD() «verrntieirie e et e e 22
Table 28 — Error Codes for STOPADD() «vortrititieeee e 23
Table 29 — Arguments for INStallARPBYID() «eueueiriniti e eaes 23
Table 30 — Error Codes for INStallAPPBYID() «virininiiiiee e 24
Table 31 — Arguments for INStallAPPBYURI() «ouvirinii i e e e e e 25
Table 32 — Error Codes for INStallAPPBYURI() «ovvininiiieiee e 25
Table 33 — Arguments for UniNStallADD() «.oveeinieiniieee e 26
Table 34 — Error Codes for UNINStallADD (). . ueneniueeeiee e 26
Table 35 — Arguments for GetlnstallatioNnStatuUS (). .ovveeeiriririiiie e 27
Table 36 — Error Codes for GetInstallationStatusS (). .ouee e eririniiiieeee e 27
Table 37 — Arguments for GetAppConnectionINfo)oveviiiii e, 27
Table 38 — Error Codes for GetAppConnectionINfo() «.vvvveeiriiiiiiiieii e 28
Table 39 — Arguments for ConNEeCtAPPLOADD() e nuerinet e e e 28
Table 40 — Error Codes for ConnNeCctAPPIOADD () . urrtrenititeteee e e e e e 28
Table 41 — Arguments for DiScONNEeCtAPPLOADD() . urtrenetet et 29
Table 42 — Error Codes for DiscONNeCtAPPIOADD () . vrrinininineteeee e e e e e e eaes 29
Table 43 — Arguments for GetCurrentConnectionInfo()veveiiieinii e 29

© 2014, UPnP Forum. All rights Reserved.

Table 44 — Error Codes for GetCurrentConnectionINfo() ..ooveeiiiieii i 30
Table 45 — ComMMON Error COU@S ... i e e e e e e e eeaaeaan 30

1 Scope

This document specifies the characteristics of the UPnP networked service named
ApplicationManagement, version 2. This service definition is compliant with UPnP Device
Architecture 1.0 [1].

This service type enables to manage applications and the communications between
applications providing various time-sensitive and interactive services including
implementation-specific applications among various display devices, that is, Screen Devices
[3] and Screen Control Points..

Screen Devices shall implement this service [3], but this service is allowed to be implemented
for any UPnP devices as an add-on service.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.

[1] — UPnP Device Architecture, version 1.0, UPnP Forum, October 15, 2008.

Available at: http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0-
20081015.pdf.

Latest version available at: http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-
v1.0.pdf.

[2] — Multi-Screen Architecture:1, UPnP Forum, September 30, 2014.

Available at: http://www.upnp.org/specs/ms/UPnP-ms-MultiScreenArchitecture-v1-
20140930.pdf.

Latest version available at: http://www.upnp.org/specs/ms/UPnP-ms-MultiScreenArchitecture-
v1.pdf.

[3] — ScreenDevice:2, UPnP Forum, September 30, 2014.

Available at: http://www.upnp.org/specs/ms/UPnP-ms-ScreenDevice-v2-Device-20140930.pdf.
Latest version available at: http://www.upnp.org/specs/ms/UPnP-ms-ScreenDevice-v2-
Device.pdf.

[4] — IETF RFC 3986, Uniform Resource Identifiers (URI): Generic Syntax, January 2005.
Available at: http://www.ietf.org/rfc/rfc3986.txt.

[5] - IETF RFC 1738, Uniform Resource Locators (URL), December 1994.
Available at: http://www.ietf.org/rfc/rfc1738.txt.

[6] — IETF RFC 6455, The WebSocket Protocol, December 2011.
Available at: http://www.ietf.org/rfc/rfc6455.txt.

[7] - IETF RFC-6120, Extensible Messaging and Presence Protocol XMPP: Core, March 2011.
Available at http://tools.ietf.org/html/rfc6120

[8] — MediaRenderer:3, UPnP Forum, March 31, 2013.

Available at: http://www.upnp.org/specs/av/UPnP-av-MediaRenderer-v3-Device-20130331.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-AV-MediaRenderer-v3-
Device.pdf.

[9] — DeviceProtection:1, UPnP Forum, December 31, 2010.
Available at: http://www.upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service-
20110224.pdf.

© 2014, UPnP Forum. All rights Reserved.

http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0-20081015.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0-20081015.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf
http://upnp.org/specs/ms/UPnP-ms-MultiScreenArchitecture-v1.pdf
http://upnp.org/specs/ms/UPnP-ms-MultiScreenArchitecture-v1.pdf
http://www.upnp.org/specs/ms/UPnP-ms-MultiScreenArchitecture-v1.pdf
http://www.upnp.org/specs/ms/UPnP-ms-MultiScreenArchitecture-v1.pdf
http://upnp.org/specs/ms/UPnP-ms-ScreenDevice-v2-Device.pdf
http://www.upnp.org/specs/ms/UPnP-ms-ScreenDevice-v2-Device.pdf
http://www.upnp.org/specs/ms/UPnP-ms-ScreenDevice-v2-Device.pdf
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc6455.txt
http://tools.ietf.org/html/rfc6120
http://www.upnp.org/specs/av/UPnP-AV-MediaRenderer-v3-Device.pdf
http://www.upnp.org/specs/av/UPnP-AV-MediaRenderer-v3-Device.pdf

Latest version available at: http://www.upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-
Service.pdf.

[10] — XML Schema for FeatureList XML Structures, UPnP Forum, September 30, 2014.
Available at: http://www.upnp.org/ schemas/ms/FeatureList-v1-20140930.xsd.
Latest version available at: http://www.upnp.org/ schemas/ms/FeatureList.xsd.

[11] — XML Schema for ApplInfoList XML Structures, UPnP Forum, September 30, 2014.
Available at: http://www.upnp.org/ schemas/ms/ApplnfoList-v2-20140930.xsd.
Latest version available at: http://www.upnp.org/ schemas/ms/ApplnfoList.xsd.

3 Terms, definitions, symbols and abbreviations

For the purposes of this document, the terms and definitions given in the UPnP Device
Architecture [1], the Multi-Screen Architecture:1 [2] and the following apply.

3.1 Terms specific to ApplicationManagement

3.1.1 AMS features

A set of extended functionalities for the ApplicationManagement service with additional
requirements beyond the general ApplicationManagement service mechanisms (see
subclause 5.2.1).

3.1.2 SECURITY feature

One of AMS features and an extension of the DeviceProtection service [9] to the actions
(Action Level Access) of the ApplicationManagement service (see subclause 5.2.2).

3.1.3 AM Roles

Access level of a Control Point or User Identity to authorize a specific set of the
ApplicationManagement actions (see subclauses 5.2.2.1 and 5.2.2.2).

3.1.4 Application
A software program designed to help people perform an activity.

3.1.5 Native Application

A type of application running directly on an OS platform. Typically, it needs to be installed
before it can be started.

3.1.6 Web Application
A type of application typically written with web-native languages such as HTML, JavaScript

and so on. It runs directly in a web browser. Typically, it does not need to be installed before
it can be started.

4 Notations and Conventions

See the Multi-Screen Architecture:1 [2].

5 Service Modelling Definitions

5.1 Service Type
The following service type identifies a service that is compliant with this template:

urn:schemas-upnp-org:service:ApplicationManagement:2

5.2 Key Concepts
5.2.1 AMS features

This subclause defines a set of extended functionalities for the ApplicationManagement
service, called AMS features. These features have additional requirements beyond the
general ApplicationManagement service mechanisms to ensure interoperability. When an

© 2014, UPnP Forum. All rights Reserved.

http://upnp.org/%20schemas/ms/FeatureList-v1.xsd
http://upnp.org/%20schemas/ms/FeatureList.xsd
http://upnp.org/%20schemas/ms/AppInfoList-v2.xsd
http://upnp.org/%20schemas/ms/AppInfoList.xsd

implementation supports a specific AMS feature, it shall support that feature according to the
rules in this subclause.

Each AMS feature shall have an integer version number. Later versions — indicated by a
larger version number — shall support the full functionality of all earlier, lower-numbered
versions in the same way as the earlier version (that is, shall be backward compatible). See
subclause 5.3.1 and the schema [10] for more details.

Table 1 — AMS features

Feature Name Version Description Requirements

Default Default functionalities GetAppInfoByID

(no feature) GetSupportedTargetFields()
GetApplDList

and the related state variables

START 1 Application-starting StartAppByID()
related functionalities StartAppByURL()
StopApp()
GetRunningAppList()
GetRunningStatus()

and the related state variables

INSTALL 1 Application-installing InstallAppByID()
related functionalities InstallAppByURI()
UninstallA

GetlnstallationStatus()

and the related state variables

CONNECT 1 Application-connecting GetAppConnectionInfo()
related functionalities ConnectApptoApp()
DisconnectApptoApp()

GetCurrentConnectionInfo()

and the related state variables

SECURITY 1 Action Level Access See subclause 5.2.2.

If an ApplicationManagement service implementation supports an AMS feature, it shall
support the associated requirements described in Table 1. In addition, each action is allowed
to be supported only if its associated AMS feature is supported. |l.e. all the actions associated
with an AMS feature shall be supported simultaneously, or none of them is allowed to be
supported.

An ApplicationManagement service implementation is allowed to support multiple AMS
features. The Default functionalities described in Table 1 shall be supported by default without
association with any AMS feature. The START feature shall be supported by the
ApplicationManagement service version 2.

5.2.2 SECURITY feature

The SECURITY feature is an extension of the DeviceProtection service [9] to the actions
(Action Level Access) of the ApplicationManagement service. The SECURITY feature is only
allowed to be supported on a device which also implements the DeviceProtection service [9],
and not allowed otherwise.

