STANDARDS FOR EFFICIENT CRYPTOGRAPHY

SEC 3: Elliptic Curve Signature Schemes with Partial
Message Recovery: ECPVS and ECAOS

Certicom Research

Contact: Koray Karabina (kkarabina@certicom.com)

Working Draft
June 1, 2011
Version 0.5

(©2011 Certicom Corp.
License to copy this document is granted provided it is identified as “Standards for Efficient

Cryptography 3 (SEC 3)”, in all material mentioning or referencing it.

SEC 3 (Draft) Ver. 0.5

Contents
(1__Introduction| 1
LT Overviewl. o e e e 1
M2 AT . . o o 1
(1.3 Compliance| 1
L4 Document Evolutionl 2
(1.5 Intellectual Property| 2
(1.6 Organization] e e e 2
2__Mathematical Foundations| 3
2.1 Finite Fieldsl o o 3
(2.2 Elliptic Curves| 3
[2.3 Data Types and Conversions|. 3
[3 Cryptographic Components| 5
[3.1 Security Levels| 5
[3.2 Elliptic Curve Domain Parameters and Validation| 5
[3.3 Elliptic Curve Key Pairs and Validation| 6
3.4 Hash Functionsl 6
(3.5 Mask Generation Function| oo 7
[3.6 Key Derivation Functions|] oo 7
[3.7 Symmetric Encryption Schemes|o 0oL 8
(3.8 Random Number Generationl. oo 9
[3.9 Message Redundancy Criteria and Message Padding 9
[4 Signature Schemes| 11
[4.1 Elliptic Curve Pintsov-Vanstone Signatures|. 11
[4.1.1 Scheme Setup| 12
[4.1.2 Key Deployment| 12
[4.1.3 Signing Operation|. 12
[4.1.4 Verity Operation| 14
[4.2 Elliptic Curve Abe-Okamoto-Suzuki Signatures| 15
[4.2.1 Scheme Setup| 16

Contents Page i of

SEC 3 (Draft) Ver. 0.5

[4.2.2 Key Deployment|

[4.2.3 Signing Operation|

[4.2.4 Verity Operation|

(B Commentary|

[B.1 Commentary on ECPVYH|

[B.1.1 Security Considerations|

[B.2 Commentary on ECAOS|

[B.2.1 Security Considerations|

[C ASN.1 Syntax|

[C.1 Syntax for Message Redundancy Criterial

(C.2" Syntax for Hash Functions|

(C.3 Syntax for Encryption and Key Derivation Function|

[C.4 Syntax for Identitying ECPVS Signatures and Its Parameters|

[C.5 Syntax for Identifying ECAOS Signatures and Its Parameters|

[C.6 Syntax for ECPVS Signature Values|

[C.7 Syntax for ECAOS Signature Values|

Page ii of

Contents

SEC 3 (Draft) Ver. 0.5

1 Introduction

This section gives an overview of this standard, its use, its aims, and its development.

1.1 Overview

This document specifies public-key cryptographic schemes based on elliptic curve cryptography
(ECC). In particular, it specifies:

e signature schemes providing partial message recovery.

It also describes cryptographic primitives which are used to construct the schemes, and ASN.1
syntax for identifying the schemes.

The schemes are intended for general application within computer and communications systems.

1.2 Aim

The aim of this document is threefold:

e First, to facilitate deployment of ECC by completely specifying efficient, well-established,
and well-understood public-key cryptographic signature schemes providing partial message
recovery based on ECC.

e Second, to encourage deployment of interoperable implementations of ECC by profiling stan-
dards such as ANSI X9.92 [X9.92] and IEEE 1363A [1363A], but restricting the options
allowed in these standards to increase the likelihood of interoperability and to ensure confor-
mance with as many standards as possible.

e Third, to help ensure ongoing detailed analysis of ECC by cryptographers by clearly, com-
pletely, and publicly specifying baseline techniques.

1.3 Compliance

Implementations may claim compliance with the cryptographic schemes specified in this document
provided the external interface (input and output) to the schemes is equivalent to the interface
specified here. Internal computations may be performed as specified here, or may be performed
via an equivalent sequence of operations.

Note that this compliance definition implies that conformant implementations must perform all
the cryptographic checks included in the scheme specifications in this document. This is important
because the checks are essential for the prevention of subtle attacks.

§1 Introduction Page 1 of

1.4 Document Evolution SEC 3 (Draft) Ver. 0.5

1.4 Document Evolution

This document will be reviewed every five years to ensure it remains up to date with cryptographic
advances. The document is now undergoing its first scheduled review.

This current draft, version 0.5, is a work in progress and is subject to change without notice. Its
purpose is for review at the annual SECG meeting in June, 2011.

Additional intermittent reviews may also be performed occasionally, as deemed necessary by the
Standards for Efficiency Cryptography Group.

1.5 Intellectual Property

The reader’s attention is called to the possibility that compliance with this document may require
use of an invention covered by patent rights. By the publication of this document, no position is
taken with respect to the validity of this claim or of any patent rights in connection therewith. The
patent holder(s) may have filed with the SECG a statement of willingness to grant a license under
these rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to
obtain such a license. Additional details may be obtained from the patent holder and from the
SECG website, http://www.secg.org.

1.6 Organization

This document is organized as follows.

The main body of the document focuses on the specification of public-key cryptographic signature
schemes based on ECC and providing partial message recovery. Section [2| describes the math-
ematical foundations fundamental to the operation of all the schemes. Section [3| provides the
cryptographic components used to build the schemes. Section [4] specifies signature schemes pro-
viding partial message recovery.

The appendices to the document provide additional relevant material. Appendix [A]gives a glossary
of the acronyms and notation used, as well as an explanation of the terms used. Appendix
elaborates some of the details of the main body — discussing implementation guidelines, making
security remarks, and attributing references. Appendix [C] provides reference ASN.1 syntax for
implementations to use in identifying the schemes, and Appendix [D]lists the references cited in the
document.

Page 2 of §1 Introduction

http://www.secg.org

SEC 3 (Draft) Ver. 0.5

2 Mathematical Foundations

This section gives an overview of the mathematical foundations necessary for describing the signa-
ture schemes in this document.

2.1 Finite Fields

Abstractly, a finite field consists of a finite set of objects called field elements together with the
description of two operations — addition and multiplication — that can be performed on pairs of
field elements. These operations must possess certain properties.

There is a finite field containing ¢ field elements if and only if ¢ is a power of a prime number, and
furthermore, for each such ¢ there is precisely one finite field. The finite field containing ¢ elements
is denoted by F,.

In this document two types of finite fields [F, are used:

e Finite fields F, where ¢ = p for some prime p > 2, which are called prime finite fields,

e Finite fields Fom where ¢ = 2™ for some integer m > 1, which are called characteristic-2 finite
fields,

The rest of this section refers to [SEC 1, Section 2.1] for more details on prime finite fields and
characteristic-2 finite fields.

2.2 Elliptic Curves

An elliptic curve over F, is defined in terms of the solutions to an equation in F,. The form of the
equation defining an elliptic curve over [, differs depending on whether the field is a prime finite
field, or a characteristic-2 finite field.

The rest of this section refers to [SEC 1l Section 2.2] and Section [3.2| which describe elliptic curves
defined over prime finite fields and characteristic 2 finite fields.

2.3 Data Types and Conversions

The schemes specified in this document involve operations using several different data types and
it is necessary to convert some data types into other data types. The following is a list of the data
types and conversions that are used in ECPVS and ECAOS:

e Octet-String-to-Bit-String Conversion (OS2BS): The input to the OS2BS is an octet string
M of length mlen octets, and the output of OS2BS is a bit string B of length blen = 8(mlen).

e Bit-String-to-Octet-String Conversion (BS20S): The input to the BS20S is a bit string B of
length blen bits, and the output of BS20S is an octet string M of length mlen = [blen/8]
octets.

§2 Mathematical Foundations Page 3 of

2.3 Data Types and Conversions SEC 3 (Draft) Ver. 0.5

e Octet-String-to-Integer Conversion (OS2I): The input to the OS2I is an octet string M of
length mlen octets, and the output of OS2I is an integer x.

e Integer-to-Octet-String Conversion (I120S): The input to the I20S is a non-negative integer
x together with the desired length mien of the octet string such that 28™¢" > z and the
output of 1208 is an octet string M of length mlen octets.

e Field-Element-to-Octet-String Conversion (FE20S): The input to the FE20S is an element
a of the field F,, where ¢ = p for some prime p, or ¢ = 2™ for some integer m > 1, and the
output of FE20S is an octet string M of length milen = [log, ¢/8] octets.

e Ficld-Element-to-Integer Conversion (FE2I): The input to the FE2I is an element a of the
field F,, where ¢ = p for some prime p, or ¢ = 2™ for some integer m > 1, and the output of
FE2I is an integer .

e Elliptic-Curve-Point-to-Octet-String Conversion (EC20S): The input to the EC20S is a point
P on an elliptic curve defined over the finite field F, (where ¢ = p for some prime p, or
q = 2™ for some integer m > 1) and a parameter to specify whether the point compression
is being used. The output of the EC20S is an octet string M of length mlen octets, where
mlen = 1 if P = O, mlen = [(log, q)/8] + 1 if P # O and point compression is used, and
mlen = 2[(log, q)/8] + 1 if P # O and point compression is not used.

