
ConnectionManager:2 Service Template Version
1.01
For UPnP™ Version 1.0
Status: Approved Standard
Date: May 31, 2006
Document Version: 1.00

This Standardized DCP has been adopted as a Standardized DCP by the Steering Committee of the UPnP
Forum, pursuant to Section 2.1(c)(ii) of the UPnP Membership Agreement. UPnP Forum Members have
rights and licenses defined by Section 3 of the UPnP Membership Agreement to use and reproduce the
Standardized DCP in UPnP Compliant Devices. All such use is subject to all of the provisions of the UPnP
Membership Agreement.

THE UPNP FORUM TAKES NO POSITION AS TO WHETHER ANY INTELLECTUAL PROPERTY
RIGHTS EXIST IN THE STANDARDIZED DCPS. THE STANDARDIZED DCPS ARE PROVIDED
"AS IS" AND "WITH ALL FAULTS". THE UPNP FORUM MAKES NO WARRANTIES, EXPRESS,
IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE STANDARDIZED DCPS,
INCLUDING BUT NOT LIMITED TO ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE, OF REASONABLE CARE
OR WORKMANLIKE EFFORT, OR RESULTS OR OF LACK OF NEGLIGENCE.

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Authors Company

Alan Presser Allegrosoft

Gary Langille Echostar

Gerrie Shults HP

John Ritchie (Co-Chair) Intel

Mark Walker Intel

Changhyun Kim LG Electronics

Sungjoon Ahn LG Electronics

Masatomo Hori Matsushita Electric (Panasonic)

Matthew Ma Matsushita Electric (Panasonic)

Jack Unverferth Microsoft

Wim Bronnenberg Philips

Geert Knapen (Co-Chair) Philips

Russell Berkoff Pioneer

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 2

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Authors Company

Irene Shen Pioneer

Norifumi Kikkawa Sony

Jonathan Tourzan Sonys

Yasuhiro Morioka Toshiba

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 3

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Contents
1 Overview and Scope...7

1.1 Introduction...7
1.2 Notation...7

1.2.1 Data Types ...8
1.2.2 Strings Embedded in Other Strings..8
1.2.3 Extended Backus-Naur Form...8

1.3 Derived Data Types ..9
1.3.1 Comma Separated Value (CSV) Lists..9

1.4 Management of XML Namespaces in Standardized DCPs...10
1.4.1 Namespace Prefix Requirements ...13
1.4.2 Namespace Names, Namespace Versioning and Schema Versioning13
1.4.3 Namespace Usage Examples ...15

1.5 Vendor-defined Extensions...15
1.6 References...15

2 Service Modeling Definitions...19
2.1 ServiceType ..19
2.2 State Variables ..19

2.2.1 SourceProtocolInfo ..20
2.2.2 SinkProtocolInfo ..20
2.2.3 CurrentConnectionIDs...20
2.2.4 A_ARG_TYPE_ConnectionStatus..20
2.2.5 A_ARG_TYPE_ConnectionManager ...21
2.2.6 A_ARG_TYPE_Direction...21
2.2.7 A_ARG_TYPE_ProtocolInfo..21
2.2.8 A_ARG_TYPE_ConnectionID ...21
2.2.9 A_ARG_TYPE_AVTransportID ...21
2.2.10 A_ARG_TYPE_RcsID ..21

2.3 Eventing and Moderation..21
2.4 Actions ..22

2.4.1 GetProtocolInfo()...22
2.4.2 PrepareForConnection() ...23
2.4.3 ConnectionComplete() ...25
2.4.4 GetCurrentConnectionIDs() ..26
2.4.5 GetCurrentConnectionInfo()..27
2.4.6 Common Error Codes ..28

2.5 Theory of Operation..29
2.5.1 Purpose...29
2.5.2 ProtocolInfo Concept...30
2.5.3 Typical Control Point Operations ..34
2.5.4 Relation to Devices without ConnectionManagers..35
2.5.5 PrepareForConnection() and ConnectionComplete() ...36

3 XML Service Description ..39

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 4

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

4 Test ..43
Appendix A. Protocol Specifics...44

A.1 Application to HTTP Streaming ...44
A.1.1 ProtocolInfo Definition..44
A.1.2 Implementation of PrepareForConnection() ...44
A.1.3 Implementation of ConnectionComplete()...44
A.1.4 Automatic Connection Cleanup ...44

A.2 Application to RTSP/RTP/UDP Streaming ..45
A.2.1 ProtocolInfo Definition..45
A.2.2 Implementation of PrepareForConnection() ...45
A.2.3 Implementation of ConnectionComplete()...45
A.2.4 Automatic Connection Cleanup ...45

A.3 Application to Device-Internal Streaming ..46
A.4 Application to IEC61883 Streaming...46

A.4.1 ProtocolInfo Definition..46
A.4.2 Implementation of PrepareForConnection() ...47
A.4.3 Implementation of ConnectionComplete()...48
A.4.4 Automatic Connection Cleanup ...48

A.5 Application to Vendor-specific Streaming..48

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 5

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

List of Tables
Table 1-1: EBNF Operators ...9
Table 1-2: CSV Examples..10
Table 1-3: Namespace Definitions ...11
Table 1-4: Schema-related Information..12
Table 1-5: Default Namespaces for the AV Specifications..13
Table 2-6: State Variables ..19
Table 2-7: Event Moderation ...21
Table 2-8: Actions..22
Table 2-9: Arguments for GetProtocolInfo() ...22
Table 2-10: Arguments for PrepareForConnection() ..24
Table 2-11: Error Codes for PrepareForConnection() ..25
Table 2-12: Arguments for ConnectionComplete()..26
Table 2-13: Error Codes for ConnectionComplete() ..26
Table 2-14: Arguments for GetCurrentConnectionIDs()...26
Table 2-15: Error Codes for GetCurrentConnectionIDs() ...27
Table 2-16: Arguments for GetCurrentConnectionInfo() ..27
Table 2-17: Error Codes for GetCurrentConnectionInfo() ..28
Table 2-18: Common Error Codes ...28
Table 2-19: Defined Protocols and their associated ProtocolInfo Values..30
Table A-1: <contentFormat> for Protocol IEC61883 ...46

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 6

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

List of Figures

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 7

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

1 Overview and Scope

1.1 Introduction
This service definition is compliant with the UPnP Device Architecture version 1.0.

This service-type enables modeling of streaming capabilities of A/V devices, and binding of those
capabilities between devices. Each device that is able to send or receive a stream according to the UPnP
AV Architecture will have 1 instance of the ConnectionManager service. This service provides a
mechanism for control points to:

1. Perform capability matching between source/server devices and sink/renderer devices,

2. Find information about currently ongoing transfers in the network,

3. Setup and teardown connections between devices (when required by the streaming protocol).

The ConnectionManager service is generic enough to properly abstract different kinds of streaming
mechanisms, such as HTTP-based streaming, RTSP/RTP-based and 1394-based streaming.

The ConnectionManager enables control points to abstract from physical media interconnect technology
when making connections. The term ‘stream’ used in this service template refers to both analog and digital
data transfer.

1.2 Notation
• In this document, features are described as Required, Recommended, or Optional as follows:

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,”
“SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in this
specification are to be interpreted as described in [RFC 2119].

In addition, the following keywords are used in this specification:

PROHIBITED – The definition or behavior is an absolute prohibition of this specification.
Opposite of REQUIRED.

CONDITIONALLY REQUIRED – The definition or behavior depends on a condition. If the
specified condition is met, then the definition or behavior is REQUIRED, otherwise it is
PROHIBITED.

CONDITIONALLY OPTIONAL – The definition or behavior depends on a condition. If the
specified condition is met, then the definition or behavior is OPTIONAL, otherwise it is
PROHIBITED.

These keywords are thus capitalized when used to unambiguously specify requirements over
protocol and application features and behavior that affect the interoperability and security of
implementations. When these words are not capitalized, they are meant in their natural-language
sense.

• Strings that are to be taken literally are enclosed in “double quotes”.

• Words that are emphasized are printed in italic.

• Keywords that are defined by the UPnP AV Working Committee are printed using the forum
character style.

• Keywords that are defined by the UPnP Device Architecture are printed using the arch character
style.

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 8

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

• A double colon delimiter, “::”, signifies a hierarchical parent-child (parent::child) relationship
between the two objects separated by the double colon. This delimiter is used in multiple contexts,
for example: Service::Action(), Action()::Argument, parentProperty::childProperty.

1.2.1 Data Types
This specification uses data type definitions from two different sources. The UPnP Device Architecture
defined data types are used to define state variable and action argument data types [DEVICE]. The XML
Schema namespace is used to define property data types [XML SCHEMA-2].

For UPnP Device Architecture defined Boolean data types, it is strongly RECOMMENDED to use the
value “0” for false, and the value “1” for true. However, when used as input arguments, the values “false”,
“no”, “true”, “yes” may also be encountered and MUST be accepted. Nevertheless, it is strongly
RECOMMENDED that all state variables and output arguments be represented as “0” and “1”.

For XML Schema defined Boolean data types, it is strongly RECOMMENDED to use the value “0” for
false, and the value “1” for true. However, when used as input properties, the values “false”, “true” may
also be encountered and MUST be accepted. Nevertheless, it is strongly RECOMMENDED that all
properties be represented as “0” and “1”.

1.2.2 Strings Embedded in Other Strings
Some string variables and arguments described in this document contain substrings that MUST be
independently identifiable and extractable for other processing. This requires the definition of appropriate
substring delimiters and an escaping mechanism so that these delimiters can also appear as ordinary
characters in the string and/or its independent substrings. This document uses embedded strings in two
contexts – Comma Separated Value (CSV) lists (see Section 1.3.1, “Comma Separated Value (CSV)
Lists”) and property values in search criteria strings. Escaping conventions use the backslash character, “\”
(character code U+005C), as follows:

a. Backslash (“\”) is represented as “\\” in both contexts.
b. Comma (“,”) is

1. represented as “\,” in individual substring entries in CSV lists
2. not escaped in search strings

c. Double quote (“””) is
1. not escaped in CSV lists
2. not escaped in search strings when it appears as the start or end delimiter of a property value
3. represented as “\”” in search strings when it appears as a character that is part of the property

value

1.2.3 Extended Backus-Naur Form
Extended Backus-Naur Form is used in this document for a formal syntax description of certain constructs.
The usage here is according to the reference [EBNF].

1.2.3.1 Typographic conventions for EBNF
Non-terminal symbols are unquoted sequences of characters from the set of English upper and lower
case letters, the digits “0” through “9”, and the hyphen (“-”). Character sequences between 'single
quotes' are terminal strings and MUST appear literally in valid strings. Character sequences between
(*comment delimiters*) are English language definitions or supplementary explanations of their
associated symbols. White space in the EBNF is used to separate elements of the EBNF, not to represent
white space in valid strings. White space usage in valid strings is described explicitly in the EBNF. Finally,
the EBNF uses the following operators:

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 9

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Table 1-1: EBNF Operators

Operator Semantics
::= definition – the non-terminal symbol on the left is defined by one or more alternative

sequences of terminals and/or non-terminals to its right.

| alternative separator – separates sequences on the right that are independently allowed
definitions for the non-terminal on the left.

* null repetition – means the expression to its left MAY occur zero or more times.

+ non-null repetition – means the expression to its left MUST occur at least once and
MAY occur more times.

[] optional – the expression between the brackets is optional.

() grouping – groups the expressions between the parentheses.

- character range – represents all characters between the left and right character operands
inclusively.

1.3 Derived Data Types
This section defines a derived data type that is represented as a string data type with special syntax. This
specification uses string data type definitions that originate from two different sources. The UPnP Device
Architecture defined string data type is used to define state variable and action argument string data types.
The XML Schema namespace is used to define property xsd:string data types. The following definition
applies to both string data types.

1.3.1 Comma Separated Value (CSV) Lists
The UPnP AV services use state variables, action arguments and properties that represent lists – or one-
dimensional arrays – of values. The UPnP Device Architecture, Version 1.0 [DEVICE], does not provide
for either an array type or a list type, so a list type is defined here. Lists MAY either be homogeneous (all
values are the same type) or heterogeneous (values of different types are allowed). Lists MAY also consist
of repeated occurrences of homogeneous or heterogeneous subsequences, all of which have the same
syntax and semantics (same number of values, same value types and in the same order). The data type of a
homogeneous list is string or xsd:string and denoted by CSV (x), where x is the type of the individual
values. The data type of a heterogeneous list is also string or xsd:string and denoted by CSV (x, y, z),
where x, y and z are the types of the individual values. If the number of values in the heterogeneous list is
too large to show each type individually, that variable type is represented as CSV (heterogeneous), and the
variable description includes additional information as to the expected sequence of values appearing in the
list and their corresponding types. The data type of a repeated subsequence list is string or xsd:string and
denoted by CSV ({x, y, z}), where x, y and z are the types of the individual values in the subsequence and
the subsequence MAY be repeated zero or more times.

• A list is represented as a string type (for state variables and action arguments) or xsd:string type
(for properties).

• Commas separate values within a list.
• Integer values are represented in CSVs with the same syntax as the integer data type specified in

[DEVICE] (that is: optional leading sign, optional leading zeroes, numeric ASCII)
• Boolean values are represented in state variable and action argument CSVs as either “0” for false

or “1” for true. These values are a subset of the defined Boolean data type values specified in
[DEVICE]: 0, false, no, 1, true, yes.

