
UPnP AV Datastructure Template:1
For UPnP™ Version 1.0
Status: Approved Standard
Date: May 31, 2006
Document Version: 1.00

This Standardized DCP has been adopted as a Standardized DCP by the Steering Committee of the UPnP
Forum, pursuant to Section 2.1(c)(ii) of the UPnP Membership Agreement. UPnP Forum Members have
rights and licenses defined by Section 3 of the UPnP Membership Agreement to use and reproduce the
Standardized DCP in UPnP Compliant Devices. All such use is subject to all of the provisions of the UPnP
Membership Agreement.

THE UPNP FORUM TAKES NO POSITION AS TO WHETHER ANY INTELLECTUAL PROPERTY
RIGHTS EXIST IN THE STANDARDIZED DCPS. THE STANDARDIZED DCPS ARE PROVIDED
"AS IS" AND "WITH ALL FAULTS". THE UPNP FORUM MAKES NO WARRANTIES, EXPRESS,
IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE STANDARDIZED DCPS,
INCLUDING BUT NOT LIMITED TO ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE, OF REASONABLE CARE
OR WORKMANLIKE EFFORT, OR RESULTS OR OF LACK OF NEGLIGENCE.

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Authors Company

Alan Presser Allegrosoft

Gary Langille Echostar

Gerrie Shults HP

John Ritchie (Co-Chair) Intel

Mark Walker Intel

Changhyun Kim LGE Electronics

Sungjoon Ahn LGE Electronics

Masatomo Hori Matsushita Electric (Panasonic)

Matthew Ma Matsushita Electric (Panasonic)

Jack Unverferth Microsoft

Wim Bronnenberg Philips

Geert Knapen (Co-Chair) Philips

Russell Berkoff Pioneer

Irene Shen Pioneer

Norifumi Kikkawa Sony

UPnP AV Datastructure Template:1 – Document Version 1.00 2

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Authors Company

Jonathan Tourzan Sony

Yasuhiro Morioka Toshiba

UPnP AV Datastructure Template:1 – Document Version 1.00 3

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Contents

1 Introduction ..6
1.1 Notation...6

1.1.1 Data Types ...7
1.1.2 Strings Embedded in Other Strings..7
1.1.3 Extended Backus-Naur Form...8

1.2 Derived Data Types ..8
1.2.1 Comma Separated Value (CSV) Lists..8

1.3 Management of XML Namespaces in Standardized DCPs...10
1.3.1 Namespace Prefix Requirements ...12
1.3.2 Namespace Names, Namespace Versioning and Schema Versioning13
1.3.3 Namespace Usage Examples ...14

1.4 Vendor-defined Extensions...15
1.5 References...15

2 Overview ...19
3 AV Datastructure Template..20
4 AV Datastructure Schema...27

UPnP AV Datastructure Template:1 – Document Version 1.00 4

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

List of Tables
Table 1-1: EBNF Operators ...8
Table 1-2: CSV Examples..9
Table 1-3: Namespace Definitions ...11
Table 1-4: Schema-related Information..11
Table 1-5: Default Namespaces for the AV Specifications..13

UPnP AV Datastructure Template:1 – Document Version 1.00 5

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

List of Figures
Figure 1: Typical Usage of AVDT..19

UPnP AV Datastructure Template:1 – Document Version 1.00 6

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

1 Introduction
This document defines the layout of the AV Datastructure Template (AVDT) XML document. An AVDT
document describes the format requirements and restrictions of various data structures used within the
UPnP AV specifications. Although these data structures are defined very precisely in the appropriate
service specification, in most cases, each data structure definition allows for a certain degree of variation in
order to accommodate differences between individual devices.

The purpose of an AVDT document is to enable each device to describe (at run-time) its particular
variation of these AV data structures. AVDT documents allow users of AV data structures (e.g. UPnP
control points) to reduce the number of instances of those data structures that comply with the service
specification but are not compatible with the device’s particular capabilities. The ultimate goal of an
AVDT document is to reduce those error conditions that are caused by control points creating instances of
a data structure that exceed the static (known) capabilities of the device. Unfortunately, the AVDT
mechanism will never eliminate all preventable error conditions, but it will help to reduce them by giving
the client more information about the device’s particular capabilities.

As described above, an AVDT document is a machine readable, implementation-specific variant of an AV
data structure defined by one of the UPnP AV specifications. For a given device, each instance of that data
structure must conform to both the specification definition AND the device’s AVDT definition of that data
structure.

Ironically, an AVDT document is both a more-restrictive and more-permissive variant of the specification
definition. AVDT documents are more restrictive because they limit certain aspects of the data structure
(e.g. such as the allowed values for each field) that are otherwise permitted by the specification definition.
However, due to limitations of the AVDT constructs, it is simply not possible to express some of the more
intricate requirements defined by the specification (e.g. subtle interdependencies between data structure
fields). Consequently, instances of a data structure that comply with a given AVDT description may not
fully comply with all of the requirements defined in the specification.

The types of data structures that can be described by an AVDT document represent a (non-hierarchitical)
set of named property values. The set of allowed property names and their allowed values for a given data
structure are defined by one of the UPnP AV specifications. Individual instances of these data structures
are manifested via an XML document whose elements and attributes correspond to the set of named
properties. In other words, within the XML document that corresponds to a given instance of a certain data
structure, each XML element and attribute contains the value of a specific named property.

An AVDT document is conceptually similar to an XML schema in that both entities identify the XML
elements and attributes that appear in any given document instance. Additionally, both AVDT documents
and XML schemas identify the allowed values that are permitted for each element and/or attribute which
corresponds to a specific property. However, unlike an XML schema, an AVDT document can also
identify certain dependencies between two or more properties. For example, the set of allowed values of
one property may depend on the actual value of another property. This type of interrelationship is difficult
to represent using an XML schema. Hence, the AVDTdocument structure is needed.

1.1 Notation
• In this document, features are described as Required, Recommended, or Optional as follows:

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,”
“SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in this
specification are to be interpreted as described in [RFC 2119].

In addition, the following keywords are used in this specification:

PROHIBITED – The definition or behavior is an absolute prohibition of this specification.
Opposite of REQUIRED.

UPnP AV Datastructure Template:1 – Document Version 1.00 7

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

CONDITIONALLY REQUIRED – The definition or behavior depends on a condition. If the
specified condition is met, then the definition or behavior is REQUIRED, otherwise it is
PROHIBITED.

CONDITIONALLY OPTIONAL – The definition or behavior depends on a condition. If the
specified condition is met, then the definition or behavior is OPTIONAL, otherwise it is
PROHIBITED.

These keywords are thus capitalized when used to unambiguously specify requirements over
protocol and application features and behavior that affect the interoperability and security of
implementations. When these words are not capitalized, they are meant in their natural-language
sense.

• Strings that are to be taken literally are enclosed in “double quotes”.

• Words that are emphasized are printed in italic.

• Keywords that are defined by the UPnP AV Working Committee are printed using the forum
character style.

• Keywords that are defined by the UPnP Device Architecture are printed using the arch character
style.

• A double colon delimiter, “::”, signifies a hierarchical parent-child (parent::child) relationship
between the two objects separated by the double colon. This delimiter is used in multiple contexts,
for example: Service::Action(), Action()::Argument, parentProperty::childProperty.