The rest of this section refers to [SEC 1| Section 2.3], which describes how the above conversions
should be performed.

Page 4 of 62 Mathematical Foundations

SEC 3 (Draft) Ver. 0.5

3 Cryptographic Components

This section describes the various cryptographic components that are used to build signature
schemes providing partial message recovery.

3.1 Security Levels

This standard follows NIST and ANSI in fixing five security levels (in bits): 80, 112, 128, 192, and
256.

According to [800-57], the use of 80-bit security level in the years 2011 through 2013 is deprecated,
which means that the use of an algorithm or key length that provides the indicated security strength
may be used if risk is accepted; and the use of 80-bit security level in 2014 and beyond is disallowed,
which means that an algorithm or key length that provides the indicated security level shall not
be used for applying cryptographic protection.

3.2 Elliptic Curve Domain Parameters and Validation

Elliptic curve domain parameters in this document are either defined over a prime finite field [,
of size prime p, or over a characteristic 2 finite field Fom of size 2. In the first case, elliptic curve
domain parameters are given by a tuple

T: (p7a7b7G’n’h)’

where p specifies the finite field F,, two elements a,b € F, specify an elliptic curve E(F,) defined
by the equation:
E:y*=2>+ar+b (modp),

a base point G = (z¢, ys) on E(F,), a prime n which is the order of GG, and an integer h which is
the cofactor h = #E(F,)/n.

In the second case, when elliptic curve domain parameters are defined over Fom, they are given by
a tuple:
T = (m, f(x),a,b,G,n,h)

consisting of an integer m specifying the finite field Fom, an irreducible binary polynomial f(x) of
degree m specifying the representation of Fom, two elements a,b € Fom specifying the elliptic curve
E(Fym) defined by the equation:

E: y*+ay=2>4ax® + b in Fom,
a base point G = (zg,yq) on E(Fam), a prime n which is the order of G, and an integer h which
is the cofactor h = #E(Fam)/n.

The rest of this section refers to [SEC 1, Section 3.1], where it is described how to choose elliptic
curve domain parameters 7', and how to check the validity of the chosen elliptic curve domain
parameters.

More details on finite fields and elliptic curves can be found in [SEC 1| Sections 2.1, 2.2].

63 Cryptographic Components Page 5 of

3.3 Elliptic Curve Key Pairs and Validation SEC 3 (Draft) Ver. 0.5

3.3 Elliptic Curve Key Pairs and Validation

Given some elliptic curve domain parameters 7' = (p, a,b,G,n, h), or T = (m, f(x),a,b,G,n, h) an
elliptic curve key pair (d, Q) associated with T" consists of an elliptic curve secret key d, which is
an integer in the interval [1,n — 1], and an elliptic curve public key @ = (z¢, yg) which is the point
Q = dG.

The rest of this section refers to [SEC 1, Section 3.2] where it is described, given elliptic curve
domain parameters T', how to establish an elliptic curve key pair (d, Q) associated with T, and
how to check the validity of the elliptic curve public key Q.

3.4 Hash Functions

Hash functions are used in signing and verify operations in ECPVS and ECAOS. In particular, in
ECPVS, hash functions are used in the key derivation function KDF', in Step [6] in Section [4.1.3]
and in Step [2]in Section [4.1.4] ITn ECAOS, hash functions are used in the mask generating function
MGPEF. Hash functions are also used in verifiably random elliptic curve domain parameter generation
and validation, and in random number generators.

The security level associated with a hash function depends on its application. Where collision
resistance is necessary, the security level is at most half the output length (in bits) of the hash
function. Where collision resistance is not necessary, the security level is at most the length (in
bits) of the hash function.

It is recommended that hash functions used in ECPVS and in ECAOS are chosen to be collision
resistant. That is, the output length (in bits) of the hash function should be at least twice the
security level.

The list of supported hash functions in this standard at this time is:

SHA-1
SHA-224
SHA-256
SHA-384
SHA-512

Let hashlen denote the length in octets of hash values computed using a hash function. Then the
values of hashlen, for the hash functions SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512 are,
respectively, 20, 28, 32, 48, and 64. The hash functions SHA-224, SHA-256, SHA-384 and SHA-512
are believed to achieve 112, 128, 192 and 256-bit security levels with respect to collision resistance,
respectively. We note that, in 2005, an attack [WYYO05b] was announced that finds a collision
in SHA-1 in about 2% hash operations. Subsequently, attacks using 2% hash operations were
announced [WYYO05a]. These attacks decrease the security of SHA-1 against collision resistance.
Therefore, the use of SHA-1 in ECPVS and ECAOS may not be suitable at the 80-bit security
level.

Page 6 of §3 Cryptographic Components

SEC 3 (Draft) Ver. 0.5 3.5 Mask Generation Function

The rest of this section refers to [SEC 1, Section 3.5], for a list of the supported hash functions
and for more details on hash functions.

3.5 Mask Generation Function

ECAOS uses mask generation function MGF that takes as input octet string = and octet length [
and outputs an octet string MGF(x,1) of length I. We denote by Lil,r the maximal octet length

out

of input =, and by Lgj&r the maximal octet length of output MGF(z,1).

The following implementation of mask generation function MGF is recommended. It uses the
mask generation function MGF1 specified in 1SO9796-3[9796-3], and with L{#.p = L, — 8 and
Lo = 204 aut Here, LI . and L%, are maximal input and output octet lengths, respectively,
of the hash function used in MGF'1.

MGF(x,1) = MGF1(z|[120S(0,4), 2*2 LG Y [IMGF1(z|[120S(1, 4), 232 LG]|

.. [IMGF1(z|[T120S(b — 1,4),2%2 L) € {0,1}%,

where b = [1/(232Lg4,)]. Tf 1 < 232 L9, it can be written as follows:

MGF (z,1) = MGF1(2||1205(0,4),1) € {0,1}%".

3.6 Key Derivation Functions

A key derivation function, denoted by KDF', is used in signing and verify operations in ECPVS;
see Section [4.1.3l and 4.1.4

In general, KDF' is used to derive keying data K, and may be expressed as

K = KDF (keydatalen, Z, OtherInput),

where keydatalen is an integer that specifies the octet length of K to be generated, Z is a shared
secret value, and OtherInput is some (optional) additional input. OtherInput might consist of some
private information mutually-known to the parties involved in key derivation process. OtherInput
might also consist of some other data such as the identifiers of the parties involved in key derivation.

In ECPVS, the signer and any verifier should be able to compute the keying data derived from the
KDF. More precisely, the input string Z to the KDF in ECPVS is the octet string representation
of the xz-coordinate of an elliptic curve point R. The elliptic curve point R is initially computed by
the signer during the signing operation; see Step [2] in Section [4.1.3] During the verify operation,
any user, who has access to the public key of the user and the signature on the message, can recover
the elliptic curve point R, and so can compute the octet string Z. Hence, the input string Z to
the KDF' is not necessarily secret and any user can compute the keying data K; see Steps in
Section K.1.4

Remark 1 In ECPVS, the signer and a certain set of users may agree on SharedInfo, which
is an octet string consisting of some data shared only by these users, as a part of the input data

63 Cryptographic Components Page 7 of

3.7 Symmetric Encryption Schemes SEC 3 (Draft) Ver. 0.5

OtherInput to the key derivation function. In this case, the third parties who do not know
SharedInfo would not be able to verify the ECPVS signatures.

Identifiers for the signer and verifier may also be used as a part of the input data OtherInput
to the key derivation function. In the case that the verifier is known to the signer in advance, a
specific identifier can be used for the verifier’s identifier. Otherwise, the identifier for the verifier
might be the encoding of the string ‘“Verifier”.

The list of supported key derivation functions in this standard at this time is:

ANSI-X9.63-KDF
IKEv2-KDF
TLS-KDF
NIST-800-56-Concatenation-KDF

The rest of this section refers to [SEC 1l Section 3.6] for a list of supported key derivation functions
and more details.