By defining Action Level Access based on the Roles defined by the DeviceProtection service
[9] and the ApplicationManagement service, a ScreenDevice is able to restrict access from
unidentified Control Points or Users, and to differentiate access levels for identified Control
Points or Users with different Roles. Additionally, an implementation may define other vendor
Roles with other Action Level Access.

If a Control Point has at least one Role that is not restricted from invoking a specific action,
then it is said to have Action Level Access. Otherwise, the ApplicationManagement service

© 2014, UPnP Forum. All rights Reserved.

implementation shall issue the error code 606 (see the UPnP Device Architecture [1]) in
response to the action invocation.

Table 2 — Error Codes for Action Level Access

errorCode errorDescription Description
400-499 TBD See clause 3 in the UPnP Device Architecture [1].
500-599 TBD See clause 3 in the UPnP Device Architecture [1].
606 Action_not Action not authorized: The Control Point does not have privileges to
authorized invoke this action

5.2.2.1 AM (ApplicationManagement) Roles

The following Table 3 lists pre-defined AM Roles for the SECURITY feature. These Roles
shall be supported when the SECURITY feature is implemented. This list of pre-defined Roles
may be extended by the implementer with additional vendor-defined Roles.

Table 3 — ApplicationManagement Roles

Role Name R/A
Public CR
Basic CR
AM_SuperUser CR
Admin CR
Conditionally required if the
SECURITY feature is implemented,
and not allowed otherwise.

The Public Role is defined in the DeviceProtection service [9]. This role is assigned limited
read-related action permissions including actions revealing non-personalized information
among the ApplicationManagement service state variables to control points (see Table 4 for
details). This is the default DeviceProtection service Role and therefore default AM Role.

The Basic Role is defined in the DeviceProtection service [9]. This Role is assigned full read-
related action permissions including actions revealing information among the
ApplicationManagement service state variables to control points. This Role is also assigned
limited write-related action permissions including actions changing non-installation-related
information among the ApplicationManagement service state variables (see Table 4 for
details).

The AM_SuperUser Role is defined in the ApplicationManagement service. This Role is
assigned full Action Level Access (see Table 4 for details). Assignment of the AM_SuperUser
Role to an unrecognized User or Control Point Identity is not allowed.

The Admin Role is defined by the DeviceProtection service [9]. The Admin Role has no effect
with regards to the ApplicationManagement actions. However, a Control Point with the Admin
Role is allowed to add the Roles to any User or Control Point Identity enabling this Identity to
have proper permissions for all ApplicationManagement service actions.

5.2.2.2 Restrictable/Non-Restrictable Actions and Action Level Access

ApplicationManagement actions are defined as Restrictable or Non-Restrictable (see Table 4)
only when the SECURITY feature is supported.

The Table 4 shows ApplicationManagement actions accessible to a User or Control Point
Identity assigned each of the Roles. A User or Control Point Identity possessing more than
one of these Roles would be allowed to access to any action permitted by any of the assigned
Roles. A YES value indicates that Action Level Access shall be granted by the corresponding
Role, while a NO value indicates that Action Level Access shall not granted by this Role. Note
that a NO value does not explicitly prohibit Action Level Access. That is, another Role that a
User or Control Point Identity possesses may permit Action Level Access.

© 2014, UPnP Forum. All rights Reserved.

Table 4 — Action to Role Permission Mapping

Action Name Category Role
Public Basic AM Super
User
GetFeaturelList() Non-Restrictable YES YES YES
GetApplInfoByIDs() Restrictable NO YES YES
GetSupportedTargetFields() Non-Restrictable YES YES YES
GetApplDList Restrictable NO YES YES
GetRunningAppList() Restrictable NO YES YES
GetRunningStatus() Restrictable NO YES YES
StartAppByID() Restrictable NO YES YES
StartAppByURI() Restrictable NO YES YES
StopApp() Restrictable NO YES YES
InstallAppByID() Restrictable NO NO YES
InstallAppByURL() Restrictable NO NO YES
UninstallApp() Restrictable NO NO YES
GetlnstallationStatus() Restrictable NO YES YES
GetAppConnectioninfo() Restrictable NO YES YES
ConnectApptoApp() Restrictable NO YES YES
DisconnectApptoApp() Restrictable NO YES YES
GetCurrentConnectionInfo() Restrictable NO YES YES

5.3 State Variables

Note: For a first-time reader, it might be more helpful to read the action definitions before
reading the state variable definitions.

© 2014, UPnP Forum. All rights Reserved.

Table 5 —State variables

Variable Name R/A @ Data Allowed Value Default Eng.
Type Value Units
FeaturelList R string CSV(string)
See subclause 5.3.1
A_ARG_TYPE_ApplIDs R string CSV(string)
See subclause 5.3.2
Applinfolist R string ApplinfoList XML Document
See subclause 5.3.3
A_ARG_TYPE_ Applnfo R string XML fragment of ApplInfoList
XML Document
See subclause 5.3.4
SupportedTargetFields R string CSV(string)
See subclause 5.3.5
A_ARG_TYPE_Target R string See subclause 5.3.6
A_ARG_TYPE_ TargetFields R string CSV(string)
See subclause 5.3.7
RunningAppList CRcC string CSV(string)
See subclause 5.3.8
TransitioningApps CRcC string CSV(string)
See subclause 5.3.9
A_ARG_TYPE_URI CRcC string See subclause 5.3.10
A_ARG_TYPE_Parameter CRc string See subclause 5.3.11
A_ARG_TYPE_ConnectionIDs CRb | Stind | csv(string)
See subclause 5.3.12
Non-standard state variables X TBD TBD TBD TBD
implemented by a UPnP vendor go
here
& For a device this column indicates whether the state variable shall be implemented or not, where R =
required, A = allowed, CR = conditionally required, CA = conditionally allowed, X = Non-standard, add -D
when deprecated (e.g., R-D, A-D).
b cr= conditionally required. See referenced subclause for implementation requirements.
C CR = conditionally required. In fact required since the condition is required for this specification. See
referenced subclause for implementation requirements.

5.3.1 FeatureList

This conditionally required state variable shall be supported if any of the AMS features is
supported, and allowed otherwise. The state variable enumerates the AMS features supported
by this ApplicationManagement service (see subclause 5.2.1 for details). The following is the
XML template for the FeaturelList state variable. See the schema in [10] for more details on
the structure.

<?xml version="1.0" encoding="UTF-8"?>
<FeatureList
xmlns="urn:schemas-upnp-org:ms: FeatureList"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
urn:schemas-upnp-org:ms: FeatureList
http://www.upnp.org/schemas/ms/FeatureList.xsd">
<feature name="Feature Name" version="Feature Version"></feature>
</FeatureList>

532 A ARG TYPE ApplDs

This required state variable provides type information for the various application@id-related
arguments in various actions. This state variable is a CSV list of the application@id values
defined in the ApplinfolList state variable (see subclause 5.3.3).

© 2014, UPnP Forum. All rights Reserved.

5.3.3 Applinfolist

This required state variable contains overall information of applications which a Screen
Device is having for multi-screen services. The following is the XML template for the
ApplnfolList state variable. See the schema in [11] for more details on the structure.

<xml>
Allowed. Case sensitive.

<ApplinfoList>
Required. <XML>. Shall include a namespace declaration for the XML Schema for ApplinfoList XML Structures [11]

(“urn:schemas-upnp-org:ms:ApplinfoList”). Shall include zero or more of the following elements.

<application>
Required. <XML>. Shall appear once for each application. Contains the following attributes and sub-elements:

@id
Required. xsd:string. Provide a unique identity (i.e., UUID. See the UPnP Device Architecture [1].) for the
application within the ApplicationManagement service.
<marketApplD>
Allowed. xsd:string. Provides the identifier of an application which is assigned by an application market.
Contains the following attributes:
@market
Required. xsd:string. Indicates the identification of the digital distribution platform which the
application is provided by.

© 2014, UPnP Forum. All rights Reserved.

@version
Required. xsd:string. Provides a version of the application. This is a literal string that denotes a
version. String comparison will be done to determine if a version is higher. For example,
123.345.456 is higher than 123.245.999, BetaVersion_1 is higher than Alphaversion_2.

<friendlyName>
Required. xsd:string. Provides a short description (e.g., title) of the application for end user. Shall appear
once for each different friendly name. This value can be used for Screen Control Point(s) to search an
appropriate application when the <marketAppID> element is not correctly interpreted. May be localized (see

@language).

@language
Allowed. xsd:string. Indicates the language of the <friendlyName> element. See RFC 1766
language tag(s).

<alternativelD>
Allowed. xsd:string. Provides an identifier of the application used for standard organizations. Shall appear
once for each different alternative ID.

@org

Required. xsd:string. Provides the domain name of the organization using the <alternativelD> value.

<function>
Allowed. xsd:string. Provides an identifier of the functionality implemented by the application. Shall appear
once for each different functionality identifier. See Table for details.

@org
Required. xsd:string. Provides the domain name of the organization that has defined the <function>
value.

<runningStatus>
Conditionally required. Shall be supported if the START feature is supported, and allowed otherwise.
xsd:string. Indicates the activation status of the application on the Screen Device. The allowed values are

“Inactive”, “Transitioning”, “Transitioning_Pending_Input”, “Running”, and “Unknown”.

<startURI>
Allowed. xsd:anyURI. Contains a URI which Screen Control Point(s) can access in order to start the
application. Shall appear once for each different device type.

@deviceType
Required. xsd:string. Indicates the device type which the application is applicable to. The allowed
values are “Both”, “Main_Screen_Device”, and “Companion_Screen_Device”.

