

IPv6 Tutorial

Marc Blanchet, CTO Marc.Blanchet@hexago.com

www.hexago.com

Plan

- IPv6 on FreeBSD and Windows XP
- IPv6 Transition Main Mechanisms
- Case Studies
- IPv6 Applications configuration

IPv6 on FreeBSD and Windows XP

Enabling IPv6 on FreeBSD

- /etc/rc.conf
 - ipv6_enable= »YES »
 - generates router solicitation
- ifconfig -a

Enabling IPv6 on WindowsXP

- ipv6 install (or netsh interface ipv6 install)
 - Enables the stack
 - To be done once
- By default, in autoconfiguration mode
 - Generates router solicitation
- ipconfig
- netsh interface show ipv6 address

IPv6 Transition Main Mechanisms

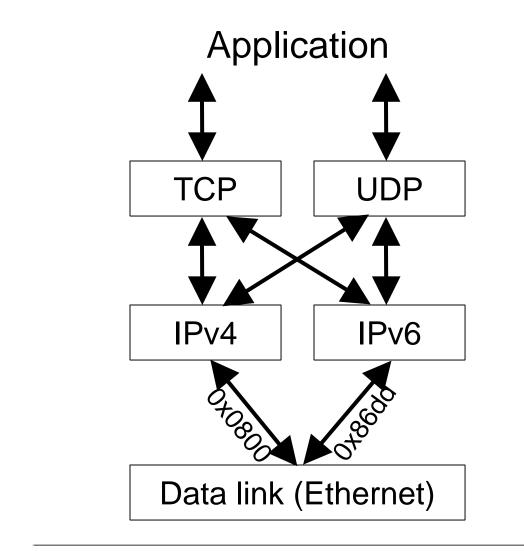
Plan

- Strategy
- Dual Stack
- Tunnelling IPv6 over IPv4
 - Configured tunnels
 - Automatic tunnelling
 - 6to4
 - Tunnel Broker with TSP
 - ISATAP
 - Teredo
- Application-layer Gateways
 - Proxy

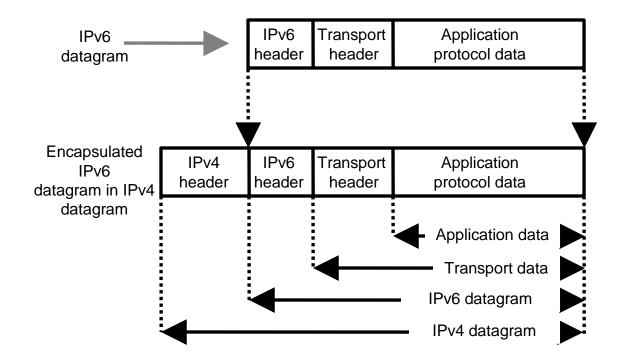
Other Mechanisms (not covered)

- Tunnelling IPv6 over IPv4
 - Automatic tunnelling
 - IPv4-compatible addresses
 - 6over4
- Tunnelling IPv4 over IPv6
 - DSTM (with DHCP, RPC, TSP)
- Translation at IP or transport layer
 - SIIT
 - NAT-PT
 - Bump-in-the-stack
 - Bump-in-the-api
 - Transport-layer Translator
- Application-layer Gateways
 - Socks

- For end-systems:
 - Dual stack approach
- For network integration:
 - Tunnels
 - IPv6-only to IPv4-only: some kind of translation
 - Proxy



- Node has both IPv4 and IPv6 stacks and addresses
- IPv6-aware application asks for both IPv4 and IPv6 addresses of destination
- DNS resolver returns IPv6, IPv4 or both addresses to application
- IPv6/IPv4 applications choose the address and then can communicate
 - With IPv4 nodes using IPv4
 - Or with IPv6 nodes using IPv6


Dual Stack Host (cont.)

