

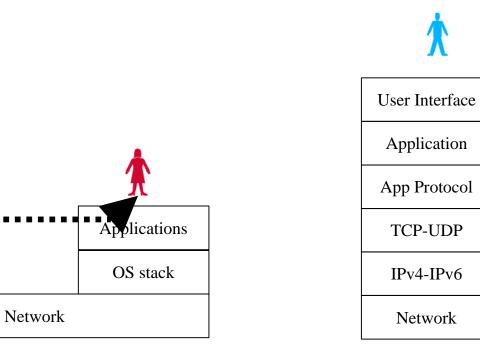
Deploying IPv6 in IPv4 networks

Marc Blanchet, CTO Marc.Blanchet@hexago.com

www.hexago.com

Plan

- Application
- IP stack
- Network
 - IPv6 transition mechanisms



User-app to User-app

- Three pieces
 - Application
 - IP stack
 - Network

Applications

OS stack

• Nothing to do except:

© HEXAGO 2003

- Few changes to socket calls
 - ex: gethostbyname() -> getaddrinfo()
- If user may enter/view an IP address
 - Address: 192.0.2.1
 - with IPv6: 3ffe:b00:1:1::1
 - URL: http://192.0.2.1:81/intro.html
 - with IPv6: http://[3ffe:b00:1:1::1]:81/intro.htmlfor most applications, code is localized and small
- After porting, the application becomes IP version independent
- Application chooses the IP version based on DNS answers

- IP address processing inside the application protocol
 - New revision of the protocol
 - Possible signaling needs to be done
- Broadcast use -> Multicast
 - Need to register a multicast address
 - Some logic to change

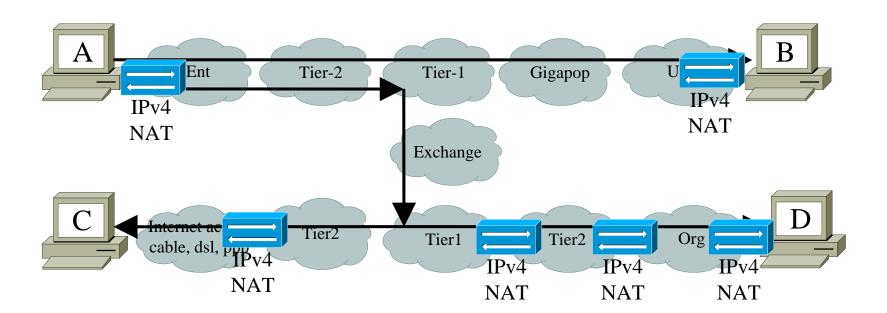
- Applications need to be ported
 - Usually small changes for porting
 - Then deployed
- New applications
- One by one application

- Integrated (or add-on) to operating system
- Manage the upgrading to a new version of the operating system that supports IPv6
- Features needed?
 - Default address selection
 - Mobility
 - IP security
 - etc.

- Resolver/Default address selection
 - Typical rule is to prefer IPv6 over IPv4
 - Connections start using IPv6 transport
 - IPv6 must be at the same level of support than IPv4:
 - network wide
 - infrastructure wide
 - help desk

Users/Applications are IP agnostic

- Need ubiquitous IPv4 _and_ IPv6 connectivity, where all cases are handled
 - IPv4-only network access
 - IPv4-only network access with NAT in the path
 - Dual stack (IPv4,IPv6) network access
 - IPv6-only network access (not yet for most cases...)
 - Users are mobile: laptop/pda/cell phones/wearable/ in office, dorms, starbucks, home (with high-speed nat...), wifi hotspots...
- Need of a technology to handle all these cases "transparently" for the user



- IPv6 native from source to destination:
 - Best
 - But not easy:
 - still in an IPv4 dominant network
 - parts you can not control: Internet, providers, public servers
 - parts you can not easily upgrade: "old" routers, firewalls, printers, etc.
 - non-availability of some solutions

From end to end

End to end reachability using IPv6. Core to node: IPv6 last mile.