<installationStatus>
Conditionally required. xsd:string. Shall be supported if the INSTALL feature is supported, and allowed
otherwise. Indicates the installation status of the application specified by the <applD> element on the
MainScreen Device. The allowed values are “Not_Downloaded”, “Downloading”,
“Downloading_Pending_Input”, “Not_Installed”, “Installing”, “Installing_Pending_Input”, “Installed”, and

“Unknown”. The values of " Not Downloaded”, “Downloading” and “Downloading_Pending_Input” are
applicable only to applications which need to be downloaded for installation. For those applications, the
value of “Not_Installed” indicates a status that the application has been downloaded but not been installed

yet. For applications which do not need installation to be activated, this element shall have the value of
“Installed”.

<downloadingProgress>
Allowed. xsd:unsignedShort.. Allowed to appear only if the <installationStatus> element has the
“Downloading” value, and not allowed otherwise. Indicates a percentage value representing the progress of
the download. Allowed to have an integer value from “0” to “100”. “0” means no byte downloaded yet, and
“100” means fully downloaded. The determination of this value is implementation specific, for example based

on the number of bytes processed.

<installationProgress>
Allowed. xsd:unsignedShort.. Allowed to appear only if the <installationStatus> element has the “Installing”
value, and not allowed otherwise. Indicates a percentage value representing the progress of the Installation.
Allowed to have an integer value from “0” to “100”. “0” means not installed at all and “100” means fully
installed. The determination of this value is implementation specific, for example based on the number of
bytes processed.

<installationURI>
Allowed. xsd:anyURI. Contains a URI which Screen Control Point(s) can access in order to install the
application. Shall appear once for each different device type.

@deviceType
Required. xsd:string. Indicates the device type which the application specified by <applD> element
is applicable to. The allowed values are “Both”, “Main_Screen Device”, and “Companion Screen
Device”.

<usagePolicy>
Allowed. xsd:string. Indicates permission related information for using the application. The allowed values
are “No_Restriction”, “Purchase_Required”, “Trial_Only”, “Parental_Consent_Required”, “Sign-in_Required”
and “Unknown”.

© 2014, UPnP Forum. All rights Reserved.

<apptoAppinfo>

Conditionally required. <XML>. Shall be supported if the CONNECT feature is supported, and allowed
otherwise. Shall be supported at least when the <runningStatus> is set to “Running”. Provides the
information to make an app-to-app connection to the application. Shall appear once for each different
connection information. Contains all of the following attribute and sub-element:

<matchingProtocolName>
Required. xsd:string. Provides a vendor/organization-defined protocol name used for the App-to-
App communication over a transport layer specified by the <protocol> element. This contains the
ICANN assigned domain name owned by the vendor/organization followed by underscore “_” and
the version number of the application’s communication protocol. This field can be used to find a
communication-compatible application(s).

<protocol>
Required. xsd:string. Provides the protocol of the transport layer for the App-to-App communication.
The allowed values are “HTTP”, “Websocket”, “XMPP”, “UPnP” and vendor-defined.

@required
Required. xsd:boolean. Indicates whether the Screen Control Point is required to use the
communication channel described in the <protocol> to communicate to the running
application. “1” means that the <protocol> is required and “0” means that it is not required.

<connectionAddress>
Allowed. xsd:string. Provides the access information for the App-to-App communication. The syntax
of this element varies depending on the value of the <protocol>. See Table for details. Note that
when the <runningStatus> is not set to “Running”, this element is allowed to be omitted. The
omission of this element is implementation dependent.

<iconList>

Allowed. <XML>. Contains the following subelements:

<icon>
Recommended. <XML>. Icon to depict the application in a Screen Control Point Ul. Icon sizes to
support are vendor-specific. Shall appear once for each different icon. Contains the following sub
elements:

<mimetype>
Required. xsd:string. Icon's MIME type (cf. RFC 2045, 2046, and 2387). Single MIME image
type. At least one icon should be of type “image/png” (Portable Network Graphics, see IETF
RFC 2083).

<width>
Required. xsd:unsignedint. Horizontal dimension of icon in pixels.

<height>
Required. xsd:unsignedint. Vertical dimension of icon in pixels.

<depth>
Required. xsd:unsignedint. Number of color bits per pixel.

<url>
Required. xsd:anyURI. Pointer to icon image. Retrieved via HTTP. Shall be relative to the
URL at which the device description is located in accordance with section 5 of RFC 3986.
Specified by UPnP vendor.

Table 6 — Allowed values for function element

@org value function value Reference
upnp.org urn:schemas-upnp-org:device:deviceType:v [1]
upnp.org urn:schemas-upnp-org:service:serviceType:v [1]
vendor-defined vendor-defined
Table 7 — Allowed values for connectionAddress element

protocol value connectionAddress value Reference
HTTP An absolute http or https URI [4], [5]
Websocket WebSocket URI [6]
UPnP uuid:device-uuid [1]
vendor-defined vendor-defined

The following is an example where the ApplnfoList state variable contains information about

two applications, “SimpleMediaPlayer” and “AdvancedMediaPlayer”.

© 2014, UPnP Forum. All rights Reserved.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<AppInfolist
xmlns="urn:schemas-upnp-org:ms:AppInfolList"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
urn:schemas-upnp-org:ms:AppInfolist
http://www.upnp.org/schemas/ms/AppInfolList.xsd">
<application id="F58E1D3B-859A-40EC-928E-A5889EF0B458">
<marketAppID market="MyAppStore" version="1">
SimpleMediaPlayer/0SZ/64bit/v1</marketAppID>
<friendlyName>Simple Media Player</friendlyName>
<runningStatus>Inactive</runningStatus>
<usagePolicy>No Restriction</usagePolicy>
</application>
<application id="CBOD5D97-29F9-488B-AE6B-7D6B4136112B">
<marketAppID market="MyAppStore" version="1">
AdvancedMediaPlayer/0SZ/64bit/v1</marketAppID>
<friendlyName>Advanced Media Player</friendlyName>
<runningStatus>Running</runningStatus>
<usagePolicy>No Restriction</usagePolicy>
<apptoAppInfo>
<matchingProtocolName>HTTP UPnP.org vl</matchingProtocolName>
<protocol required="1">HTTP</protocol>
<connectionAddress>
http://192.168.0.50:34567/apps/AdvancedMediaPlayer/connect
</connectionAddress>
</apptoAppInfo>
</application>
</AppInfoList>

The following is an example where the AppinfolList state variable contains information about
an application called, “MediaRendererApp”. This app implements a UPnP MediaRenderer: 3
device [8].

Example:

<?xml version="1.0" encoding="UTF-8"?>
<AppInfolist
xmlns="urn:schemas-upnp-org:ms:AppInfolist"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
urn:schemas-upnp-org:ms:AppInfolist
http://www.upnp.org/schemas/ms/AppInfolist.xsd">
<application id="5EOE4EC1-6CC4-4D12-9995-7F996B709726">
<marketAppID market="MyAppStore" version="1">
MediaRendererApp/0SZ/64bit/v1</marketAppID>
<friendlyName>Media Renderer</friendlyName>
<function org="upnp.org">
urn:schemas-upnp-org:device:MediaRenderer:3
</function>
<runningStatus>Running</runningStatus>
<usagePolicy>No Restriction</usagePolicy>
<apptoAppInfo>
<matchingProtocolName>UPnP_ 3</matchingProtocolName>
<protocol required="1">XMPP</protocol>
<connectionAddress>
uuid:18306773-E98C-4309-A5FB-EEB38C2A1F75
</connectionAddress>
</apptoAppInfo>
</application>
</AppInfolist>

534 A ARG TYPE Applinfo

This required state variable provides type information for arguments in various actions. The
state variable shall be an XML fragment of the XML document for the AppinfolList state

© 2014, UPnP Forum. All rights Reserved.

variable (see subclause 5.3.3). It shall contain zero or more <application> element(s), its
(their) attributes and sub-elements which depend on the invoked actions.

5.3.5 SupportedTargetFields

This required state variable provides an unordered CSV list of the searchable fields by the
GetApplDList() action (see subclause 5.5.4), that is, elements or attributes of the AppinfoList
state variable of the Screen Device. The value which each component of the CSV list is
allowed to have is any element name without its parent element name, or any attribute name
following its element name without its parent element name. For example, usagePolicy,
alternativelD@org and so on. This state variable shall contain the required fields in Table 8.
The required fields can be expanded in future versions of the specification.

Table 8 — Required fields for SupportedTargetFields

Value Parameter in AppinfolList R/A
friendlyName application::friendlyName R
matchingProtocolName application::apptoApplnfo:: matchingProtocolName R

536 A_ ARG TYPE Target

This required state variable provides type information the Target input argument in the
GetApplDList() action (see subclause 5.5.4)

5.3.7 A ARG TYPE TargetFields

This required state variable provides type information for the TargetFields input argument in
the GetApplIDList() action (see subclause 5.5.4). This state variable is an unordered CSV list
of the values in the CSV list of the SupportedTargetFields state variable.

5.3.8 RunningApplList

This conditionally required state variable shall be supported if the START feature is supported
(see subclause 5.2.1 and 5.3.1), and allowed otherwise. This state variable provides a list of
running applications for the RunningAppList output argument in the GetRunningAppList()
action and eventing. The state variable is a CSV list of the @id values of the <application>
elements of which their <runningStatus> value are set to “Running” in the ApplinfolList state
variable (see subclause 5.3.3). This state variable shall have an empty string when there are
no applications with the <runningStatus> element set to “Running”.

5.3.9 TransitioningApps

This conditionally required state variable shall be supported if the START or INSTALL feature
is supported (see subclauses 5.2.1 and 5.3.1), and allowed otherwise. The state variable is a
CSV list of a pair of the @id (or StartURI or InstallURI for those not assigned an @id) and
either the <runningStatus> or <installStatus> value of the <application> elements under
transitioning status. The transitioning status means that any <runningStatus> value is neither
“Inactive”, “Running” nor “Unknown”, or any <installStatus> value is neither
“‘Not_Downloaded”, “Not_Installed”, “Installed” nor “Unknown”. This state variable shall have
an empty string when there are no applications under transitioning status.