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 10

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

• Boolean values are represented in property CSVs as either “0” for false or “1” for true. These
values are a subset of the defined Boolean data type values specified in [XML SCHEMA-2]: 0,
false, 1, true.

• Escaping conventions for the comma and backslash characters are defined in Section 1.2.2,
“Strings Embedded in Other Strings”.

• White space before, after, or interior to any numeric data type is not allowed.
• White space before, after, or interior to any other data type is part of the value.

Table 1-2: CSV Examples

Type refinement
of string

Value Comments

CSV (string) or
CSV (xsd:string)

“+artist,-date” List of 2 property sort
criteria.

CSV (int) or
CSV (xsd:integer)

“1,-5,006,0,+7” List of 5 integers.

CSV (boolean) or
CSV (xsd:Boolean)

“0,1,1,0” List of 4 booleans

CSV (string) or
CSV (xsd:string)

“Smith\, Fred,Jones\, Davey” List of 2 names,
“Smith, Fred” and
“Jones, Davey”

CSV (i4,string,ui2)
or CSV (xsd:int,
xsd:string,
xsd:unsignedShort)

“-29837, string with leading blanks,0” Note that the second
value is “ string with
leading blanks”

CSV (i4) or
CSV (xsd:int)

“3, 4” Illegal CSV. White space
is not allowed as part of
an integer value.

CSV (string) or
CSV (xsd:string)

“,,” List of 3 empty string
values

CSV (heterogeneous) “Alice,Marketing,5,Sue,R&D,21,Dave,Finance,7” List of unspecified
number of people and
associated attributes. Each
person is described by 3
elements: a name string,
a department string and
years-of-service ui2 or a
name xsd:string, a
department xsd:string and
years-of-service
xsd:unsignedShort.

1.4 Management of XML Namespaces in Standardized DCPs
UPnP specifications make extensive use of XML namespaces. This allows separate DCPs, and even
separate components of an individual DCP, to be designed independently and still avoid name collisions
when they share XML documents. Every name in an XML document belongs to exactly one namespace. In
documents, XML names appear in one of two forms: qualified or unqualified. An unqualified name (or no-
colon-name) contains no colon (“:”) characters. An unqualified name belongs to the document’s default
namespace. A qualified name is two no-colon-names separated by one colon character. The no-colon-name

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 11

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

before the colon is the qualified name’s namespace prefix, the no-colon-name after the colon is the
qualified name’s “local” name (meaning local to the namespace identified by the namespace prefix).
Similarly, the unqualified name is a local name in the default namespace.

The formal name of a namespace is a URI. The namespace prefix used in an XML document is not the
name of the namespace. The namespace name is, or should be, globally unique. It has a single definition
that is accessible to anyone who uses the namespace. It has the same meaning anywhere that it is used, both
inside and outside XML documents. The namespace prefix, however, in formal XML usage, is defined
only in an XML document. It must be locally unique to the document. Any valid XML no-colon-name may
be used. And, in formal XML usage, no two XML documents are ever required to use the same namespace
prefix to refer to the same namespace. The creation and use of the namespace prefix was standardized by
the W3C XML Committee in [XML-NMSP] strictly as a convenient local shorthand replacement for the
full URI name of a namespace in individual documents.

All AV object properties are represented in XML by element and attribute names, therefore, all property
names belong to an XML namespace.

For the same reason that namespace prefixes are convenient in XML documents, it is convenient in
specification text to refer to namespaces using a namespace prefix. Therefore, this specification declares a
“standard” prefix for all XML namespaces used herein. In addition, this specification expands the scope
where these prefixes have meaning, beyond a single XML document, to all of its text, XML examples, and
certain string-valued properties. This expansion of scope does not supercede XML rules for usage in
documents, it only augments and complements them in important contexts that are out-of-scope for the
XML specifications.

All of the namespaces used in this specification are listed in the Tables “Namespace Definitions” and
“Schema-related Information”. For each such namespace, Table 1-3, “Namespace Definitions” gives a
brief description of it, its name (a URI) and its defined “standard” prefix name. Some namespaces included
in these tables are not directly used or referenced in this document. They are included for completeness to
accommodate those situations where this specification is used in conjunction with other UPnP
specifications to construct a complete system of devices and services. The individual specifications in such
collections all use the same standard prefix. The standard prefixes are also used in Table 1-4, “Schema-
related Information”, to cross-reference additional namespace information. This second table includes each
namespace’s valid XML document root elements (if any), its schema file name, versioning information (to
be discussed in more detail below), and links to the entries in the Reference section for its associated
schema.

The normative definitions for these namespaces are the documents referenced in Table 1-3. The schemas
are designed to support these definitions for both human understanding and as test tools. However,
limitations of the XML Schema language itself make it difficult for the UPnP-defined schemas to
accurately represent all details of the namespace definitions. As a result, the schemas will validate many
XML documents that are not valid according to the specifications.

The Working Committee expects to continue refining these schemas after specification release to reduce
the number of documents that are validated by the schemas while violating the specifications, but the
schemas will still be informative, supporting documents. Some schemas might become normative in future
versions of the specifications.

Table 1-3: Namespace Definitions

Standard
Name-
space
Prefix Namespace Name Namespace Description

Normative Definition
Document
Reference

AV Working Committee defined namespaces

av: urn:schemas-upnp-org:av:av Common data types for use in AV
schemas

[AV-XSD]

avs: urn:schemas-upnp-org:av:avs Common structures for use in AV schemas [AVS-XSD]

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 12

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Standard
Name-
space
Prefix Namespace Name Namespace Description

Normative Definition
Document
Reference

avdt: urn:schemas-upnp-org:av:avdt Datastructure Template [AVDT]

avt-event: urn:schemas-upnp-org:metadata-1-0/AVT/ Evented LastChange state variable for
AVTransport

[AVT]

didl-lite: urn:schemas-upnp-org:metadata-1-0/DIDL-
Lite/

Structure and metadata for
ContentDirectory

[CDS]

rcs-event: urn:schemas-upnp-org:metadata-1-0/RCS/ Evented LastChange state variable for
RenderingControl

[RCS]

srs: urn:schemas-upnp-org:av:srs Metadata and structure for
ScheduledRecording

[SRS]

srs-event: urn:schemas-upnp-org:av:srs-event Evented LastChange state variable for
ScheduledRecording

[SRS]

upnp: urn:schemas-upnp-org:metadata-1-0/upnp/ Metadata for ContentDirectory [CDS]

Externally defined namespaces

dc: http://purl.org/dc/elements/1.1/ Dublin Core [DC-TERMS]

xsd: http://www.w3.org/2001/XMLSchema XML Schema Language 1.0 [XML SCHEMA-1]
[XML SCHEMA-2]

xsi: http://www.w3.org/2001/XMLSchema-
instance

XML Schema Instance Document schema Sections 2.6 & 3.2.7 of
[XML SCHEMA-1]

xml: http://www.w3.org/XML/1998/namespace The “xml:” Namespace [XML-NS]

Table 1-4: Schema-related Information

Standard
Name-
space
Prefix

Relative URI and File
Name
● Form 1
● Form 2 Valid Root Element(s) Schema Reference

AV Working Committee Defined Namespaces

av: • av-vn-yyyymmdd.xsd

• av-vn.xsd

n/a [AV-XSD]

avs: • avs-vn-yyyymmdd.xsd

• avs-vn.xsd

<Features>

<stateVariableValuePairs>

[AVS-XSD]

avdt: • avdt-vn-yyyymmdd.xsd

• avdt-vn.xsd

<AVDT> [AVDT]

avt-event: • avt-event-vn-yyyymmdd.xsd

• avt-event-vn.xsd

<Event> [AVT-EVENT-XSD]

didl-lite: • didl-lite-vn-yyyymmdd.xsd

• didl-lite-vn.xsd

<DIDL-Lite> [DIDL-LITE-XSD]

rcs-event: • rcs-event-vn-yyyymmdd.xsd

• rcs-event-vn.xsd

<Event> [RCS-EVENT-XSD]

srs: • srs-vn-yyyymmdd.xsd

• srs-vn.xsd

<srs> [SRS-XSD]

srs-event: • srs-event-vn-yyyymmdd.xsd

• srs-event-vn.xsd

<StateEvent> [SRS-EVENT-XSD]

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 13

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Standard
Name-
space
Prefix

Relative URI and File
Name
● Form 1
● Form 2 Valid Root Element(s) Schema Reference

upnp: • upnp-vn-yyyymmdd.xsd

• upnp-vn.xsd

n/a [UPNP-XSD]

Externally Defined Namespaces

dc: Absolute URL: http://dublincore.org/schemas/xmls/simpledc20021212.xsd [DC-XSD]

xsd: n/a <schema> [XMLSCHEMA-XSD]

xsi: n/a n/a

xml: n/a [XML-XSD]

1.4.1 Namespace Prefix Requirements
There are many occurrences in this specification of string data types that contain XML names (property
names). These XML names in strings will not be processed under namespace-aware conditions. Therefore,
all occurrences in instance documents of XML names in strings MUST use the standard namespace
prefixes as declared in Table 1-3. In order to properly process the XML documents described herein,
control points and devices MUST use namespace-aware XML processors [XML-NMSP] for both reading
and writing. As allowed by [XML-NMSP], the namespace prefixes used in an instance document are at the
sole discretion of the document creator. Therefore, the declared prefix for a namespace in a document
MAY be different from the standard prefix. All devices MUST be able to correctly process any valid XML
instance document, even when it uses a non-standard prefix for ordinary XML names. It is strongly
RECOMMENDED that all devices use these standard prefixes for all instance documents to avoid
confusion on the part of both human and machine readers. These standard prefixes are used in all
descriptive text and all XML examples in this and related UPnP specifications. Also, each individual
specification may assume a default namespace for its descriptive text. In that case, names from that
namespace may appear with no prefix.

The assumed default namespace, if any, for each UPnP AV specification is given in Table 1-5, “Default
Namespaces for the AV Specifications”.

Note: all UPnP AV schemas declare attributes to be “unqualified”, so namespace prefixes are never used
with AV Working Committee defined attribute names.

Table 1-5: Default Namespaces for the AV Specifications

AV Specification Name Default Namespace Prefix

AVTransport:2 avt-event:

ConnectionManager:2 n/a

ContentDirectory:2 didl-lite:

MediaRenderer:2 n/a

MediaServer:2 n/a

RenderingControl:2 rcs-event:

ScheduledRecording:1 srs:

1.4.2 Namespace Names, Namespace Versioning and Schema Versioning
Each namespace that is defined by the AV Working Committee is named by a URN.

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 14

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

In order to enable both forward and backward compatibility, the UPnP TC has established the general
policy that namespace names will not change with new versions of specifications, even when the
specification changes the definition of a namespace. But, namespaces still have version numbers that
reflect definitional changes. Each time the definition of a namespace is changed, the namespace’s version
number is incremented by one. Therefore, namespace version information must be provided with each
XML instance document so that the document’s receiver can properly understand its meaning. This is
achieved by the following rules:

• Every release of a schema is identified by a version number and date of the form “n-yyyymmdd”,
where n corresponds to the namespace definition version number and yyyymmdd is the year,
month and day in the Gregorian calendar that the schema is released.

For example, the new version numbers of the pre-existing “DIDL-Lite” and “upnp” schemas are
“2”. Versions for new schemas, such as “srs” are “1”.

For each schema, the version-date will appear in two places:

1. In the schema file name, according to the naming structure shown in Table 1-4, “Schema-
related Information”.

2. As the value of the version attribute of each schema’s schema root element.

Namespaces are referenced in both schema and XML instance documents by namespace name. The
namespace name appears as the value of an xmlns attribute. The xmlns attribute also declares a
namespace prefix that will be used to qualify names from each namespace. Schemas are referenced in both
schema and XML instance documents by URI in the schemaLocation attribute. See section 1.4.3,
“Namespace Usage Examples” . Two different forms of URI are available, each with a different meaning.
All UPnP AV-defined schema URIs share a common base path of “http://www.upnp.org/schemas/av/”.
Each schema URI has two unique relative forms (see Table 1-4, “Schema-related Information”), according
to which version of a namespace and its representative schema is of interest. The allowed relative URI
forms are:

1. schema-root-name “-v” version-date
where version-date is a full version-date of the form n-yyyymmdd. This form references the
schema whose “root” name (typically the standardized prefix name used for the namespace that
the schema represents) and version-date match schema-root-name and version-date, respectively.

2. schema-root-name “-v” version
where version is an integer representing the namespace’s version number. This form references
the most recent version of the schema whose root name and namespace version number match
schema-root-name and the version, respectively.

Usage rules for schema location URIs are as follows:

• All instance documents, whether generated by a service or a control point, MUST use Form 1.

• All UPnP AV published schemas that reference other UPnP AV schemas will also use Form 1.

• Validation of XML instance documents in UPnP AV systems potentially serves two purposes.
The first is based on standard XML and XML Schema semantics: the document’s creator asserts
that the document is syntactically correct with respect to the referenced schema. The receiving
processor can confirm this with a validating parser that uses the referenced schema(s). The second
is based on UPnP AV namespace semantics. The receiving processor knows that the XML
instance document is supposed to conform to one or more specific UPnP AV specifications. Since
the second context is actually the more important context for instance document processing, the
receiving processor MAY validate the instance document against any version of a schema that
satisfies its needs in assessing the acceptability of the received instance document.