3.7 Symmetric Encryption Schemes

Symmetric encryption schemes are described in terms of an encryption operation, denoted by
ENCk, and a decryption operation, denoted by DECY%, where K is the keying data derived from
the associated key derivation function; see Section 3.6, The symmetric encryption schemes are used

in signing and verify operations in ECPVS; see Step [in Section and Step [6]in Section [4.1.4]

In general, symmetric encryption schemes are used to provide data confidentiality. However, in
ECPVS, the use of the symmetric encryption scheme should not be assumed to provide data
confidentiality for the portion of the message that is encrypted since the keying data K can be
derived by the signer and by any user unless a particular set of users are designated to be verifiers,
in which case some confidentiality is obtained; see Remark [I] in Section [3.6]

The list of supported symmetric encryption schemes in this standard at this time is:

3-key TDES in CBC mode
XOR encryption scheme
AES-128 in CBC mode
AES-192 in CBC mode
AES-256 in CBC mode
AES-128 in CTR mode
AES-192 in CTR mode
AES-256 in CTR mode

Page 8 of §3 Cryptographic Components

SEC 3 (Draft) Ver. 0.5 3.8 Random Number Generation

The symmetric encryption scheme in ECPVS should be chosen at the desired security level. In
particular, at the k-bit security level, if the AES block cipher is chosen, then the octet length
keydatalen of the keying data K should satisfy 8 - keydatalen > k; if the XOR encryption scheme
is chosen, then the keying data K should be chosen such that the bit length of K is equal to the
bit length of the data input to the encryption function.

The encryption scheme 3-key TDES as supported in this document uses keying data K of length
keydatalen = 24 octets, and achieves 112-bit security level. The encryption schemes AES-128,
AES-192, and AES-256 are believed to achieve 128, 192 and 256-bit security levels, respectively.
The XOR encryption scheme with keying data K achieves k-bit security level, where « is the bit
length of K.

The rest of this section refers to [SEC 1, Section 3.8], for a list of the supported symmetric encryp-
tion schemes and for more details on symmetric encryption schemes.

3.8 Random Number Generation

Random numbers are used for key generation in ECPVS and ECAOS. All random numbers in this
standard must be generated using a random number generator that must comply with ANSI X9.82
[X9.82] or corresponding NIST Special Publication 800-90 [800-90)].

The rest of this section refers to [SEC 1, Section 3.10] for a description of one random number
generator and for more details on random number generators.

3.9 Message Redundancy Criteria and Message Padding

ECPVS computes a signature on a message (M,c., My;s), which is a pair of octet strings, where M, .
is the recoverable message part and M,;, is the visible message part. The recoverable message part
M,... contains an inherent redundancy The inherent redunduncy shall be agreed upon in advance
by the users. We denote the bit length of the inherent redundancy in M,... by inhredBitlen. For
example, the inherent redundancy may come from the ASCII encoding of a proper English text.
In such a case, since the first bit of each octet in the ASCII encoding of a text is zero, inhredBitlen
would be the number of octets in the ASCII encoding of the text.

If the users cannot agree upon the inherent redundancy in advance, then it may be assumed that
M, .. has zero bits of inherent redundancy, i.e. inhredBitlen = 0.

During the signing operation in ECPVS, M,... is padded with an octet string P of length padOctlen
octets. The octet length padOctlen must satisfy 1 < padOctlen < 255.

The users should agree upon padQOctlen in advance to their communication. Otherwise, padOctlen
is chosen by the signer to achieve the desired security level, and padOctlen can be derived by the
verifier during the verify operation.

The inherent redundancy in M,.. and the redundancy in the padding P, determines the total re-
dundancy of the (padded) message pair (M, ., M,;s) to be signed. The amount of total redundancy
determines the security level of ECPVS against existentially forgery under adaptive chosen message
attacks; see Section [B.1.1] In particular, for x-bit security level, padOctlen should be chosen to be

§3 Cryptographic Components Page 9 of

3.9 Message Redundancy Criteria and Message Padding SEC 3 (Draft) Ver. 0.5

a positive integer such that 8 - padOctlen + inhredBitlen > k.

In ECPVS, the message redundancy criteria should also specify one of the followings in order to
achieve the security objectives (see Section [B.1.1.1)):

e The recoverable message component M,.. has a fixed length.

e The recoverable message component M,.. begins with a fixed-length representation of its
length.

The visible message component M,;, has a fixed length.

The visible message component M,;; ends with a fixed-length representation of its length.

DER encoding of ASN.1 types is used for the recoverable message part M,...

If the users could not agree upon the message redundancy in advance, then it may be assumed by
default that the recoverable message part M,.. begins with an 8-octet representation of its length.

Page 10 of §3 Cryptographic Components

SEC 3 (Draft) Ver. 0.5

4 Signature Schemes

This section specifies two signature schemes providing partial message recovery based on ECC.

Signature schemes are designed to be used by two entities — a signer U and a verifier V' — when
U wants to send a message M in an authentic manner and V wants to verify the authenticity of
M. In fact, once a message is signed, any entity V having a copy of U’s public key may verify the
signature. In particular, the verifier may not be the entity to whom U originally sent the message.

Here, signature schemes are described in terms of a signing operation, a verify operation, and asso-
ciated setup and key deployment (key generation and authentic distribution) procedures. Entities
U and V should use the schemes as follows when they want to communicate. First U and V' should
use the setup procedure to establish which scheme options will be used, then U should use the
key deployment procedure to select a key pair and V' should obtain U’s authentic public key —
U will use the key pair to control the signing operation, and V' will use the public key to control
the verify operation. Then, each time U wants to send a message M, entity U should apply the
signing operation to M under its key pair to obtain a signature S on M, form a signed message
from M and S, and convey the signed message to V. Finally, when V receives the signed message,
entity V' should apply the verify operation to the signed message under U’s public key to verify
its authenticity. If the verify operation outputs “valid”, entity V' concludes the signed message is
indeed authentic.

Loosely speaking, signature schemes are designed so that it is hard for an adversary who does not
know U’s secret key to forge valid signed messages.

There are three types of signature schemes, depending on the form of the signed message that U
must convey to V: 1) Signature schemes with appendix, in which U must convey both M and S to
V'; 2) Signature schemes with message recovery, in which M can be recovered from S, so U need to
convey only S to V; and 3) Signature schemes with partial message recovery, in which part of M
can be recovered from S, so U need to convey only S and the visible (non-recoverable) part of M
to V. Signatures with partial message recovery may be viewed as intermediate between signatures
with appendix and signatures with (full) message recovery.

In this specification, the signature schemes with partial message recovery supported are the Elliptic
Curve Pintsov-Vanstone signature scheme (ECPVS) and the Elliptic Curve Abe-Okamoto-Suzuki
signature scheme (ECAOS).

See Appendix [B] for a commentary on the contents of this section, including implementation dis-
cussion, security discussion, and references.

4.1 Elliptic Curve Pintsov-Vanstone Signatures

The Elliptic Curve Pintsov-Vanstone Signature scheme (ECPVS) is a signature scheme with partial
message recovery based on ECC. It is designed to be existentially unforgeable, even in the presence
of an adversary capable of launching chosen-message attacks.

The setup procedure for ECPVS is specified in Section the key deployment procedure is
specified in Section 4.1.2] the signing operation is specified in Section|4.1.3| and the verify operation
is specified in Section [4.1.4]

§4 Signature Schemes Page 11 of

4.1 Elliptic Curve Pintsov-Vanstone Signatures SEC 3 (Draft) Ver. 0.5

4.1.1 Scheme Setup

Entities U and V' must perform the following setup procedure to prepare to use ECPVS:

1. Entity U should establish which of the hash functions supported in Section [3.4] to use when
generating signatures. Let Hash denote the hash function chosen, and hashlen denote the
length in octets of the hash values produced using Hash.

2. Entity U should establish elliptic curve domain parameters 7' = (p,a,b,G,n,h) or T =
(m, f(x),a,b,G,n,h) at the desired security level. The elliptic curve domain parameters T'
should be generated using the primitive specified in Section [3.2] Entity U should receive
assurance that the elliptic curve domain parameters 7' are valid using one of the methods
specified in Section

3. Entity U should establish which of the symmetric encryption primitive supported in Sec-
tion [3.7] to use when generating signatures.

4. Entity U should establish which message redundancy criteria should be used. See Sections|[3.9]
BLI and BI11

5. Entity V should obtain in an authentic manner the hash function Hash, the message redun-
dancy criteria, the symmetric encryption primitive, and elliptic curve domain parameters T’
established by U.

Entity V' must receive assurance that the elliptic curve domain parameters 7" are valid using one
of the methods specified in Section [3.2]

4.1.2 Key Deployment

Entities U and V must perform the following key deployment procedure to prepare to use ECPVS:

1. Entity U should establish an elliptic curve key pair (dy, Qu) associated with 7" to use with
the signature scheme. The key pair should be generated using the primitive specified in

Section 3.3l

2. Entity V should obtain in an authentic manner the elliptic curve public key @y selected by
U.

Entity V' must receive assurance that the elliptic curve public key @y is valid using one of the
methods specified in Section [3.3]

4.1.3 Signing Operation

Entity U must sign messages using ECPVS using the keys and parameters established during the
setup procedure and the key deployment procedure as follows:

Page 12 of 84 Signature Schemes

SEC 3 (Draft) Ver. 0.5 4.1 Elliptic Curve Pintsov-Vanstone Signatures

Input: A message (M., My;s), which is a pair of octet strings to be signed, where M, is intended
to be a recoverable message part and M,;, is intended to be a visible message.