53.10 A_ ARG TYPE URI

This conditionally required state variable shall be supported if the START feature or the
INSTALL feature is supported (see subclauses 5.2.1 and 5.3.1), and allowed otherwise. This
state variable provides type information for the StartURI and InstallationURI input arguments
in the StartAppByURI() and InstallAppByURI() actions (see subclauses 5.5.8 and 5.5.11). This
state variable shall be properly escaped as described in [4]. In addition, it shall be escaped
according to the requirements in [5].

5.3.11 A ARG TYPE Parameters

This conditionally required state variable shall be supported if the START feature or the
INSTALL feature is supported (see subclauses 5.2.1 and 5.3.1), and allowed otherwise. This
state variable provides type information for the StartParameters and InstallParameters input

© 2014, UPnP Forum. All rights Reserved.

arguments in various actions (see subclauses 5.5.7, 5.5.8, 5.5.10 and 5.5.11). The arguments
are used for the according actions to be successfully accepted, and the proper values are
application-specific.

5.3.12 A ARG TYPE ConnectionlIDs

This conditionally required state variable shall be supported if the CONNECT feature is
supported (see subclauses 5.2.1 and 5.3.1), and allowed otherwise. This state variable
provides type information for the arguments in various actions. This state variable is a CSV
list of unique identifiers of app-to-app connections (i.e., UUID. See the UPnP Device
Architecture [1].) currently supported by a Screen Device within the ApplicationManagement
service.

5.4 Eventing and Moderation
Table 9 — Event moderation

Variable Name Evented Moderated Min Event Logical Min Delta
Event Interval @ | Combination | per Event b
(seconds)
FeatureList NO NO
A_ARG_TYPE_ApplIDs NO NO
Applinfolist NO NO
A_ARG_TYPE_Applinfo NO NO
SupportedTargetFields NO NO
A_ARG_TYPE_Target NO NO
A_ARG_TYPE_ TargetFields NO NO
RunningAppList YES YES 0.2
TransitioningApps YES YES 0.2
A_ARG_TYPE_URI NO NO
A_ARG_TYPE_ Parameters NO NO
A_ARG_TYPE_ConnectionIDs NO NO
Non-standard state variables TBD TBD TBD TBD TBD
implemented by a UPnP vendor go here

a Max event rate is determined by N, where Rate = 1/N, where N is the Min Event Interval in seconds.

b (N) * (allowedValueRange Step)

5.5 Actions

The following tables and subclauses define the various ApplicationManagement service
actions.

Except where noted, if an invoked action returns an error, the state of the device will be
unaffected.

© 2014, UPnP Forum. All rights Reserved.

Table 10 — Actions

GetlinstallationStatus()

o
>

GetAppConnectioninfo()

o
>

ConnectApptoApp()

o
>

DisconnectApptoApp()

o
>

GetCurrentConnectioninfo()

o
>

Name R/A @ Control
Point R/A D

GetFeaturelList() CRcc A
GetAppinfoByIDs() R R
GetSupportedTargetFields() R A
GetApplDList R R
GetRunningAppList() CRd A
GetRunningStatus() CRd A
StartAppByID() CRd A
StartAppByURI() CRd A
StopApp() CR d A
InstallAppByID() CRc A
InstallAppByURL() CRc A
UninstallApp() CRc A

CR.

CR.

CR.

CR

CR

X

Non-standard actions implemented by an UPnP vendor go here.

[><

& For a device this column indicates whether the action shall be implemented or not,
where R = required, A = allowed, CR = conditionally required, CA = conditionally
allowed, X = Non-standard, add -D when deprecated (e.g., R-D, A-D).

b For a control point this column indicates whether a control point shall be capable of
invoking this action, where R = required, A = allowed, CR = conditionally required, CA
= conditionally allowed, X = Non-standard, add -D when deprecated (e.g., R-D, A-D).

C CR = conditionally required. See referenced subclause for implementation
requirements.

d CRrR = conditionally required. In fact required since the condition is required for this
specification. See referenced subclause for implementation requirements.

Note that non-standard actions shall be implemented in such a way that they do not interfere
with the basic operation of the ApplicationManagement service, that is: these actions shall be
allowed and do not need to be invoked for the ApplicationManagement service to operate
normally.

5.5.1 GetFeatureList()

This conditionally required action shall be supported if the FeatureList state variable is
supported, and not allowed otherwise. The action enables a Screen Control Point to retrieve
the FeaturelList state variable (see subclauses 5.2.1 and 5.3.1).

55.1.1 Arguments
Table 11 — Arguments for GetFeaturelList()

Argument Direction Related State Variable

FeaturelList ouT FeaturelList

5.5.1.2 Dependency on State
None.

© 2014, UPnP Forum. All rights Reserved.

5.5.1.3 Effect on State

None.

5.5.1.4 Errors

Table 12 — Error Codes for GetFeatureList()
errorCode errorDescription Description

400-499 TBD See clause 3 in the UPnP Device Architecture [1].
500-599 TBD See clause 3 in the UPnP Device Architecture [1].
600-699 TBD See clause 3 in the UPnP Device Architecture [1].

5.5.2 GetAppInfoBylIDs()

This required action enables a Screen Control Point to retrieve information of applications
which are specified by the AppIDs input argument.

5.5.2.1 Arguments

e ApplDs: Specifies applications to retrieve their information. See subclause 5.3.2. The
special value “*” means everything, i.e., the whole ApplnfoList state variable will be
retrieved.

e Applinfo: an XML fragment of the ApplinfolList state variable (see subclauses 5.3.3 and
5.3.4). It shall contain the <application> elements (of which their @id values are
identical to the values of the ApplDs input argument), and all their supported
attributes and sub-elements. If any value of the ApplIDs input argument is not valid, it
shall return either error code 701 or respond with an Appinfo output argument
containing <application> elements corresponding only to the valid values of the
ApplDs input argument. The number of <application> elements of the Appinfo output
argument shall be less than or equal to the number of application@ids included in the
ApplDs input argument.

Table 13 — Arguments for GetAppInfoByIDs()
Argument Direction Related State Variable
AppIDs IN A_ARG_TYPE_AppIDs
Applnfo ouT A_ARG_TYPE_Applinfo
5.5.2.2 Dependency on State
None.
5.5.2.3 Effect on State
None.
5.5.2.4 Errors
Table 14 — Error Codes for GetAppInfoByIDs()

errorCode errorDescription Description

400-499 TBD See clause 3 in the UPnP Device Architecture [1].

500-599 TBD See clause 3 in the UPnP Device Architecture [1].

600-699 TBD See clause 3 in the UPnP Device Architecture [1].

701 Invalid ID One or more of the @ids in the ApplDs are not valid.

702 Too many IDs Too many @ids specified in the AppIDs.

5.5.3 GetSupportedTargetFields()

This required action enables a Screen Control Point to retrieve the SupportedTargetFields
state variable. This action is used to list the values that are allowed to be used for the

© 2014, UPnP Forum. All rights Reserved.

TargetFields input argument in the GetAppIDList() action (see subclause 5.5.4) on the Screen

Device.

5.5.3.1 Arguments
Table 15 — Arguments for GetSupportedTargetFields()

Argument Direction Related State Variable

SupportedTargetFields ouT SupportedTargetFields

5.5.3.2 Dependency on State
None.

5.5.3.3 Effect on State
None.

5.5.3.4 Errors
Table 16 — Error Codes for GetSupportedTargetFields()

errorCode errorDescription Description
400-499 TBD See clause 3 in the UPnP Device Architecture [1].
500-599 TBD See clause 3 in the UPnP Device Architecture [1].
600-699 TBD See clause 3 in the UPnP Device Architecture [1].

5.5.4 GetApplDList()

This required action enables a Screen Control Point to retrieve a CSV list of the @id values of
specific <application> elements in the ApplinfolList state variable on the Screen Device. The
<application> elements of the returned application@id values shall have a sub-string(s)
matched to the specified string by the Target input argument (see subclause 5.3.6) among

any of their sub-elements specified by the TargetFields input argument.

The allowed values for the TargetFields input argument are listed
SupportedTargetFields state variable (see subclauses 5.3.5 and 5.3.7).

5541 Arguments
Table 17 — Arguments for GetAppIDList()

in the

Argument Direction Related State Variable
Target IN A_ARG_TYPE_Target
TargetFields IN A_ARG_TYPE_ TargetFields
ApplIDs ouT A_ARG_TYPE_AppIDs

5.5.4.2 Dependency on State
None.

5.5.4.3 Effect on State
None.

5.5.4.4 Errors
Table 18 — Error Codes for GetAppIDList()

errorCode errorDescription Description
400-499 TBD See clause 3 in the UPnP Device Architecture [1].
500-599 TBD See clause 3 in the UPnP Device Architecture [1].
600-699 TBD See clause 3 in the UPnP Device Architecture [1].

© 2014, UPnP Forum. All rights Reserved.

errorCode errorDescription Description

703

Invalid TargetFields | TargetFields contains unsupported values.

5.5.5 GetRunningAppList()

This conditionally required action shall be supported if the START feature is supported (see
subclauses 5.2.1 and 5.3.1), and allowed otherwise. This action enables a Screen Control
Point to retrieve a list of running applications, i.e., the RunningAppList state variable, on the
Screen Device (see subclause 5.3.8).