1.1.1 Data Types
This specification uses data type definitions from two different sources. The UPnP Device Architecture
defined data types are used to define state variable and action argument data types [DEVICE]. The XML
Schema namespace is used to define property data types [XML SCHEMA-2].

For UPnP Device Architecture defined Boolean data types, it is strongly RECOMMENDED to use the
value “0” for false, and the value “1” for true. However, when used as input arguments, the values “false”,
“no”, “true”, “yes” may also be encountered and MUST be accepted. Nevertheless, it is strongly
RECOMMENDED that all state variables and output arguments be represented as “0” and “1”.

For XML Schema defined Boolean data types, it is strongly RECOMMENDED to use the value “0” for
false, and the value “1” for true. However, when used as input properties, the values “false”, “true” may
also be encountered and MUST be accepted. Nevertheless, it is strongly RECOMMENDED that all
properties be represented as “0” and “1”.

1.1.2 Strings Embedded in Other Strings
Some string variables and arguments described in this document contain substrings that MUST be
independently identifiable and extractable for other processing. This requires the definition of appropriate
substring delimiters and an escaping mechanism so that these delimiters can also appear as ordinary
characters in the string and/or its independent substrings. This document uses embedded strings in two
contexts – Comma Separated Value (CSV) lists (see Section 1.2.1, “Comma Separated Value (CSV)
Lists”) and property values in search criteria strings. Escaping conventions use the backslash character, “\”
(character code U+005C), as follows:

a. Backslash (“\”) is represented as “\\” in both contexts.
b. Comma (“,”) is

1. represented as “\,” in individual substring entries in CSV lists
2. not escaped in search strings

UPnP AV Datastructure Template:1 – Document Version 1.00 8

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

c. Double quote (“””) is
1. not escaped in CSV lists
2. not escaped in search strings when it appears as the start or end delimiter of a property value
3. represented as “\”” in search strings when it appears as a character that is part of the property

value

1.1.3 Extended Backus-Naur Form
Extended Backus-Naur Form is used in this document for a formal syntax description of certain constructs.
The usage here is according to the reference [EBNF].

1.1.3.1 Typographic conventions for EBNF
Non-terminal symbols are unquoted sequences of characters from the set of English upper and lower
case letters, the digits “0” through “9”, and the hyphen (“-”). Character sequences between 'single
quotes' are terminal strings and MUST appear literally in valid strings. Character sequences between
(*comment delimiters*) are English language definitions or supplementary explanations of their
associated symbols. White space in the EBNF is used to separate elements of the EBNF, not to represent
white space in valid strings. White space usage in valid strings is described explicitly in the EBNF. Finally,
the EBNF uses the following operators:

Table 1-1: EBNF Operators

Operator Semantics
::= definition – the non-terminal symbol on the left is defined by one or more alternative

sequences of terminals and/or non-terminals to its right.

| alternative separator – separates sequences on the right that are independently allowed
definitions for the non-terminal on the left.

* null repetition – means the expression to its left MAY occur zero or more times.

+ non-null repetition – means the expression to its left MUST occur at least once and
MAY occur more times.

[] optional – the expression between the brackets is optional.

() grouping – groups the expressions between the parentheses.

- character range – represents all characters between the left and right character operands
inclusively.

1.2 Derived Data Types
This section defines a derived data type that is represented as a string data type with special syntax. This
specification uses string data type definitions that originate from two different sources. The UPnP Device
Architecture defined string data type is used to define state variable and action argument string data types.
The XML Schema namespace is used to define property xsd:string data types. The following definition
applies to both string data types.

1.2.1 Comma Separated Value (CSV) Lists
The UPnP AV services use state variables, action arguments and properties that represent lists – or one-
dimensional arrays – of values. The UPnP Device Architecture, Version 1.0 [DEVICE], does not provide
for either an array type or a list type, so a list type is defined here. Lists MAY either be homogeneous (all
values are the same type) or heterogeneous (values of different types are allowed). Lists MAY also consist
of repeated occurrences of homogeneous or heterogeneous subsequences, all of which have the same

UPnP AV Datastructure Template:1 – Document Version 1.00 9

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

syntax and semantics (same number of values, same value types and in the same order). The data type of a
homogeneous list is string or xsd:string and denoted by CSV (x), where x is the type of the individual
values. The data type of a heterogeneous list is also string or xsd:string and denoted by CSV (x, y, z),
where x, y and z are the types of the individual values. If the number of values in the heterogeneous list is
too large to show each type individually, that variable type is represented as CSV (heterogeneous), and the
variable description includes additional information as to the expected sequence of values appearing in the
list and their corresponding types. The data type of a repeated subsequence list is string or xsd:string and
denoted by CSV ({x, y, z}), where x, y and z are the types of the individual values in the subsequence and
the subsequence MAY be repeated zero or more times.

• A list is represented as a string type (for state variables and action arguments) or xsd:string type
(for properties).

• Commas separate values within a list.
• Integer values are represented in CSVs with the same syntax as the integer data type specified in

[DEVICE] (that is: optional leading sign, optional leading zeroes, numeric ASCII)
• Boolean values are represented in state variable and action argument CSVs as either “0” for false

or “1” for true. These values are a subset of the defined Boolean data type values specified in
[DEVICE]: 0, false, no, 1, true, yes.

• Boolean values are represented in property CSVs as either “0” for false or “1” for true. These
values are a subset of the defined Boolean data type values specified in [XML SCHEMA-2]: 0,
false, 1, true.

• Escaping conventions for the comma and backslash characters are defined in Section 1.1.2,
“Strings Embedded in Other Strings”.

• White space before, after, or interior to any numeric data type is not allowed.
• White space before, after, or interior to any other data type is part of the value.

Table 1-2: CSV Examples

Type refinement
of string

Value Comments

CSV (string) or
CSV (xsd:string)

“+artist,-date” List of 2 property sort
criteria.

CSV (int) or
CSV (xsd:integer)

“1,-5,006,0,+7” List of 5 integers.

CSV (boolean) or
CSV (xsd:Boolean)

“0,1,1,0” List of 4 booleans

CSV (string) or
CSV (xsd:string)

“Smith\, Fred,Jones\, Davey” List of 2 names,
“Smith, Fred” and
“Jones, Davey”

CSV (i4,string,ui2)
or CSV (xsd:int,
xsd:string,
xsd:unsignedShort)

“-29837, string with leading blanks,0” Note that the second
value is “ string with
leading blanks”

CSV (i4) or
CSV (xsd:int)

“3, 4” Illegal CSV. White space
is not allowed as part of
an integer value.

CSV (string) or
CSV (xsd:string)

“,,” List of 3 empty string
values

UPnP AV Datastructure Template:1 – Document Version 1.00 10

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Type refinement
of string

Value Comments

CSV (heterogeneous) “Alice,Marketing,5,Sue,R&D,21,Dave,Finance,7” List of unspecified
number of people and
associated attributes. Each
person is described by 3
elements: a name string,
a department string and
years-of-service ui2 or a
name xsd:string, a
department xsd:string and
years-of-service
xsd:unsignedShort.