Output: A message representative octet string r and an integer s, or “invalid”.

Actions: Generate the message representative octet string r and an integer s as follows:

1. Verify that the recoverable message part M,.. meets the established redundancy criteria; see
Section 3.9 If it does not, output “invalid”.

2. Select an ephemeral elliptic curve key pair, associated with the elliptic curve domain param-
eters T established during the setup procedure, (k, R) with R = (zg,yr) using the key pair
generation primitive specified in Section [3.3

3. Convert the field element x; to an octet string Z using the conversion routine FE20S specified
in Section 2.3

4. Compute a padding octet string P, as follows:

4.1. Using the established redundancy criteria for M,.., determine the number padOctlen of
octets with which to pad M,..; see Sections [3.9 and [B.1.2]

4.2. Convert padOctlen to an octet string P; of length one octet.

4.3. Form an octet string P, of length padOctlen octets, with each octet in the string equaling
P,. For example, if padOctlen = 3, then P, = 03 and P, = 030303.

5. Compute the message representative r as follows:

5.1. Determine from the symmetric encryption algorithm ENCY, and possibly also from the
length of the plaintext octet string Ps||M,.., the length keydatalen of the symmetric
encryption key needed.

5.2. Compute K = KDF (keydatalen, 7).
5.3. Compute r = ENCk (Ps|| Myec).

6. Use the hash function selected during the setup procedure to compute the hash value:
H = Hash(r||M,s)
of length hashlen octets.
7. Derive an integer e from H as follows:

7.1. Convert the octet string H to a bit string H using the conversion routine OS2BS specified
in Section 2.3l

7.2. Set E = H if [logyn] > 8(hashlen), and set E equal to the leftmost [log,n] bits of H
if [logyn| < 8(hashlen).

7.3. Convert the bit string £ to an octet string F using the conversion BS20S routine
specified in Section [2.3]

§4 Signature Schemes Page 13 of

4.1 Elliptic Curve Pintsov-Vanstone Signatures SEC 3 (Draft) Ver. 0.5

7.4. Convert the octet string E to an integer e using the conversion routine OS2I specified
in Section 2.3l

8. Compute:

s = k — edy mod n.

4.1.4 Verify Operation

Entity V' must verify signed messages from entity U using ECPVS using the keys and parameters
established during the setup procedure and the key deployment procedure as follows:

Input: The verify operation takes as input:

1. An octet string M,;s, which is the visible (non-recoverable) message part.
2. An integer s, which is part of the ECPVS signed message.

3. An octet string r, which is the purported message representative.

Output: The verify operation yields as output:

1. An indication of whether the purported ECPVS signed message is valid or not — either
“valid” or “invalid”.

2. The recoverable message part M,.., if the purported ECPVS signature is “valid”.

Actions: Verify the purported ECPVS signed message as follows:

1. If s is not an integer in the interval [1,n — 1], output “invalid” and stop.
2. Use the hash function established during the setup procedure to compute the hash value:
H = Hash(r||Mys)

of length hashlen octets as specified in Section [3.4 If the hash function outputs “invalid”,
output “invalid” and stop.

3. Derive an integer e from H as follows:

3.1. Convert the octet string H to a bit string H using the conversion OS2BS routine specified
in Section 2.3

3.2. Set E = H if [log,n] > 8(hashlen), and set E equal to the leftmost [log, n] bits of H
if [logyn| < 8(hashlen).

3.3. Convert the bit string E to an octet string F using the conversion routine BS20S
specified in Section [2.3]

3.4. Convert the octet string E to an integer e using the conversion OS2I routine specified
in Section 2.3l

Page 14 of 84 Signature Schemes

SEC 3 (Draft) Ver. 0.5 4.2 Elliptic Curve Abe-Okamoto-Suzuki Signatures

4. Compute the elliptic curve point:

R = (zp,yr) = sG + eQu.

If R = O, output “invalid” and stop.

5. Convert the field element x i to an octet string Z using the conversion routine FE20S specified
in Section 2.3

6. Compute padded message representative N as follows:

6.1.

6.2.
6.3.

Determine from the symmetric decryption algorithm DECk, and possibly also from
the length of the message representative r, the length keydatalen of the symmetric
encryption key needed.

Compute K = KDF (keydatalen, 7).
Compute N = DECk(r).

7. Compute the recoverable message part M,.. as follows:

7.1.
7.2.
7.3.

7.4.
7.5.

Let P, be the first octet of V.
Convert P; to an integer padOctlen.

For an octet string P, of length padOctlen octets, with each octet in the string equaling
Py. Note for example, if padOctlen = 3, then P, = 03 and P, = 030303.

If the first padOctlen octets of N do not match P, then stop and output “invalid”.

If the first padOctlen octets of N match P,, then output the remaining octets of N after
the first padOctlen as the recoverable message part M,... Note that N = P|| M. will
hold.

8. Using the established redundancy criteria, determine if the number padOctlen of octets with
which M,.. was padded is acceptable. If it is not acceptable, stop and output “invalid”.

9. Determine if M,.. meets the established redundancy criteria. If M,.. meets the redundancy
criteria, then output “valid” and the recovered message M, ... Otherwise, stop and output
“invalid”.

4.2 Elliptic Curve Abe-Okamoto-Suzuki Signatures

The Elliptic Curve Abe-Okamoto-Suzuki Message Recovery Signature Scheme (ECAOS) [AOS0S]
is a signature scheme with partial message recovery based on ECC. It is designed to be existentially
unforgeable, even in the presence of an adversary capable of launching chosen-message attacks.

The setup procedure for ECAOS is specified in Section 4.2.1], the key deployment procedure is
specified in Section 4.2.2] the signing operation is specified in Section 4.2.3| and the verify operation
is specified in Section

§4 Signature Schemes Page 15 of

4.2 Elliptic Curve Abe-Okamoto-Suzuki Signatures SEC 3 (Draft) Ver. 0.5

4.2.1 Scheme Setup

Entities U and V must perform the following setup procedure to prepare to use ECAOS:

1.

Entity U should establish the mask generation function MGF with maximum input octet
length Li#. and maximum output octet length L{p, as specified in Section (3.5, to use

when generating signatures.

. Entity U should establish the octet length domain parameters as below:

e [,: octet length of prime integer n,
Lp: octet length of an element of finite field F,
K octet length of the extended part of a mask string,

L,.q: octet length of added redundancy, and

o LM octet length of minimum recoverable message.

These length domain parameters are required to satisfy the following conditions w.r.t. the
security parameter £ > 0 to ensure k-bit security: L, > [2k/8], Lr > [2k/8], K > [k/8],
Lyea > [K/8], and Lyeq + L™ > [2k/8].

rec

Lyeq and L™ are required to satisfy the following conditions because of the maximum output

out

octet length L{p of mask generation function MGF: L,.q < L and LM < [.

. Entity U should establish elliptic curve domain parameters T = (p,a,b,G,n,h) or T =

(m, f(x),a,b,G,n,h) at the desired security level. The elliptic curve domain parameters T'
should be generated using the primitive specified in Section [3.2l Entity U should receive
assurance that the elliptic curve domain parameters 7' are valid using one of the methods
specified in Section (3.2

. Entity V should obtain in an authentic manner the mask generation function MGF, the octet

length domain parameters, and elliptic curve domain parameters 7' established by U.

Entity V' must receive assurance that the elliptic curve domain parameters 7' are valid using one
of the methods specified in Section [3.2]

Throughout this section L(s) will denote the octet length of octet string s.

4.2.2 Key Deployment

Entities U and V must perform the following key deployment procedure to prepare to use ECAOS:

1.

2.

Entity U should establish an elliptic curve key pair (z,Y) associated with T to use with
the signature scheme. The key pair should be generated using the primitive specified in

Section 3.3l

Entity V' should obtain in an authentic manner the elliptic curve public key Y selected by U.

Entity V' must receive assurance that the elliptic curve public key Y is valid using one of the
methods specified in Section [3.3]

Page 16 of §4 Signature Schemes

SEC 3 (Draft) Ver. 0.5 4.2 Elliptic Curve Abe-Okamoto-Suzuki Signatures

4.2.3 Signing Operation

Entity U must sign messages with ECAOS using the keys and parameters established during the
setup procedure and the key deployment procedure as follows:

Input: A message (M., My;s), which is a pair of octet strings to be signed, where M, is intended
to be a recoverable message part and M, is intended to be a visible message. M,.. is of octet
length L(M,.), where 0 < L(M,..) < min(Liiqe — (Le +11), L{ie — 1); see[[] and M, is of octet
length L(M,;,), where 0 < L(Myi) < Litcr — (Lred + Lyee + 1); see

Output: A message representative octet string r € {0, l}S(Lmd*ZT“) and an integer s € [1,n — 1].