5.5.5.1 Arguments
Table 19 — Arguments for GetRunningAppList()
Argument Direction Related State Variable
RunningAppList ouT RunningAppList
5.5.5.2 Dependency on State
None.
5.5.5.3 Effect on State
None.
5.5.5.4 Errors
Table 20 — Error Codes for GetRunningAppList()
errorCode errorDescription Description
400-499 TBD See clause 3 in the UPnP Device Architecture [1].
500-599 TBD See clause 3 in the UPnP Device Architecture [1].
600-699 TBD See clause 3 in the UPnP Device Architecture [1].

5.5.6 GetRunningStatus()

This conditionally required action shall be supported if the START feature is supported (see
subclauses 5.2.1 and 5.3.1), and allowed otherwise. This action enables a Screen Control
Point to retrieve the running status of applications specified by the ApplDs argument.

5.5.6.1 Arguments

e ApplDs: Specifies applications to retrieve their running status. See subclause 5.3.2.

e RunningStatus: an XML fragment of the Applinfolist state variable (see subclauses
5.3.3 and 5.3.4). It shall contain the <application> elements (of which their @id
values are identical to the values of the AppIDs input argument), their attributes, and
their <runningStatus> sub-elements. If any value of the AppIDs input argument is not
valid, it shall return either error code 701 or respond with a RunningStatus output
argument containing <application> elements corresponding only to the valid values of
the ApplDs input argument. The number of <application> elements of the
RunningStatus output argument shall be less than or equal to the number of
application@ids included in the ApplDs input argument.

Table 21 — Arguments for GetRunningStatus()
Argument Direction Related State Variable

AppIDs IN A_ARG_TYPE_AppIDs

RunningStatus ouT A_ARG_TYPE_Applinfo

5.5.6.2 Dependency on State
None.

© 2014, UPnP Forum. All rights Reserved.

5.5.6.3 Effect on State
None.

5.5.6.4 Errors
Table 22 — Error Codes for GetRunningStatus()

errorCode errorDescription Description
400-499 TBD See clause 3 in the UPnP Device Architecture [1].
500-599 TBD See clause 3 in the UPnP Device Architecture [1].
600-699 TBD See clause 3 in the UPnP Device Architecture [1].
701 Invalid 1D One or more of the @ids in the AppIDs are not valid.
702 Too many IDs Too many @ids specified in the AppIDs.

5.5.7 StartAppByID()

This conditionally required action shall be supported if the START feature is supported (see
subclauses 5.2.1 and 5.3.1), and allowed otherwise. This action runs an application of which
its information is contained in the Applinfolist state variable on the Screen Device when
successfully accepted. In addition, this action can be used to provide the StartParameters on
an application in a status of “Transitioning_Pending_Input” or “Running”.

5.5.7.1 Arguments

e ApplD: Specifies the application to be started. See subclause 5.3.2. This argument
shall contain only a single application@id value.

e StartParameters: see subclause 5.3.11.
Table 23 — Arguments for StartAppByID()

Argument Direction Related State Variable
ApplD IN A_ARG_TYPE_ApplDs
StartParameters IN A_ARG_TYPE_ Parameters

5.5.7.2 Dependency on State
None.

5.5.7.3 Effect on State

This action will affect the Applinfolist state variable. This action changes the
ApplnfoList::application::runningStatus value of “Inactive” to “Running”. If it takes a noticeable
amount of time before a human user is actually served by an application, it may temporarily
enter “Transitioning” status before entering “Running”.

If a Screen Device requests user input during starting an application, it enters the
“Transitioning_Pending_Input” before entering “Running”. Once the user input is provided
(possibly by invoking this action again with a StartParameters), the status will change to

“Running”.

Consequently, this action will also affect the RunningApplList state variable. The
ApplnfoList::application@id of the application will be included in the RunningAppList state
variable when its_ApplnfoList::application::runningStatus is set to “Running”.

© 2014, UPnP Forum. All rights Reserved.

55.7.4 Errors
Table 24 — Error Codes for StartAppByID()
Error Code Error Description Description
400-499 TBD See clause 3 in the UPnP Device Architecture [1].
500-599 TBD See clause 3 in the UPnP Device Architecture [1].
600-699 TBD See clause 3 in the UPnP Device Architecture [1].
701 Invalid 1D One or more of the @ids in the AppIDs are not valid.
702 Too many IDs Too many @ids specified in the ApplIDs, i.e. more than one.
704 Invalid Parameter Application cannot start due that the specified parameter is invalid
705 Application is Application’s <runningStatus> is already “Running” and no
running StartParameters specified.
706 Rejected This request is rejected, e.g., by Screen Device implementation or
end user.
712 No such Application | Any of applications’ <installationStatus>s is not “Installed”, and
is installed installation is required to start.

5.5.8 StartAppbyURI()

This conditionally required action shall be supported if the START feature is supported (see
subclauses 5.2.1 and 5.3.1), and allowed otherwise. This action runs an application by using
a URI on the Screen Device when successfully accepted. In addition, this action can be used
to provide the StartParameters on an application in a status of “Transitioning_Pending_Input”.

5.5.8.1

Arguments
StartURI: Provides the <startURI> to start an application. See subclause 5.3.10.

Applinfo: an XML fragment of the ApplInfolList state variable (see subclauses 5.3.3 and
5.3.4). Provides the additional information for the application to be started. The

<friendlyName> is required.
StartParameters: see subclause 5.3.11.
ApplD: Provides the newly-assigned application@id value, or the @id value of the

<application> of which its <startURI> is identical to the StartURI input argument. This
argument shall contain only a single application@id value.

When an application can be started without being installed, by using a URI, i.e. a Web-
application, and the Screen Device does not have the <startURI> in its ApplInfolList state
variable, then this action shall be invoked to start the application on the Screen Device. If the
action is successfully accepted, the Screen Device shall follow the procedures as below:

create a new <application> element in its ApplinfolList state variable. The new
<application> shall include the <startURI> and the additional information provided by
the StartURI and Applnfo input arguments.

assign a new value for the application@id attribute.
return the ApplD output argument of the newly-assigned application@id value.
Table 25 — Arguments for StartAppByURI()

Argument Direction Related State Variable
StartURI IN A_ARG_TYPE_URI
Applnfo IN A_ARG_TYPE_Appinfo
StartParameters IN A_ARG_TYPE_ Parameters
ApplD ouT A_ARG_TYPE_ApplIDs
5.5.8.2 Dependency on State
None.

© 2014, UPnP Forum. All rights Reserved.

5.5.8.3 Effect on State

This action will affect the Applnfolist state variable. This action adds a new <application>
element in the ApplnfolList state variable if there is no <application> element of which its
<startURI> is identical to the StartURI input argument. Its
ApplinfolList::application::runningStatus value will be “Running”. If it takes a noticeable amount
of time before a human user is actually served by an application, it may temporarily enter
“Transitioning” status before entering “Running”.

If a Screen Device requests user input during starting an application, it enters the
“Transitioning_Pending_Input” before entering “Running”. Once the user input is provided
(possibly by invoking this action again with a StartParameters), the status will change to

“Running”.

Consequently, this action will also affect the RunningAppList state variable. The
ApplnfoList::application@id of the application will be included in the RunningApplList state
variable when its_ApplinfoList::application::runningStatus is set to “Running”.

5.5.8.4 Errors
Table 26 — Error Codes for StartAppByURI()
Error Code Error Description Description
400-499 TBD See clause 3 in the UPnP Device Architecture [1].
500-599 TBD See clause 3 in the UPnP Device Architecture [1].
600-699 TBD See clause 3 in the UPnP Device Architecture [1].
704 Invalid Parameter Application cannot start due that the specified parameter is invalid
705 Application is Application is already running and no StartParameters specified.
running
706 Rejected This request is rejected, e.g., by Screen Device implementation or
end user.
707 Invalid URI The StartURL is invalid, e.g., does not represent an endpoint that
can be started.
708 Invalid Applinfo Applnfo is invalid.
717 Installation required | The application is required to be installed before it can be started.
5.5.9 StopApp()

This conditionally required action shall be supported if the START feature is supported (see
subclauses 5.2.1 and 5.3.1), and allowed otherwise. This action stops applications specified
by the ApplDs input argument on the Screen Device when successfully accepted.

5.5.9.1
e ApplDs: Specifies the applications to be stopped. See subclause 5.3.2.

Arguments

o StoppedApplDs: The list of the application@id values of the stopped applications
among the requested ones shall be returned with the StoppedAppIDs output
argument. If any value of the ApplDs input argument is not valid, it shall return either
error code 701 or respond with a StoppedApplDs output argument containing
application@ids which are valid and stopped by this action invocation. The output
argument shall have an empty string when all values of the ApplDs input argument
are valid but no application is stopped by this action invocation.

Table 27 — Arguments for StopApp()

Argument Direction Related State Variable
ApplDs IN A_ARG_TYPE_AppIDs
StoppedAppIDs ouT A_ARG_TYPE_ApplDs

© 2014, UPnP Forum. All rights Reserved.

5.5.9.2 Dependency on State
None.

5.5.9.3 Effect on State

This action will affect the Applinfolist state variable. This action changes the
Applnfolist::application::runningStatus value to “Inactive”.

Consequently, this action will also affect the RunningAppList state variable. The
ApplnfoList::application@id of the application will be excluded from the RunningAppList state
variable when its ApplInfolist::application::runningStatus is set to any other value than

“Running”.
5.5.9.4 Errors

Table 28 — Error Codes for StopApp()

Error Code Error Description Description

400-499 TBD See clause 3 in the UPnP Device Architecture [1].

500-599 TBD See clause 3 in the UPnP Device Architecture [1].

600-699 TBD See clause 3 in the UPnP Device Architecture [1].

701 Invalid ID One or more of the @ids in the AppIDs are not valid.

706 Rejected This request is rejected, e.g., by Screen Device implementation or

end user.