1.3 Management of XML Namespaces in Standardized DCPs
UPnP specifications make extensive use of XML namespaces. This allows separate DCPs, and even
separate components of an individual DCP, to be designed independently and still avoid name collisions
when they share XML documents. Every name in an XML document belongs to exactly one namespace. In
documents, XML names appear in one of two forms: qualified or unqualified. An unqualified name (or no-
colon-name) contains no colon (“:”) characters. An unqualified name belongs to the document’s default
namespace. A qualified name is two no-colon-names separated by one colon character. The no-colon-name
before the colon is the qualified name’s namespace prefix, the no-colon-name after the colon is the
qualified name’s “local” name (meaning local to the namespace identified by the namespace prefix).
Similarly, the unqualified name is a local name in the default namespace.

The formal name of a namespace is a URI. The namespace prefix used in an XML document is not the
name of the namespace. The namespace name is, or should be, globally unique. It has a single definition
that is accessible to anyone who uses the namespace. It has the same meaning anywhere that it is used, both
inside and outside XML documents. The namespace prefix, however, in formal XML usage, is defined
only in an XML document. It must be locally unique to the document. Any valid XML no-colon-name may
be used. And, in formal XML usage, no two XML documents are ever required to use the same namespace
prefix to refer to the same namespace. The creation and use of the namespace prefix was standardized by
the W3C XML Committee in [XML-NMSP] strictly as a convenient local shorthand replacement for the
full URI name of a namespace in individual documents.

All AV object properties are represented in XML by element and attribute names, therefore, all property
names belong to an XML namespace.

For the same reason that namespace prefixes are convenient in XML documents, it is convenient in
specification text to refer to namespaces using a namespace prefix. Therefore, this specification declares a
“standard” prefix for all XML namespaces used herein. In addition, this specification expands the scope
where these prefixes have meaning, beyond a single XML document, to all of its text, XML examples, and
certain string-valued properties. This expansion of scope does not supercede XML rules for usage in
documents, it only augments and complements them in important contexts that are out-of-scope for the
XML specifications.

All of the namespaces used in this specification are listed in the Tables “Namespace Definitions” and
“Schema-related Information”. For each such namespace, Table 1-3, “Namespace Definitions” gives a
brief description of it, its name (a URI) and its defined “standard” prefix name. Some namespaces included
in these tables are not directly used or referenced in this document. They are included for completeness to
accommodate those situations where this specification is used in conjunction with other UPnP
specifications to construct a complete system of devices and services. The individual specifications in such
collections all use the same standard prefix. The standard prefixes are also used in Table 1-4, “Schema-
related Information”, to cross-reference additional namespace information. This second table includes each
namespace’s valid XML document root elements (if any), its schema file name, versioning information (to

UPnP AV Datastructure Template:1 – Document Version 1.00 11

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

be discussed in more detail below), and links to the entries in the Reference section for its associated
schema.

The normative definitions for these namespaces are the documents referenced in Table 1-3. The schemas
are designed to support these definitions for both human understanding and as test tools. However,
limitations of the XML Schema language itself make it difficult for the UPnP-defined schemas to
accurately represent all details of the namespace definitions. As a result, the schemas will validate many
XML documents that are not valid according to the specifications.

The Working Committee expects to continue refining these schemas after specification release to reduce
the number of documents that are validated by the schemas while violating the specifications, but the
schemas will still be informative, supporting documents. Some schemas might become normative in future
versions of the specifications.

Table 1-3: Namespace Definitions

Standard
Name-
space
Prefix Namespace Name Namespace Description

Normative Definition
Document
Reference

AV Working Committee defined namespaces

av: urn:schemas-upnp-org:av:av Common data types for use in AV
schemas

[AV-XSD]

avs: urn:schemas-upnp-org:av:avs Common structures for use in AV schemas [AVS-XSD]

avdt: urn:schemas-upnp-org:av:avdt Datastructure Template [AVDT]

avt-event: urn:schemas-upnp-org:metadata-1-0/AVT/ Evented LastChange state variable for
AVTransport

[AVT]

didl-lite: urn:schemas-upnp-org:metadata-1-0/DIDL-
Lite/

Structure and metadata for
ContentDirectory

[CDS]

rcs-event: urn:schemas-upnp-org:metadata-1-0/RCS/ Evented LastChange state variable for
RenderingControl

[RCS]

srs: urn:schemas-upnp-org:av:srs Metadata and structure for
ScheduledRecording

[SRS]

srs-event: urn:schemas-upnp-org:av:srs-event Evented LastChange state variable for
ScheduledRecording

[SRS]

upnp: urn:schemas-upnp-org:metadata-1-0/upnp/ Metadata for ContentDirectory [CDS]

Externally defined namespaces

dc: http://purl.org/dc/elements/1.1/ Dublin Core [DC-TERMS]

xsd: http://www.w3.org/2001/XMLSchema XML Schema Language 1.0 [XML SCHEMA-1]
[XML SCHEMA-2]

xsi: http://www.w3.org/2001/XMLSchema-
instance

XML Schema Instance Document schema Sections 2.6 & 3.2.7 of
[XML SCHEMA-1]

xml: http://www.w3.org/XML/1998/namespace The “xml:” Namespace [XML-NS]

Table 1-4: Schema-related Information

Standard
Name-
space
Prefix

Relative URI and File
Name
● Form 1
● Form 2 Valid Root Element(s) Schema Reference

AV Working Committee Defined Namespaces

av: • av-vn-yyyymmdd.xsd

• av-vn.xsd

n/a [AV-XSD]

UPnP AV Datastructure Template:1 – Document Version 1.00 12

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Standard
Name-
space
Prefix

Relative URI and File
Name
● Form 1
● Form 2 Valid Root Element(s) Schema Reference

avs: • avs-vn-yyyymmdd.xsd

• avs-vn.xsd

<Features>

<stateVariableValuePairs>

[AVS-XSD]

avdt: • avdt-vn-yyyymmdd.xsd

• avdt-vn.xsd

<AVDT> [AVDT]

avt-event: • avt-event-vn-yyyymmdd.xsd

• avt-event-vn.xsd

<Event> [AVT-EVENT-XSD]

didl-lite: • didl-lite-vn-yyyymmdd.xsd

• didl-lite-vn.xsd

<DIDL-Lite> [DIDL-LITE-XSD]

rcs-event: • rcs-event-vn-yyyymmdd.xsd

• rcs-event-vn.xsd

<Event> [RCS-EVENT-XSD]

srs: • srs-vn-yyyymmdd.xsd

• srs-vn.xsd

<srs> [SRS-XSD]

srs-event: • srs-event-vn-yyyymmdd.xsd

• srs-event-vn.xsd

<StateEvent> [SRS-EVENT-XSD]

upnp: • upnp-vn-yyyymmdd.xsd

• upnp-vn.xsd

n/a [UPNP-XSD]

Externally Defined Namespaces

dc: Absolute URL: http://dublincore.org/schemas/xmls/simpledc20021212.xsd [DC-XSD]

xsd: n/a <schema> [XMLSCHEMA-XSD]

xsi: n/a n/a

xml: n/a [XML-XSD]

1.3.1 Namespace Prefix Requirements
There are many occurrences in this specification of string data types that contain XML names (property
names). These XML names in strings will not be processed under namespace-aware conditions. Therefore,
all occurrences in instance documents of XML names in strings MUST use the standard namespace
prefixes as declared in Table 1-3. In order to properly process the XML documents described herein,
control points and devices MUST use namespace-aware XML processors [XML-NMSP] for both reading
and writing. As allowed by [XML-NMSP], the namespace prefixes used in an instance document are at the
sole discretion of the document creator. Therefore, the declared prefix for a namespace in a document
MAY be different from the standard prefix. All devices MUST be able to correctly process any valid XML
instance document, even when it uses a non-standard prefix for ordinary XML names. It is strongly
RECOMMENDED that all devices use these standard prefixes for all instance documents to avoid
confusion on the part of both human and machine readers. These standard prefixes are used in all
descriptive text and all XML examples in this and related UPnP specifications. Also, each individual
specification may assume a default namespace for its descriptive text. In that case, names from that
namespace may appear with no prefix.