Actions: Generate the message representative octet string r and an integer s as follows:

1. Compute Lee = L(Mye.) and Ly;s = L(Mys).

2. Compute L,e. = max(L™" L,..+ 1) and M,.. = 1205(1, Lyee — Lyeo)||Mee € {0, 1}8zm; see
B
3. Compute L' . = 120S(L,.,8) € {0,1}5,

rec

4. Select an ephemeral elliptic curve key pair (k, R) with R = (xg,yr) associated with the
elliptic curve domain parameters 7' established during the setup procedure using the key pair
generation primitive specified in Section |3.3]

5. Compute R’ = EC20Sg (R, compressed) € {0, 1}8Fr+1),
6. Compute hg = MGF(M,e.||L...||R|[120S(0,1), Lyeq) € {0, 1}8Ered.
7. Compute hy = MGF (ho||R'[|120S(1, 1), Lyc.) € {0, 1}8Eree.
8. Compute r = h0||(]\A4;ec @® hy) € {0, 1}8(LTed+Zm).
9. Compute u = MGF(M,;||r|[120S(2,1), L, + K) € {0, 1}3n+K),
10. Compute t = OS2I(u) mod n € [0,n — 1].
11. If t = 0, go to step [4
12. Compute integer s = k — ot mod n.

13. If s = 0, go to step [4

14. Output signature (r, s) € {0, 1}8Ereatlree) x [1,p — 1].

1 See step |§| and step |8 Notice that L(]\Zm) = L(M,.) + 1 for long M, .., and the length of input of MGF in
step [6]is (L(Myec) +1) + 8+ (Lrp +1) + 1.

2 See step

3 Add padding to My to satisty Lyeq + L(Myee) > 2.

§4 Signature Schemes Page 17 of

4.2 Elliptic Curve Abe-Okamoto-Suzuki Signatures SEC 3 (Draft) Ver. 0.5

4.2.4 Verify Operation

Entity V' must verify signed messages from entity U using ECAOS using the keys and parameters
established during the setup procedure and the key deployment procedure as follows:

Input: The verify operation takes as input:

1. An octet string M,;s, which is the visible (non-recoverable) message part.
2. An integer s, which is part of the ECAOS signed message.

3. An octet string r, which is the purported message representative.

Output: The verify operation yields as output:

1. An indication of whether the purported ECAOS signed message is valid or not — either
“valid” or “invalid”.

2. The recoverable message part M,.., if the purported ECAOS signature is “valid”.
Actions: Verify the purported ECAOS signed message as follows:

1. Compute L, = L(r), Lys = L(M,;s), and 'L}EC =L, — Lyeq.

2. Check Lyeqg + LM < L, < Lyeq +min(L%ep — (Lp + 10), L) seef], 1 < s <n —1, and

rec

0 < Luss € Litn — (Lnoa + Lns + 1); sce].

3. If one of the checks in step [2] does not hold, output ‘invalid’ and stop.

4. Compute u = MGF(M,||r||[120S(2,1), L,, + K) € {0, 1}8En+K),

5. Compute t = OS2I(u) mod n € [0,n — 1].

6. If t = 0, output ‘invalid’ and stop.

7. Compute R = sG +tY € (G).

8. If R is the point at infinity, output ‘invalid’ and stop.

9. Compute R’ = EC20Sg(R, compressed) € {0, 1}8Fr+1),
10. Decompose 1 = ro|[r; € {0,1}8Ereatloce) gt ry € {0,1}3Ered and ry € {0, 1}3Eree,
11. Compute hy = MGF(ro||R'||[120S(1,1), L,ec) € {0, 1}8Erec,

12. Compute Mrec =11 ® hl c {O, 1}85“0,

4 See step and step Notice that L, = Lyeq + L(M,.ec), and the length of input of MGF in step is

L(Mrec) + 8 + (LF + 1) + 1.
5 See step

Page 18 of 84 Signature Schemes

SEC 3 (Draft) Ver. 0.5 4.2 Elliptic Curve Abe-Okamoto-Suzuki Signatures

13. Decompose MEC = 120S(1,4)||Myee s.t. 1 <4 < L™ if there exists such unique 1.

Tec

14. If there exists no such ¢, output ‘invalid’ and stop.

15. Compute L,ec = Lyee — 1.

16. Compute L’ . = 120S(L,..,8) € {0,1}5.

rec

17 ComPU‘te ho = MGF(MT€C||L'/reC||R/||I2OS(07 1)7 LT€d> < {07 1}8LT'Ed'

18. If ro # hg, output ‘invalid” and stop.

19. Output “valid” and the recovered message M,.. € {0, 1}3Free,

§4 Signature Schemes Page 19 of

A.2 Acronyms, Initialisms and Other Abbreviations SEC 3 (Draft) Ver. 0.5

A Glossary

This section supplies a glossary to the terms and notation used in this document.

The section is organized as follows: Section lists the terms, Section the acronyms, and
Section [A.3 notation used in this document.

A.1 Terms

Terms used in this document include:

Message representative

recoverable message part

visible message part

A signature component from which all or part of a signed mes-
sage can be recovered and subsequently verified in a signature
scheme providing partial message recovery.

Part of a signed message which must be recovered from the mes-
sage representative and which also may contain some intrinsic
redundancy, thereby reducing the need for padding and band-
width expansion.

Part of a signed message which cannot be recovered from the
message representative, but rather must be made directly avail-
able to the verifier. Intrinsic redundancy in the visible message
part does not reduce the need for padding and bandwidth ex-
pansion.

A.2 Acronyms, Initialisms and Other Abbreviations

The acronyms, initialisms and other abbreviations used in this document include:

AES
ANSI
ASN.1
CBC
CTR
DEC
DER
EC
ECC
ECAOS

Page 20 of

Advanced Encryption Standard.

American National Standards Institute.

Abstract Syntax Notation One.

Cipher Block Chaining.

Counter (block cipher mode of operation)

Decryption Function.

Distinguished Encoding Rules.

Elliptic Curve.

Elliptic Curve Cryptography.

Elliptic Curve Abe-Okamoto-Suzuki Signature Scheme.

§A Glossary

SEC 3 (Draft) Ver. 0.5

A.3 Notation

ECPVS
ENC
IEEE
KDF
MGF
NIST
SEC
SHA
TDES
XOR

A.3 Notation

Elliptic Curve Pintsov-Vanstone Signature Scheme.
Encryption function.

Institute of Electrical and Electronics Engineers.

Key Derivation Function.

Mask Generation Function.

(U.S.) National Institute of Standards and Technology.
Standard for Efficient Cryptography

Secure Hash Algorithm

Triple Data Encryption Standard.

Exclusive Or

The notation adopted in this document is:

]F277L

Fy
]Fpm

§A Glossary

Indicates that the inclusion of X is optional.

The interval of integers between and including x and y.

Ceiling: the smallest integer > x. For example, [5] =5,

6, and [—5.3] = —5.

5.3] =

Floor: the largest integer < z. For example, |5| =5, |5.3] = 5,

and |—5.3| = —6.

The unique remainder r, 0 < r < n —1, when z is divided by n.

For example, 23 mod 7 = 2.

Ciphertext.

An EC private key.

An elliptic curve over the field I, defined by @ and b.

The set of all points on an elliptic curve E defined over F, and

including the point at infinity O.

If E is defined over F,, then #E(F,) denotes the number of

points on the curve (including the point at infinity O).
is called the order of the curve E.

The finite field containing 2™ elements, where m is a
integer.

#E(F,)

positive

The finite field containing p elements, where p is a prime.

The finite field containing p™ elements, where p is a prime and

m > 1 is an integer.

Page 21 of

A.3 Notation SEC 3 (Draft) Ver. 0.5

F, The finite field containing ¢ elements. In this document atten-
tion is restricted to the cases where ¢ is an odd prime number
(p) or a power of 2 (2™).

G A distinguished point on an elliptic curve called the base point
or generating point.

ged(z,y) The greatest common divisor of integers x and y.

h h = #E(F,)/n, where n is the order of the base point G. h is
called the co-factor.

k An EC private key specific to one particular instance of a cryp-
tographic scheme.

K Keying data.

log, The logarithm of x to the base 2.

m The extension degree of the finite field Fpm over [F,, where p is
prime.

M A message.

M, Recoverable message part.

Myis Visible message part.

mod Modulo.

mod f(x) Arithmetic modulo the polynomial f(z).

mod n Arithmetic modulo n.

n The order of the base point G.

@) A special point on an elliptic curve, called the point at infinity.

This is the additive identity of the elliptic curve group.

P An odd prime number.

P An EC point.

q The number of elements in the field F,,.

Q An EC public key.

R An EC public key specific to one particular instance of a cryp-
tographic scheme.