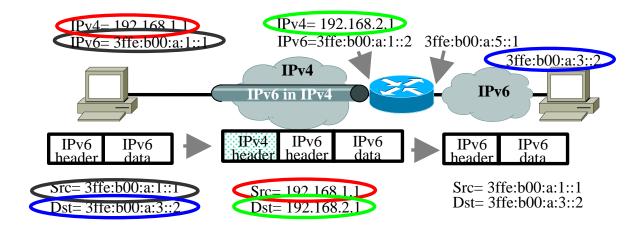
Tunnelling IPv6 in IPv4

Tunnelling IPv6 in IPv4

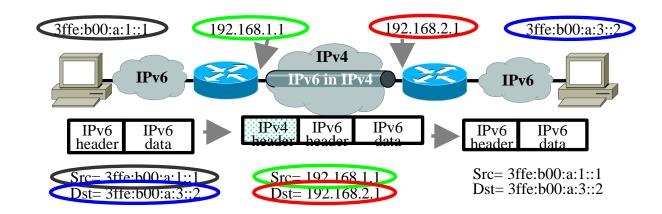
- IPv6 encapsulated in IPv4
 - IP protocol 41
- Many topologies possible
 - Router to router
 - Host to router
 - Host to host
- The tunnel endpoints take care of the encapsulation. This process is "transparent" for the intermediate nodes
- Tunnelling is used by most transition mechanisms
- If security gateways are present in the path, then they need to let through IP packets transporting protocol 41
- Problem if NAPT is in the path
- Can also be accomplished by GRE tunnels

Tunnelling IPv6 over IPv4

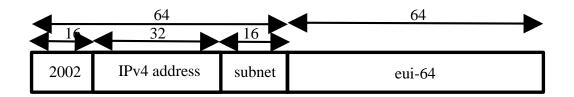
- Configured tunnels
- 6to4
- Tunnel broker with TSP
- ISATAP
- Teredo



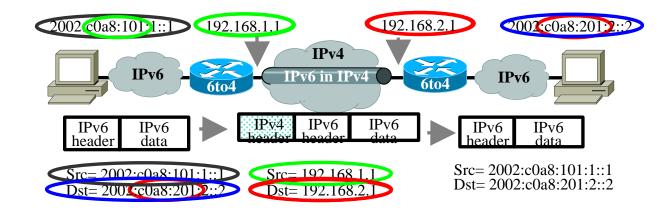
- Tunnel endpoints are explicitly configured
- Tunnel endpoints must be dual stack nodes
 - The IPv4 address is the endpoint for the tunnel
 - Require a reachable IPv4 address (no NAPT)
- Tunnel config implies:
 - Manual configuration of:
 - Source and destination IPv4 address
 - Source and destination IPv6 address
- Between:
 - Two hosts
 - One host and one router
 - Two routers (for two networks)


Configured Tunnels

Configured Tunnels


Configured Tunnels Considerations

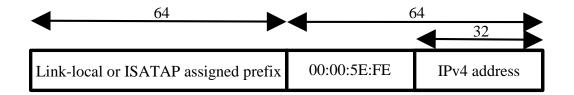
- Tunnels cannot go through a NAPT
- If site uses a NAPT, then one scenario might be to end the tunnel at the NAPT box


- Applicability: interconnection of isolated IPv6 domains over an IPv4 network
- Automatic establishment of the tunnel
 - No explicit tunnels
 - By embedding the IPv4 destination address in the IPv6 address
 - Under the 2002::/16 reserved prefix. (2002::/16 = 6to4)
- Gives a full /48 to a site based on its external IPv4 address
 - IPv4 external address embedded: 2002:<ipv4 ext address>::/48
 - Format: 2002:<ipv4add>:<subnet>::/64

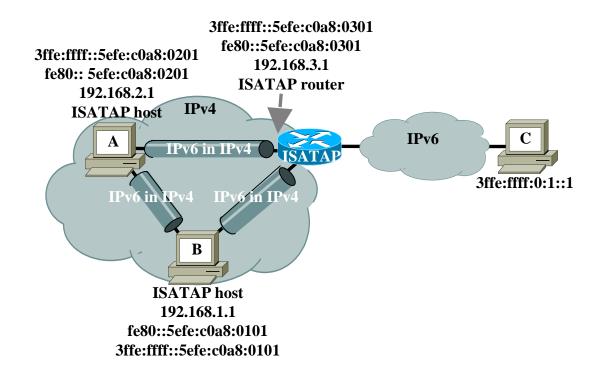
6to4 Network to Network

Who Needs to Support 6to4?