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 15

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

1.4.3 Namespace Usage Examples
The schemaLocation attribute for XML instance documents comes from the XML Schema instance
namespace “http:://www.w3.org/2002/XMLSchema-instance”. A single occurrence of the attribute can
declare the location of one or more schemas. The schemaLocation attribute value consists of a
whitespace separated list of values: namespace name followed by its schema location URL. This pair-
sequence is repeated as necessary for the schemas that need to be located for this instance document.

Example 1:

Sample DIDL-Lite XML Document. This document assumes version-date 2-20060531 of the “didl-lite:”
namespace/schema combination and (a possible later) version 2-20061231 of “upnp:”. The lines with the
gray background show how to express this versioning information in the instance document.
<?xml version="1.0" encoding="UTF-8"?>
<DIDL-Lite
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
 xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
 http://www.upnp.org/schemas/av/didl-lite-v2-20060531.xsd
 urn:schemas-upnp-org:metadata-1-0/upnp/
 http://www.upnp.org/schemas/av/upnp-v2-20061231.xsd">
 <item id="18" parentID="13" restricted="0">
 ...
 </item>
</DIDL-Lite>

Example 2:

Sample srs XML Document. This document assumes version 1-20060531 of the “srs:” namespace/schema
combination. Again, the lines with the gray background show how to express this versioning information
in the instance document.
<?xml version="1.0" encoding="UTF-8"?>
<srs
 xmlns="urn:schemas-upnp-org:av:srs"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:av:srs
 http://www.upnp.org/schemas/av/srs-v1-20060531.xsd">
 ...
</srs>

1.5 Vendor-defined Extensions
Whenever vendors create additional vendor-defined state variables, actions or properties, their assigned
names and XML representation MUST follow the naming conventions and XML rules as specified in
[DEVICE], Section 2.5, “Description: Non-standard vendor extensions”.

1.6 References
This section lists the normative references used in the UPnP AV specifications and includes the tag inside
square brackets that is used for each such reference:

[AVARCH] – AVArchitecture:1, UPnP Forum, June 25, 2002.
Available at: http://www.upnp.org/specs/av/UPnP-av-AVArchitecture-v1-20020625.pdf.

[AVDT] – AV DataStructure Template:1, UPnP Forum, May 31, 2006.

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 16

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Available at: http://www.upnp.org/specs/av/UPnP-av-AVDataStructure-v1-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-AVDataStructure-v1.pdf.

[AVDT-XSD] – XML Schema for UPnP AV Datastructure Template:1, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/schemas/av/avdt-v1-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/avdt-v1.xsd.

[AV-XSD] – XML Schema for UPnP AV Common XML Data Types, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/schemas/av/av-v1-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/av-v1.xsd.

[AVS-XSD] – XML Schema for UPnP AV Common XML Structures, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/schemas/av/avs-v1-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/avs-v1.xsd.

[AVT] – AVTransport:2, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-AVTransport-v2-Service-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-AVTransport-v2-Service.pdf.

[AVT-EVENT-XSD] – XML Schema for AVTransport:2 LastChange Eventing, UPnP Forum, May 31,
2006.
Available at: http://www.upnp.org/schemas/av/avt-event-v2-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/avt-event-v2.xsd.

[CDS] – ContentDirectory:2, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v2-Service-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v2-Service.pdf.

[CM] – ConnectionManager:2, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v2-Service-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v2-Service.pdf.

[DC-XSD] – XML Schema for UPnP AV Dublin Core.
Available at: http://www.dublincore.org/schemas/xmls/simpledc20020312.xsd.

[DC-TERMS] – DCMI term declarations represented in XML schema language.
Available at: http://www.dublincore.org/schemas/xmls.

[DEVICE] – UPnP Device Architecture, version 1.0, UPnP Forum, June 13, 2000.
Available at: http://www.upnp.org/specs/architecture/UPnP-DeviceArchitecture-v1.0-20000613.htm.
Latest version available at: http://www.upnp.org/specs/architecture/UPnP-DeviceArchitecture-v1.0.htm.

[DIDL] – ISO/IEC CD 21000-2:2001, Information Technology - Multimedia Framework - Part 2: Digital
Item Declaration, July 2001.

[DIDL-LITE-XSD] – XML Schema for ContentDirectory:2 Structure and Metadata (DIDL-Lite), UPnP
Forum, May 31, 2006.
Available at: http://www.upnp.org/schemas/av/didl-lite-v2-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/didl-lite-v2.xsd.

[EBNF] – ISO/IEC 14977, Information technology - Syntactic metalanguage - Extended BNF, December
1996.

[HTTP/1.1] – HyperText Transport Protocol – HTTP/1.1, R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.
Masinter, P. Leach, T. Berners-Lee, June 1999.
Available at: http://www.ietf.org/rfc/rfc2616.txt.

IEC 61883] – IEC 61883 Consumer Audio/Video Equipment – Digital Interface - Part 1 to 5.
Available at: http://www.iec.ch.

[IEC-PAS 61883] – IEC-PAS 61883 Consumer Audio/Video Equipment – Digital Interface - Part 6.
Available at: http://www.iec.ch.

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 17

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

[ISO 8601] – Data elements and interchange formats – Information interchange -- Representation of dates
and times, International Standards Organization, December 21, 2000.
Available at: ISO 8601:2000.

[MIME] – IETF RFC 1341, MIME (Multipurpose Internet Mail Extensions), N. Borenstein, N. Freed, June
1992.
Available at: http://www.ietf.org/rfc/rfc1341.txt.

[MR] – MediaRenderer:2, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-MediaRenderer-v2-Device-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-AV-MediaRenderer-v2-Device.pdf.

[MS] – MediaServer:2, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-MediaServer-v2-Device-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-AV-MediaServer-v2-Device.pdf.

[RCS] – RenderingControl:2, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v2-Service-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v2-Service.pdf.

[RCS-EVENT-XSD] –XML Schema for RenderingControl:2 LastChange Eventing, UPnP Forum, May 31,
2006.
Available at: http://www.upnp.org/schemas/av/rcs-event-v1-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/rcs-event-v1.xsd.

[RFC 1738] – IETF RFC 1738, Uniform Resource Locators (URL), Tim Berners-Lee, et. Al., December
1994.
Available at: http://www.ietf.org/rfc/rfc1738.txt.

[RFC 2119] – IETF RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, S. Bradner,
1997.
Available at: http://www.faqs.org/rfcs/rfc2119.html.

[RFC 2396] – IETF RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax, Tim Berners-Lee, et
al, 1998.
Available at: http://www.ietf.org/rfc/rfc2396.txt.

[RFC 3339] – IETF RFC 3339, Date and Time on the Internet: Timestamps, G. Klyne, Clearswift
Corporation, C. Newman, Sun Microsystems, July 2002.
Available at: http://www.ietf.org/rfc/rfc3339.txt.

[RTP] – IETF RFC 1889, Realtime Transport Protocol (RTP), H. Schulzrinne, S. Casner, R. Frederick, V.
Jacobson, January 1996.
Available at: http://www.ietf.org/rfc/rfc1889.txt.

[RTSP] – IETF RFC 2326, Real Time Streaming Protocol (RTSP), H. Schulzrinne, A. Rao, R. Lanphier,
April 1998.
Available at: http://www.ietf.org/rfc/rfc2326.txt.

[SRS] – ScheduledRecording:1, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v1-Service-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v1-Service-
20060531.pdf.

[SRS-XSD] – XML Schema for ScheduledRecording:1 Metadata and Structure, UPnP Forum, May 31,
2006.
Available at: http://www.upnp.org/schemas/av/srs-v1-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/srs-v1.xsd.

[SRS-EVENT-XSD] – XML Schema for ScheduledRecording:1 LastChange Eventing, UPnP Forum, May
31, 2006.
Available at: http://www.upnp.org/schemas/av/srs-event-v1-20060531.xsd.

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 18

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Latest version available at: http://www.upnp.org/schemas/av/srs-event-v1.xsd.

[UAX 15] – Unicode Standard Annex #15, Unicode Normalization Forms, version 4.1.0, revision 25, M.
Davis, M. Dürst, March 25, 2005.
Available at: http://www.unicode.org/reports/tr15/tr15-25.html.

[UNICODE COLLATION] – Unicode Technical Standard #10, Unicode Collation Algorithm version
4.1.0, M. Davis, K. Whistler, May 5, 2005.
Available at: http://www.unicode.org/reports/tr10/tr10-14.html.

[UPNP-XSD] – XML Schema for ContentDirectory:2 Metadata, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/schemas/av/upnp-v2-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/upnp-v2.xsd.

[UTS 10] – Unicode Technical Standard #10, Unicode Collation Algorithm, version 4.1.0, revision 14, M.
Davis, K. Whistler, May 5, 2005.
Available at: http://www.unicode.org/reports/tr10/tr10-14.html.

[UTS 35] – Unicode Technical Standard #35, Locale Data Markup Language, version 1.3R1, revision
5,.M. Davis, June 2, 2005.
Available at: http://www.unicode.org/reports/tr35/tr35-5.html.

[XML] – Extensible Markup Language (XML) 1.0 (Third Edition), François Yergeau, Tim Bray, Jean
Paoli, C. M. Sperberg-McQueen, Eve Maler, eds., W3C Recommendation, February 4, 2004.
Available at: http://www.w3.org/TR/2004/REC-xml-20040204.

[XML-NS] – The “xml:” Namespace, November 3, 2004.
Available at: http://www.w3.org/XML/1998/namespace.

[XML-XSD] – XML Schema for the “xml:” Namespace.
Available at: http://www.w3.org/2001/xml.xsd.

[XML-NMSP] – Namespaces in XML, Tim Bray, Dave Hollander, Andrew Layman, eds., W3C
Recommendation, January 14, 1999.
Available at: http://www.w3.org/TR/1999/REC-xml-names-19990114.

[XML SCHEMA-1] – XML Schema Part 1: Structures, Second Edition, Henry S. Thompson, David
Beech, Murray Maloney, Noah Mendelsohn, W3C Recommendation, 28 October 2004.
Available at: http://www.w3.org/TR/2004/REC-xmlschema-1-20041028.

[XML SCHEMA-2] – XML Schema Part 2: Data Types, Second Edition, Paul V. Biron, Ashok Malhotra,
W3C Recommendation, 28 October 2004.
Available at: http://www.w3.org/TR/2004/REC-xmlschema-2-20041028.

[XMLSCHEMA-XSD] – XML Schema for XML Schema.
Available at: http://www.w3.org/2001/XMLSchema.xsd.

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 19

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

2 Service Modeling Definitions

2.1 ServiceType
The following service type identifies a service that is compliant with this template:

 urn:schemas-upnp-org:service:ConnectionManager:2

2.2 State Variables
Table 2-6: State Variables

Variable Name R/O1 Data
Type

Allowed Value Default
Value

Eng.
Units

SourceProtocolInfo R string CSV2 (string)

SinkProtocolInfo R string CSV (string)

CurrentConnectionIDs R string CSV (ui4)

A_ARG_TYPE_
ConnectionStatus

R string “OK”,
“ContentFormatMismatch”,
“InsufficientBandwidth”,
“UnreliableChannel”,
“Unknown”,
vendor-defined

A_ARG_TYPE_
ConnectionManager

R string

A_ARG_TYPE_Direction R string “Output”,
“Input”

A_ARG_TYPE_ProtocolInfo R string

A_ARG_TYPE_ConnectionID R i4

A_ARG_TYPE_AVTransportID R i4

A_ARG_TYPE_RcsID R i4

Non-standard state variables
implemented by a UPnP vendor
go here

X TBD TBD TBD TBD

1 R = REQUIRED, O = OPTIONAL, X = Non-standard.
2 CSV stands for Comma-Separated Value list. The type between brackets denotes the UPnP data type used
for the elements inside the list. The CSV list concept is defined more formally in the ContentDirectory
service template.

Note: State variables A_ARG_TYPE_ConnectionID, A_ARG_TYPE_AVTransportID, and
A_ARG_TYPE_RcsID are specified as being of data type i4 to accommodate the fact that some actions
REQUIRE these arguments to contain the special value -1. This special value is used as a return value to
indicate that the service is not implemented on the device or is not needed for a particular connection. It
can also be used as an InstanceID input argument when the actual InstanceID value is not (yet) known or
the service does not exist.

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 20

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Action GetCurrentConnectionIDs() in this specification and all InstanceIDs in other services
(AVTransport service, RenderingControl service, …) use data type ui4 to specify InstanceID variables.
However, this does not present a problem since a valid InstanceID value is always a non-negative integer
and is always generated through an argument that is of type i4, effectively limiting the valid range for any
InstanceID to [0, 231-1]. This range always fits in the valid range of an argument of data type ui4 (range is
[0, 232-1]) so that an ‘out-of-range’ error will never occur during assignment.

2.2.1 SourceProtocolInfo
This state variable contains a Comma-Separated Value (CSV) list of information on protocols this
ConnectionManager supports for ‘sourcing’ (sending) data, in its current state. (The content of the CSV list
can change over time, for example due to local resource restrictions on the device.) Besides the traditional
notion of the term ‘protocol’, the protocol-related information provided by the connection also contains
other information such as supported content formats. See Section 2.5, “Theory of Operation” for a general
discussion on the notion of protocol info. See the table in Section 2.5.2, “ProtocolInfo Concept” for
specific allowed values for this state variable. If the device does not support sourcing data, this state
variable MUST be set to the empty string.

