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1 Introduction

This section gives an overview of this standard.

1.1 Overview

This document specifies public-key cryptographic schemes based on elliptic curve cryptography
(ECC). In particular, it specifies:

• signature schemes;

• encryption and key transport schemes; and

• key agreement schemes.

It also describes cryptographic primitives which are used to construct the schemes, and ASN.1
syntax for identifying the schemes.

The schemes are intended for general application within computer and communications systems.

1.2 Compliance

Implementations may claim compliance witht the cryptographic schemes specified in this document
provide the external interface (input and output) to the schemes is equivalent to the interface
specified here. Internal computations may be performed as specified here, or may be performed
via an equivalent sequence of operations.

Note that this compliance definition implies that conformant implementations must perform all
the cryptographic checks included in the scheme specifications in this document. This is important
because the checks are essential to the prevention of subtle attacks.

It is intended to make a validation system available so that implementors can check compliance
with this document — see the SECG website, www.secg.org, for further information.

1.3 Aim

The aim of this document is threefold.

Firstly to facilitate deployment of ECC by completely specifying efficient, well-established, and
well-understood public-key cryptographic schemes based on ECC.

Secondly to encourage deployment of interoperable implementations of ECC by profiling standards
like ANSI X9.62 [ANS98b], WAP WTLS[WAP99], ANSI X9.63 [ANS01a] and IEEE 1363 [IEE00],
but restricting the options allowed in these standards to increase the likelihood of interoperability
and to ensure conformance with all standards possible.

Thirdly to help ensure ongoing detailed analysis of ECC by cryptographers by clearly, completely,
and publicly specifying baseline techniques.

§1 Introduction Page 1 of 107
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1.4 Document Evolution

This document will be reviewed every five years to ensure it remains up to date with cryptographic
advances. The document is now undergoing its first scheduled review.

This current draft, version 1.5, is a work in progress and is subject to change without notice. Its
purpose to seek comment from the SECG.

Additional intermittent reviews may also be performed from time-to-time as deemed necessary by
the Standards for Efficiency Cryptography Group.

1.5 Intellectual Property

The reader’s attention is called to the possibility that compliance with this document may require
use of an invention covered by patent rights. By publication of this document, no position is taken
with respect to the validity of this claim or of any patent rights in connection therewith. The
patent holder(s) may have filed with the SECG a statement of willingness to grant a license under
these rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to
obtain such a license. Additional details may be obtained from the patent holder and from the
SECG website, www.secg.org.

1.6 Organization

This document is organized as follows.

The main body of the document focuses on the specification of public-key cryptographic schemes
based on ECC. Section 2 describes the mathematical foundations fundamental to the operation
of all the schemes. Section 3 provides the cryptographic components used to build the schemes.
Sections 4, 5, and 6 respectively specify signature schemes, encryption and key transport schemes,
and key agreement schemes based on ECC.

The appendices to the document provide additional relevant material. Appendix A gives a glossary
of the acronyms and notation used as well as an explanation of the terms used. Appendix B
elaborates some of the details of the main body — discussing implementation guidelines, making
security remarks, and attributing references. Appendix C provides reference ASN.1 syntax for
implementations to use to identify the schemes, and Appendix D lists the references cited in the
document.
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2 Mathematical Foundations

This section gives an overview of the mathemtical foundations necessary elliptic curve cryptogarphy.

Use of each of the public-key cryptographic schemes described in this document involves arithmetic
operations on an elliptic curve over a finite field. This section introduces the mathematical concepts
necessary to understand and implement these arithmetic operations.

Section 2.1 discusses finite fields, Section 2.2 discusses elliptic curves over finite fields, and Sec-
tion 2.3 describes the data types involved and the conventions used to convert between data types.

See Appendix B for a commentary on the contents on this section, including implementation
discussion, security discussion, and references.

2.1 Finite Fields

Abstractly a finite field consists of a finite set of objects called field elements together with the
description of two operations — addition and multiplication — that can be performed on pairs of
field elements. These operations must possess certain properties.