- Egress router:
 - Implements 6to4
 - Must have a reachable external IPv4 address
 - Often configured using a loopback interface address
 - Is a dual-stack node
- Individual nodes:
 - Nothing needed for 6to4 support. 2002 is an "ordinary" prefix that may be received from router advertisements
 - Doesn't need to be dual-stack
- 6to4 relay



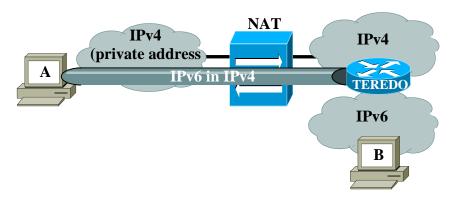
- Bound to the IPv4 external address:
 - If egress router changes its IPv4 address, then it means that you need to renumber the full IPv6 internal network
 - Only one entry point (no easy way to have multiple network entry points for redundancy)
- If everybody is using 6to4, it effectively puts IPv4 Internet host routes into IPv6 routes
- Needs a 6to4 relay which is an open-relay

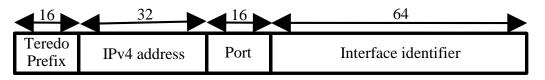


- Intra-Site Automatic Tunnel Addressing Protocol
- Automatic tunnelling from ISATAP nodes to the ISATAP routers in a private network
- Creates a virtual IPv6 link over the IPv4 network
- Special bits in the Node identifier part of the IPv6 address identify an ISATAP address.

ISATAP Example

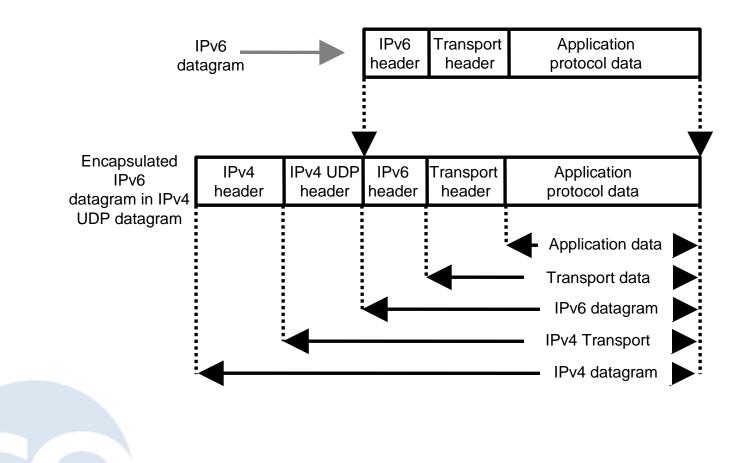
ISATAP Applicability


- Inside a enterprise network
- No NAT in the path
- Not between providers
- Not global



Teredo

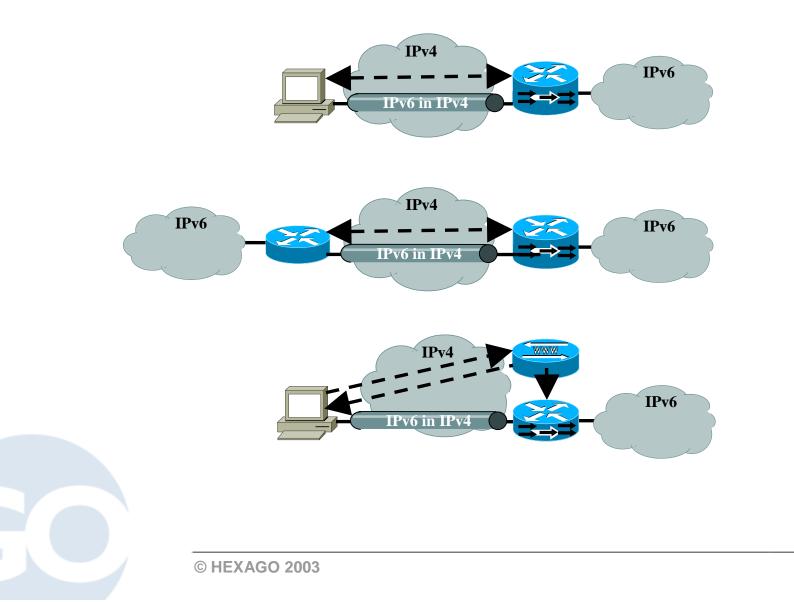
- NAPT prohibit the use of direct tunnels.
- Uses IPv6 in UDP in IPv4
- External mapping of IPv4 address and port are discovered by the Teredo server (on the external side of NAT)



• Teredo uses a specific prefix. The address includes the IPv4 and port number of the host.