During normal operation, a MediaServer SHOULD ensure that there is consistency between what is
reported in the SourceProtocolInfo state variable and all the res@protocolInfo properties of the items that
populate the ContentDirectory; that is: at least all protocols that are used by any of the content items
SHOULD be enumerated in the SourceProtocolInfo state variable. (Wildcards (“*”) can be used in
SourceProtocolInfo to limit the number of entries in the CSV list.) Additional protocols that are supported
by the MediaServer but are not currently used by any of the content items MAY also be listed.

Control points can use the SourceProtocolInfo CSV list to quickly find out what type of content this
MediaServer is capable of serving to the network.

A MediaServer can report temporary unavailability of a protocol (for example, HTTP server temporarily
down or codec not available) by removing the appropriate entries from the SourceProtocolInfo CSV list.

2.2.2 SinkProtocolInfo
This state variable contains a Comma-Separated Value (CSV) list of information on protocols this
ConnectionManager supports for ‘sinking’ (receiving) data, in its current state. (The content of the CSV
list can change over time, for example due to local resource restrictions on the device.) The format and
allowed value list are the same as for the SourceProtocolInfo state variable. If the device does not support
‘sinking’ data, this state variable MUST be set to the empty string.

A MediaRenderer can report temporary unavailability of a protocol (for example, codec not available) by
removing the appropriate entries from the SinkProtocolInfo CSV list.

2.2.3 CurrentConnectionIDs
Comma-Separated Value list of references to current active Connections. This list MAY change without
explicit actions invoked by control points, for example by out-of-band cleanup or termination of finished
connections.

If OPTIONAL action PrepareForConnection() is not implemented then this state variable MUST be set to
“0”, indicating that this ConnectionManager service only supports a single connection identified by
ConnectionID = 0.

2.2.4 A_ARG_TYPE_ConnectionStatus
This state variable is introduced to provide type information for the Status argument in the
GetCurrentConnectionInfo() action. This status MAY change dynamically due to changes in the network.

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 21

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

2.2.5 A_ARG_TYPE_ConnectionManager
This state variable is introduced to provide type information for the PeerConnectionManager argument in
actions PrepareForConnection() and GetCurrentConnectionInfo(). A ConnectionManager reference takes
the form of a UDN/serviceId pair (the slash is the delimiter). A control point can use UPnP discovery
(SSDP) to obtain a ConnectionManager’s description document from the UDN. Subsequently, the
ConnectionManager’s service description can be obtained by using the serviceId part of the reference.

2.2.6 A_ARG_TYPE_Direction
This state variable is introduced to provide type information for the Direction argument in action
PrepareForConnection().

2.2.7 A_ARG_TYPE_ProtocolInfo
This state variable is introduced to provide type information for the RemoteProtocolInfo argument in action
PrepareForConnection() and the ProtocolInfo argument in action GetCurrentConnectionInfo().

2.2.8 A_ARG_TYPE_ConnectionID
This state variable is introduced to provide type information for the ConnectionID argument in actions
PrepareForConnection(), ConnectionComplete() and GetCurrentConnectionInfo().

2.2.9 A_ARG_TYPE_AVTransportID
This state variable is introduced to provide type information for the AVTransportID argument in actions:
PrepareForConnection() and GetCurrentConnectionInfo(). It identifies a logical instance of the
AVTransport service associated with a Connection. See AVTransport:1 Specification, Section 2.5.6,
“Supporting multiple virtual Transports” for more information.

2.2.10 A_ARG_TYPE_RcsID
This state variable is introduced to provide type information for the RcsID argument in actions
PrepareForConnection() and GetCurrentConnectionInfo(). It identifies a logical instance of the Rendering
Control service associated with a Connection. See RenderingControl:1 Specification, Section 1.2, “Multi-
input Devices” and Section 2.5.1, “Multi-input Devices” for more information.

2.3 Eventing and Moderation
Table 2-7: Event Moderation

Variable Name Evented Moderated
Event

Max Event
Rate1

Logical
Combination

Min Delta
per Event2

SourceProtocolInfo YES NO

SinkProtocolInfo YES NO

CurrentConnectionIDs YES NO

Non-standard state variables
implemented by a UPnP vendor
go here

TBD TBD TBD TBD TBD

1 Determined by N, where Rate = (Event)/(N secs).

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 22

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

2 (N) * (allowedValueRange Step).

2.4 Actions
Immediately following this table is detailed information about these actions, including short descriptions of
the actions, the effects of the actions on state variables, and error codes defined by the actions.

Table 2-8: Actions

Name R/O1

GetProtocolInfo() R

PrepareForConnection() O

ConnectionComplete() O

GetCurrentConnectionIDs() R

GetCurrentConnectionInfo() R

Non-standard actions implemented by a UPnP vendor go here X

1 R = REQUIRED, O = OPTIONAL, X = Non-standard.

Note: Non-standard actions MUST be implemented in such a way that they do not interfere with the basic
operation of the ConnectionManager service; that is: these actions MUST be optional and do not need to be
invoked for the ConnectionManager service to operate normally.

2.4.1 GetProtocolInfo()
This action returns the protocol-related info that this ConnectionManager supports in its current state, as a
Comma-Separated Value list of strings according to Table 2-19, “Defined Protocols and their associated
ProtocolInfo ”. Protocol-related information for ‘sourcing’ data is returned in the Source argument and
protocol-related information for ‘sinking’ data is returned in the Sink argument. When this
ConnectionManager resides in a device that only supports ‘sourcing’ of data, the Sink argument MUST
return the empty string. Likewise, when this ConnectionManager resides in a device that only supports
‘sinking’ of data, the Source argument MUST return the empty string.

2.4.1.1 Arguments

Table 2-9: Arguments for GetProtocolInfo()

Argument Direction relatedStateVariable

Source OUT SourceProtocolInfo

Sink OUT SinkProtocolInfo

2.4.1.2 Dependency on State
None.

2.4.1.3 Effect on State
None.

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 23

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

2.4.1.4 Errors
None

2.4.2 PrepareForConnection()
This OPTIONAL action is used to allow the device to prepare itself to connect to the network for the
purposes of sending or receiving media content (for example, a video stream). PrepareForConnection()
also allows the device to indicate whether or not it can establish a connection based on the current status of
the device and/or the current conditions of the network.

The RemoteProtocolInfo input argument identifies the protocol, network, and format that MUST be used to
transfer the content.

• If PrepareForConnection() is invoked on a MediaServer device, the RemoteProtocolInfo
argument MUST be set to one of the ProtocolInfo entries from the CSV list obtained from the
peer MediaRenderer device via the GetProtocolInfo() action. (See Section 2.5.2, “ProtocolInfo
Concept” for details.) If the peer device does not implement GetProtocolInfo() (because it is not a
MediaRenderer or not even a UPnP device), then the RemoteProtocolInfo argument MUST be set
to one of the ProtocolInfo entries returned by the GetProtocolInfo() action on the local
MediaServer device.

• If PrepareForConnection() is invoked on a MediaRenderer device, the RemoteProtocolInfo
argument MUST be set to the value of the protocolInfo attribute of the content item (located in the
ContentDirectory on the peer MediaServer device) that is going to be played. (See Section 2.5.2,
“ProtocolInfo Concept” for details.) If the peer device does not implement a ContentDirectory
service (because it is not a MediaServer or not even a UPnP device), then the RemoteProtocolInfo
argument MUST be set to one of the ProtocolInfo entries returned by the GetProtocolInfo() action
on the local MediaRenderer device.

The ConnectionID out argument is used to identify the connection that was prepared by the device in
response to this invocation. The ConnectionID is a device-specific value and is NOT unique throughout the
network. Therefore, the ConnectionIDs returned by the two end-points of the same connection will
generally NOT be the same value. Refer to GetCurrentConnectionIDs() and/or the UPnP AV Device
Architecture document for additional information. The AVTransportID and RcsID out arguments are used
to identify the AVTransport and RenderingControl services that are associated with the connection. The
returned values are the InstanceIDs that need to be used when invoking subsequent invocations of the
AVTransport and RenderingControl Services. An InstanceID value of -1 indicates the device did not
associate an AVTransport and/or RenderingControl service with this connection. The returned
ConnectionID, AVTransportID, and RcsID become invalid when the device closes the connection. This
will occur when ConnectionComplete() is invoked or any other time the device decides to close the
connection (a.k.a auto-cleanup). Refer to ConnectionComplete() for additional information.

This action is marked OPTIONAL which means that each device manufacturer decides whether or not to
implement it. Therefore, some devices will implement PrepareForConnection() while other devices will
not. Since PrepareForConnection() allows a device to prepare itself to connect to the network, if a device
has implemented that action, control points need to invoke PrepareForConnection() before attempting to
stream any content; that is: before invoking AVTransport::SetAVTransportURI() (See Section 2.5.3,
“Typical Control Point Operations”). Otherwise, the device may not operate correctly because it has not
been properly configured. Additionally, control points need to invoke PrepareForConnection(), if
implemented, so that the device can inform the control point, via an error code, that the device’s current
operating environment is not able to accommodate the requested stream.

Once a connection has been prepared, it can be used to transfer several pieces of the content before calling
ConnectionComplete() as long as each content item is compatible with the RemoteProtocolInfo argument
that was passed into PrepareForConnection(); that is: each content item has the same media format as
specified in RemoteprotocolInfo.

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 24

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

If a device does not implement PrepareForConnection(), it MUST only support a single connection at any
time. This connection is implicitly assumed to be always present and is identified by ConnectionID = 0.

2.4.2.1 Arguments

Table 2-10: Arguments for PrepareForConnection()

Argument Direction relatedStateVariable

RemoteProtocolInfo IN A_ARG_TYPE_ProtocolInfo

PeerConnectionManager IN A_ARG_TYPE_ConnectionManager

PeerConnectionID IN A_ARG_TYPE_ConnectionID

Direction IN A_ARG_TYPE_Direction

ConnectionID OUT A_ARG_TYPE_ConnectionID

AVTransportID OUT A_ARG_TYPE_AVTransportID

RcsID OUT A_ARG_TYPE_RcsID

2.4.2.2 Dependency on State
None.

2.4.2.3 Effect on State
This action prepares the device to stream content to or from the specified peer ConnectionManager,
according to the specified direction and protocol information. The PeerConnectionManager input
argument identifies the ConnectionManager service on the other side of the connection. The
PeerConnectionID input argument identifies the specific connection on that ConnectionManager service.
This information allows a control point to link a connection on device A to the corresponding connection
on device B, via action GetCurrentConnectionInfo(). If the PeerConnectionID is not known by a control
point (for example, this is the first of the two PrepareForConnection() actions), or the peer device doesn’t
implement PrepareForConnection() then this value MUST be set to reserved value -1.

This action returns a locally unique ID for the established Connection in the ConnectionID argument, and
adds that ConnectionID to state variable CurrentConnectionIDs. This ConnectionID might be used by a
control point to manually terminate the established Connection through (OPTIONAL) action
ConnectionComplete(). It can also be used to retrieve information associated with the Connection via
action GetCurrentConnectionInfo(). Value -1 is reserved, and MUST NOT be returned.

OPTIONALLY, this action returns a virtual InstanceID of a local AVTransport service in the
AVTransportID argument. This AVTransportID MUST be passed as an input argument to the local
AVTransport service action invocations. If the returned AVTransportID is -1 (reserved value), then there is
no AVTransport service on this device that can be used to control the established connection. This is
dependent on the ‘push’ or ‘pull’ nature of the streaming protocol.

OPTIONALLY, this action returns a virtual InstanceID of a local RenderingControl service in the RcsID
argument. This RcsID MUST be passed as an input argument to the local RenderingControl service action
invocations. If the returned RcsID is -1 (reserved value), then there is no RenderingControl service on this
device, for example, because the device is a source device (MediaServer) rather than a sink device
(MediaRenderer).

Due to local restrictions on the device running the ConnectionManager, state variables SourceProtocolInfo
and/or SinkProtocolInfo MAY change (for example, certain physical ports on the device are not available
anymore for new connections) as a result of this action.

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 25

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

2.4.2.4 Errors

Table 2-11: Error Codes for PrepareForConnection()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

701 Incompatible
protocol info

The connection cannot be established because the protocol info
argument is incompatible.

702 Incompatible
directions

The connection cannot be established because the directions of the
involved ConnectionManagers (source/sink) are incompatible.

703 Insufficient
network resources

The connection cannot be established because there are
insufficient network resources (bandwidth, channels, etc.).

704 Local restrictions The connection cannot be established because of local restrictions
in the device. This might happen, for example, when physical
resources on the device are already in use by other connections.

705 Access denied The connection cannot be established because the client is not
permitted to access the specified ConnectionManager.

707 Not in network The connection cannot be established because the
ConnectionManagers are not part of the same physical network.

708 Connection Table
overflow

The connection cannot be established because the specified
ConnectionManager has instantiated the maximum number of
simultaneous connections it has room for in its internal data
structures. Closing one connection will resolve the issue.

709 Internal processing
resources exceeded

The connection cannot be established because the device does not
have sufficient internal processing resources to handle the new
connection. Closing one or more connections on this device may
resolve the issue.