It turns out that there is a finite field containing q field elements if and only if q is a power of a
prime number, and furthermore that in fact for each such q there is precisely one finite field. The
finite field containing q elements is denoted by Fq.

Here only two types of finite fields Fq are used — finite fields Fp with q = p an odd prime which
are called prime finite fields, and finite fields F2m with q = 2m for some m ≥ 1 which are called
characteristic 2 finite fields.

It is necessary to describe these fields concretely in order to precisely specify cryptographic schemes
based on ECC. Section 2.1.1 describes prime finite fields and Section 2.1.2 describes characteristic
2 finite fields.

2.1.1 The Finite Field Fp

The finite field Fp is the prime finite field containing p elements. Although there is only one prime
finite field Fp for each odd prime p, there are many different ways to represent the elements of Fp.

Here the elements of Fp should be represented by the set of integers:

{0, 1, . . . , p− 1}
with addition and multiplication defined as follows:

• Addition: If a, b ∈ Fp, then a + b = r in Fp, where r ∈ [0, p − 1] is the remainder when the
integer a + b is divided by p. This is known as addition modulo p and written a + b ≡ r
(mod p).

• Multiplication: If a, b ∈ Fp, then ab = s in Fp, where s ∈ [0, p − 1] is the remainder when
the integer ab is divided by p. This is known as multiplication modulo p and written ab ≡ s
(mod p).

§2 Mathematical Foundations Page 3 of 107
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Addition and multiplication in Fp can be calculated efficiently using standard algorithms for ordi-
nary integer arithmetic. In this representation of Fp, the additive identity or zero element is the
integer 0, and the multiplicative identity is the integer 1.

It is convenient to define subtraction and division of field elements just as it is convenient to define
subtraction and division of integers. To do so, the additive inverse (or negative) and multiplicative
inverse of a field element must be described:

• Additive inverse: If a ∈ Fp, then the additive inverse (−a) of a in Fp is the unique solution
to the equation a+ x ≡ 0(mod p).

• Multiplicative inverse: If a ∈ Fp, a 6= 0, then the multiplicative inverse a−1 of a in Fp is the
unique solution to the equation ax ≡ 1(mod p).

Additive inverses and multiplicative inverses in Fp can be calculated efficiently. Multiplicative
inverses are calculated using the extended Euclidean algorithm. Division and subtraction are
defined in terms of additive and multiplicative inverses: a−b mod p is a+(−b) mod p and a/b mod p
is a(b−1) mod p.

Here the prime finite fields Fp used should have:

dlog2 pe ∈ {192, 224, 256, 384, 521}.

This restriction is designed to facilitate interoperability, while enabling implementers to deploy
implementations which are efficient in terms of computation and communication since p is aligned
with word size, and which are capable of furnishing all commonly required security levels. Inclusion
of dlog2 pe = 521 instead of dlog2 pe = 512 is an anomaly chosen to align this document with other
standards efforts — in particular with the U.S. government’s recommended elliptic curve domain
parameters [NIS99].

2.1.2 The Finite Field F2m

The finite field F2m is the characteristic 2 finite field containing 2m elements. Although there is only
one characteristic 2 finite field F2m for each power 2m of 2 with m ≥ 1, there are many different
ways to represent the elements of F2m .

Here the elements of F2m should be represented by the set of binary polynomials of degree m− 1
or less:

{am−1x
m−1 + am−2x

m−2 + · · ·+ a1x+ a0 : ai ∈ {0, 1}}

with addition and multiplication defined in terms of an irreducible binary polynomial f(x) of degree
m, known as the reduction polynomial, as follows:

• Addition: If a = am−1x
m−1 + · · ·+ a0, b = bm−1x

m−1 + · · ·+ b0 ∈ F2m , then a+ b = r in F2m ,
where r = rm−1x

m−1 + · · ·+ r0 with ri ≡ ai + bi (mod 2).