IPv6 in UDP in IPv4

- Hosts behind an IPv4 NAT that wants traverse the IPv4 NAT.
- Tax for UDP encapsulation. Effective MTU is smaller.
- Automatic tunnels: Teredo servers and relays are subject to attacks.



- Automation of configured tunnels
- Uses a Control protocol for the tunnel setup
 - Tunnel Setup Protocol (TSP)
 - Client sendS a request for tunnel
 - Broker,
 - based on policies,
 - sends the appropriate tunnel info
 - and configures its tunnel end
 - Client then configures its tunnel end
 - Client receives:
 - a stable IPv6 address
 - a stable IPv6 prefix
- Well known service: http://www.freenet6.net

Tunnel Broker Scenarios

Tunnel Broker with TSP

- Client requests:
 - A tunnel for one host
 - A tunnel for a network (routing implied)
 - With a prefix delegation
 - Without a prefix delegation (I have mine, but please announce it)
 - With routing information
 - I use RIP, BGP, OSPF...
 - With domain name information
 - The host name will be:
 - Inverse delegation
- Server can respond:
 - Here are the requested info
 - I'm full, cannot give you a new tunnel, please go to this other tunnel server (referer)
 - I can give you a host tunnel, but not a network tunnel
 - Here is the prefix, here is my bgp info (as number) ...

- Enables:
 - Changes of data to be negotiated between the two parties: i.e.
 IPv4 client address change
 - IPv4 mobility but IPv6 stability of address and prefix
 - Generic Authentication: use a password, a Securid card, a public-key...
- Is implemented
 - In the boot sequence of a host
 - In host OS and router OS
- Combined with other tunnelling protocols:
 - DSTM as the Tunnel Setup Protocol for IPv4 in IPv6 tunnels
 - With UDP encapsulation for authenticated/controlled/billable way to cross NATs

Tunnel Broker with TSP Applicability

- Host or Routers (networks) over an IPv4 network
- With or without NAT in the path
- Provides permanent address space to hosts and routers
- A change in IPv4 address do not change the IPv6 address
- Provides mobility on the IPv4 link-layer while preserving the IPv6 address
- In a corporate network
- In a provider network
- On the Internet
- Provides control, authentication, security, billing
- Provides a permanent address space

- For applications using ALGs
 - ALG is dual-stack, connected to both IP networks
 - Clients can use one or the other IP protocol
 - Peers can use one or the other IP protocol
- Limitations of ALGs
 - Not good if the application protocol embed IP addressing
 - One application at a time.
 - Many applications are not designed for ALGs
- Examples
 - Email
 - Web

- Many transition tools exists
 - To tunnel between IPv6 islands
 - To translate between IPv4 and IPv6
- Others are available, others will be defined
- None is for all possible scenarios
- Not all will succeed on the market
- Choose the right one for your scenario

- RFC2766, Network Address Translation Protocol Translation (NAT-PT), G. Tsirtsis, P. Srisuresh, ETF, 2000-02-01, http://www.normos.org/ietf/rfc/rfc2766.txt
- RFC2767, Dual Stack Hosts using the "Bump-In-the-Stack" Technique (BIS), K. Tsuchiya, H. Higuchi, Y. Atarashi, IETF, 2000-02-01, http://www.normos.org/ietf/rfc/rfc2767.tx
- RFC2893, Transition Mechanisms for IPv6 Hosts and Routers, R. Gilligan, E. Nordmark, 2000-08-01, http://www.normos.org/ietf/rfc/rfc2893.txt
- RFC3053, IPv6 Tunnel Broker, A. Durand, P. Fasano, I. Guardini, D. Lento, IETF, 2001-01-01, http://www.normos.org/ietf/rfc/rfc3053.txt
- RFC3056, Connection of IPv6 Domains via IPv4 Clouds, B. Carpenter, K. Moore, IETF, 2001-02-01, http://www.normos.org/ietf/rfc/rfc3056.txt