710 Internal memory
resources exceeded

The connection cannot be established because the device does not
have sufficient internal memory resources to handle the new
connection. Closing one or more connections on this device may
resolve the issue.

711 Internal storage
system capabilities
exceeded

The connection cannot be established because the device does not
have sufficient internal storage system capabilities to handle the
new connection. Closing one or more connections on this device
may resolve the issue.

2.4.3 ConnectionComplete()
This OPTIONAL action is used to inform the device that the specified connection, which was previously
allocated by PrepareForConnection(), is no longer needed. Any resources that were allocated for that
connection during PrepareForConnection() can be freed by the device at its discretion.

In some situations, ConnectionComplete() may never be invoked; for example, the control point
spontaneously goes away. In order to prevent an unused connection from permanently consuming
resources, the device SHOULD automatically cleanup unused connections. The process for determining
when a connection SHOULD be automatically cleaned up is implementation dependent. For example, a
device MAY decide to close a connection after the connection has been inactive for a certain period of

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 26

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

time. Alternatively, a device MAY decide to close a connection when it needs to free the resources that are
associated with the connection. See Section 2.5.5, “PrepareForConnection() and ConnectionComplete()”
for additional information.

2.4.3.1 Arguments

Table 2-12: Arguments for ConnectionComplete()

Argument Direction relatedStateVariable

ConnectionID IN A_ARG_TYPE_ConnectionID

2.4.3.2 Dependency on State
None.

2.4.3.3 Effect on State
This action removes the connection referenced by argument ConnectionID by modifying state variable
CurrentConnectionIDs, and (if necessary) performs any protocol-specific cleanup actions such as releasing
network resources. See Appendix A, “Protocol Specifics” for more details.

Due to local restrictions on the device running the ConnectionManager, state variables SourceProtocolInfo
and/or SinkProtocolInfo MAY change (for example, certain physical ports on the device are freed up for
new connections).

2.4.3.4 Errors

Table 2-13: Error Codes for ConnectionComplete()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

706 Invalid connection
reference

The connection reference argument does not refer to a valid
connection established by this service.

2.4.4 GetCurrentConnectionIDs()
This action returns a Comma-Separated Value list of ConnectionIDs of currently ongoing Connections. A
ConnectionID can be used to manually terminate a Connection via action ConnectionComplete(), or to
retrieve additional information about the ongoing Connection via action GetCurrentConnectionInfo().

If a device does not implement PrepareForConnection(), this action MUST return the single value “0”.

2.4.4.1 Arguments

Table 2-14: Arguments for GetCurrentConnectionIDs()

Argument Direction relatedStateVariable

ConnectionIDs OUT CurrentConnectionIDs

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 27

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

2.4.4.2 Dependency on State
None.

2.4.4.3 Effect on State
None.

2.4.4.4 Errors

Table 2-15: Error Codes for GetCurrentConnectionIDs()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

2.4.5 GetCurrentConnectionInfo()
This action returns associated information of the connection referred to by the ConnectionID input
argument. The AVTransportID argument MAY be the reserved value -1 and the PeerConnectionManager
argument MAY be the empty string in cases where the connection has been setup completely out of band,
not involving a PrepareForConnection() action.

If OPTIONAL action PrepareForConnection() is not implemented then (limited) connection information
can be retrieved for ConnectionID 0. The device MUST return all known information:

• RcsID MUST be 0 (a single instance of the RenderingControl service is implemented) or -1
(RenderingControl Service is not implemented)

• AVTransportID MUST be 0 (a single instance of the AVTransport service is implemented) or -1
(AVTransport service is not implemented)

• ProtocolInfo MUST contain accurate information if it is known, otherwise it MUST be the empty
string

• PeerConnectionManager MUST be the empty string

• PeerConnectionID MUST be -1

• Direction MUST be “Input” or “Output”

• Status MUST be “OK” or “Unknown”

2.4.5.1 Arguments

Table 2-16: Arguments for GetCurrentConnectionInfo()

Argument Direction relatedStateVariable

ConnectionID IN A_ARG_TYPE_ConnectionID

RcsID OUT A_ARG_TYPE_RcsID

AVTransportID OUT A_ARG_TYPE_AVTransportID

ProtocolInfo OUT A_ARG_TYPE_ProtocolInfo

PeerConnectionManager OUT A_ARG_TYPE_ConnectionManager

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 28

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Argument Direction relatedStateVariable

PeerConnectionID OUT A_ARG_TYPE_ConnectionID

Direction OUT A_ARG_TYPE_Direction

Status OUT A_ARG_TYPE_ConnectionStatus

2.4.5.2 Dependency on State
None.

2.4.5.3 Effect on State
None.

2.4.5.4 Errors

Table 2-17: Error Codes for GetCurrentConnectionInfo()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

706 Invalid connection
reference

The connection reference argument does not refer to a valid
connection established by this service.

2.4.6 Common Error Codes
The following table lists error codes common to actions for this service type. If an action results in multiple
errors, the most specific error SHOULD be returned.

Table 2-18: Common Error Codes

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

701 Incompatible
protocol info

The connection cannot be established because the protocol info
argument is incompatible.

702 Incompatible
directions

The connection cannot be established because the directions of the
involved ConnectionManagers (source/sink) are incompatible.

703 Insufficient
network resources

The connection cannot be established because there are
insufficient network resources (bandwidth, channels, etc.).

704 Local restrictions The connection cannot be established because of local restrictions
in the device. This might happen, for example, when physical
resources on the device are already in use by other connections.

705 Access denied The connection cannot be established because the client is not
permitted to access the specified ConnectionManager.

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 29

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

errorCode errorDescription Description

706 Invalid connection
reference

The connection reference argument does not refer to a valid
connection established by this service.

707 Not in network The connection cannot be established because the
ConnectionManagers are not part of the same physical network.

708 Connection Table
overflow

The connection cannot be established because the specified
ConnectionManager has instantiated the maximum number of
simultaneous connections it has room for in its internal data
structures. Closing one connection will resolve the issue.

709 Internal processing
resources exceeded

The connection cannot be established because the device does not
have sufficient internal processing resources to handle the new
connection. Closing one or more connections on this device may
resolve the issue.

710 Internal memory
resources exceeded

The connection cannot be established because the device does not
have sufficient internal memory resources to handle the new
connection. Closing one or more connections on this device may
resolve the issue.

711 Internal storage
system capabilities
exceeded

The connection cannot be established because the device does not
have sufficient internal storage system capabilities to handle the
new connection. Closing one or more connections on this device
may resolve the issue.

Note 1: The errorDescription field returned by an action does not necessarily contain human-readable text
(for example, as indicated in the second column of the Error Code tables.) It may contain machine-readable
information that provides more detailed information about the error. It is therefore not advisable for a
control point to blindly display the errorDescription field contents to the user.

Note 2: 800-899 Error Codes are not permitted for standard actions. See UPnP Device Architecture section
on Control for more details.

2.5 Theory of Operation

2.5.1 Purpose
The purpose of the ConnectionManager is to enable control points to:

1. perform capability matching between source/server devices and sink/renderer devices. This
involves both:

a. content-format matching (for example, mp3 – mp3)

b. transport (streaming) protocol matching (for example, http – http)

2. find information about currently ongoing streams in the network, for example:

a. find the source device sending content to a given renderer device

b. find the renderer devices served by a given source device or content resource

c. find all streams going on in the network

3. setup and teardown connections between devices (when required by the streaming protocol)

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 30

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

2.5.2 ProtocolInfo Concept
While the UPnP Architecture describes, and prescribes, many aspects of devices that are required for a
certain level of interoperability, it does not describe anything related to streaming between devices. The
purpose of the ConnectionManager service is to make these aspects of devices explicit, so that control
points are able to make intelligent choices, present intelligent user interfaces, and initiate (and terminate)
streams between controlled devices via UPnP actions. UPnP-defined protocols are used to initiate (and
terminate) the stream, even though they are not used to stream the actual data packets.

The ConnectionManager service defines the notion of ProtocolInfo as information needed by a control
point in order to determine (a certain level of) compatibility between the streaming mechanisms of two
UPnP controlled devices. For example, it contains the transport protocols supported by a device, for input
or output, as well as other information such as the content formats (encodings) that can be sent, or
received, via the transport protocols. Note that, while UPnP prescribes the use of HTTP for controlling
devices via SOAP, it does NOT REQUIRE HTTP to be used for all kinds of (Audio and Video) streaming
in a UPnP network.

In the context of this document, the term ProtocolInfo is used to describe a string formatted as:

<protocol>“:”<network>“:”<contentFormat>“:”<additionalInfo>

where each of the 4 elements MAY be a wildcard “*”. Control points can match ProtocolInfo by (protocol-
independent) string comparison operations on the <protocol>, <network> and <contentFormat> elements,
taking into account the “*” wildcard, which matches with anything. It is RECOMMENDED that control
points perform string matching using case-insensitive comparison. However, devices are REQUIRED to
provide the <protocol>, <network>, and <contentFormat> strings exactly as prescribed by this and other
specifications.

When performing protocol matching, control points have basically three different sources for protocol
information:

• The value of the res@protocolInfo property of the content item to be played, which is exposed by
the ContentDirectory service.

• The Comma Separated Value list maintained in the SinkProtocolInfo state variable of the
MediaRenderer device.

• The Comma Separated Value list maintained in the SourceProtocolInfo state variable of the
MediaServer device.

Control points should match the content item’s res@protocolInfo property value to one of the ProtocolInfo
entries in the MediaRenderer’s SinkProtocolInfo CSV list. In addition, a control point may want to check
whether the content item’s res@protocolInfo property value matches one of the entries in the
MediaServer’s SourceProtocolInfo CSV list to ensure that the MediaServer is currently capable of serving
this content item.

The <additionalInfo> part does not need to match between source and sink. Its purpose is to convey any
additional information needed to set up the out of band stream (for example, 1394 addresses). The structure
of this 4th field is described later in this section.

The following table summarizes how the protocol info strings are defined for the protocols currently
standardized by the ConnectionManager service, as well as for vendor-defined protocols. Appendix A,
“Protocol Specifics”, provides a more detailed explanation per protocol.

Table 2-19: Defined Protocols and their associated ProtocolInfo Values

Protocol
Name

protocol network contentFormat additionalInfo Ref.

HTTP GET “http-get” “*”1 MIME-type. Vendor-defined,
MAY be “*”.

App. A.1

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 31

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Protocol
Name

protocol network contentFormat additionalInfo Ref.

RTSP/RTP/UDP “rtsp-rtp-udp” “*”2 Name of RTP payload
type.

Vendor-defined,
MAY be “*”.

App. A.2

INTERNAL “internal” IP address of the
device hosting the
Connection-Manager.

Vendor-defined,
MAY be “*”.

Vendor-defined,
MAY be “*”.

App. A.3

IEC61883_EX1 “iec61883_ex1” GUID of the 1394 bus
Isochronous Resource
Manager.

Name standardized by
IEC61883.

upnp.org_GUID =
<GUID-value>;<PCR-index>.
See definitions below.

App. A.4

IEC61883 “iec61883” GUID of the 1394 bus
Isochronous Resource
Manager.

Name standardized by
IEC61883.

GUID and PCR index of the
1394 device. See IEC61883
exception below.

App. A.4

VENDOR Registered
ICANN domain
name of vendor

Vendor-defined,
MAY be “*”.

Vendor-defined,
MAY be “*”.

Vendor-defined,
MAY be “*”.

App. A.5

1 Since all devices supporting HTTP GET belong to the same IP network, the network does not need to be
specified.
2 Since all devices supporting RTSP/RTP/UDP belong to the same IP network, the network does not need
to be specified.

2.5.2.1 4th Field – <additionalInfo>
Except for the IEC61883 protocol, the 4th field of the ProtocolInfo string contains either an asterisk
character (“*”) or a list of name-value pairs. An asterisk indicates that the 4th field does not contain any
meaningful data and should be ignored. A list of name-value pairs indicates that there is some additional
information beyond the first three fields. In this case, the 4th field MUST contain one or more name-value
pairs (separated by a semi-colon “;”) with each name-value pair having the following format:

<org-name>_<token-name>=<value>

where

<org-name> is the ICANN registered domain name of the organization that has defined the
semantic of the name-value pair. For example, the UPnP Forum would use an <org-name> of
“upnp.org”. Case-insensitive comparison is used.

<token-name> identifies the additional data that is being defined. It consists of one or more alpha-
numeric characters (i.e. ’a’-‘z’, ’A’-‘Z’, ’0’-‘9’, ‘_’) and MUST be unique within the context of
the specified <org-name>. Case-insensitive comparison is used.

<value> is the value of the additional data. In addition to the escaping rule defined for attributes in
[XML], the following rules also apply:

• All semi-colons (“;”) within <value> MUST be escaped with a backslash (“\”). This is
necessary since a semi-colon is used to separate multiple name-value pair occurrences.
For example, in order to represent a value of “yours;mine;ours”, <value> MUST be set to
“yours\;mine\;ours”.

• All original backslash (“\”) characters within <value> MUST be escaped with a (second)
backslash (“\”). Obviously, backslash characters that have been added as an escape
character are themselves not double escaped. For example, in order to represent a value
of “yours\mine\ours”, <value> MUST be set to “yours\\mine\\ours”.