The assumed default namespace, if any, for each UPnP AV specification is given in Table 1-5, “Default
Namespaces for the AV Specifications”.

Note: all UPnP AV schemas declare attributes to be “unqualified”, so namespace prefixes are never used
with AV Working Committee defined attribute names.

UPnP AV Datastructure Template:1 – Document Version 1.00 13

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Table 1-5: Default Namespaces for the AV Specifications

AV Specification Name Default Namespace Prefix

AVTransport:2 avt-event:

ConnectionManager:2 n/a

ContentDirectory:2 didl-lite:

MediaRenderer:2 n/a

MediaServer:2 n/a

RenderingControl:2 rcs-event:

ScheduledRecording:1 srs:

1.3.2 Namespace Names, Namespace Versioning and Schema Versioning
Each namespace that is defined by the AV Working Committee is named by a URN.

In order to enable both forward and backward compatibility, the UPnP TC has established the general
policy that namespace names will not change with new versions of specifications, even when the
specification changes the definition of a namespace. But, namespaces still have version numbers that
reflect definitional changes. Each time the definition of a namespace is changed, the namespace’s version
number is incremented by one. Therefore, namespace version information must be provided with each
XML instance document so that the document’s receiver can properly understand its meaning. This is
achieved by the following rules:

• Every release of a schema is identified by a version number and date of the form “n-yyyymmdd”,
where n corresponds to the namespace definition version number and yyyymmdd is the year,
month and day in the Gregorian calendar that the schema is released.

For example, the new version numbers of the pre-existing “DIDL-Lite” and “upnp” schemas are
“2”. Versions for new schemas, such as “srs” are “1”.

For each schema, the version-date will appear in two places:

1. In the schema file name, according to the naming structure shown in Table 1-4, “Schema-
related Information”.

2. As the value of the version attribute of each schema’s schema root element.

Namespaces are referenced in both schema and XML instance documents by namespace name. The
namespace name appears as the value of an xmlns attribute. The xmlns attribute also declares a
namespace prefix that will be used to qualify names from each namespace. Schemas are referenced in both
schema and XML instance documents by URI in the schemaLocation attribute. See section 1.3.3,
“Namespace Usage Examples” . Two different forms of URI are available, each with a different meaning.
All UPnP AV-defined schema URIs share a common base path of “http://www.upnp.org/schemas/av/”.
Each schema URI has two unique relative forms (see Table 1-4, “Schema-related Information”), according
to which version of a namespace and its representative schema is of interest. The allowed relative URI
forms are:

1. schema-root-name “-v” version-date
where version-date is a full version-date of the form n-yyyymmdd. This form references the
schema whose “root” name (typically the standardized prefix name used for the namespace that
the schema represents) and version-date match schema-root-name and version-date, respectively.

2. schema-root-name “-v” version
where version is an integer representing the namespace’s version number. This form references
the most recent version of the schema whose root name and namespace version number match
schema-root-name and the version, respectively.

UPnP AV Datastructure Template:1 – Document Version 1.00 14

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Usage rules for schema location URIs are as follows:

• All instance documents, whether generated by a service or a control point, MUST use Form 1.

• All UPnP AV published schemas that reference other UPnP AV schemas will also use Form 1.

• Validation of XML instance documents in UPnP AV systems potentially serves two purposes.
The first is based on standard XML and XML Schema semantics: the document’s creator asserts
that the document is syntactically correct with respect to the referenced schema. The receiving
processor can confirm this with a validating parser that uses the referenced schema(s). The second
is based on UPnP AV namespace semantics. The receiving processor knows that the XML
instance document is supposed to conform to one or more specific UPnP AV specifications. Since
the second context is actually the more important context for instance document processing, the
receiving processor MAY validate the instance document against any version of a schema that
satisfies its needs in assessing the acceptability of the received instance document.

1.3.3 Namespace Usage Examples
The schemaLocation attribute for XML instance documents comes from the XML Schema instance
namespace “http:://www.w3.org/2002/XMLSchema-instance”. A single occurrence of the attribute can
declare the location of one or more schemas. The schemaLocation attribute value consists of a
whitespace separated list of values: namespace name followed by its schema location URL. This pair-
sequence is repeated as necessary for the schemas that need to be located for this instance document.

Example 1:

Sample DIDL-Lite XML Document. This document assumes version-date 2-20060531 of the “didl-lite:”
namespace/schema combination and (a possible later) version 2-20061231 of “upnp:”. The lines with the
gray background show how to express this versioning information in the instance document.
<?xml version="1.0" encoding="UTF-8"?>
<DIDL-Lite
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
 xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
 http://www.upnp.org/schemas/av/didl-lite-v2-20060531.xsd
 urn:schemas-upnp-org:metadata-1-0/upnp/
 http://www.upnp.org/schemas/av/upnp-v2-20061231.xsd">
 <item id="18" parentID="13" restricted="0">
 ...
 </item>
</DIDL-Lite>

Example 2:

Sample srs XML Document. This document assumes version 1-20060531 of the “srs:” namespace/schema
combination. Again, the lines with the gray background show how to express this versioning information
in the instance document.
<?xml version="1.0" encoding="UTF-8"?>
<srs
 xmlns="urn:schemas-upnp-org:av:srs"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:av:srs
 http://www.upnp.org/schemas/av/srs-v1-20060531.xsd">
 ...

UPnP AV Datastructure Template:1 – Document Version 1.00 15

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

</srs>

1.4 Vendor-defined Extensions
Whenever vendors create additional vendor-defined state variables, actions or properties, their assigned
names and XML representation MUST follow the naming conventions and XML rules as specified in
[DEVICE], Section 2.5, “Description: Non-standard vendor extensions”.

1.5 References
This section lists the normative references used in the UPnP AV specifications and includes the tag inside
square brackets that is used for each such reference:

[AVARCH] – AVArchitecture:1, UPnP Forum, June 25, 2002.
Available at: http://www.upnp.org/specs/av/UPnP-av-AVArchitecture-v1-20020625.pdf.

[AVDT] – AV DataStructure Template:1, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-AVDataStructure-v1-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-AVDataStructure-v1.pdf.

[AVDT-XSD] – XML Schema for UPnP AV Datastructure Template:1, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/schemas/av/avdt-v1-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/avdt-v1.xsd.

[AV-XSD] – XML Schema for UPnP AV Common XML Data Types, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/schemas/av/av-v1-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/av-v1.xsd.