© HEXAGO 2003

- Tunneling techniques used as overlay over the IPv4 network
 - 6to4, ISATAP, Teredo, Tunnel broker/TSP, etc.
- Important considerations for tunneling
 - NAT in the path
 - you might not know if one is in the path
 - one might appear: if you are mobile
 - Security policies
 - MTU
 - Operational management

6to4

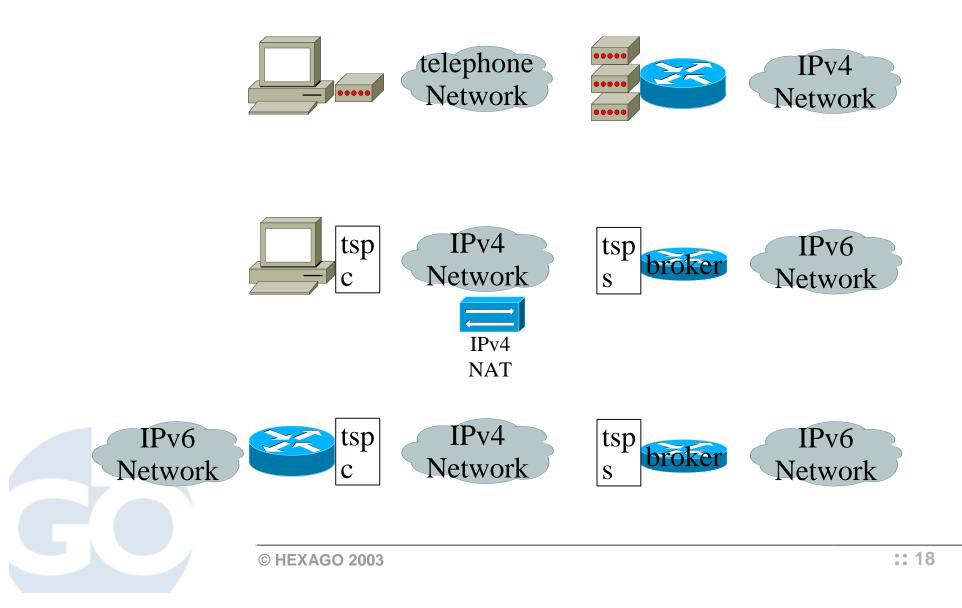
- Site solution
- Embedding the IPv4 external address in the IPv6 prefix
- Automated tunneling between 6to4 sites
- Need a 6to4 relay for non 6to4 sites
- One entry/exit point
- Does not traverse IPv4 NAT
- RFC 3056

ISATAP

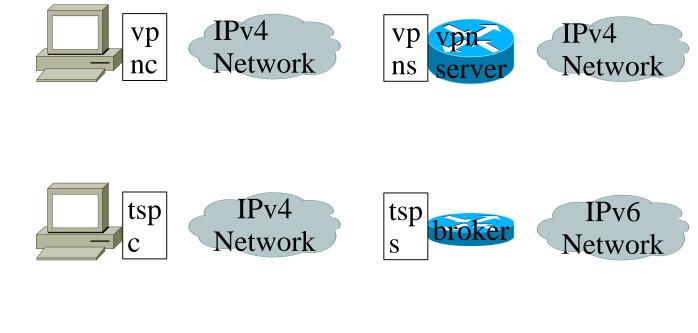
- Site solution
- Makes a virtual link-layer over the IPv4 network
- Does not traverse IPv4 NAT

Teredo

- Host solution
- Traverse NAT
- Needs Teredo server and relay


Tunnel Broker with TSP

- Site, small network and host solution; deployed in enterprise and provider networks
- Reaches the end node/app/user without an end to end upgrade of the network
 - Additional services without large upgrade upfront costs
- Has AAA policies, where
 - Authentication: security and no open relay
 - Accounting: billing
- Traverse NAT
- Stable/permanent IPv6 address and prefix
- RFC3053 + enhancements



Tunnel Broker as an IPv6 Access Server

Tunnel Broker as a VPN Server

© HEXAGO 2003

- Spin-off of Viagénie, a consulting and R&D firm
 - 7 years old, specialized in security and IP networking
 - Heavily involved in IPv6 deployment since 1996:
 - designed the first IPv6 exchange in the world (6tap) with ESnet,
 - provide services to the IPv6 community: NTPv6, ipv6 route registry, Quake-v6, freenet6.net
 - IETF contributions, such as: IPv6 address plan method RFC (RFC3531)
 - IPv6Forum, Nav6tf
- Hexago product: Migration Broker: tunnel broker. Shipping now. Enterprise and provider customers.

- Applications need to be updated
- Network goal: provide end-to-end reachability
- Applications using IPv6 need a network
- IPv6 networks need applications to be deployed
- Devices are connected to:
 - IPv4-only, IPv4-only with NAT, IPv4-IPv6, IPv6
 - mobile, using wifi/wired/2.5G, 3G/...
- Need a cheap-to-deploy technology to provide ubiquitous access to applications and services, agnostic of IP version.
- To reach me: Marc.Blanchet@hexago.com