709 No such Application | Any of applications’ <runningStatus>s is not “Running”.
is running

710 Not stoppable Any of applications listed by the @ids in the ApplDs cannot be
application stopped.

5.5.10 InstallAppByID()

This conditionally required action shall be supported if the INSTALL feature is supported (see
subclauses 5.2.1 and 5.3.1), and allowed otherwise. This action installs an application using
information contained in the ApplinfolList state variable on the Screen Device when
successfully accepted. In addition, this action can be used to provide the InstallParameters
for an application in a status of “Installing_Pending_Input”. Moreover, this action can also be
used to update an installed application to its latest version if exists.

5.5.10.1 Arguments

e ApplD: Specifies the application to be installed. See subclause 5.3.2. This argument
shall contain only a single application@id value.

e InstallParameters: See subclause 5.3.11.

Table 29 — Arguments for InstallAppByID()

Argument Direction Related State Variable

=2

ApplD A_ARG_TYPE_AppIDs

=

A_ARG_TYPE_ Parameters

InstallParameters

5.5.10.2 Dependency on State
None.

5.5.10.3 Effect on State

This action will affect the ApplinfoList state variable. This action changes the
ApplnfolList::application::installationStatus value of the “Not Downloaded” or “Not_lInstalled”
status to the “Installed” status. If it takes a noticeable amount of time before an application is
completely downloaded, it may temporarily enter “Downloading” status before entering
“Installed”. If it takes a noticeable amount of time before an application is completely installed

© 2014, UPnP Forum. All rights Reserved.

after the completion of downloading, it may temporarily enter “Installing” status before
entering to “Installed”.

If a Screen Device requests user input during downloading or installing an application, it
enters the “Downloading_Pending_Input” or “Installing_Pending_Input” status before entering
the “Not_Installed” or “Installed” status respectively. Once the user input is provided (possibly
by invoking this action again with an InstallParameters input argument), the status will change
to the “Not_Installed” (and to next status sequentially) or “Installed” status respectively.

5.5.10.4 Errors
Table 30 — Error Codes for InstallAppByID()
errorCode errorDescription Description
400-499 TBD See clause 3 in the UPnP Device Architecture [1].
500-599 TBD See clause 3 in the UPnP Device Architecture [1].
600-699 TBD See clause 3 in the UPnP Device Architecture [1].
701 Invalid 1D One or more of the @ids in the AppIDs are not valid.
702 Too many IDs Too many @ids specified in the AppIDs, i.e. more than one.
704 Invalid Parameter Application cannot be installed due that the specified parameter is
invalid
711 Application is Application’s <installationStatus> is already “Installed” and it is the
installed latest version.
706 Rejected This request is rejected, e.g., by Screen Device implementation or
end user.
715 Not enough storage | Storage is not enough to install the application.
716 Exceeding The application size exceeds the download limit.
download limit
5.5.11 InstallAppByURI()

This conditionally required action shall be supported if the INSTALL feature is supported (see
subclauses 5.2.1 and 5.3.1), and allowed otherwise. This action installs an application by
using a URI on the Screen Device when successfully accepted. In addition, this action can be

used to provide the |InstallParameters on an application in a status of
“Installing_Pending_Input”.
55.11.1 Arguments
e InstallationURI: Provides <installationURI> to install an application. See subclause
5.3.10.

e Applinfo: an XML fragment of the ApplinfolList state variable (see subclauses 5.3.3 and
5.3.4). Provides the additional information for the application to be installed. The

<friendlyName> is required.
o InstallParameters: See subclause 5.3.11.
e ApplD: Provides the newly-assigned application@id value or the @id value of the

<application> of which its <installationURI> is identical to the InstallationURI input
argument. This argument shall contain only a single application@id value.

When the Screen Device does not have the <installationURI> in its ApplnfoList state variable,
then this action shall be invoked to install the application on the Screen Device. If the action
is successfully accepted, the Screen Device shall follow the procedures as below:

e create a new <application> element in its ApplinfolList state variable. The new
<application> shall include the <installationURI> and the additional information
provided by the InstallationURI and Applinfo input arguments.

e assign a new value for the application@id attribute.
e return the ApplD output argument of the newly-assigned application@id value.

© 2014, UPnP Forum. All rights Reserved.

Table 31 — Arguments for InstallAppByURI()

Argument Direction Related State Variable
InstallationURI IN A_ARG_TYPE URI
Applnfo IN A_ARG_TYPE_ Appinfo
InstallParameters IN A_ARG_TYPE_ Parameters
ApplID ouT A_ARG_TYPE_ ApplIDs
5.5.11.2 Dependency on State
None.
5.5.11.3 Effect on State

This action will affect the ApplnfolList state variable. This action adds a new <application>
element in the ApplnfolList state variable if there is no <application> element of which its
<installationURI> is identical to the InstallationURI input argument. Its
ApplinfolList::application::installationStatus value will be “Installed”. If it takes a noticeable
amount of time before an application is completely downloaded, it may temporarily enter
“Downloading” status before entering “Installed”. If it takes a noticeable amount of time before
an application is completely installed after the completion of downloading, it may temporarily
enter “Installing” status before entering “Installed”.

If a Screen Device requests user input during downloading or installing an application, it
enters the “Downloading_Pending_Input” or “Installing_Pending_Input” status before entering
the “Not_Installed” or “Installed” status respectively. Once the user input is provided (possibly
by invoking this action again with an InstallParameters input argument), the status will change
to the “Not_Installed” (and to next status sequentially) or “Installed” status respectively.

5.5.11.4 Errors
Table 32 — Error Codes for InstallAppByURI()
errorCode errorDescription Description
400-499 TBD See clause 3 in the UPnP Device Architecture [1].
500-599 TBD See clause 3 in the UPnP Device Architecture [1].
600-699 TBD See clause 3 in the UPnP Device Architecture [1].
704 Invalid Parameter Application can not start due that the specified parameter is invalid
711 Application is Application is already installed..
installed
706 Rejected This request is rejected, e.g., by Screen Device implementation or
end user.
707 Invalid URI The InstallURL is invalid, e.g. does not represent an endpoint that
can be installed.
708 Invalid Appinfo Applnfo is invalid.
715 Not enough storage | Storage is not enough to install the application.
716 Exceeding The application size exceeds the download limit.
download limit

5.5.12 UninstallApp()

This conditionally required action shall be supported if the INSTALL feature is supported (see
subclauses 5.2.1 and 5.3.1), and allowed otherwise. This action uninstalls applications
specified by the ApplDs input argument on the Screen Device when successfully accepted.

5.5.12.1
e ApplDs: Specifies the applications to be uninstalled. See subclause 5.3.2.

Arguments

© 2014, UPnP Forum. All rights Reserved.

UninstalledAppIDs: The list of the application@id values of the uninstalled
applications among the requested ones shall be returned with the UninstalledApplDs
output argument. If any value of the ApplDs input argument is not valid, it shall return
either error code 701 or respond with a UninstalledApplDs output argument
containing application@ids which are valid and uninstalled by this action invocation.
The output argument shall have an empty string when all values of the ApplDs input
argument are valid but no application is uninstalled by this action invocation.

Table 33 — Arguments for UninstallApp()

Argument Direction Related State Variable
ApplDs IN A_ARG_TYPE_ApplDs
UninstalledApplDs ouT A_ARG_TYPE_ApplIDs
5.5.12.2 Dependency on State
None.
5.5.12.3 Effect on State

This action will affect the ApplinfolList state variable. This action changes the
Applinfolist::application::installationStatus value to “Not_Installed”.

5.5.12.4 Errors
Table 34 — Error Codes for UninstallApp()
errorCode errorDescription Description
400-499 TBD See clause 3 in the UPnP Device Architecture [1].
500-599 TBD See clause 3 in the UPnP Device Architecture [1].
600-699 TBD See clause 3 in the UPnP Device Architecture [1].
701 Invalid 1D One or more of the @ids in the AppIDs are not valid.
706 Rejected This request is rejected, e.g., by Screen Device implementation or
end user.
712 No such Application | Any of applications’ <installationStatus>s is not “Installed”.
is installed
713 Not uninstallable Any of applications listed by the @ids in the AppIDs cannot be
application uninstalled.

5.5.13 GetlnstallationStatus()

This conditionally required action shall be supported if the INSTALL feature is supported (see
subclauses 5.2.1 and 5.3.1), and allowed otherwise. This action enables a Screen Control
Point to retrieve the installation status of applications specified by the ApplDs input argument.

5.5.13.1

Arguments

ApplDs: Specifies the applications to retrieve its installation status. See subclause
5.3.2.

InstallationStatus: an XML fragment of the ApplnfolList state variable (see subclauses
5.3.3 and 5.3.4). It shall contain <application> elements (of which their @id values
are identical to the values of the ApplDs input argument), their attributes, and their
<installationStatus>, <downloadingProgress> and <jnstallationProgress> sub-
elements. If any value of the ApplDs input argument is not valid, it shall return either
error code 701 or respond with a InstallationStatus output argument containing
<application> elements corresponding only to the valid values of the ApplIDs input
argument. The number of <application> elements of the InstallationStatus output
argument shall be less than or equal to the number of application@ids included in the
ApplDs input argument.

© 2014, UPnP Forum. All rights Reserved.

Table 35 — Arguments for GetInstallationStatus()

Argument Direction Related State Variable

ApplIDs IN A_ARG_TYPE_ ApplIDs
InstallationStatus ouT A_ARG_TYPE_Applnfo
5.5.13.2 Dependency on State

None.
5.5.13.3 Effect on State

None.
5.5.13.4 Errors

Table 36 — Error Codes for GetlnstallationStatus()

errorCode errorDescription Description
400-499 TBD See clause 3 in the UPnP Device Architecture [1].
500-599 TBD See clause 3 in the UPnP Device Architecture [1].
600-699 TBD See clause 3 in the UPnP Device Architecture [1].
701 Invalid 1D One or more of the @ids in the AppIDs are not valid.
702 Too many IDs Too many @ids specified in the AppIDs.