[AVS-XSD] – XML Schema for UPnP AV Common XML Structures, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/schemas/av/avs-v1-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/avs-v1.xsd.

[AVT] – AVTransport:2, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-AVTransport-v2-Service-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-AVTransport-v2-Service.pdf.

[AVT-EVENT-XSD] – XML Schema for AVTransport:2 LastChange Eventing, UPnP Forum, May 31,
2006.
Available at: http://www.upnp.org/schemas/av/avt-event-v2-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/avt-event-v2.xsd.

[CDS] – ContentDirectory:2, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v2-Service-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v2-Service.pdf.

[CM] – ConnectionManager:2, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v2-Service-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v2-Service.pdf.

[DC-XSD] – XML Schema for UPnP AV Dublin Core.
Available at: http://www.dublincore.org/schemas/xmls/simpledc20020312.xsd.

[DC-TERMS] – DCMI term declarations represented in XML schema language.
Available at: http://www.dublincore.org/schemas/xmls.

[DEVICE] – UPnP Device Architecture, version 1.0, UPnP Forum, June 13, 2000.
Available at: http://www.upnp.org/specs/architecture/UPnP-DeviceArchitecture-v1.0-20000613.htm.
Latest version available at: http://www.upnp.org/specs/architecture/UPnP-DeviceArchitecture-v1.0.htm.

[DIDL] – ISO/IEC CD 21000-2:2001, Information Technology - Multimedia Framework - Part 2: Digital
Item Declaration, July 2001.

UPnP AV Datastructure Template:1 – Document Version 1.00 16

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

[DIDL-LITE-XSD] – XML Schema for ContentDirectory:2 Structure and Metadata (DIDL-Lite), UPnP
Forum, May 31, 2006.
Available at: http://www.upnp.org/schemas/av/didl-lite-v2-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/didl-lite-v2.xsd.

[EBNF] – ISO/IEC 14977, Information technology - Syntactic metalanguage - Extended BNF, December
1996.

[HTTP/1.1] – HyperText Transport Protocol – HTTP/1.1, R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.
Masinter, P. Leach, T. Berners-Lee, June 1999.
Available at: http://www.ietf.org/rfc/rfc2616.txt.

IEC 61883] – IEC 61883 Consumer Audio/Video Equipment – Digital Interface - Part 1 to 5.
Available at: http://www.iec.ch.

[IEC-PAS 61883] – IEC-PAS 61883 Consumer Audio/Video Equipment – Digital Interface - Part 6.
Available at: http://www.iec.ch.

[ISO 8601] – Data elements and interchange formats – Information interchange -- Representation of dates
and times, International Standards Organization, December 21, 2000.
Available at: ISO 8601:2000.

[MIME] – IETF RFC 1341, MIME (Multipurpose Internet Mail Extensions), N. Borenstein, N. Freed, June
1992.
Available at: http://www.ietf.org/rfc/rfc1341.txt.

[MR] – MediaRenderer:2, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-MediaRenderer-v2-Device-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-AV-MediaRenderer-v2-Device.pdf.

[MS] – MediaServer:2, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-MediaServer-v2-Device-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-AV-MediaServer-v2-Device.pdf.

[RCS] – RenderingControl:2, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v2-Service-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v2-Service.pdf.

[RCS-EVENT-XSD] –XML Schema for RenderingControl:2 LastChange Eventing, UPnP Forum, May 31,
2006.
Available at: http://www.upnp.org/schemas/av/rcs-event-v1-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/rcs-event-v1.xsd.

[RFC 1738] – IETF RFC 1738, Uniform Resource Locators (URL), Tim Berners-Lee, et. Al., December
1994.
Available at: http://www.ietf.org/rfc/rfc1738.txt.

[RFC 2119] – IETF RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, S. Bradner,
1997.
Available at: http://www.faqs.org/rfcs/rfc2119.html.

[RFC 2396] – IETF RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax, Tim Berners-Lee, et
al, 1998.
Available at: http://www.ietf.org/rfc/rfc2396.txt.

[RFC 3339] – IETF RFC 3339, Date and Time on the Internet: Timestamps, G. Klyne, Clearswift
Corporation, C. Newman, Sun Microsystems, July 2002.
Available at: http://www.ietf.org/rfc/rfc3339.txt.

[RTP] – IETF RFC 1889, Realtime Transport Protocol (RTP), H. Schulzrinne, S. Casner, R. Frederick, V.
Jacobson, January 1996.
Available at: http://www.ietf.org/rfc/rfc1889.txt.

UPnP AV Datastructure Template:1 – Document Version 1.00 17

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

[RTSP] – IETF RFC 2326, Real Time Streaming Protocol (RTSP), H. Schulzrinne, A. Rao, R. Lanphier,
April 1998.
Available at: http://www.ietf.org/rfc/rfc2326.txt.

[SRS] – ScheduledRecording:1, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v1-Service-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v1-Service-
20060531.pdf.

[SRS-XSD] – XML Schema for ScheduledRecording:1 Metadata and Structure, UPnP Forum, May 31,
2006.
Available at: http://www.upnp.org/schemas/av/srs-v1-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/srs-v1.xsd.

[SRS-EVENT-XSD] – XML Schema for ScheduledRecording:1 LastChange Eventing, UPnP Forum, May
31, 2006.
Available at: http://www.upnp.org/schemas/av/srs-event-v1-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/srs-event-v1.xsd.

[UAX 15] – Unicode Standard Annex #15, Unicode Normalization Forms, version 4.1.0, revision 25, M.
Davis, M. Dürst, March 25, 2005.
Available at: http://www.unicode.org/reports/tr15/tr15-25.html.

[UNICODE COLLATION] – Unicode Technical Standard #10, Unicode Collation Algorithm version
4.1.0, M. Davis, K. Whistler, May 5, 2005.
Available at: http://www.unicode.org/reports/tr10/tr10-14.html.

[UPNP-XSD] – XML Schema for ContentDirectory:2 Metadata, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/schemas/av/upnp-v2-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/upnp-v2.xsd.

[UTS 10] – Unicode Technical Standard #10, Unicode Collation Algorithm, version 4.1.0, revision 14, M.
Davis, K. Whistler, May 5, 2005.
Available at: http://www.unicode.org/reports/tr10/tr10-14.html.

[UTS 35] – Unicode Technical Standard #35, Locale Data Markup Language, version 1.3R1, revision
5,.M. Davis, June 2, 2005.
Available at: http://www.unicode.org/reports/tr35/tr35-5.html.

[XML] – Extensible Markup Language (XML) 1.0 (Third Edition), François Yergeau, Tim Bray, Jean
Paoli, C. M. Sperberg-McQueen, Eve Maler, eds., W3C Recommendation, February 4, 2004.
Available at: http://www.w3.org/TR/2004/REC-xml-20040204.

[XML-NS] – The “xml:” Namespace, November 3, 2004.
Available at: http://www.w3.org/XML/1998/namespace.

[XML-XSD] – XML Schema for the “xml:” Namespace.
Available at: http://www.w3.org/2001/xml.xsd.

[XML-NMSP] – Namespaces in XML, Tim Bray, Dave Hollander, Andrew Layman, eds., W3C
Recommendation, January 14, 1999.
Available at: http://www.w3.org/TR/1999/REC-xml-names-19990114.