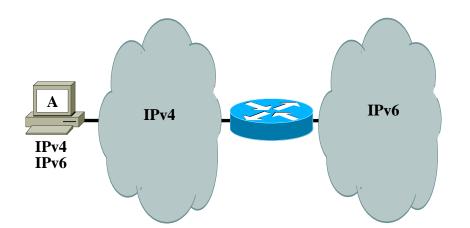
- RFC3068, An Anycast Prefix for 6to4 Relay Routers, C. Huitema, IETF, 2001-06-01, http://www.normos.org/ietf/rfc/rfc3068.txt
- draft-vg-ngtrans-tsp-xx.txt, Tunnel Setup Protocol (TSP), M.
 Blanchet, R. Desmeules, A. Cormier,
- draft-vg-ngtrans-tsp-v6v4profile-xx.txt, IPv6 over IPv4 profile for Tunnel Setup Protocol (TSP), M. Blanchet, R. Desmeules, A. Cormier
- draft-blanchet-ngtrans-tsp-dstm-xx.txt, DSTM IPv4 over IPv6 tunnel profile for Tunnel Setup Protocol (TSP), M. Blanchet

Case Studies

Plan

- Isolated host without IPv4 NAT
- Isolated host with IPv4 NAT
- Mobile host
- Small network without IPv4 NAT
- Small network with IPv4 NAT
- Mobile network
- Large corporate network without IPv4 NAT
- Large corporate network with IPv4 NAT
- Provider network
- Addressing Plans
- Routing

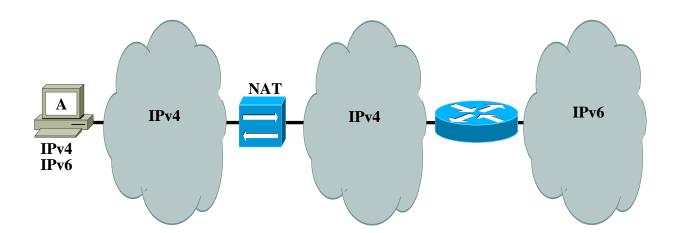
Considerations


- Always use native IPv6 if you can. (together with IPv4: dual stack approach)
- If you can't, then transition mechanisms are used
- Tunnelling IPv6 in IPv4 works if no NAT in the path. A user or a network manager do not necessarily know in advance if there is one NAT or not in any possible path. UDP encapsulation is important considering the NAT installed base.

Isolated Host without IPv4 NAT

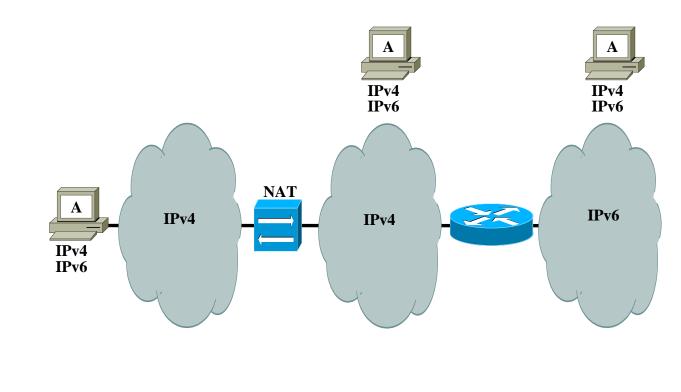
• Dual-stack host on an IPv4 network without IPv4 NAT

Isolated Host without IPv4 NAT


- IPv6 in IPv4 Tunnelling is used:
 - Configured tunnels:
 - need manual changes everytime IPv4 address change.
 - 6to4:
 - IPv6 address will change everytime IPv4 address change
 - Need to find a 6to4 relay. May be far.
 - ISATAP:
 - Yes if on a corporate network. No if mobile. Will renumber when full IPv6 deployment is done. Not for servers.
 - TSP Tunnel Broker:
 - If available, yes. Could be mobile later or behind NAT and keep its IPv6 address (space).

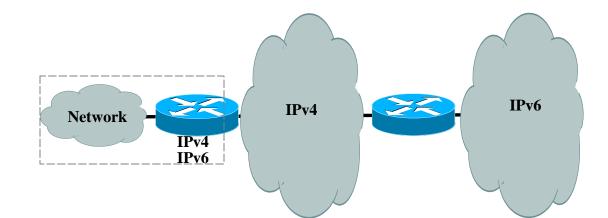
Isolated Host with IPv4 NAT

• Dual-stack host on an IPv4 network with IPv4 NAT



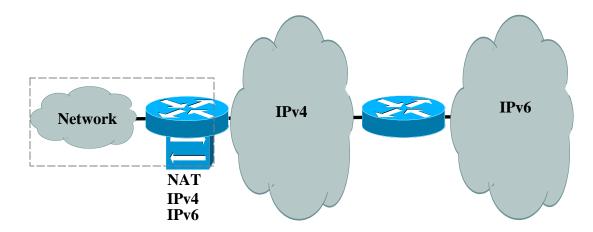
- IPv6 in IPv4 Tunnelling is used:
 - Configured tunnels/6to4/ISATAP do not work.
 - Teredo:
 - If available, yes. If mobile and not behind a NAT, encapsulation tax and will change IPv6 address (renumbering). No prefix for any subnet behind the host.
 - For the provider of the service, no authentication/control of service, no possible billing.
 - TSP Tunnel Broker:
 - If available, yes. Could be mobile later or not behind NAT and keep its IPv6 address (space).