S A digital signature.

T Elliptic curve domain parameters.

Uu,Vv Entities.

| X| Length in octets of the octet string X.

XY Concatenation of two strings X and Y. X and Y are either both

bit strings or both octet strings.

Page 22 of §A Glossary

SEC 3 (Draft) Ver. 0.5 A.3 Notation

XaY Bitwise exclusive-or of two bit strings X and Y of the same bit
length.

Tp The z-coordinate of a point P.

Yp The y-coordinate of a point P.

Up The representation of the y-coordinate of a point P when point

compression is used.

z,0r Z A shared secret value. z denotes a shared secret integer or field
element, and Z a shared secret bit string or octet string.

§A Glossary Page 23 of

SEC 3 (Draft) Ver. 0.5

B Commentary

This section provides commentary on the main body of this document, including implementation
discussion, security discussion, and references.

The aim of this section is to supply implementers with relevant guidance. However the section
does not attempt to provide exhaustive information but rather focuses on giving basic information
and including pointers to references which contain additional material.

B.1 Commentary on ECPVS

B.1.1 Security Considerations

It was proved in [BJO1, Theorem 1] that in the combined random oracle model and ideal cipher
model, ECPVS is asymptotically secure against existential forgeries under adaptive chosen message
attacks, where the recoverable message part M, e. in (M,e., Myis) is assumed to have some fixed
length with total redundancy of length totred bits (see Section , if the elliptic curve discrete
logarithm problem is intractable and 1/2%¢ is negligible. In particular, in this model and under
these assumptions, a forgery in ECPVS is possible only after one performs 2 (signature verifi-
cation) operations. See also [BJ01, Theorem 2 and Theorem 3] for other security proofs of ECPVS.
Theorem 2 in [BJO1] proves the security of ECPVS in the combined ideal cipher and generic group
model, assuming that the underlying hash function is a strong hash function. Theorem 3 in [BJO1]
proves the security of ECPVS in the combined random oracle and generic group model, assuming
that the underlying encryption function satisfies weak uniform decipherment property.

It follows that, ECPVS signatures have two different security levels: primary and secondary. The
primary security level measures the resistance to attacks on the private key, and the secondary
security level measures the resistance to signature forgery. The primary security level, say k,-bits,
is achieved by selecting cryptographic components (elliptic curve domain parameters, the hash
function and the encryption function) at r,-bit security level; and the secondary security level, say
Ks-bits, is achieved by selecting the total amount of the redundancy to be (at least) xs-bits. The
secondary security level by definition is at most the primary security level, and depending on the
desired security level against signature forgery, s, might be chosen to be smaller than ,. The
overall security level against signature forgery is determined by the minimum of , and x;.

As an example, let (M, .., M,;s) be the message pair to be signed under ECPVS and assume that the
cryptographic components (elliptic curve domain parameters, the hash function and the encryption
function) in ECPVS are chosen in accordance with the 128-bit security level, which is the primary
security level. If M,.. has 10-bits of inherent redundancy, then choosing padOctlen = 15 yields a
total redundancy of length 10 + 15 - 8 = 130-bits in the padded message. Hence, ECPVS achieves
128-bit security against signature forgery. In the same setting, if the message was padded so that
padOctlen = 5 then the secondary security level in ECPVS would be 10 + 5 - 8 = 50-bits even
though the primary security level is still 128-bits.

It is very plausible to assume that the recommended elliptic curve domain parameters, the hash
functions and the encryption functions in this document satisfy the necessary requirements imposed
by the security proofs in [BJO1]. Hence, the specifications given in this document for implementing

Page 24 of B Commentary

SEC 3 (Draft) Ver. 0.5 B.2 Commentary on ECAOS

ECPVS should satisfy the claimed security levels.

B.1.1.1 Protecting the Integrity of the Boundary between r» and M,;; In the security
proofs in [BJ01], it is assumed that the recoverable message part M, e in (M., Myis) is of some
fixed length. If this assumption is violated then an adversary can get a verifier to accept a false
signature as follows. Capturing a valid signature (7, M,;s,s) which was previously signed by a
verifier on the message (M., Myis), the adversary can form a fake signature (v/, M., s), where 7’
and M, are such that r’ # r and ' || M],, = r || M,;s. However, this attack can be prevented if

one of the following specifications is used in ECPVS:

e The recoverable message part M, .. has a fixed length,

e The recoverable message part M, .. begins with a fixed-length representation of its length,

The visible message part M,;s has a fixed length,

The visible message part M,;s ends with a fixed-length representation of its length,

DER encoding of ASN.1 types is used for the recoverable message part M, ...

B.1.2 Recommended Parameters

Note that the bit length of the inherent redundancy inhredBitlen in the recoverable message part
M. in the message pair (M., My;s) to be signed is determined by the established message re-
dundancy criteria. If no such redundancy criteria was established then inhredBitlen is zero.

The octet length padOctlen should be chosen to be the minimum positive integer such that 8 -
padQOctlen + inhredBitlen > k, where k is the desired bit security level. It is also required that
1 < padOctlen < 255. Therefore, we recommend

padOctlen = min{max{1, [(k — inhredBitlen)/8]},255}.

Also, the elliptic curve domain parameters (7" = (p,a,b,G,n,h) or T" = (m, f(z),a,b,G,n,h)),
the hash function, and the symmetric encryption scheme should be chosen to achieve the desired
security level from the list of recommended elliptic curve domain parameters, hash functions, and
symmetric encryption schemes. See [SEC 2| for recommended elliptic curve domain parameters.
See Sections and for recommended hash functions and symmetric encryption schemes.

B.2 Commentary on ECAOS

B.2.1 Security Considerations
It was proved in J[AOSO8] that, in the random oracle model, ECAOS is asymptotically secure

against existential forgeries under adaptive chosen message attacks if the elliptic curve discrete
logarithm problem is intractable and max(1/28L7ed 1 /28Er<) is negligible. In this model and under

B Commentary Page 25 of

B.2 Commentary on ECAOS SEC 3 (Draft) Ver. 0.5

these assumptions, a forgery in ECAOS is possible only after one performs min (28Fred, 28E"66) >
min (28Fred, 285" (signature verification) operations.

It is very plausible to assume that the recommended elliptic curve domain parameters and the hash
functions in this document satisfy the necessary requirements imposed by the security proofs in

[AOS08|. Hence, the specifications given in this document for implementing ECAOS should satisfy
the claimed security levels.

B.2.2 Recommended Parameters

Length parameters L,,, Ly, K, Lycq, and L™ are required to satisfy the following conditions.

Ln > 20,

LF2207
e K > 10,

Lred > 107

o L™ > () and L,.q + L™m™ > 20.

rec rec

For k-bit security level, length parameters L,, Lp, K, L,cq, and L"™" are recommended to take
the following values:

o L,=1[2r/8], Lr = [2k/8], K = [K/8], Lyeq = [r/8], L™" = [K/8].
Also, the elliptic curve domain parameters (1" = (p,a, b, G,n,h) or T = (m, f(x),a,b,G,n,h)), and
the hash function should be chosen to achieve the desired security level from the list of recommended

elliptic curve domain parameters and hash functions. See [SEC 2] for recommended elliptic curve
domain parameters, and Section [3.4] for recommended hash functions.

Page 26 of B Commentary

SEC 3 (Draft) Ver. 0.5
C ASN.1 Syntax

This section specifies the ASN.1 syntax that should be used when ASN.1 syntax is used to convey
parts of signature information. Generally, the ASN.1 syntax needs to be suitably encoded via, for
example, DER [X.690]. Several different types of information may need to be conveyed during the
operation of the schemes specified in this document.

C.1 Syntax for Message Redundancy Criteria

An ASN.1 syntax for indicating the message redundancy criteria inherent to the visible message
part is beyond the scope of this document. The signatory and verifier must agree in an authentic
manner upon such an ASN.1 syntax or other means to indicate these message redundancy criteria.