[XML SCHEMA-1] – XML Schema Part 1: Structures, Second Edition, Henry S. Thompson, David
Beech, Murray Maloney, Noah Mendelsohn, W3C Recommendation, 28 October 2004.
Available at: http://www.w3.org/TR/2004/REC-xmlschema-1-20041028.

[XML SCHEMA-2] – XML Schema Part 2: Data Types, Second Edition, Paul V. Biron, Ashok Malhotra,
W3C Recommendation, 28 October 2004.
Available at: http://www.w3.org/TR/2004/REC-xmlschema-2-20041028.

[XMLSCHEMA-XSD] – XML Schema for XML Schema.

UPnP AV Datastructure Template:1 – Document Version 1.00 18

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

Available at: http://www.w3.org/2001/XMLSchema.xsd.

UPnP AV Datastructure Template:1 – Document Version 1.00 19

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

2 Overview
In the various AV Architecture scenarios, sometimes there is a need to exchange device capabilities to
ensure high level interoperability. In order to express the parameterized capability, an AV specification
defines various templates for each purpose. A device uses the template and populates it with values to
reflect its capabilities at run-time.

The AV Datastructure Template (AVDT) is a common structure to define various templates, which are
called “Datastructure”. This is written in XML and each data structure uses a subset of the AVDT to meet
the necessary requirement.

Figure 1: Typical Usage of AVDT

UPnP AV Datastructure Template:1 – Document Version 1.00 20

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

3 AV Datastructure Template
The following shows the generalized layout of an AVDT Template. More elements and/or attributes MAY
be added in future versions of AVDT templates.

The forum character style is used to indicate names defined by the AVWC. Implementations need to fill
out the parts that are printed in vendor character style.
<?xml version="1.0"?>
<AVDT
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 urn:schemas-upnp-org:av:avdt
 http://www.upnp.org/schemas/av/avdt-v1-20060531.xsd"
 xmlns="urn:schemas-upnp-org:av:avdt">
 <contextID>data structure identification context</contextID>
 <dataStructType>data structure name</dataStructType>
 <fieldTable>
 <field>
 <name>field name</name>
 <dataType csv="csv data type" maxSize="max length">
 field data type
 </dataType>
 <minCountTotal>minimum total occurrences</minCountTotal>
 <maxCountTotal>maximum total occurrences</maxCountTotal>
 <minListSizeTotal>min # of entries in CSV</minListSizeTotal>
 <maxListSizeTotal>max # of entries in CSV</maxListSizeTotal>
 <allowedValueDescriptor>
 <dependentField defaultDependency="1|0">
 <name>field name</name>
 <anyValue></anyValue>
 <valueList>
 <value>enumerated value</value>
 // Other values go here
 </valueList>
 <valueRange>
 <minimum>minimum value</minimum>
 <maximum>maximum value</maximum>
 <step>increment value</step>
 </valueRange>
 // Other value ranges go here
 </dependentField>
 // Other dependent fields go here
 <minCount>minimum occurrences of these values</minCount>
 <maxCount>maximum occurrences of these values</maxCount>
 <minListSize>minimum # of these values in CSV</minListSize>
 <maxListSize>maximum # of these values in CSV</maxListSize>
 <defaultValue>default value</defaultValue>
 <allowAny></allowAny>
 <allowedValueList>
 <allowedValue>enumerated value</allowedValue>
 // Other allowed values go here
 </allowedValueList>
 <allowedValueRange>
 <minimum>minimum value</minimum>
 <maximum>maximum value</maximum>
 <step>increment value</step>
 </allowedValueRange>

UPnP AV Datastructure Template:1 – Document Version 1.00 21

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

 // Other allowed value Ranges go here
 </allowedValueDescriptor>
 // Other allowed value descriptors go here
 </field>
 // Other field declarations go here
 </fieldTable>
</AVDT>

xml
REQUIRED for all XML documents. Case sensitive.

AVDT
REQUIRED. Must have “urn:schemas-upnp-org:av:avdt” as the value for the xmlns attribute; this references the
UPnP AV Working Committee Datastructure Template Schema. As long as the same xmlns is used, the data
structure template MUST be backward compatible, i.e. usable by legacy implementations. Contains all other
elements describing the service, i.e., contains the following sub elements:

contextID
REQUIRED. xsd:anyType. Identifies the context in which the data structure type has meaning. Typically,
this element contains a unique identifier for the device-specific service instance that contains this data
structure.
For example, uuid:device-UUID::urn:schemas-upnp-org:service:scheduleRecording:1.

dataStructType
REQUIRED. xsd:QName. Identifies the data structure type. The name of the data structure type is
vendor-dependent. It MUST be a QName as defined in section 3 of the W3C document “Namespaces in
XML” [XML-NMSP]. Identical data structure types MUST be identified by the same name. Likewise,
data structure types that are different MUST have different names.

fieldTable
REQUIRED. Begins the description section for the fields that are defined for this data structure type.
Contains zero or more of the following sub element(s):

field
REQUIRED. Repeat once for each field that is contained within this data structure type.
Contains the following sub elements:

name
REQUIRED. xsd:string. Identifies the name of the field that is described within this
field element. MUST be one of the following formats:

• QName
• QName “@” NCName
• “@” NCName
• NCName “:@” NCName

where QName and NCName are defined in Section 3 of the W3C document
“Namespaces in XML” [XML-NMSP]. For fields that correspond to an XML
element (within the data structure’s (dataStructType) XML document) name MUST
contain the name of the XML element using the QName format e.g. element-name.
For fields that correspond to an XML attribute (within the data structure’s
(dataStructType) XML document) name MUST contain the name of the XML attribute
using any of the forms other than the QName format e.g. element-name@attribute-
name.

datatype
REQUIRED. xsd:string. Identifies the data type of this field. MUST be a QName with a
namespace prefix of “xsd”. QName is defined in Section 3 of the W3C document
“Namespaces in XML” [XML-NMSP]. MUST be one, and only one, of the data
types defined by “XML Schema Part-2” [XML SCHEMA-2]. Contains the following
attributes:

@csv
OPTIONAL. xsd:string. If present, indicates that this string field contains a
CSV list of values (called “entries”) of the data type specified by the CSV
attribute. MUST comply with the CSV data type notation identified in
Section 1.2.1, “Comma Separated Value (CSV) Lists”. For example,

UPnP AV Datastructure Template:1 – Document Version 1.00 22

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

a value of “xsd:int” indicates a CSV of integer values. AVDT does not
impose any restrictions on the data type value that may be specified.
However, each data structure defined by an AVDT instance
(dataStructType) will use only a limited number of CSV data types. MUST
ONLY be specified when datatype equals “string” and the field is intended
to contain a CSV list of values. The minimum and maximum number of
entries in the CSV list are specified by minListSizeTotal,
maxListSizeTotal, minListSize, and maxListSize defined below.