5.5.14 GetAppConnectioninfo()

This conditionally required action shall be supported if the CONNECT feature is supported
(see subclauses 5.2.1 and 5.3.1), and allowed otherwise. This action enables a Screen
Control Point to retrieve the app-to-app connection information of applications specified by
the ApplDs input argument.

5.5.14.1

Arguments

ApplDs: Specifies the application to retrieve their app-to-app connection information.
See subclause 5.3.2.

Connectioninfo: an XML fragment of the ApplinfolList state variable (see subclauses
5.3.3 and 5.3.4). It shall contain <application> elements (of which their @id values
are identical to the values of the AppIDs input arguments), their attributes, and their
<apptoApplinfo> sub-elements if supported. If the <apptoApplInfo> sub-element of an
<application> element is not supported, then it shall contain <application> and its
attribute only. If any value of the ApplDs input argument is not valid, it shall return
either error code 701 or respond with a Connectioninfo output argument containing
<application> elements corresponding only to the valid values of the ApplDs input
argument. The number of <application> elements of the Connectioninfo output
argument shall be less than or equal to the number of application@ids included in the
ApplDs input argument.

Table 37 — Arguments for GetAppConnectioninfo()

Argument Direction Related State Variable
ApplIDs IN A_ARG_TYPE_AppIDs
ConnectionlInfo ouT A_ARG_TYPE_Applinfo
5.5.14.2 Dependency on State
None.
5.5.14.3 Effect on State
None.

© 2014, UPnP Forum. All rights Reserved.

5.5.14.4 Errors
Table 38 — Error Codes for GetAppConnectioninfo()
errorCode errorDescription Description
400-499 TBD See clause 3 in the UPnP Device Architecture [1].
500-599 TBD See clause 3 in the UPnP Device Architecture [1].
600-699 TBD See clause 3 in the UPnP Device Architecture [1].
701 Invalid 1D One or more of the @ids in the AppIDs are not valid.
709 No suc_h Application | Any of applications’ <runningStatus>s is not “Running”.
is running

5.5.15 ConnectApptoApp()

This conditionally required action shall be supported if the CONNECT feature is supported
(see subclauses 5.2.1 and 5.3.1), and allowed otherwise. This action is used to set up an app-
to-app connection with the Screen Device and enable the connection manageable.

5.5.15.1

e ApplD: Specifies the application to set up an app-to-app connection with the Screen
Device. See subclause 5.3.2. This argument shall contain only a single

application@id value.

e ConnectionlD: The Screen Device shall assign a unique identifier of the app-to-app
connection to be set up and return it if the action is successfully accepted. See
subclause 5.3.12.

Arguments

The number of components in the both output arguments shall be identical, and their order
shall be correctly matched.

Table 39 — Arguments for ConnectApptoApp()

Argument Direction Related State Variable
ApplD IN A_ARG_TYPE_ApplIDs
ConnectionlD ouT A_ARG_TYPE_ConnectionlDs
5.5.15.2 Dependency on State
None.
5.5.15.3 Effect on State
None.
5.5.15.4 Errors

Table 40 — Error Codes for ConnectApptoApp()
errorCode errorDescription Description

400-499 TBD See clause 3 in the UPnP Device Architecture [1].
500-599 TBD See clause 3 in the UPnP Device Architecture [1].
600-699 TBD See clause 3 in the UPnP Device Architecture [1].
701 Invalid 1D One or more of the @ids in the ApplDs are not valid.
702 Too many IDs Too many @ids specified in the AppIDs, i.e. more than one.

5.5.16 DisconnectApptoApp()

This conditionally required action shall be supported if the CONNECT feature is supported
(see subclauses 5.2.1 and 5.3.1), and allowed otherwise. This action is used to tear down an
app-to-app connection specified by the ConnectionIDs input argument from the Screen Device.

© 2014, UPnP Forum. All rights Reserved.

5.5.16.1

Arguments

ConnectionIDs: Specifies the connections to be disconnected. See subclause 5.3.12.

DisconnectedConnectionIDs: The list of the ID values of the disconnected app-to-app
connections among the requested ones shall be returned with the
DisconnectedConnectionIDs output argument. If any value of the ConnectionlDs input
argument is not valid, it shall return either error code 714 or respond with a
DisconnectedConnectionIDs output argument containing connections’ IDs which are
valid and disconnected by this action invocation. The output argument shall have an
empty string when all values of the ConnectionIDs input argument are valid but no
connection is disconnected by this action invocation.

Table 41 — Arguments for DisconnectApptoApp()

Argument Direction Related State Variable
ConnectionIDs IN A_ARG_TYPE_ConnectionIDs
DisconnectedConnectionIDs ouT A_ARG_TYPE_ConnectionIDs
5.5.16.2 Dependency on State
None.
5.5.16.3 Effect on State
None.
5.5.16.4 Errors
Table 42 — Error Codes for DisconnectApptoApp()
errorCode errorDescription Description
400-499 TBD See clause 3 in the UPnP Device Architecture [1].
500-599 TBD See clause 3 in the UPnP Device Architecture [1].
600-699 TBD See clause 3 in the UPnP Device Architecture [1].
714 Invalid One or more the connection IDs in the ConnectionIDs are not valid.
ConnectionlD
706 Rejected This request is rejected, e.g., by Screen Device implementation or
end user.

5.5.17 GetCurrentConnectioninfo()

This conditionally required action shall be supported if the CONNECT feature is supported
(see subclauses 5.2.1 and 5.3.1), and allowed otherwise. This action enables a Screen

Control Point to collect the information of all the app-to-app connections which were
established by the ConnectApptoApp() invocations and the Screen Device is currently
supporting.

5.5.17.1 Arguments

ConnectionlDs: Provides the current app-to-app connections’ identifiers. See
subclause 5.3.12.

ConnectionApplD: Provides the applications’ @id values corresponding to the app-to-
app connections. See subclause 5.3.2.

The number of components in the both output arguments shall be identical, and their order

shall be

correctly matched.

Table 43 — Arguments for GetCurrentConnectioninfo()

Argument Direction Related State Variable
ConnectionIDs ouT A_ARG_TYPE_ConnectionIDs
© 2014, UPnP Forum. All rights Reserved.

Argument

Direction Related State Variable

ConnectionAppIDs

ouT A_ARG_TYPE_ApplDs

5.5.17.2 Dependency on State
None.

5.5.17.3 Effect on State
None.

5.5.17.4 Errors

Table 44 — Error Codes for GetCurrentConnectionlnfo()

errorCode errorDescription Description
400-499 TBD See clause 3 in the UPnP Device Architecture [1].
500-599 TBD See clause 3 in the UPnP Device Architecture [1].
600-699 TBD See clause 3 in the UPnP Device Architecture [1].

5.5.18 Non-Standard Actions Implemented by a UPnP Vendor

To facilitate certification, non-standard actions implemented by a UPnP vendor shall be
included in the device’s service template. The UPnP Device Architecture lists naming
requirements for non-standard actions (see clause 2 of the UPnP Device Architecture

specification [1]).

5.5.19 Common Error Codes

The following table lists error codes common to actions for this service type. If a given action

results in multiple errors, the most specific error shall be returned.

Table 45 — Common Error Codes

errorCode errorDescription Description

400-499 TBD See clause 3 in the UPnP Device Architecture [1].

500-599 TBD See clause 3 in the UPnP Device Architecture [1].

600-699 TBD See clause 3 in the UPnP Device Architecture [1].

701 Invalid 1D One or more of the @ids in the ApplDs are not

valid.

702 Too many IDs Too many @ids specified in the AppIDs.

703 Invalid TargetFields | TargetFields contains unsupported values.

704 Invalid Parameter The specified parameter is invalid

705 Application is Application is already running.
running

706 Rejected This request is rejected, e.g., by Screen Device implementation or

end user.

707 Invalid URI The specified URL is invalid.

708 Invalid Appinfo Applnfo is invalid.

709 No such Application | Any of applications’ <runningStatus>s is not “Running”.
is running

710 Not stoppable Any of applications listed by the @ids in the ApplDs cannot be
application stopped.

711 Application is Application’s <installationStatus> is already “Installed”.
installed

712 No such Application | Any of applications’ <installationStatus>s is not “Installed”.
is installed

© 2014, UPnP Forum. All rights Reserved.

errorCode errorDescription Description

713 Not uninstallable Any of applications listed by the @ids in the ApplDs cannot be
application uninstalled.

714 Invalid One ore more of the connection IDs in the ConnectionlDs are not
ConnectionlD valid.

715 Not enough storage | Storage is not enough to install the application

716 Exceeding The application size exceeds the download limit.
download limit

717 Installation required | The application is required to be installed before it can be started.

Note: The errorDescription field returned by an action does not necessarily contain human-
readable text (for example, as indicated in the second column of the Error Code tables). It can
contain machine-readable information that provides more detailed information about the error.
It is therefore not advisable for a control point to blindly display the errorDescription field

contents to the user.

Note that 800-899 Error Codes are not permitted for standard actions. See subclause 3.3.2 of

the UPnP Device Architecture specification [1] for more details.