C.2 Syntax for Hash Functions

The syntax for indicating the hash function is inherited from SEC1 [SEC 1]. In particular, the
ASN.1 module in this standart imports the type HashFunction from the ASN.1 module in [SEC 1],
where

HashAlgorithm ::= AlgorithmIdentifier {{HashFunctions}}

HashFunctions ALGORITHM ::= {
{0ID sha-1 PARMS NULL} |
{0ID id-sha224 PARMS NULL} |
{0ID id-sha256 PARMS NULL} |
{0ID id-sha384 PARMS NULL} |
{0ID id-sha512 PARMS NULL} ,
—-- Additional hash functions may be added in the future

3

and

sha-1 OBJECT IDENTIFIER ::= {iso(1) identified-organization(3)
0iw(14) secsig(3) algorithm(2) 26}

id-sha OBJECT IDENTIFIER ::= {joint-iso-itu-t(2) country(16) us(840)
organization(1l) gov(101) csor(3) nistalgorithm(4) hashalgs(2)}

id-sha224 OBJECT IDENTIFIER ::= {id-sha 4}

id-sha256 OBJECT IDENTIFIER ::= {id-sha 1}

id-sha384 OBJECT IDENTIFIER ::= {id-sha 2}

id-shab12 OBJECT IDENTIFIER ::= {id-sha 3}

C.3 Syntax for Encryption and Key Derivation Function

The syntax for indicating the symmetric encryption function is inherited from SEC 1 [SEC 1]. In
particular, the ASN.1 module in this standart imports the type SymmetricEncryption from the

§C ASN.1 Syntax Page 27 of 35

C.3 Syntax for Encryption and Key Derivation Function SEC 3 (Draft) Ver. 0.5

ASN.1 module in [SEC 1], where

SymmetricEncryption ::= AlgorithmIdentifier {{SYMENCSet}}

SYMENCSet ALGORITHM ::= {
{0ID xor-in-ecies} |
{0ID tdes-cbc-in-ecies} |
{0ID aes128-cbc-in-ecies} |
{0ID aes192-cbc-in-ecies} |
{0ID aes256-cbc-in-ecies} |
|
|

{0ID aes128-ctr-in-ecies}
{0ID aes192-ctr-in-ecies}
{0ID aes256-ctr-in-ecies} ,
—-- Future combinations may be added

}

xor-in-ecies OBJECT IDENTIFIER ::= {secg-scheme 18}
tdes-cbc-in-ecies OBJECT IDENTIFIER ::= {secg-scheme 19}
aes128-cbc-in-ecies OBJECT IDENTIFIER ::= {secg-scheme 20 O}

aes192-cbc-in-ecies 0OBJECT IDENTIFIER ::
aes256-cbc-in-ecies OBJECT IDENTIFIER ::
aesl128-ctr-in-ecies OBJECT IDENTIFIER ::
aesl192-ctr-in-ecies OBJECT IDENTIFIER ::
aes256-ctr-in-ecies OBJECT IDENTIFIER ::

{secg-scheme 20 1}
{secg-scheme 20 2}
{secg-scheme 21 0}
{secg-scheme 21 1}
{secg-scheme 21 2}

and

secg-scheme OBJECT IDENTIFIER ::= {iso(1)
identified-organization(3) certicom(132) schemes(1)}

The syntax for indicating the key derivation function is inherited from ANSI X9.92 [X9.92]. In
particular, the ASN.1 module in this standart imports the type KdfAlgorithm from the ASN.1
module in [X9.92], where

KdfAlgorithm ::= AlgorithmIdentifier {{KdfAlgorithms}}

KdfAlgorithms ALGORITHM ::= {

{0ID ecpvs-recommended-kdf} |

{0ID ecpvs-recommended-kdf PARMS NULL} |

{0ID ecpvs-recommended-kdf PARMS HashAlgorithm},

-- Additional key derivation functions may be added.

}

ecpvs-recommended-kdf OBJECT IDENITIFIER ::= {ansi-X9-92 kdf(2) recommended(0)}
and

ansi-X9-92 OBJECT IDENITIFIER ::= {iso(1) identified-organization(3) tc68(133)

country(16) x9(840) x9Standards(9) x9-92(92)}

Page 28 of 35 §C ASN.1 Syntax

SEC 3 (Draft) Ver. 0.5 C.4 Syntax for Identifying ECPVS Signatures and Its Parameters

C.4 Syntax for Identifying ECPVS Signatures and Its Parameters

To indicate that an ECPVS signature has been employed, for example in an X.509 certificate or
CRL, the following object identifier ecpvs, which is inherited from ANSI X9.92 [X9.92], shall be
used:

ecpvs OBJECT IDENTIFIER ::= {ansi-X9-92 signatures(4) 1}

where the object identifier ansi-X9-92 represents the root of the tree containing all object identi-
fiers defined in ANSI X9.92 [X9.92], and has the following value

ansi-X9-92 OBJECT IDENTIFIER ::= {iso(1) identified-organization(3) tc68(133)
country(16) x9(840) x9Standards(9) x9-92(92)}

When the ecpvs OID appears in the algorithm field of the ASN.1 type AlgorithmIdentifier,
and the parameters field is absent or a value of type NULL, the ECPVS parameters for signature
verification must be obtained from other sources, such as the subjectPublicKeyInfo field of the
certificate of the issuer. Otherwise, the parameters field should have the following ASN.1 type:

ECPVSParameters ::= SEQUENCE {

hash [0] HashAlgorithm OPTIONAL,

sym [1] MemAlgorithm,

kdf [2] KdfAlgorithm DEFAULT {0ID ecpvs-recommended-kdf},
padOctlen [3] INTEGER OPTIONAL,

redundancy [4] OCTET STRING OPTIONAL

}

Certain fields within the type ECPVSParameters are optional. The absence of these fields shall be
interpreted according to the following rules:

e The absence of the field hash indicates that the hash function to be used is the Approved
hash function whose security level matches the security level of the public key.

e The absence of the field padOctlen indicates that padOctlen is determined by another source
of information, if such exists, and otherwise, that padOctlen is determined implicitly by the
first padding octet obtained during the decyption (decoding) operation.

e The absence of the field redundancy indicates that the inherent redundancy in the recoverable
message part is determined by another source of information, if such a source exists, and
otherwise indicates that no inherent redundancy is required.

C.5 Syntax for Identifying ECAOS Signatures and Its Parameters

To indicate that an ECAOS signature has been employed, for example in an X.509 certificate or
CRL, the following object identifier ecaos shall be used:
ecaos OBJECT IDENTIFIER ::= {id-SigType aos(0)}

where the object identifier id-SigType has the following value

§C ASN.1 Syntax Page 29 of 35

C.6 Syntax for ECPVS Signature Values SEC 3 (Draft) Ver. 0.5

id-sigType OBJECT IDENTIFIER ::= {sec3 signatures(0)}
and where

sec3 OBJECT IDENTIFIER ::= {certicom-arc sec3Arc(12)}
certicom-arc OBJECT IDENTIFIER ::= {

iso(1) identified-organization(3) certicom(132)

}

When the ecaos OID appears in the algorithm field of the ASN.1 type AlgorithmIdentifier,
and the parameters field is absent or a value of type NULL, the ECAOS parameters for signature
verification must be obtained from other sources, such as the subjectPublicKeyInfo field of the
certificate of the issuer. Otherwise, the parameters field should have the following ASN.1 type:

ECAOSParameters ::= SEQUENCE{
hash [0] HashAlgorithm OPTIONAL,
K [1] INTEGER OPTIONAL, -- octet length of the extended part of a mask string
Lred [2] INTEGER OPTIONAL, -- octet length of added redundancy --

Lrecmin [3] INTEGER OPTIONAL-- octet length of min. recoverable message --—
+

Certain fields within the type ECAOSParameters are optional. The absence of these fields shall be
interpreted according to the following rules:

e The absence of the field hash indicates that the hash function to be used is the Approved
hash function whose security level matches the security level of the public key.

e The absence of the field K indicates that the the integer K should be chosen such that its
length matches the security level of the signature scheme.

e The absence of the field Lred indicates that the the integer L,.; should be chosen such that
its length matches the security level of the signature scheme.

e The absence of the field Lrecmin indicates that the the integer L™" should be chosen such
that its length matches the security level of the signature scheme.

C.6 Syntax for ECPVS Signature Values

When a digital signature is identified by the OID ecpvs, the digital signature shall be ASN.1
encoded using the following syntax:

ECPVS-Sig-Value ::= SEQUENCE {
r OCTET STRING,

Mvis OCTET STRING,

s INTEGER

}

Page 30 of 35 §C ASN.1 Syntax

SEC 3 (Draft) Ver. 0.5 C.7 Syntax for ECAOS Signature Values

C.7 Syntax for ECAOS Signature Values

When a digital signature is identified by the OID ecaos, the digital signature shall be ASN.1
encoded using the following syntax:

ECA0S-Sig-Value ::= SEQUENCE{
r OCTET STRING,
Mvis OCTET STRING,
s INTEGER

C.8 ASN.1 Module

The following comprises the ASN.1 module for all the items specified in this standard, including
those that may have been defined in other modules.