@maxSize
OPTIONAL. xsd:unsignedInt. Meaningful only when datatype equals
“string”. Indicates the maximum number of bytes allowed for this field.
Note: Since some character sets consume multiple bytes per character
(e.g. UTF-16), maxSize does not necessarily indicate the maximum
number of characters that are allowed.

minCountTotal
OPTIONAL. xsd:unsignedInt. Minimum number of occurrences of this field within the
entire XML document. The default value is 0 which means this field is optional and
might not be included in some instances of this data structure (dataStructType). A
value of 1 or more means that this field is required and MUST be present in every
instance of this data structure at least the specified number of times.

maxCountTotal
OPTIONAL. xsd:string. Maximum number of occurrences of this field within the
entire XML document. Its value MUST be either an unsigned integer or the value
“UNBOUNDED”. The default value is 1 which means this field MUST NOT be present
more than once within any instance of this data structure (dataStructType). A value
of 0 indicates that this field is prohibited and MUST NOT be present in any instance
of this data structure. A value of “UNBOUNDED” indicates that there is no
predetermined limit on the number of times this field may be present. The value of
maxCountTotal MUST be greater than or equal to minCountTotal.

minListSizeTotal
OPTIONAL. xsd:unsignedInt. Valid only for a CSV-type field i.e. when the @csv
attribute is specified within name. Minimum number of entries in each instance of
this CSV field. The default value is 0 which means this field, when present, may
contain an empty CSV list. A value of 1 or more means that this field, when present,
MUST contain at least the specified number of entries in the CSV list.

maxListSizeTotal
OPTIONAL. xsd:string. Valid only for a CSV-type field i.e. when the @csv attribute is
specified within name. Maximum number of entries in each instance of this CSV
field. Its value MUST be either a positive integer or the value “UNBOUNDED”. The
default value is 1 which means this CSV field MUST NOT contain more than one entry
at a time. A value of “UNBOUNDED” indicates that there is no predetermined limit
on the number of entries in the CSV list. The value of maxListSizeTotal MUST be
greater than or equal to minListSizeTotal.

allowedValueDescriptor
REQUIRED. Begins the description of an allowed value data set for this field.
Multiple allowedValueDescriptor elements are permitted. The total span of allowed
values for this field is simply a concatenation of the individual allowed values within
each allowedValueDescriptor. MUST contain either

• allowAny or
• allowedValueList and/or allowedValueRange

Contains the following sub element(s):

dependentField
OPTIONAL. Identifies the values of a “dependent” field which define a
“validity context” for the allowed value data set being defined within this
allowedValueDescriptor. In other words, when the dependentField is set
to one of the values defined within the dependentField’s sub elements
anyValue, valuelist and/or valueRange sub element, then this field MUST
contain one of the values identified by the allowedValueDescriptor’s sub
elements allowAny, allowedValueList and/or allowedValueRange. If

UPnP AV Datastructure Template:1 – Document Version 1.00 23

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

multiple dependentField elements exist within a given
allowedValueDescriptor element, the “validity context” for the allowed
value data set exists whenever all of the dependentFields are set to their
specified value/range i.e. multiple dependentField entries are "ANDed"
together to define a specific “context” for the allowed values that follow.
A missing dependentField element indicates that the allowed values of
this allowedValueDescriptor are valid in all contexts except for those
contexts that are identified by other peer allowedValueDescriptor blocks
defined within this field
MUST contain either

• anyValue or
• valueList and/or valueRange

Contains the following attributes and sub element(s):

@defaultDependency
OPTIONAL. xsd:boolean. A value of 1 indicates that the
value/valueRange(s) defined within this dependentField
include the default value (defaultValue) of the
dependentField. The default value for defaultDependency is 0
which means that the default value of this dependentField IS
NOT included in the value/valueRange(s) defined within this
dependentField. Used by control points that do not support the
dependentField in order to identify the set of allowed values
that reflect the device’s capabilities when the dependentField
contains its default value.

name
REQUIRED. xsd:string. Identifies the name of a dependentField
whose value affects the set of allowed values for this field. In
other words, the set of allowed values for this field depends on
the value of the dependentField. MUST follow the format rules
defined in the name sub element of field.

anyValue
OPTIONAL. xsd:string. The existence of this element indicates
that this dependentField may be set to any value allowed by
the dependentField’s data type. The content of this element
MUST be empty. anyValue MUST NOT be included along with the
valueList or valueRange elements.

valueList
OPTIONAL. Enumerates a set of values for the dependentField
that constrain this field to the set of allowed values defined
within this allowedValueDescriptor. Multiple valueList
elements MUST NOT be specified. MUST NOT be included along
with the anyValue element. Contains the following sub
elements:

value
REQUIRED. xsd:anyType. Identifies a legal value of this
field. Legal values are typically defined by the UPnP
Forum AV Working Committee. However, vendors MAY,
if the working committee permits it, add vendor-
specific allowed values. An empty value element
means that when the dependentField is empty, then
this field MUST contain one of the allowed values
defined within this allowedValueDescriptor.

valueRange
OPTIONAL. Defines a range and resolution for a set of values for
the dependentField that constrain this field to the set of
allowed values defined within this allowedValueDescriptor.
Valid only for numeric data types. Multiple valueRange
elements MAY be specified. MUST NOT be included along with
the anyValue element. Contains the following sub elements:

UPnP AV Datastructure Template:1 – Document Version 1.00 24

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

minimum
REQUIRED. xsd:string. Single numeric value. Inclusive
lower bound. MUST be less than maximum.
Note: Care must be taken when dealing with floating-
point values so that conversion and/or rounding errors
do not cause inaccurate comparison operations.

maximum
REQUIRED. xsd:string. Single numeric value. Inclusive
upper bound. MUST be greater than minimum.
Note: Care must be taken when dealing with floating-
point values so that conversion and/or rounding errors
do not cause inaccurate comparison operations.

step
OPTIONAL. xsd:string. Single positive numeric value.
Indicates the numeric difference between adjacent
supported values within the valueRange. The value of
step MUST divide the inclusive range from minimum to
maximum into an integral number of equal parts. In
other words, maximum = minimum + N*step where N
is a positive integer. When step is omitted AND the
data type of the dependentField is an integer, the
default value of step is 1. Otherwise, when step is
omitted, all values within the inclusive range from
minimum to maximum are valid.
Note: Care must be taken when dealing with floating-
point values so that conversion and/or rounding errors
do not cause inaccurate comparison operations.

minCount
OPTIONAL. xsd:unsignedInt. Minimum number of occurrences of this field
that has one of the values defined within this allowedValueDescriptor.
Indicates the minimum number of times (within the entire XML document)
that this field MUST be set to one of the values defined within this
allowedValueDescriptor. The default value is 0 which means that the XML
document might not contain any occurrences of this field whose value is
set to one of the values defined within this allowedvalueDescriptor. A
value of 1 or greater means that this field is required and MUST be present
at least the specified number of times. Additionally, each of those
occurrences MUST be set to one of the values defined within this
allowedValueDescriptor. Other instances of this field MAY occur but they
MUST have a value defined within a different allowedValueDescriptor. For
each field, the value of minCount MUST be less than or equal to
minCountTotal.