Mobile Host



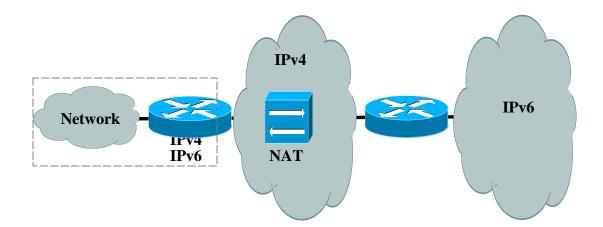
- Use IPv6 if home network is IPv6 native.
- Use MobileIPv6 if visiting network is IPv6 native
 - If implemented and configured in stack
 - Not efficient if source routing is prohibited in the visiting network
 - Needs MobileIPv6 configuration on the home network
- No solution with native and MobileIPv6 if the visiting network is not IPv6
- Since high probability of IPv4 NAT in some visiting network, then need a NAT-friendly transition mechanism:
 - Teredo: same issues as before.
 - TSP Tunnel Broker: If available, yes. Keeps its IPv6 address (space).

- Network could be IPv6 only or IPv4/IPv6
- Gateway is dual-stack



- IPv6 in IPv4 Tunnelling is used if external network is IPv4:
 - Configured tunnels
 - need manual changes everytime IPv4 address change.
 - no IPv6 prefix for the network behind
 - 6to4:
 - IPv6 address will change everytime IPv4 address change
 - need to find a 6to4 relay. May be far.
 - ISATAP: only for inside. Does not help for outside.
 - TSP Tunnel Broker
 - if available, yes; could be mobile later or behind NAT and keep its IPv6 address (space)
- Hosts inside the network could be IPv6 only if gateway sends router advertisements
- If external network is IPv6, then native IPv6 is used

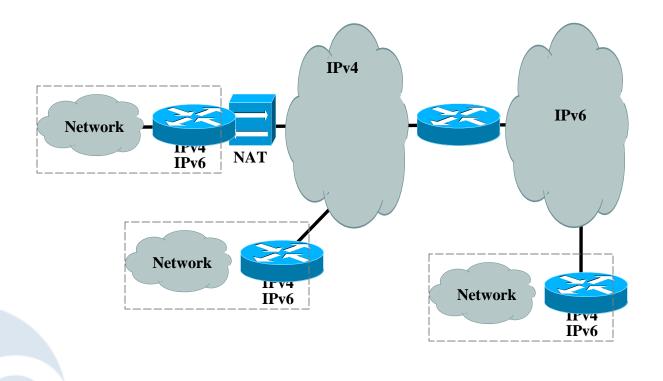
- Network could be IPv6 only or IPv4/IPv6.
- Gateway is dual-stack.
- If gateway is the IPv4 NAT.



- Gateway is dual-stack.
- If gateway is the IPv4 NAT, then it could be an IPv6 router.
 - IPv6 in IPv4 Tunnelling is used if external network is IPv4:
 - Configured tunnels:
 - need manual changes everytime IPv4 address change.
 - no IPv6 prefix for the network behind
 - 6to4:
 - IPv6 address space will change everytime IPv4 address change
 - need to find a 6to4 relay. May be far.
 - ISATAP: only for inside. Does not help for outside.
 - TSP Tunnel Broker:
 - if available, yes; could be mobile later or behind NAT and keep its IPv6 address (space)
 - Hosts inside the network could be IPv6 only if gateway sends router advertisements.

- Network could be IPv6 only or IPv4/IPv6.
- Gateway is dual-stack.
- If gateway is not the IPv4 NAT

- Gateway is dual-stack.
- If gateway is not the IPv4 NAT, then it needs NAT-friendly mechanism.
 - IPv6 in IPv4 Tunnelling is used if external network is IPv4:
 - Configured tunnels/6to4/ISATAP does not work
 - Teredo: do not provide prefix for the network behind. A host-based solution, not for the network.
 - TSP Tunnel Broker:
 - if available, yes; could be mobile later and keep its IPv6 address (space).
 - Hosts inside the network could be IPv6 only if gateway sends router advertisements.