SEC3-v1-0 {

iso(1) identified-organization(3) certicom(132) module(1) ver(3) sec3(0)
}
DEFINITIONS EXPLICIT TAGS ::= BEGIN

-- EXPORTS ALL;

IMPORTS SymmetricEncryption, HashAlgorithm FROM
SEC1-v1-9{iso(1) identified-organization(3) certicom(132) module(l) ver(2)};

IMPORTS KdfAlgorithm FROM
ANSI-X9-92{iso(1) identified-organization(3) tc68(133) country(16)
x9(840) x9Standards(9) x9-92(92) module(0) 13};

ALGORITHM ::= CLASS{
&id OBJECT IDENTIFIER UNIQUE
&Type OPTIONAL

}

WITH SYNTAX{OID &id [PARMS &Typel}

AlgorithmIdentifier{ALGORITHM:I0Set } ::= SEQUENCE {
algorithm ALGORITHM.&id({I0Set}),
parameters ALGORITHM.&Type({I0Set}{@algorithm}) OPTIONAL

ECPVSAlgorithm ::= AlgorithmIdentifier{{ECPVSAlgorithmSet}}

§C ASN.1 Syntax Page 31 of 35

C.8 ASN.1 Module SEC 3 (Draft) Ver. 0.5

ECPVSAlgorithmSet ALGORITHM ::= {
{0ID ecpvs PARMS ECPVSParameters},
-- future extensions may be possible }

-- This is (ecpvs = id-sigType 1) in ANSI-X9.92 --
ecpvs OBJECT IDENTIFIER ::= {ansi-X9-92 signatures(4) 1}

-— This is ansi-X9-92 in ANSI-X9.92 --
ansi-X9-92 OBJECT IDENTIFIER ::= {iso(1) identified-organization(3) tc68(133)
country(16) x9(840) x9Standards(9) x9-92(92)}

ECPVSParameters ::= SEQUENCE{
hash [0] HashAlgorithm OPTIONAL,
sym [1] SymmetricEncryption,
kdf [2] KdfAlgorithm DEFAULT {0ID ecpvs-recomended-kdf},
padOctlen [3] INTEGER OPTIONAL,
redundancy [4] OCTET STRING OPTIONAL

}
-- This is ecpvs-recomended-kdf in ANSI-X9.92 --
ecpvs-recomended-kdf OBJECT IDENTIFIER ::= {ansi-X9-92 kdf(2) recommended(0)}
ECPVS-Sig-Value ::= SEQUENCE{

r OCTET STRING,

Mvis OCTET STRING,

s INTEGER
}
ECAOSAlgorithm ::= AlgorithmIdentifier{{ECAOSAlgorithmSet}}
ECAOSAlgorithmSet ALGORITHM ::= {

{0ID ecaos PARMS ECAOSParameters},

-- future extensions may be possible }

ecaos OBJECT IDENTIFIER ::= {id-sigType aos(0)}
id-SigType OBJECT IDENTIFIER ::= {sec3 signatures(0)}
sec3 OBJECT IDENTIFIER ::= {certicom-arc sec3Arc(12)}

—— This is certicom-arc from SEC2 --
certicom-arc OBJECT IDENTIFIER ::= {
iso(1) identified-organization(3) certicom(132)

Page 32 of 35 §C ASN.1 Syntax

SEC 3 (Draft) Ver. 0.5 C.8 ASN.1 Module

}
ECAOSParameters ::= SEQUENCE{
hash [0] HashAlgorithm OPTIONAL,
K [1] INTEGER OPTIONAL, -- octet length of the extended part of a mask string
Lred [2] INTEGER OPTIONAL, -- octet length of added redundancy --
Lrecmin [3] INTEGER OPTIONAL-- octet length of min. recoverable message —-—
}
ECA0S-Sig-Value ::= SEQUENCE{
r OCTET STRING,
Mvis OCTET STRING,
s INTEGER
}
END

§C ASN.1 Syntax Page 33 of 35

References SEC 3 (Draft) Ver. 0.5

D References

[800-57] E. BARKER, W. BARKER, W. BURR, W. POLK AND M. SMID. DRAFT Recom-
mendation for Key Management: Part 1: General, Special Publication 800-57. Na-
tional Institute of Standards and Technology, May 2011. http://csrc.nist.gov/

publications/|

[800-90] E. BARKER AND J. KELSEY. Recommendation for Random Num-
ber Generation Using Deterministic Bit Generators, Special Publication
800-90. National Institute of Standards and Technology, Mar. 2007.

csrc.nist.gov/groups/ST/toolkit/random number.html.

[1363A] Institute of Electrical and Electronics Engineers. Specifications for Public-Key Cryp-
tography — Amendment 1: Additional Techniques, IEEE Standard 1363A-2004, Oct.
2004. http://standards.ieee.org/catalog/olis/busarch.html.

[9796-3] International Standards Organization. Information technology — Security techniques
Algorithms — Digital signature schemes giving message recovery — Part 3: Discrete
logarithm based mechanisms, International Standard 9796-3, 2006.

[SEC 1] Standards for Efficient Cryptography Group. SEC' 1: Elliptic Curve Cryptography, Sep.
2000. Version 2.0. http://www.secg.org/download/aid-780/secl-v2.pdf.

[SEC 2] . SEC 2: Recommended Elliptic Curve Domain Parameters, Sep. 2000. Version

1.0. http://www.secg.org/download/aid-386/sec2_final.pdf.

[X9.82] American National Standards Institute. Random Number Generation, Draft American
National Standard X9.82, 2005. Tentative organization: Part 1: Overview; Part 2:
Entropy Sources; Part 3: Deterministic Algorithms; Part 4: Complete Systems.

. Public-Key Cryptography for the Financial Services Industry: Digital Signa-
ture Algorithms Providing Partial Message Recovery: Part 1: Elliptic Curve Pintsov-
Vanstone Signatures (ECPVS), Draft American National Standard X9.92-2002, 2002.

[X9.92]

[X.690] International Telecommunications Union. IT'U-T Recommendation X.690: Information
Technology — ASN.1 Encoding Rules: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER), and Distinguished Encoding Rules (DER), Dec. 1997.
Equivalent to ISO/IEC 8825-1.

[AOS08] M. ABE, T. OkAMOTO AND K. SUzUKI. Message recovery signature schemes
from sigma-protocols. In NTT Technical Review 2008 January. 2008. https://www.
ntt-review. jp/archive/ntttechnical.php?contents=ntr200801sp2.html.

[BJO1] D. R. L. BRowN AND D. B. JOHNSON. Formal security proofs for a signature scheme

with partial message recovery. In D. NACCACHE (ed.), Topics in Cryptology — CT-
RSA 2001, Lecture Notes in Computer Science 2020, pp. 126-142. Springer, Apr. 2001.

Page 34 of §References

http://csrc.nist.gov/publications/
http://csrc.nist.gov/publications/
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
http://standards.ieee.org/catalog/olis/busarch.html
http://www.secg.org/download/aid-780/sec1-v2.pdf
http://www.secg.org/download/aid-386/sec2_final.pdf
https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr200801sp2.html
https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr200801sp2.html

SEC 3 (Draft) Ver. 0.5 References

WYY05a] X. WaANG, A. C. Yao AND F. Yao. Cryptanalysis of SHA-1 hash function. In
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (ed.), 1st Cryptographic
Hash Workshop. Oct. 2005. http://www.csrc.nist.gov/pki/HashWorkshop/2005/
program.htm.

. WANG, Y. L. YIN AND H. YU. Finding collisions in the fu -1. In V. SHOUP

WYYO05b] X. W Y.L.Y H. Yu. Findi llisi n the full SHA-1. In V. S
(ed.), Advances in Cryptology — CRYPTO 2005, Lecture Notes in Computer Science
3621, pp. 17-36. International Association for Cryptologic Research, Springer, Aug.
2005.

§References Page 35 of

http://www.csrc.nist.gov/pki/HashWorkshop/2005/program.htm
http://www.csrc.nist.gov/pki/HashWorkshop/2005/program.htm

	Introduction
	Overview
	Aim
	Compliance
	Document Evolution
	Intellectual Property
	Organization

	Mathematical Foundations
	Finite Fields
	Elliptic Curves
	Data Types and Conversions

	Cryptographic Components
	Security Levels
	Elliptic Curve Domain Parameters and Validation
	Elliptic Curve Key Pairs and Validation
	Hash Functions
	Mask Generation Function
	Key Derivation Functions
	Symmetric Encryption Schemes
	Random Number Generation
	Message Redundancy Criteria and Message Padding

	Signature Schemes
	Elliptic Curve Pintsov-Vanstone Signatures
	Scheme Setup
	Key Deployment
	Signing Operation
	Verify Operation

	Elliptic Curve Abe-Okamoto-Suzuki Signatures
	Scheme Setup
	Key Deployment
	Signing Operation
	Verify Operation

	Glossary
	Terms
	Acronyms, Initialisms and Other Abbreviations
	Notation

	Commentary
	Commentary on ECPVS
	Security Considerations
	Recommended Parameters

	Commentary on ECAOS
	Security Considerations
	Recommended Parameters

	ASN.1 Syntax
	Syntax for Message Redundancy Criteria
	Syntax for Hash Functions
	Syntax for Encryption and Key Derivation Function
	Syntax for Identifying ECPVS Signatures and Its Parameters
	Syntax for Identifying ECAOS Signatures and Its Parameters
	Syntax for ECPVS Signature Values
	Syntax for ECAOS Signature Values
	ASN.1 Module

	References