Page 4 of 107 §2 Mathematical Foundations
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• Multiplication: If a = am−1x
m−1 + · · · + a0, b = bm−1x

m−1 + · · · + b0 ∈ F2m , then ab = s in
F2m , where s = sm−1x

m−1 + · · · + s0 is the remainder when the polynomial ab is divided by
f(x) with all coefficient arithmetic performed modulo 2.

Addition and multiplication in F2m can be calculated efficiently using standard algorithms for
ordinary integer and polynomial arithmetic. In this representation of F2m , the additive identity or
zero element is the polynomial 0, and the multiplicative identity is the polynomial 1.

Again it is convenient to define subtraction and division of field elements. To do so the additive
inverse (or negative) and multiplicative inverse of a field element must be described:

• Additive inverse: If a ∈ F2m , then the additive inverse (−a) of a in F2m is the unique solution
to the equation a+ x = 0 in F2m .

• Multiplicative inverse: If a ∈ F2m , a 6= 0, then the multiplicative inverse a−1 of a in F2m is
the unique solution to the equation ax = 1 in F2m .

Additive inverses and multiplicative inverses in F2m can be calculated efficiently using the extended
Euclidean algorithm. Division and subtraction are defined in terms of additive and multiplicative
inverses: a− b in F2m is a+ (−b) in F2m and a/b in F2m is a(b−1) in F2m .

Here the characteristic 2 finite fields F2m used should have:

m ∈ {163, 233, 239, 283, 409, 571}

and addition and multiplication in F2m should be performed using one of the irreducible binary
polynomials of degree m in Table 1. As before this restriction is designed to facilitate interoperabil-
ity while enabling implementers to deploy efficient implementations capable of meeting common
security requirements.

Field Reduction Polynomial(s)

F2163 f(x) = x163 + x7 + x6 + x3 + 1

F2233 f(x) = x233 + x74 + 1

F2239 f(x) = x239 + x36 + 1 or x239 + x158 + 1

F2283 f(x) = x283 + x12 + x7 + x5 + 1

F2409 f(x) = x409 + x87 + 1

F2571 f(x) = x571 + x10 + x5 + x2 + 1

Table 1: Representations of F2m

The rule used to pick acceptable m’s was: in each interval between integers in the set:

{160, 224, 256, 384, 512, 1024},

§2 Mathematical Foundations Page 5 of 107
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if such an m exists, select the smallest prime m in the interval with the property that there exists
a Koblitz curve whose order is 2 or 4 times a prime over F2m ; otherwise simply select the smallest
prime m in the interval. (A Koblitz curve is an elliptic curve over F2m with a, b ∈ {0, 1}, see
§2.2.) The inclusion of m = 239 is an anomaly chosen since it has already been widely used
in practice. The inclusion of m = 283 instead of m = 277 is an anomaly chosen to align this
document with other standards efforts — in particular with the U.S. government’s recommended
elliptic curve domain parameters [NIS99]. Composite m was avoided to align this specification
with other standards efforts and to address concerns expressed by some experts about the security
of elliptic curves defined over F2m with m composite — see, for example, [GS].

The rule used to pick acceptable reduction polynomials was: if a degree m binary irreducible
trinomial:

f(x) = xm + xk + 1 with m > k ≥ 1

exists, use the irreducible tsrinomial with k as small as possible; otherwise use the degree m binary
irreducible pentanomial:

f(x) = xm + xk3 + xk2 + xk1 + 1 with m > k3 > k2 > k1 ≥ 1

with (1) k3 as small as possible, (2) k2 as small as possible given k3, and (3) k1 as small as possible
given k3 and k2. These polynomials enable efficient calculation of field operations. The second
reduction polynomial at m = 239 is an anomaly chosen since it has been widely deployed.

2.2 Elliptic Curves

An elliptic curve over Fq is defined in terms of the solutions to an equation in Fq. The form of the
equation defining an elliptic curve over Fq differs depending on whether the field is a prime finite
field or a characteristic 2 finite field.

Section 2.2.1 describes elliptic curves over prime finite fields, and Section 2.2.2 describes elliptic
curves over characteristic 2 finite fields.