- If possible, deploy native IPv6
- If not, then need tunnelling
 - Configured tunnels: manual, do not scale
 - 6to4: rely on IPv4 external address for IPv6 prefix. Renumbering when IPv4 address change.
 - ISATAP: good
 - TSP Tunnel Broker: would handle all cases (for example, if a NAT is used inside the network).

- Network could be IPv6 only or IPv4/IPv6.
- Gateway is dual-stack.

- Use IPv6 if home attached network is IPv6 native
- Use MobileIPv6 if attached network is IPv6 native
 - If implemented and configured in stack
 - Not efficient if source routing is prohibited in the visiting network
 - Needs MobileIPv6 configuration on the home network
 - No solution if the visiting network is IPv4
 - Do not give IPv6 prefix for the network behind.
 - No known implementations of MobileIPv6 networks.
- Since high probability of NAT in some visiting network, then need a NAT-friendly transition mechanism:
 - Teredo: same issues as before. No prefix given.
 - TSP Tunnel Broker: If available, yes. Keeps its IPv6 address (space).

Large Corporate Network without IPv4 NAT

- Similar to small network without IPv4 NAT
- However:
 - 6to4 have many scaling limitations for large networks (eg: only one exit/entry point, large network renumbering).
 - Multiple kinds of islands if incremental deployment:
 - Isolated hosts
 - Isolated networks
 - ISATAP is only for hosts.
 - TSP Tunnel Broker works in these multiple configurations.

Large Corporate Network with IPv4 NAT

- Similar to Small network with NAT
- However
 - 6to4 have many scaling limitations for large networks (eg: only one exit/entry point, large network renumbering).
 - Multiple kinds of islands if incremental deployment:
 - Isolated hosts
 - Isolated networks
 - ISATAP is only for hosts and would not help to reach external (since NAT)
 - TSP Tunnel Broker works in these multiple configurations.

- Deploy native IPv6 if possible
- If not, incremental deployment with tunnelling
- To reach customers
 - Configured tunnels works but very painful for large scale
 - 6to4/ISATAP/Teredo could not be used
 - TSP Tunnel Broker enables the incremental deployment
- Could offer IPv6 services
 - TSP Tunnel Broker for customer hosts and networks
 - Teredo server/relay for customer hosts
 - 6to4 relay

- If native IPv6
 - Use autoconfiguration (with router advertisements) unless need to push more information to the node (through DHCPv6)
 - Set the valid and preferred lifetimes to non-infinite. (order of days/weeks)
 - Use some DNS discovery mechanisms, such as site-local wellknown addresses.

- If you are a top-level (tier-1) for assignments, start bits from left to right.
 - 0000, 8000, 4000, C000, ...
- If you are an intermediate level for assignments:
 - If you want maximum flexibility with maximum aggregation in the future, use centermost bits
 - identify the best target prefix length (ex: /40)
 - start using bits growing on both sides of the boundary
- If you are a end-level for assignments, start bits from right to left.
 - Subnets always have /64; should be able to allocate all bits.
 routing aggregation is the only concern, if it is in your case.
- See RFC3531

- Maximum aggregation of customers
- Different sizes of customers (Tier-X providers, Enterprise, Users)
- Start numbering with bits from left to right
- Example: 3ffe:0b00::/32
 - 3ffe:0b00:0000::
 - 3ffe:0b00:8000::
 - 3ffe:0b00:4000::
 - 3ffe:0b00:C000::
 - ...