maxCount
OPTIONAL. xsd:string. Maximum number of occurrences of this field that
has one of the values defined within this allowedValueDescriptor.
Indicates the maximum number of times this field can be set to one of the
values defined within this allowedValueDescriptor. The value of
maxCount MUST be either an unsigned integer or the value
“UNBOUNDED”. A value of 1 or greater indicates that this field MUST NOT
be present more than the specified number of times with a value set to
one of the values defined within this allowedValueDescriptor. The default
value is 1. A value of 0 means that the data structure MUST NOT include
any occurrences of this field other than those occurences whose value is
defined within a different allowedValueDescriptor. In this case, the
allowedValueDescriptor MUST contain an empty allowedValueList and no
allowedValueRange. A value of “UNBOUNDED” indicates that there is no
predetermined limit on the number of occurences of this field that may
contain one of the values defined within this allowedValueDescriptor.The
value of maxCount MUST be greater than or equal to minCount. For each
occurrence of allowedValueDescriptor the value of maxCount MUST be
less than or equal to maxCountTotal for this field. Other instances of this

UPnP AV Datastructure Template:1 – Document Version 1.00 25

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

field MAY occur but they MUST have a value defined within a different
allowedValueDescriptor.

minListSize
OPTIONAL. xsd:unsignedInt. Valid only for a CSV-type field i.e. when the
@csv attribute is specified within the name sub element of field.
Minimum number of entries in each instance of this CSV field that MUST
contain one of the values defined within this allowedValueDescriptor.
The default value is 0 which means this field, when present, might not
contain any entries that are defined within this allowedValueDescriptor.
A value of 1 or more means that this field, when present, MUST contain at
least the specified number of entries whose value is defined within this
allowedValueDescriptor. Other instances of this field MAY occur but they
MUST have a value defined within a different allowedValueDescriptor.

maxListSize
OPTIONAL. xsd:string. Valid only for a CSV-type field i.e. when the @csv
attribute is specified within the name sub element of field. Maximum
number of entries in each instance of this CSV field that are allowed to
contain one of the values defined within this allowedValueDescriptor.
The value of maxListSize MUST be either an unsigned integer or the value
“UNBOUNDED”. The default value is 1 which means this CSV field MUST
NOT contain more than one entry whose value is defined within this
allowedValueDescriptor. A value of 0 means that no entries within any
instance of this CSV field are allowed to contain one of the values defined
within this allowedValueDescriptor. In this case, the
allowedValueDescriptor MUST contain an allowedValueList with a single,
empty allowedValue and no allowedValueRange. A value of
“UNBOUNDED” indicates that there is no predetermined limit on the
number entries that contain one of the values defined within this
allowedValueDescriptor. Other instances of this field MAY occur but they
MUST have a value defined within a different allowedValueDescriptor.
The value of maxListSize MUST be greater than or equal to minListSize
and less than or equal to maxListSizeTotal.

defaultValue
OPTIONAL. xsd:anyType. Identifies the default value assigned to this field
if no value is present in the XML document. The contents MUST match the
data type (datatype) of this field and it MUST belong to the set of allowed
values defined within this allowedValueDescriptor i.e. allowAny,
allowedValueList, and/or allowedValueRange. If this field appears as a
dependentField within another field, then that dependentField element
MUST contain the defaultDependency attribute with a value of 1.

allowAny
OPTIONAL. xsd:string. The existence of this element indicates that this
field may be set to any value allowed by this field’s data type. The
content of this element MUST be empty. allowAny MUST NOT be included
along with the allowedValueList or allowedValueRange elements.

allowedValueList
OPTIONAL. Enumerates a set of values that are allowed for this field
subject to the contraints defined by the dependentField element, if
present. Multiple allowedValueLists MUST NOT be specified.
allowedValueList MUST NOT be included along with the allowAny
element. Contains the following sub elements:

allowedValue
REQUIRED. xsd:anyType. Identifies one of the values that are
allowed for this field. Legal values are typically defined by the
UPnP Forum AV Working Committee. However, vendors MAY, if
the working committee permits it, add vendor-specific allowed
values. An empty allowedValue element means that the content
of this field is permitted to be empty. An allowedValueList with
only an empty allowedValue means that when this field exists,
its value MUST be empty. For a CSV-type field (@csv), an
allowedValue entry indicates one possible value of an entry in

UPnP AV Datastructure Template:1 – Document Version 1.00 26

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

the CSV list. It does not indicate one of the possible
combinations of values for the entire CSV list.
Note: For a heterogeneous CSV-type field, it may not be
practical to enumerate all of the allowed values that are
possible. In this case, it is recommended to specify allowAny.

allowedValueRange
OPTIONAL. Defines a range and resolution for a set of numeric values that
are allowed for this field subject to the contraints defined by the
dependentField element, if present. Valid only for numeric data types.
Multiple allowedValueRange elements MAY be specified. MUST NOT be
included along with the allowAny element. Contains the following sub
elements:

minimum
REQUIRED. xsd:string. Single numeric value. Inclusive lower
bound. MUST be less than maximum.
Note: Care must be taken when dealing with floating-point
values so that conversion and/or rounding errors do not cause
inaccurate comparison operations.

maximum
REQUIRED. xsd:string. Single numeric value. Inclusive upper
bound. MUST be greater than minimum.
Note: Care must be taken when dealing with floating-point
values so that conversion and/or rounding errors do not cause
inaccurate comparison operations.

step
OPTIONAL. xsd:string. Single positive numeric value. Indicates
the numeric difference between adjacent valid values within
the allowedValueRange. The value of step MUST divide the
inclusive range from minimum to maximum into an integral
number of equal parts. In other words, maximum = minimum +
N*step where N is a positive integer. When step is omitted and
the data type of the field is an integer, the default value of step
is 1. Otherwise, if step is omitted, all values within the inclusive
range from minimum to maximum MUST be supported.
Note: Care must be taken when dealing with floating-point
values so that conversion and/or rounding errors do not cause
inaccurate comparison operations.

UPnP AV Datastructure Template:1 – Document Version 1.00 27

Copyright © 2006, Contributing Members of the UPnPTM Forum. All rights Reserved.

4 AV Datastructure Schema
The AV Datastructure XML schema defines the structure of an AVDT document. A machine readable file
containing this schema can be found at [AVDT-XSD]. Although the XML schema does not include any
extensibility mechanisms (e.g. the inclusion of <xsd:any> tags), AVDT documents are permitted to
include additional XML elements and/or attributes beyond those defined in this schema. This allows for
vendor-defined extensions and/or for future (standardized) enhancements to the AVDT structure.
Consequently, when parsing an AVDT document any unrecognized elements and/or attributes MUST be
gracefully ignored.

Each Datastructure (identified by the <contextID> and <dataStructType> elements) is described
by an AVDT Document which in turn is an instantiation of a particular version of the AVDT schema. As
the AVDT schema is enhanced over time, each version is assigned a unique number as indicated by the
latter part of the schema URN as follows (see Section 1.3.2, “Namespace Names, Namespace Versioning
and Schema Versioning”):
xsi:schemaLocation="
 urn:schemas-upnp-org:av:avdt
 http://www.upnp.org/schemas/av/avdt-v1-20060531.xsd"

where the number 1 after the “v” is the version number. Each AVDT schema version update must be
backward compatible with the previous version. Specifically, XML elements and/or attributes may be
added to more recent AVDT schema versions, but must not ever be removed. As a result, when examining
the schema version value, implementations will likely want to perform a greater-than-or-equal-to
comparison rather than just a plain equality check.