Multiple name-value pairs are separated by a semi-colon (“;”) and have the layout below. When multiple
name-value pairs are specified, the order of occurrence of the name-value pair is not relevant. Additionally,

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 32

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

the same value of <org-name> MAY occur multiple times and the same value of <token-name> MAY
occur multiple times. However, each <org-name>_<token-name> combination MUST appear at most once
within the list of name-value pairs contained by the 4th field. The following example shows three name
value pairs: two of which are defined by the UPnP Forum and one of which is defined by a fictitious
organization called “VendorA”:

upnp.org_resolution=1080i;VendorA.com_resolution=super_high_quality;upnp.org_sample_rate=
30FPS

As described before, the <additionalInfo> field may be used for any purpose and contains name-value pairs
which the control point may or may not understand. Since the semantics of the unknown name-value pairs
are unknown, it SHOULD ignore unknown name-value pairs and only known name-value pairs MAY be
used during comparison.

2.5.2.2 IEC61883 Exception
When the IEC61883 protocol was first introduced into the specification, the structure of the 4th field was
not yet defined. Therefore, the additional data that was needed for this protocol was simply placed directly
in the 4th field without any higher-level constructs. In order to maintain compatibility with existing
implementations of this specification, the definition of the 4th field for the IEC61883 protocol can not be
changed in order to comply with the 4th field layout defined above. However, to eventually deprecate this
non-conformant protocol designation, a new protocol designation has been defined for IEC61883 which
does conform to the above layout. It has been named IEC61883_EX1 with the “_EX1” suffix indicating
“Extension #1”. All future implementations that support the IEC61883 protocol MUST use the new
designator (IEC61883_EX1) as well as the original designator (IEC61883).

2.5.2.3 Formal EBNF for the 4th field
The formal EBNF for the 4th field is as follows:
4th-field ::= '*'|name-value-pair-list|IEC61883-exception

name-value-pair-list ::= name-value-pair (';' name-value-pair)*
name-value-pair ::= org-name '_' token-name '=' value

org-name ::= (* ICANN registered domain name
 including the top-level domain suffix
 (e.g. ".com", ".org", ".netv, etc.) *)

token-name ::= ('a'-'z' | 'A'-'Z' | '0'-'9' | '_')+

value ::= (unicode-char-except-backslash-semicolon|
 escaped-backslash|escaped-semicolon)*

unicode-char-except-backslash-semicolon
 ::= (* any Unicode-4 character except a
 '\' or '; ' character *)

escaped-backslash ::= '\\'

escaped-semicolon ::= '\;'

IEC61883-exception ::= GUID-value ';' PCR-index

GUID-value ::= (* hex encoding of the device’s
 IEC61883 node_vendor_id and chip_id
 (total of 64-bits) *)

PCR-index ::= (* zero-based integer index identifying

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 33

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

 the plug within the device *)

2.5.2.4 ProtocolInfo Conventions for Protected Content

2.5.2.4.1 3rd Field - MIME Type Format
MIME types for protected content resources appear in the third field, <contentFormat>, of the ProtocolInfo
string. Since protected files may be described by both a content protection MIME type as well as a MIME
type associated with the underlying media, the following convention for extended MIME types will be
used for MIME types that describe protected resources:

<content_protection_MIME_type>;CONTENTFORMAT=<underlying_media_MIME_type>

Example 1. The following example describes a MPEG2-TS resource that is protected with DTCP-IP when
streaming. The extended MIME type is:

application/x-dtcp1;CONTENTFORMAT=video/MP2T

The full resulting ProtocolInfo string additionally indicates that the stream is http-get:

ProtocolInfo = “http-get:*:application/x-dtcp1;CONTENTFORMAT=video/MP2T:*”

Finally, the form of the <res> element content is (per DTCP Volume 1 Supplement E Revision 1.0):
<res protocolInfo=
 "http-get:*:application/x-dtcp1;CONTENTFORMAT=video/MP2T:*"
 allowedUse="PLAY,5"
 validityStart="2004-05-30T14:30:00"
 validityEnd="2004-06-04T14:30:00">
 http://10.0.0.1:88/MyCollection/movie7829.mp2t?
 CONTENTPROTECTIONTYPE=DTCP1&DTCP1HOST=1.2.3.4&DTCP1PORT=97
</res>

Example 2. The following example extended MIME type describes a MPEG2-PS resource that is
delivered as an OMA DCF file:

“application/vnd.oma.drm.dcf;CONTENTFORMAT=video/MP2P”

The resulting ProtocolInfo string containing the extended MIME type additionally indicates that the file is
transferred with http-get:

ProtocolInfo = “http-get:*:application/vnd.oma.drm.dcf;CONTENTFORMAT=video/MP2P:*”

Finally, the form of the <res> element content is as follows:
<res protocolInfo=
"http-get:*:application/vnd.oma.drm.dcf;CONTENTFORMAT=video/MP2P:*"
 allowedUse="PLAY,5"
 validityStart="2004-05-30T14:30:00"
 validityEnd="2004-06-04T14:30:00">
 http://10.0.0.1:88/MyCollection/movie8126.dcf
</res>

Example 3. The following example describes a MPEG2-PS resource that is delivered as an OMA DCF file
and can be exported to a DTCP content protection system:

The rights object of the content includes the permissions for enabling the translation into the new DRM
system and will be represented as two separate <res> elements representing the same content:

<res protocolInfo=
 "http-get:*:application/vnd.oma.drm.dcf;CONTENTFORMAT=video/MP2P:*"
 allowedUse="PLAY,5"
 validityStart="2004-05-30T14:30:00"
 validityEnd="2004-06-04T14:30:00">

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 34

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

 http://10.0.0.1:88/MyCollection/movie8126.dcf
</res>

<res protocolInfo=
 "http-get:*:application/x-dtcp1;CONTENTFORMAT=video/MP2T:*"
 allowedUse="PLAY,5"
 validityStart="2004-05-30T14:30:00"
 validityEnd="2004-06-04T14:30:00">
 http://10.0.0.1:88/MyCollection/movie9736.mp2t?
 CONTENTPROTECTIONTYPE=DTCP1&DTCP1HOST=1.2.3.4&DTCP1PORT=97
</res>

2.5.2.4.2 4th Field - Convention for Protected Content
The UPnP AV WC additionally defines the following convention for placing information in the fourth field
of the ProtocolInfo string. The fourth field is used to convey additional information in cases when MIME
type is not sufficient for the purpose of capability matching. In these cases the fourth field MUST contain
additional DRM information for the purpose of more precise compatibility checking between the media
sink and the content properties. Two cases are possible. In the first case, it is only required to identify the
vendor or the standards group that defines the DRM scheme. In this case, the DRM organization or vendor
is specified as the value of a upnp-domain variable:

upnp.org_DRMInfo=<ICANN-DRM-ORG-NAME>

In the second case, the DRM scheme also requires one or more parameters associated with the DRM
scheme to be enumerated. In this case, the following convention is used:

upnp.org_DRMInfo=<ICANN-DRM-ORG-NAME>;
<ICANN-DRM-ORG-NAME>_<parameter1>=<parameter1 value>;
<ICANN-DRM-ORG-NAME>_<parameter2>=<parameter2 value>;
…
<ICANN-DRM-ORG-NAME>_<parameterN>=<parameterN value>

Example 4: A ProtocolInfo string utilizes the fourth field to indicate that the MPEG-4 content is protected
by a (fictitious) DRM scheme associated with ICANN name “XYZ.ORG”:

ProtocolInfo = “http-get:*:video/mp4:upnp.org_DRMInfo=XYZ.ORG”

Example 5: A ProtocolInfo string for an OMA dcf file also indicates the OMA version in the fourth field:

ProtocolInfo = “http-get:*:application/vnd.oma.drm.dcf;CONTENTFORMAT=video/MP2P:
upnp.org_DRMInfo=OMA.ORG;OMA.ORG_VERSION=2”

For maximal compatibility checking, both third and fourth fields (when present) of the ProtocolInfo string
should be matched. In general, older control points may not be capable of checking the fourth field of the
ProtocolInfo string. For that reason, it is recommended that content listings in the CDS for DRM content
should use the MIME conventions described above as much as possible for inserting DRM information on
the given content item into the third field of the ProtocolInfo string.

2.5.3 Typical Control Point Operations
This section briefly outlines some typical control point operations on a ConnectionManager service.

2.5.3.1 Establishing a New Connection
The process for establishing a streaming connection involves:

1. Find ConnectionManager services via SSDP

2. Determine compatibility between the source (sending) and the sink (receiving) device (See
Section 2.4.1)

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 35

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

3. Invoke PrepareForConnection() on the source and/or sink devices, if the action is implemented
by the device (See Section 2.4.2)

4. Transfer content from source to sink device. (See note below).

5. When the connection is no longer needed, invoke ConnectionComplete() on the source and/or sink
devices, if the action is implemented by the device. (See Section 2.4.3)

Refer to the UPnP AV Architecture document for additional details.

Once a connection has been prepared, it can be used to transfer several pieces of content before calling
ConnectionComplete() as long as each content item is compatible with the RemoteProtocolInfo argument
that was passed into PrepareForConnection(); that is: each content item has the same media format as
specified in RemoteProtocolInfo.

2.5.3.2 Dealing with Ongoing Connections
A number of interesting scenarios require a control point to find information about all currently ongoing
connections in the network, including those that it did not establish itself. This is supported by the
ConnectionManager as follows. Each connection explicitly established by any control point in the network
is identified by a connection identifier on both the source (sending) device and the sink (receiving) device.
State variable CurrentConnectionIDs holds a Comma-Separated Value list of these identifiers. Given an
identifier, a control point can call GetConnectionInfo() to obtain:

• The ProtocolInfo of the connection. This includes the streaming protocol and the content format.

• The ‘other end’ of the connection, expressed as a UDN/serviceId pair. Using the UDN, a control
point can use SSDP to find the device description of the other UPnP device involved in the
connection. This way, a control point can find out, for example, that turning off a particular source
device is going to affect one or more sink devices.

• The connection status.

• The AVTransportID of the connection, which indicates the AVTransport service instance
controlling the playback and recording through the connection. This service can be used for many
purposes, for example to:

o subscribe to events in order to monitor the transport state

o actually change the transport state, for example, stopping or pausing an existing stream

o obtain a URI reference to the content resource currently flowing through the connection

o obtain any meta data embedded in the content resource flowing through the connection.

 See the AVTransport service description for more details.

• The RcsID of the connection, which indicates the RenderingControl service instance controlling
the rendering properties of the content. This can be used, for example, to implement a ‘mute all
streams’ function in a control point.

2.5.4 Relation to Devices without ConnectionManagers
In some cases, it is desirable to establish a stream connection between devices where one device
implements a UPnP ConnectionManager service, and the other device doesn't implement this service or
isn't even a UPnP device. In such cases, a control point can only call PrepareForConnection() and
ConnectionComplete() actions on the first device. The PeerConnectionManager input argument to
PrepareForConnection() is defined as the UDN of the connecting UPnP device followed by a slash ('/')
and the serviceId of the connecting device's ConnectionManager service. In case the connecting UPnP
device has no ConnectionManager service, the serviceId part of the argument is left blank. In case the

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 36

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

connecting device is not a UPnP device (for example, an Internet streaming server), the whole
PeerConnectionManager argument is left blank.

2.5.5 PrepareForConnection() and ConnectionComplete()

2.5.5.1 PrepareForConnection()
The purpose of PrepareForConnection() is to allow a device to perform a set of tasks prior to transferring
the content. The specific tasks performed by a device are implementation dependent, but may include the
following:

• Determine whether or not the device is able to stream content using the current environment (for
example, device status, network conditions, etc.)

• Allocating some resources that are needed to establish the out-of-band connection between the
source/sink devices for example, in an IEEE-1394/IEC-61883 environment, this may include
allocating an IEEE-1394 isochronous channel.

• Allocating a unique ConnectionID that identifies those resources which were allocated for a
specific connection.

• Allocating a new virtual instance of the AVTransport and/or RenderingControl service and
binding it to the connection so that the flow of the content and the rendering characteristics of the
content can be controlled.

If a control point wants to interoperate with all UPnP AV devices, prior to initiating the transfer of content,
for example, invoking AVTransport::SetAVTransportURI(), the control point needs to invoke
PrepareForConnection(), if the action is implemented by the device. Otherwise, the device may not
operate correctly because it is not yet properly configured. Additionally, the control point will not know
whether or not the current environment is able to support the upcoming streaming request.

2.5.5.2 ConnectionComplete()
The purpose of ConnectionComplete() is to allow a device to terminate a specific connection and/or to
perform any cleanup tasks that are needed for the connection as a result of a previous invocation of
PrepareForConnection(). As with PrepareForConnection(), the set of tasks performed by a device when
ConnectionComplete() is invoked is implementation-dependent, but may include the following:

• Releasing the resources that were allocated to establish the out-of-band connection between the
source and sink devices (for example, in a IEEE-1394/IEC-61883 environment, this may include
releasing the IEC-61883 isochronous channel that was allocated when PrepareForConnection()
was invoked earlier on the same device).

• Releasing the unique ConnectionID that identifies those resources that were allocated by a
previous invocation of PrepareForConnection().

• Releasing the virtual instance of the AVTransport and/or RenderingControl service, if any, that
were allocated during a previous invocation of PrepareForConnection() in order to control the
content flowing over the associated connection.