6 XML Service Description

<?xml version="1.0"?2>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">

<specVersion>
<major>l</major>

<minor>0</minor>

</specVersion>
<actionList>

<action>

<name>GetFeaturelist</name>

<argumentList>

<argument>
<name>FeaturelList</name>

<direction>out</direction>
<relatedStateVariable>

FeatureList

</relatedStateVariable>

</argument>
</argumentList>

</action>

<action>

<name>GetAppInfoByIDs</name>

<argumentList>

<argument>
<name>AppIDs</name>

<direction>in</direction>
<relatedStateVariable>

A ARG TYPE AppIDs
</relatedStateVariable>

</argument>

<argument>
<name>AppInfo</name>

<direction>out</direction>
<relatedStateVariable>

A ARG TYPE AppInfo
</relatedStateVariable>

</argument>
</argumentList>

</action>

<action>

<name>GetSupportedTargetFields</name>

<argumentList>

<argument>
<name>SupportedTargetFields</name>

<direction>out</direction>

© 2014, UPnP Forum. All rights Reserved.

<relatedStateVariable>
SupportedTargetFields
</relatedStateVariable>

</argument>

</argumentList>
</action>

<action>
<name>GetAppIDList</name>

<argumentList>

<argument>
<name>Target</name>

<direction>in</direction>
<relatedStateVariable>

A ARG TYPE Target
</relatedStateVariable>

</argument>

<argument>
<name>TargetFields</name>

<direction>in</direction>
<relatedStateVariable>

A ARG TYPE TargetFields
</relatedStateVariable>

</argument>

<argument>
<name>AppIDs</name>

<direction>out</direction>
<relatedStateVariable>

A ARG TYPE AppIDs
</relatedStateVariable>

</argument>
</argumentList>

</action>
<action>
<name>GetRunningAppList</name>

<argumentList>
<argument>

<name>RunningAppList</name>
<direction>out</direction>
<relatedStateVariable>
RunningAppList
</relatedStatevVariable>
</argument>
</argumentList>

</action>
<action>
<name>GetRunningStatus</name>

<argumentList>

<argument>
<name>AppIDs</name>

<direction>in</direction>
<relatedStateVariable>

A ARG TYPE AppIDs
</relatedStateVariable>

</argument>
<argument>

<name>RunningStatus</name>
<direction>out</direction>
<relatedStateVariable>

A ARG TYPE AppInfo
</relatedStateVariable>

</argument>
</argumentList>

</action>
<action>
<name>StartAppByID</name>

<argumentList>

<argument>
<name>AppID</name>

<direction>in</direction>

© 2014, UPnP Forum. All rights Reserved.

<relatedStateVariable>
A ARG TYPE AppIDs
</relatedStateVariable>

</argument>
<argument>

<name>StartParameters</name>
<direction>in</direction>
<relatedStateVariable>

A ARG TYPE Parameters
</relatedStateVariable>

</argument>

</argumentList>
</action>

<action>
<name>StartAppByURI</name>

<argumentList>

<argument>
<name>StartURI</name>

<direction>in</direction>
<relatedStateVariable>

A ARG TYPE URI
</relatedStateVariable>

</argument>

<argument>
<name>AppInfo</name>

<direction>in</direction>
<relatedStateVariable>

A ARG TYPE AppInfo
</relatedStateVariable>

</argument>
<argument>

<name>StartParameters</name>
<direction>in</direction>
<relatedStateVariable>

A ARG TYPE Parameters
</relatedStateVariable>

</argument>
<argument>

<name>AppID</name>
<direction>out</direction>
<relatedStateVariable>

A ARG TYPE ApplIDs
</relatedStatevVariable>

</argument>
</argumentList>

</action>
<action>
<name>StopApp</name>

<argumentList>

<argument>
<name>AppIDs</name>

<direction>in</direction>
<relatedStateVariable>

A ARG TYPE ApplIDs
</relatedStateVariable>

</argument>

<argument>
<name>StoppedAppIDs</name>

<direction>out</direction>
<relatedStateVariable>

A ARG TYPE AppIDs
</relatedStateVariable>

</argument>
</argumentList>

</action>
<action>
<name>InstallAppByID</name>

<argumentList>
<argument>

© 2014, UPnP Forum. All rights Reserved.

<name>AppID</name>
<direction>in</direction>
<relatedStateVariable>

A ARG TYPE AppIDs
</relatedStateVariable>

</argument>
<argument>

<name>InstallParameters</name>
<direction>in</direction>
<relatedStateVariable>

A ARG TYPE Parameters
</relatedStateVariable>

</argument>

</argumentList>
</action>

<action>
<name>InstallAppByURI</name>

<argumentList>

<argument>
<name>InstallationURI</name>

<direction>in</direction>
<relatedStateVariable>

A ARG TYPE URI
</relatedStateVariable>

</argument>

<argument>
<name>AppInfo</name>

<direction>in</direction>
<relatedStateVariable>

A ARG TYPE AppInfo
</relatedStateVariable>

</argument>
<argument>

<name>TInstallParameters</name>
<direction>in</direction>
<relatedStateVariable>

A ARG TYPE Parameters
</relatedStatevVariable>

</argument>
<argument>

<name>AppID</name>
<direction>out</direction>
<relatedStateVariable>

A ARG TYPE AppIDs
</relatedStateVariable>

</argument>
</argumentList>

</action>
<action>
<name>UninstallApp</name>

<argumentList>

<argument>
<name>AppIDs</name>

<direction>in</direction>
<relatedStateVariable>

A ARG TYPE AppIDs
</relatedStateVariable>

</argument>

<argument>
<name>UninstalledAppIDs</name>

<direction>out</direction>
<relatedStateVariable>

A ARG TYPE AppIDs
</relatedStateVariable>

</argument>
</argumentList>

</action>
<action>
<name>GetInstallationStatus</name>

© 2014, UPnP Forum. All rights Reserved.

<argumentList>

<argument>
<name>AppIDs</name>

<direction>in</direction>
<relatedStateVariable>

A ARG TYPE AppIDs
</relatedStateVariable>

</argument>

<argument>
<name>TInstallationStatus</name>

<direction>out</direction>
<relatedStateVariable>

A ARG TYPE AppInfo
</relatedStateVariable>

</argument>

</argumentList>
</action>

<action>
<name>GetAppConnectionInfo</name>

<argumentList>

<argument>
<name>AppIDs</name>

<direction>in</direction>
<relatedStateVariable>

A ARG TYPE AppIDs
</relatedStateVariable>

</argument>

<argument>
<name>ConnectionInfo</name>

<direction>out</direction>
<relatedStateVariable>

A ARG TYPE AppInfo
</relatedStateVariable>

</argument>
</argumentList>

</action>
<action>
<name>ConnectApptoApp</name>

<argumentList>
<argument>

<name>AppID</name>
<direction>in</direction>
<relatedStateVariable>

A ARG TYPE AppIDs
</relatedStateVariable>

</argument>
<argument>

<name>ConnectionID</name>
<direction>out</direction>
<relatedStateVariable>

A ARG TYPE ConnectionIDs
</relatedStateVariable>

</argument>
</argumentList>

</action>
<action>
<name>DisconnectApptoApp</name>

<argumentList>
<argument>

<name>ConnectionIDs</name>
<direction>in</direction>
<relatedStateVariable>

A ARG TYPE ConnectionIDs
</relatedStateVariable>

</argument>
<argument>

<name>DisconnectedConnectionIDs</name>
<direction>out</direction>
<relatedStateVariable>

© 2014, UPnP Forum. All rights Reserved.

A ARG TYPE ConnectionIDs
</relatedStateVariable>

</argument>

</argumentList>
</action>

<action>
<name>GetCurrentConnectionInfo</name>

<argumentList>

<argument>
<name>ConnectionIDs</name>

<direction>out</direction>
<relatedStateVariable>

A ARG TYPE ConnectionIDs
</relatedStateVariable>

</argument>

<argument>
<name>ConnectionAppIDs</name>

<direction>out</direction>
<relatedStateVariable>

A ARG TYPE AppIDs
</relatedStateVariable>

</argument>
</argumentList>

</action>
<!--Declarations for other actions added by UPnP vendor
(if any) go here-->

</actionList>

<serviceStateTable>

<stateVariable sendEvents="no">
<name>Featurelist</name>
<dataType>string</dataType>

</stateVariable>

<stateVariable sendEvents="no">
<name>A ARG TYPE AppIDs</name>
<dataType>string</dataType>

</stateVariable>

<stateVariable sendEvents="no">
<name>AppInfolList</name>
<dataType>string</dataType>

</stateVariable>

<stateVariable sendEvents="no">
<name>A ARG TYPE AppInfo</name>
<dataType>string</dataType>

</stateVariable>

<stateVariable sendEvents="no">
<name>SupportedTargetFields</name>
<dataType>string</dataType>

</stateVariable>

<stateVariable sendEvents="no">
<name>A ARG TYPE Target</name>
<dataType>string</dataType>

</stateVariable>

<stateVariable sendEvents="no">
<name>A ARG TYPE TargetFields</name>
<dataType>string</dataType>

</stateVariable>

<stateVariable sendEvents="yes">
<name>RunningAppList</name>
<dataType>string</dataType>

</stateVariable>

<stateVariable sendEvents="yes">
<name>TransitioningApps</name>
<dataType>string</dataType>

</stateVariable>

<stateVariable sendEvents="no">
<name>A ARG TYPE URI</name>
<dataType>string</dataType>

</stateVariable>

<stateVariable sendEvents="no">

© 2014, UPnP Forum. All rights Reserved.

<name>A ARG TYPE Parameters</name>
<dataType>string</dataType>
</stateVariable>
<stateVariable sendEvents="no">
<name>A ARG TYPE ConnectionIDs</name>
<dataType>string</dataType>
</stateVariable>
<!--Declarations for other state variables added by
UPnP vendor (if any) go here-->
</serviceStateTable>

</scpd>
7 Test

No semantic tests have been specified for this service.

© 2014, UPnP Forum. All rights Reserved.