2.2.1 Elliptic Curves over Fp

Let Fp be a prime finite field so that p is an odd prime number, and let a, b ∈ Fp satisfy 4a3+27b2 6≡ 0
(mod p). Then an elliptic curve E(Fp) over Fp defined by the parameters a, b ∈ Fp consists of the
set of solutions or points P = (x, y) for x, y ∈ Fp to the equation:

y2 ≡ x3 + ax+ b (mod p)

together with an extra point O called the point at infinity. The equation y2 ≡ x3 +ax+b(mod p) is
called the defining equation of E(Fp). For a given point P = (xP , yP ), xP is called the x-coordinate
of P , and yP is called the y-coordinate of P .

The number of points on E(Fp) is denoted by #E(Fp). The Hasse Theorem states that:

p+ 1− 2
√
p ≤ #E(Fp) ≤ p+ 1 + 2

√
p.

It is possible to define an addition rule to add points on E. The addition rule is specified as follows:
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1. Rule to add the point at infinity to itself:

O +O = O.

2. Rule to add the point at infinity to any other point:

(x, y) +O = O + (x, y) = (x, y) for all (x, y) ∈ E(Fp).

3. Rule to add two points with the same x-coordinates when the points are either distinct or
have y-coordinate 0:

(x, y) + (x,−y) = O for all (x, y) ∈ E(Fp)

— i.e. the negative of the point (x, y) is −(x, y) = (x,−y).

4. Rule to add two points with different x-coordinates: Let (x1, y1) ∈ E(Fp) and (x2, y2) ∈ E(Fp)
be two points such that x1 6= x2. Then (x1, y1) + (x2, y2) = (x3, y3), where:

x3 ≡ λ2 − x1 − x2 (mod p), y3 ≡ λ(x1 − x3)− y1 (mod p), and λ ≡ y2 − y1

x2 − x1

(mod p).

5. Rule to add a point to itself (double a point): Let (x1, y1) ∈ E(Fp) be a point with y1 6= 0.
Then (x1, y1) + (x1, y1) = (x3, y3), where:

x3 ≡ λ2 − 2x1 (mod p), y3 ≡ λ(x1 − x3)− y1 (mod p), and λ ≡ 3x2
1 + a

2y1

(mod p).

The set of points on E(Fp) forms a group under this addition rule. Furthermore the group is
abelian — meaning that P1 + P2 = P2 + P1 for all points P1, P2 ∈ E(Fp). Notice that the addition
rule can always be computed efficiently using simple field arithmetic.

Cryptographic schemes based on ECC rely on scalar multiplication of elliptic curve points. Given
an integer k and a point P ∈ E(Fp), scalar multiplication is the process of adding P to itself k
times. The result of this scalar multiplication is denoted kP . Scalar multiplication of elliptic
curve points can be computed efficiently using the addition rule together with the double-and-add
algorithm or one of its variants.

2.2.2 Elliptic Curves over F2m

Let F2m be a characteristic 2 finite field, and let a, b ∈ F2m satisfy b 6= 0 in F2m . Then a (non-
supersingular) elliptic curve E(F2m) over F2m defined by the parameters a, b ∈ F2m consists of the
set of solutions or points P = (x, y) for x, y ∈ F2m to the equation:

y2 + xy = x3 + ax2 + b in F2m

together with an extra point O called the point at infinity. (Here the only elliptic curves over F2m

of interest are non-supersingular elliptic curves.)
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The number of points on E(F2m) is denoted by #E(F2m). The Hasse Theorem states that:

2m + 1− 2
√

2m ≤ #E(F2m) ≤ 2m + 1 + 2
√

2m.

It is again possible to define an addition rule to add points on E as it was in Section 2.2.1. The
addition rule is specified as follows:

1. Rule to add the point at infinity to itself:

O +O = O.

2. Rule to add the point at infinity to any other point:

(x, y) +O = O + (x, y) = (x, y) for all (x, y) ∈ E(Fp).