Address Plan for an Enterprise Provider Network

- Topology defines number of leaf networks
 - Identify the maximum size at distribution level
- Use centermost bits allocation
 - If size of distribution level grows, still have room without breaking aggregation
 - If more distribution level networks grows, still have room without breaking aggregation
- Example: 3ffe:0b00:0100::/40
 - Max size at distribution level = /44 (i.e. 44-40 = 4 => 16 leaf networks)
 - 3ffe:0b00:0100::/44
 - 3ffe:0b00:0108::/44
 - 3ffe:0b00:0110::/44
 - 3ffe:0b00:0118::/44

Address Plan for an Enterprise

Network

- Topology defines number of leaf subnets
 - Identify the maximum size at distribution level
- Use centermost bits allocation
 - If size of distribution level grows, still have room without breaking aggregation
 - If more distribution level networks grows, still have room without breaking aggregation
- Example: 3ffe:0b00:0001::/48
 - Max size at distribution level = /60 (i.e. 64-60 = 4 => 16 leaf subnets)
 - 3ffe:0b00:0001:0000::/64
 - 3ffe:0b00:0001:0008::/64
 - 3ffe:0b00:0001:0010::/64
 - 3ffe:0b00:0001:0018::/64

Routing in an Enterprise Network

- If RIP is fine for your network, then RIPng should be fine too.
- OSPFv3 manages a different Link-state database than OSPFv2. Ships in the night. Easy to deploy incrementally.
- ISIS uses the same link-state database. Topologies must be synchronized. Unless vendor support.

Routing in a Provider Network

- BGP
 - Peering
 - separate
 - combined
 - transport
 - assess use of link-local
 - Filtering
 - non valid addresses (fec0::, fe80::, ...)
 - 6bone prefixes? (3ffe::/16)
 - relays? (6to4 2002::/16 address)

- Records
 - Only put AAAA records when the server is IPv6 reachable for all cases
 - Must be an IPv6 stable address
- Transport
 - IPv6 transport needed
 - if your users have IPv6 resolvers
 - IPv6 only nodes
- Inverse mapping
 - Defines both ip6.int and ip6.arpa

- Configuration of servers
 - Use static addresses for interfaces
 - Do not use eui-64, in order to avoid binding of the address and the interface card, in case of hardware interface change
 - Make sure the IPv6 part is reachable from all the users in all cases who are using this server
- Configuration of routers
 - Use static address for interfaces
 - Do not use eui-64, in order to avoid binding of the address and the interface card, in case of hardware interface change
 - Memory usage for multiple topology databases
 - RA with non-infinite valid and preferred lifetimes

Summary

- Choose the right transition tool
- Plan the deployment
 - Nodes configuration
 - Address plan
 - DNS
 - Routing
 - Interface configuration

DNS, Apache and tunnel broker demos

- Using BIND as example
- www.example.org = 192.0.2.1 and 3ffe:b00:1::1
- Name to IP address
 - name to IPv6 address = AAAA record
 - name to IPv4 address = A record
 - in zone file example.org:
 - www.example.org. IN A 192.0.2.1
 - www.example.org. IN AAAA 3ffe:b00:1::1
- Works in Bind since 4.9.X

- IP address to name using PTR record
 - ipv4 address to name with in-addr.arpa
 - ipv6 address to name with ip6.arpa
 - 1.2.0.192.in-addr.arpa IN PTR www.example.org.

Building DNS files (cont.)

- Additional considerations
 - named.conf
 - listen-on {192.0.2.1;};
 - listen-on-v6 {3ffe:b00:1::1; };
 - masters {3ffe:b00:1::1;};
 - allow-transfer {3ffe:b00:1::1;};
 - IPv6 transport available in
 - Bind 9.X
 - Bind 8.4
 - Bind 8.X with ipv6 patch

Building DNS files (cont.)

- Client
 - IPv6 transport of DNS requests
 - /etc/resolv.conf
 - nameserver 3ffe:b00:1:1::2
- Testing
 - dig name a
 - dig name aaaa
 - dig name any

Enabling IPv6 on Apache Web Server

- Apache 2.0 or Apache 1.3 with ipv6 patch
- httpd.conf
 - ipv4: Listen 192.0.2.1:80
 - ipv6: Listen [3ffe:b00:1:1::1]:80
 - <VirtualHost 192.0.2.1 3ffe:b00:1:1::1>

- IPv6 over an IPv4 cloud
- Need a dual stack and the TSP client
- Using Freenet6.net (http://www.freenet6.net)
 - with TSP client on freebsd (available for windows, *bsd, linux, solaris, qnx...)
 - tspc.conf
 - client_v4=auto # use the IPv4 address on the interface
 - userid=anonymous|myusername
 - passwd=mypasswd #if not using anonymous
- # tspc -v
- Whenever your ipv4 address change, do tspc again.
 - It keeps your IPv6 address and prefix
 - It re-establishes the IPv6 tunnel
 - Looks like dhcp for IPv6 (over IPv4 link-layer)