Since control points may turn off after a connection is established, control points may not always invoke
the ConnectionComplete() action. Therefore, the device needs to automatically perform any cleanup tasks
for the connection so that those resources that were allocated during PrepareForConnection() are not
leaked.

2.5.5.3 General Usage Model
As mentioned earlier, each device performs an arbitrary set of implementation-dependent tasks during
PrepareForConnection() and ConnectionComplete(). Some of these tasks may be crucial to the proper

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 37

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

operation of the device while other tasks may be secondary to the device’s core functionality. However,
since each implementation of PrepareForConnection() and ConnectionComplete() are specific to each
device, it is very difficult (if not impossible) for a control point to determine whether or not it is safe to by-
pass PrepareForConnection()/ConnectionComplete() for a given device. Therefore, the safest and simplest
way for a control point to interoperate with all UPnP AV devices is to always invoke
PrepareForConnection() and ConnectionComplete() if they are implemented by the device. Otherwise,
those devices may not function properly as described above.

2.5.5.4 Relationship to AVTransport and RenderingControl Services
As described in the “Theory of Operation” sections of the AVTransport and RenderingControl service
specifications, some device are designed to support multiple virtual instances of the AVTransport and/or
RenderingControl service. With these types of devices, the allocation and binding of these virtual instances
occur during PrepareForConnection().

As described in the AVTransport specification, the responsibility for providing the AVTransport service
for a given connection varies between the source and sink devices depending on the type of connection
(that is: the type of transfer protocol that is being used). When a push protocol is being used (for example,
IEEE-1394), the source device is responsible for providing the AVTransport service and when a pull
protocol is being used (for example, HTTP GET), the sink device is responsible for providing the
AVTransport service. When a source device wants to support multiple instances of a push protocol or a
sink device wants to support multiple instances of a pull protocol, the device’s PrepareForConnection() is
responsible for allocating a new virtual instance of the AVTransport service for each new instance of that
connection-type. Additionally, PrepareForConnection() MUST perform the necessary binding operations
that link the allocated AVTransport instance with the connection.

For example, in a IEEE-1394/IEC-61883 (push) environment, if a source device wants to support multiple
1394/61883 streams, then its PrepareForConnection() MUST allocate a unique virtual instance of the
AVTransport service and bind it to the newly allocated IEEE-1394/IEC-61883 connection. Similarly, in an
HTTP GET pull environment, if a sink device wants to support multiple simultaneous connections, its
PrepareForConnection() implementation MUST allocate a new virtual instance of the AVTransport
service and bind it to the newly allocated connection.

Note: This implies that the sink device’s PrepareForConnection() MUST perform some type of pre-
allocation of the TCP/IP socket so that it can be distinguished from the other connections of that type.

With regards to the RenderingControl service, the sink device is always responsible for providing it
regardless of the underlying protocol. If a sink device is designed to support multiple simultaneous
connections then its implementation of PrepareForConnection() MUST be designed to allocate a new
virtual instance of the RenderingControl service for each connection that is created. Additionally, it MUST
bind each instance to the newly created connection so that a control point can control the rendering
characteristics of the content that is being transferred over that connection.

Note: This implies that the sink device’s PrepareForConnection() MUST perform some type of pre-
allocation of the TCP/IP socket so that it can be distinguished from the other connections of that type.

When a device’s PrepareForConnection() is designed to allocate and bind virtual instances of the
AVTransport and/or RenderingControl services, the device’s ConnectionComplete() MUST be designed to
un-bind and release these virtual instances. For example, if a source device allocates an AVTransport
service and binds it to a IEEE-1394 channel, the device’s ConnectionComplete() action MUST undo the
binding operation, as appropriate, and it MUST release the IEEE-1394 channel.

2.5.5.5 ConnectionIDs
A ConnectionID is a device-specific identifier that is used to uniquely identify a connection which has
been prepared on a device via PrepareForConnection(). When PrepareForConnection() is invoked, a
ConnectionID is allocated by the device and assigned to the newly configured connection. Since
ConnectionIDs are allocated by individual devices, a given ConnectionID is valid only within the context

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 38

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

of that device. Therefore, a ConnectionID assigned by one device can not be used when interacting with
another device. When the two end-point devices of a given connection are setup via
PrepareForConnection(), the ConnectionIDs returned by the two devices are completely independent from
each other and are almost certainly going to have different values even though they happen to refer to the
same connection.

On a given device, the algorithm used to allocate ConnectionIDs is vendor-specific. Hence, the numerical
value of a ConnectionID is completely meaningless except to the device itself. Once a ConnectionID has
been allocated, it is generally valid until the associated connection is torn down. Typically, this happens in
response to an invocation of ConnectionComplete() or as a result of the device’s OPTIONAL auto-cleanup
mechanism.

Devices SHOULD NOT return the same ConnectionID value on subsequent invocations of
PrepareForConnection(). After a connection has been torn down, its associated ConnectionID, which is no
longer valid, can be reassigned by the device to another connection. However, in order to minimize the
potential of a stale ConnectionID being misinterpreted as a valid ConnectionID, it is RECOMMENDED
that each device not reassign a ConnectionID value until all other valid values have been used.

Once a ConnectionID has been allocated, any control point may use the ConnectionID to uniquely identify
the associated connection even when invoking ConnectionComplete(). However, in order to provide
predictable device behavior, it is RECOMMENDED that each control point use only those connections
that it has prepared. Notable exceptions to this recommendation include those control points that are able to
coordinate with one another, via some non-UPnP mechanism, or those control points that are explicitly
designed to perform connection clean up tasks, for example, a network management tool.

2.5.5.6 AVTransportIDs and RcsIDs
When a connection is prepared via PrepareForConnection(), the device MAY choose to return an
AVTransportID and/or an RcsID. These IDs are used to identify the (unique and independent) virtual
instance of the AVTransport service and/or RenderingControl service that has been associated with the
newly prepared connection. As with the connection’s ConnectionID, the value of the AVTransportID
and/or RcsID have no meaning outside of the context of the allocating device. Similarly, AVTransportIDs
and RcsIDs are valid until their associated connection is torn down, generally in response to an invocation
of ConnectionComplete() or as a result of the device’s OPTIONAL auto-cleanup mechanism.

Once allocated, AVTransportIDs and RcsIDs are used in conjunction with the AVTransport service and
RenderingControl service, respectively, to invoke various control actions on the stream that is being carried
over the associated connection. As with ConnectionIDs, control points should use only the
AVTransportIDs and RcsIDs that are associated with the connections that the control point has prepared via
PrepareForConnection(). The AVTransport and RenderingControl services allow any control point to use
any valid AVTransportIDs and/or RcsIDs. However, when multiple control points use the same
AVTransportID and/or RcsID, these control points should coordinate their activities with one another.
Otherwise, the devices may behave unexpectedly thus causing a poor end-user experience.

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 39

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

3 XML Service Description
<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList>
 <action>
 <name>GetProtocolInfo</name>
 <argumentList>
 <argument>
 <name>Source</name>
 <direction>out</direction>
 <relatedStateVariable>
 SourceProtocolInfo
 </relatedStateVariable>
 </argument>
 <argument>
 <name>Sink</name>
 <direction>out</direction>
 <relatedStateVariable>
 SinkProtocolInfo
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>PrepareForConnection</name>
 <argumentList>
 <argument>
 <name>RemoteProtocolInfo</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ProtocolInfo
 </relatedStateVariable>
 </argument>
 <argument>
 <name>PeerConnectionManager</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ConnectionManager
 </relatedStateVariable>
 </argument>
 <argument>
 <name>PeerConnectionID</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ConnectionID
 </relatedStateVariable>
 </argument>
 <argument>
 <name>Direction</name>
 <direction>in</direction>
 <relatedStateVariable>

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 40

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

 A_ARG_TYPE_Direction
 </relatedStateVariable>
 </argument>
 <argument>
 <name>ConnectionID</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ConnectionID
 </relatedStateVariable>
 </argument>
 <argument>
 <name>AVTransportID</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_AVTransportID
 </relatedStateVariable>
 </argument>
 <argument>
 <name>RcsID</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_RcsID
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>ConnectionComplete</name>
 <argumentList>
 <argument>
 <name>ConnectionID</name>
 <direction>in</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ConnectionID
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetCurrentConnectionIDs</name>
 <argumentList>
 <argument>
 <name>ConnectionIDs</name>
 <direction>out</direction>
 <relatedStateVariable>
 CurrentConnectionIDs
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetCurrentConnectionInfo</name>
 <argumentList>
 <argument>
 <name>ConnectionID</name>
 <direction>in</direction>

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 41

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

 <relatedStateVariable>
 A_ARG_TYPE_ConnectionID
 </relatedStateVariable>
 </argument>
 <argument>
 <name>RcsID</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_RcsID
 </relatedStateVariable>
 </argument>
 <argument>
 <name>AVTransportID</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_AVTransportID
 </relatedStateVariable>
 </argument>
 <argument>
 <name>ProtocolInfo</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ProtocolInfo
 </relatedStateVariable>
 </argument>
 <argument>
 <name>PeerConnectionManager</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ConnectionManager
 </relatedStateVariable>
 </argument>
 <argument>
 <name>PeerConnectionID</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ConnectionID
 </relatedStateVariable>
 </argument>
 <argument>
 <name>Direction</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_Direction
 </relatedStateVariable>
 </argument>
 <argument>
 <name>Status</name>
 <direction>out</direction>
 <relatedStateVariable>
 A_ARG_TYPE_ConnectionStatus
 </relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 </actionList>

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 42

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

 <serviceStateTable>
 <stateVariable sendEvents="yes">
 <name>SourceProtocolInfo</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>SinkProtocolInfo</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>CurrentConnectionIDs</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ConnectionStatus</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>OK</allowedValue>
 <allowedValue>ContentFormatMismatch</allowedValue>
 <allowedValue>InsufficientBandwidth</allowedValue>
 <allowedValue>UnreliableChannel</allowedValue>
 <allowedValue>Unknown</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ConnectionManager</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_Direction</name>
 <dataType>string</dataType>
 <allowedValueList>
 <allowedValue>Input</allowedValue>
 <allowedValue>Output</allowedValue>
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ProtocolInfo</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_ConnectionID</name>
 <dataType>i4</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_AVTransportID</name>
 <dataType>i4</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>A_ARG_TYPE_RcsID</name>
 <dataType>i4</dataType>
 </stateVariable>
 </serviceStateTable>
</scpd>

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 43

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

4 Test
No semantics tests have been defined for this service.

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 44

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Appendix A. Protocol Specifics

A.1 Application to HTTP Streaming

A.1.1 ProtocolInfo Definition
Streaming data via the HTTP GET method is defined by the Internet standard Request For Comment
document entitled HyperText Transport Protocol – HTTP/1.1 (http://www.ietf.org/rfc/rfc2616.txt). While it
is certainly possible to use other HTTP methods such as PUT or POST, this document focuses on the
HTTP GET method. The <protocol> part of ProtocolInfo MUST be “http-get”. The <network> part of
ProtocolInfo is not used for the HTTP case since all devices belong to the same network. An asterisk (“*”)
is used instead. The <contentFormat> part for HTTP GET is described by a MIME type, see
http://www.ietf.org/rfc/rfc1341.txt.

An example of protocol information for HTTP GET, in this case referring to an audio file, is:

 http-get:*:audio/mpeg:*

A.1.2 Implementation of PrepareForConnection()
In addition to any non-protocol related preparation tasks such as the one described in Section 2.5.5,
“PrepareForConnection() and ConnectionComplete(),” a device’s PrepareForConnection()
implementation MAY also perform some preparation tasks that are related to the protocol that is about to
be used to transfer the content. However, since the HTTP GET connection is initiated and maintained by
the sink device, the source device typically does not need to perform any protocol-related preparation tasks
because HTTP GET requests are handled by the device’s underlying http-server. Therefore, if a
MediaServer does not need to perform any non-protocol-related preparation tasks, it will (in most cases)
not need to implement PrepareForConnection(). Although not required, the MediaRenderer device (the
receiving end of the HTTP stream), MAY choose to pre-allocate a TCP/IP socket in order to ensure that
this resource is available when the content transfer is initiated; that is: when
AVTransport::SetAVTransportURI() is invoked.

A.1.3 Implementation of ConnectionComplete()
In addition to the non-protocol related cleanup tasks such as those described in Section 2.5.5,
“PrepareForConnection() and ConnectionComplete(),” a device’s ConnectionComplete() implementation
MAY also perform some cleanup tasks that are related to the protocol that was used to transfer the content.
The cleanup tasks that a device performs depend directly on the implementation of
PrepareForConnection(). In general, when using the HTTP GET protocol, a MediaServer does not have
any protocol-related cleanup tasks to perform because the MediaServer’s PrepareForConnection()
typically does not perform any protocol-related preparation. On a MediaRenderer device,
ConnectionComplete() MUST release any protocol-related resources that were allocated during
PrepareForConnection(). For example, if a MediaRenderer chooses to pre-allocate a TCP/IP socket during
PrepareForConnection(), the device’s ConnectionComplete() action MUST release the socket associated
with that connection.

A.1.4 Automatic Connection Cleanup
Since control points may establish connections, and then leave the UPnP network forever, protocols
supported by the ConnectionManager need to have a built-in automatic mechanism to cleanup stale
connections. For HTTP connections, automatic cleanup SHOULD be performed by the AVTransport
instance.