3. Rule to add two points with the same x-coordinates when the points are either distinct or
have x-coordinate 0:

(x, y) + (x, x+ y) = O for all (x, y) ∈ E(Fp)

— i.e. the negative of the point (x, y) is −(x, y) = (x, x+ y).

4. Rule to add two points with different x-coordinates: Let (x1, y1) ∈ E(F2m) and (x2, y2) ∈
E(F2m) be two points such that x1 6= x2. Then (x1, y1) + (x2, y2) = (x3, y3), where:

x3 = λ2 + λ+ x1 + x2 + a in F2m , y3 = λ(x1 + x3) + x3 + y1 in F2m , and λ ≡ y1 + y2

x1 + x2

in F2m .

5. Rule to add a point to itself (double a point): Let (x1, y1) ∈ E(F2m) be a point with x1 6= 0.
Then (x1, y1) + (x1, y1) = (x3, y3), where:

x3 = λ2 + λ+ a in F2m , y3 = x2
1 + (λ+ 1)x3 in F2m , and λ = x1 +

y1

x1

in F2m .

The set of points on E(F2m) forms an abelian group under this addition rule. Notice that the
addition rule can always be computed efficiently using simple field arithmetic.

Cryptographic schemes based on ECC rely on scalar multiplication of elliptic curve points. As
before given an integer k and a point P ∈ E(F2m), scalar multiplication is the process of adding P
to itself k times. The result of this scalar multiplication is denoted kP .

2.3 Data Types and Conversions

The schemes specified in this document involve operations using several different data types. This
section lists the different data types and describes how to convert one data type to another.
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Five data types are employed in this document: three types associated with elliptic curve arithmetic
— integers, field elements, and elliptic curve points — as well as octet strings which are used to
communicate and store information, and bit strings which are used by some of the primitives.

Frequently it is necessary to convert one of the data types into another — for example to represent
an elliptic curve point as an octet string. The remainder of this section is devoted to describing
how the necessary conversions should be performed.

Figure 1 illustrates which conversions are needed and where they are described.

Bit String EC Point

Octet String
xx

2.3.3

2.3.4

88rrrrrrrrrrrrrrrrrrrr&&

2.3.2

2.3.1

ffLLLLLLLLLLLLLLLLLLLL

ff

2.3.6

2.3.5

&&LLLLLLLLLLLLLLLLLLLL88

2.3.8

2.3.7

xxrrrrrrrrrrrrrrrrrrrr

Integer Field Element2.3.9
oo

Figure 1: Converting between Data Types

2.3.1 Bit-String-to-Octet-String Conversion

Bit strings should be converted to octet strings as described in this section. Informally the idea is
to pad the bit string with 0’s on the left to make its length a multiple of 8, then chop the result
up into octets. Formally the conversion routine is specified as follows:

Input: A bit string B of length blen bits.

Output: An octet string M of length mlen = dblen/8e octets.

Actions: Convert the bit string B = B0B1 . . . Bblen−1 to an octet string M = M0M1 . . .Mmlen−1

as follows:

1. For 0 < i ≤ mlen− 1, let:

Mi = Bblen−8−8(mlen−1−i)Bblen−7−8(mlen−1−i) . . . Bblen−1−8(mlen−1−i).

2. Let M0 have its leftmost 8(mlen)− blen bits set to 0, and its rightmost 8− (8(mlen)− blen)
bits set to B0B1 . . . B8−8(mlen)+blen−1.

3. Output M .
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2.3.2 Octet-String-to-Bit-String Conversion

Octet strings should be converted to bit strings as described in this section. Informally the idea is
simply to view the octet string as a bit string instead. Formally the conversion routine is specified
as follows:

Input: An octet string M of length mlen octets.

Output: A bit string B of length blen = 8(mlen) bits.

Actions: Convert the octet string M = M0M1 . . .Mmlen−1 to a bit string B = B0B1 . . . Bblen−1 as
follows:

1. For 0 ≤ i ≤ mlen− 1, set:

B8iB8i+1 . . . B8i+7 = Mi.