On the UPnP level, this will appear as an (evented) change in state variable CurrentConnectionIDs.

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 45

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

A.2 Application to RTSP/RTP/UDP Streaming

A.2.1 ProtocolInfo Definition
Streaming data via RTSP is defined by the Internet standard Request For Comment document entitled Real
Time Streaming Protocol. (http://www.ietf.org/rfc/rfc2326.txt). The actual Audio/Video data packets are
sent out-of-band with respect to RTSP. RTSP does not REQUIRE a particular protocol for this. Since
usually RTP (http://www.ietf.org/rfc/rfc1889.txt) over UDP is used, the protocol for RTSP-based streams
is defined as RTSP/RTP/UDP. This ensures that two ConnectionManagers that can send and receive RTSP
also send and receive using the same Audio/Video data Connection protocol. The <protocol> part of
ProtocolInfo MUST be “rtsp-rtp-udp”. The <network> part of ProtocolInfo is not used for the
RTSP/RTP/UDP case since all devices belong to the same network. An asterisk (“*”) is used instead. RTP
packets contain a standardized 7-bit payload type identifier, see http://www.iana.org/assignments/rtp-
parameters or http://www.ietf.org/rfc/rfc1890.txt. Each payload type has a unique encoding name. This
payload type name is used as the <contentFormat> part of the ProtocolInfo string.

An example of protocol information for RTSP/RTP/UDP with MPEG video payload is:

 rtsp-rtp-udp:*:MPV:*

A.2.2 Implementation of PrepareForConnection()
In addition to the non-protocol related preparation task such as those described in Section 2.5.5,
“PrepareForConnection() and ConnectionComplete(),” a device’s PrepareForConnection()
implementation MAY also perform some preparation tasks that are related to the protocol that is about to
be used to transfer the content. However, since RTSP/RTP/UDP sessions are initiated and maintained by
the sink device, the source device typically does not need to perform any protocol-related preparation
tasks. Therefore, if a MediaServer does not need to perform any non-protocol-related preparation tasks, it
will (in most cases) not need to implement PrepareForConnection(). Although not required, the
MediaRenderer device (the receiving end of the RTP/RTP/UDP stream) MAY choose to pre-allocate an
RTSP/RTP/UDP connection in order to ensure that this resource is available when the content transfer is
initiated; that is: when AVTransport::SetAVTransportURI() is invoked.

A.2.3 Implementation of ConnectionComplete()
In addition to the non-protocol related cleanup tasks such as those described in Section 2.5.5,
“PrepareForConnection() and ConnectionComplete(),” a device’s ConnectionComplete() implementation
MAY also perform some cleanup tasks that are related to the protocol that was used to transfer the content.
The cleanup tasks that a device performs depend directly on the implementation of
PrepareForConnection(). In general, when using the RTSP/RTP/UDP protocol, a MediaServer does not
have any protocol-related cleanup tasks to perform because the MediaServer’s PrepareForConnection()
typically does not perform any protocol-related preparation. On a MediaRenderer device,
ConnectionComplete() MUST release any protocol-related resources that were allocated during
PrepareForConnection(). For example, if a MediaRenderer chooses to pre-allocate a RTSP/RTP/UDP
connection during PrepareForConnection(), the device’s ConnectionComplete() MUST release that
connection.

A.2.4 Automatic Connection Cleanup
Since control points may establish connections, and then leave the UPnP network forever, protocols
supported by the ConnectionManager need to have a built-in automatic mechanism to cleanup stale
connections. For RTSP connections, automatic cleanup SHOULD be performed by the AVTransport
instance.

On the UPnP level, this will appear as an (evented) change in state variable CurrentConnectionIDs.

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 46

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

A.3 Application to Device-Internal Streaming
For the purpose of this service definition an INTERNAL protocol is defined for use over internal
connections. An internal connection is defined as a connection within a single device. An example of such
a connection is between a Tuner subsystem and a Display subsystem in a conventional TV. Since this
connection is internal to the device, no streaming data will flow on the UPnP network, and the actual
content-format used inside the device can be proprietary. The resulting ProtocolInfo and content-URI that
need to be defined for these types of connections can therefore be very simple.

An internal connection MUST use the INTERNAL protocol. For this protocol, the <protocol> part of
ProtocolInfo MUST be “internal”. Within this protocol scope the <network> part of ProtocolInfo is
defined as the device’s IP-address, as a string, in the well-known dotted decimal notation. The
<contentFormat> part of ProtocolInfo is proprietary.

An example of protocol information for INTERNAL is:

 internal:161.88.59.212:mpeg2:to-local-display

The implementation of the PrepareForConnection() and ConnectionComplete() actions for this protocol
type is proprietary (vendor specific).

A.4 Application to IEC61883 Streaming

A.4.1 ProtocolInfo Definition
The basis for real time data transmission on the IEEE1394 bus using the IEC61883 protocol is the
Common Isochronous Packet (CIP) which consists of a CIP header and data blocks embedded in an
IEEE1394 compliant isochronous packet. The <protocol> part of ProtocolInfo MUST be “iec61883”.

The <network> part of ProtocolInfo for the IEC61883 protocol uniquely identifies the set of connected
IEEE1394 devices on a specific bus segment. It is defined as a bin.hex encoding of the GUID (Globally
Unique ID) of the 1394 Isochronous Resource Manager node. This identification is not persistent, and will,
in general, change when 1394 devices are added to or removed from the 1394 network. These changes will
lead to changes in the SourceProtocolInfo and SinkProtocolInfo state variables, and, through eventing,
interested control points will be notified of the new streaming possibilities of the new 1394 network
segmentation.

The stream types include all content formats supported by the family of IEC61883 Standards. These
formats are uniquely identified by the FMT and FDF values in the CIP header, The following table lists the
formats supported by the IEC61883-2 to 5 International Standards and by IEC61883-6 PAS (Publicly
Available Specification; that is: not yet fulfilling all requirements for a standard).

Table A-1: <contentFormat> for Protocol IEC61883

<contentFormat> for Protocol IEC61883 IEC
Version

Description

“UNKNOWN_STREAM”

“DVCR_STD_DEF_525_60” IEC61883-2 525-60 system: the 525-line system with
a frame frequency of 29.97 Hz

“DVCR_STD_DEF_625_50” IEC61883-2 625-50 system: the 625-line system with
a frame frequency of 25.00 Hz

“DVCR_STD_DEF_HI_COMPRESS_525_60” IEC61883-5 SDL525-60 system: The standard
definition for high compression mode
525-line system with a frame frequency
of 29.97 Hz.

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 47

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

<contentFormat> for Protocol IEC61883 IEC
Version

Description

“DVCR_STD_DEF_HI_COMPRESS_625_50” IEC61883-5 SDL625-50 system: The standard
definition for high compression mode
625-line system with a frame frequency
of 25.00 Hz.

“DVCR_HI_DEF_1125_60” IEC61883-3 1125-60 system: the 1125-line system
with a frame frequency of 30.00 Hz

“DVCR_HI_DEF_1250_50” IEC61883-3 1250-50 system: the 1250-line system
with a frame frequency of 25.00 Hz

“SMPTE_D7_525_60” IEC61883-2 SMPTE-D7 525-60 system

“SMPTE_D7_625_50” IEC61883-2 SMPTE-D7 625-50 system

“MPEG2_TS” IEC61883-4 MPEG2-TS

“AUDIO_MUSIC_8_24_IEC_60958” IEC61883-6 IEC 60958 conformant

“AUDIO_MUSIC_8_24_RAW_AUDIO” IEC61883-6 Raw audio

“AUDIO_MUSIC_8_24_MIDI” IEC61883-6 MIDI conformant

IEC61883 connections are set up between iPCRs (input Plug Control Registers) and oPCRs (output Plug
Control Registers). A content item is connected through an oPCR to one or more iPCRs on a different
device. An IEC61883 device can have zero or more iPCRs and oPCRs.

The <additionalInfo> field identifies the PCR in the IEC61883 network, and is defined as follows:

 <GUID>;<PCR-index>

where

• <GUID> = bin.hex encoding of the device’s node_vendor_id and chip_id (2 quadlets, together
also referred to as GUID)

• <PCR-index> = zero-based integer index identifying the plug within the device

An example of protocol information for IEC61883 is:

 iec61883:0000f00200001114:MPEG2_TS:00ba0091c9231222;0

A.4.2 Implementation of PrepareForConnection()
In addition to the non-protocol related preparation task such as those described in Section 2.5.5,
“PrepareForConnection() and ConnectionComplete(),” a device’s PrepareForConnection()
implementation MAY also perform some preparation tasks that are related to the protocol that is about to
be used to transfer the content Although IEEE1394/IEC61883 is an allocation-based protocol, the source
device is not REQUIRED to perform any protocol related preparation. It is the sink device that is
responsible for allocating the underlying IEEE1394/IEC61883 connection.

In order to manage isochronous data transmissions, IEC61883 defines the concept of plug and specialized
registers called MPR (Master Plug Register) and PCR (Plug Control Register). These registers are used to
initiate and stop transmissions. The set of procedures to control the real time data flow by manipulating the
PCRs is called CMP (Connection Management Procedures). Data transmission between devices is possible
when an output plug on the source device is connected to an input plug on the sink device via an
isochronous channel. The data flow from a source device is controlled by the oMPR (output Master Plug
Register) of the device and one oPCR (output PCR). Similarly, the data flow to a sink device is controlled
by the iMPR (input MPR) and one iPCR (input PCR). The address map for these registers is well defined

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 48

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

in conformance with ISO/IEC13213 (ANSI/IEEE1212). Devices can modify PCR values of remote nodes
using asynchronous transactions.

Using the information in the PrepareForConnection() input arguments, the sink device locates the
IEEE1394 address of the source device (its GUID is part of the <additionalInfo> field of the ProtocolInfo
string), and program the appropriate oPCR register to initiate the streaming. The sink device is free to
choose any of its own iPCRs. The sink device MUST follow the exact procedure defined by IEC61883,
which includes the allocation of IEEE1394 bandwidth and an IEEE1394 channel. Upon subsequent
IEEE1394 bus resets, the sink device (the device that established the connection) MUST try to restore any
existing connections that it has established.

If the ProtocolInfo references an oPCR that is already in use, two situations occur:

• The same content-format is already being streamed via the oPCR. In this case, the sink device
performs an IEC61883 overlay connection.

• A different content-format is already being streamed via the oPCR. In this case, the sink device
will return an error.

IEC61883 broadcast-in and broadcast-out connections are not supported by the ConnectionManager.

A.4.3 Implementation of ConnectionComplete()
In addition to the non-protocol related cleanup tasks such as those described in Section 2.5.5,
“PrepareForConnection() and ConnectionComplete(),” a device’s ConnectionComplete() implementation
MAY also perform some cleanup tasks that are related to the protocol that was used to transfer the content.
The cleanup tasks that a device performs depend directly on the implementation of
PrepareForConnection(). In general, when using the IEEE1394/IEC61883 protocol, the source device
does not have any protocol-related cleanup tasks to perform because the device’s PrepareForConnection()
typically does not perform any protocol-related preparation. On a sink device, ConnectionComplete()
MUST release the IEEE1394/IEC61883 connection that was allocated during PrepareForConnection().
The sink device MUST follow the IEC61883 procedure for releasing the channel which includes:

• Modifying the corresponding fields of the source oPCR and sink iPCR according to CMP procedures.

• Deallocate the IEEE1394 resources. If the oPCR becomes unconnected (that is: this is the last
IEC61883 connection on that IEEE1394 channel), the IEEE1394 bandwidth and channel MUST also
be released.

Note: IEC61883 broadcast-in and broadcast-out connections are not supported by the ConnectionManager.

A.4.4 Automatic Connection Cleanup
Since control points may establish connections, and then leave the UPnP network forever, protocols
supported by the ConnectionManager need to have a built-in automatic mechanism to cleanup stale
connections. For the IEC61883 protocol, an established connection will continue forever, until there is a
so-called bus reset. A bus reset will occur when there is a change in the physical network topology, for
example, the network is split, joined with another network, or a device goes offline. After a bus reset, all
IEEE1394 resources are released, and all devices that established IEC61883 connections have 1 second to
re-establish them. Hence, the ConnectionManager on the sink device needs to check after a bus reset
whether the source device is still on the network, and if not, cleanup any internal state referring to this
connection. On the UPnP level, this will appear as an (evented) change in state variable
CurrentConnectionIDs.

A.5 Application to Vendor-specific Streaming
To allow vendors to use their vendor-specific streaming protocols in a UPnP network in a controlled way,
the ConnectionManager defines the generic protocol VENDOR for such protocols. The idea is to make the
<protocol> part of ProtocolInfo unique, by requiring the use of the vendor’s registered ICANN (Internet)

ConnectionManager:2 Service Template Version 1.01 – Document Version 1.00 49

Copyright © 1999-2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

domain name (similar to its use in vendor-specific UPnP service- and device-types). The remaining fields
of the ProtocolInfo string (<network>, <contentFormat> and <additionalInfo>) are all vendor-specific, and
MAY be wildcards (“*”).

An example of a VENDOR protocol information is:

 company.com:*:company-format-A:optional-setup-info

The implementation of the PrepareForConnection() and ConnectionComplete() actions for this protocol
type is proprietary (vendor-specific).