2. Output B.

2.3.3 Elliptic-Curve-Point-to-Octet-String Conversion

Elliptic curve points should be converted to octet strings as described in this section. Informally,
if point compression is being used, the idea is that the compressed y-coordinate is placed in the
leftmost octet of the octet string along with an indication that point compression is on, and the
x-coordinate is placed in the remainder of the octet string; otherwise if point compression is off, the
leftmost octet indicates that point compression is off, and remainder of the octet string contains the
x-coordinate followed by the y-coordinate. Formally the conversion routine is specified as follows:

Setup: Decide whether or not to represent points using point compression.

Input: A point P on an elliptic curve over Fq defined by the field elements a, b.

Output: An octet string M of length mlen octets where mlen = 1 if P = O, mlen = d(log2 q)/8e+
1 if P 6= O and point compression is used, and mlen = 2d(log2 q)/8e + 1 if P 6= O and point
compression is not used.

Actions: Convert P to an octet string M = M0M1 . . .Mmlen−1 as follows:

1. If P = O, output M = 0016.

2. If P = (xP , yP ) 6= O and point compression is being used, proceed as follows:

2.1. Convert the field element xP to an octet string X of length d(log2 q)/8e octets using the
conversion routine specified in Section 2.3.5.

2.2. Derive from yP a single bit ỹP as follows (this allows the y-coordinate to be represented
compactly using a single bit):

2.2.1. If q = p is an odd prime, set ỹP = yP (mod 2).

2.2.2. If q = 2m, set ỹP = 0 if xP = 0, otherwise compute z = zm−1x
m−1 + · · · + z1x + z0

such that z = yPx
−1
P and set ỹP = z0.

Page 10 of 107 §2 Mathematical Foundations



SEC 1 (Draft) Ver. 1.5 2.3 Data Types and Conversions

2.3. Assign the value 0216 to the single octet Y if ỹP = 0, or the value 0316 if ỹP = 1.

2.4. Output M = Y ‖X.

3. If P = (xP , yP ) 6= O and point compression is not being used, proceed as follows:

3.1. Convert the field element xP to an octet string X of length d(log2 q)/8e octets using the
conversion routine specified in Section 2.3.5.

3.2. Convert the field element yP to an octet string Y of length d(log2 q)/8e octets using the
conversion routine specified in Section 2.3.5.

3.3. Output M = 0416 ‖X ‖Y .

2.3.4 Octet-String-to-Elliptic-Curve-Point Conversion

Octet strings should be converted to elliptic curve points as described in this section. Informally
the idea is that, if the octet string represents a compressed point, the compressed y-coordinate is
recovered from the leftmost octet, the x-coordinate is recovered from the remainder of the octet
string, and then the point compression process is reversed; otherwise the leftmost octet of the octet
string is removed, the x-coordinate is recovered from the left half of the remaining octet string,
and the y-coordinate is recovered from the right half of the remaining octet string. Formally the
conversion routine is specified as follows:

Input: An elliptic curve over Fq defined by the field elements a, b, and an octet string M which is
either the single octet 0016, an octet string of length mlen = d(log2 q)/8e+ 1, or an octet string of
length mlen = 2d(log2 q)/8e+ 1.

Output: An elliptic curve point P , or ‘invalid’.

Actions: Convert M to an elliptic curve point P as follows:

1. If M = 0016, output P = O.

2. If M has length d(log2 q)/8e+ 1 octets, proceed as follows:

2.1. Parse M = Y ‖X as a single octet Y followed by d(log2 q)/8e octets X.

2.2. Convert X to a field element xP of Fq using the conversion routine specified in Sec-
tion 2.3.6. Output ‘invalid’ and stop if the routine outputs ‘invalid’.

2.3. If Y = 02, set ỹP = 0, and if Y = 03, set ỹP = 1. Otherwise output ‘invalid’ and stop.

2.4. Derive from xP and ỹP an elliptic curve point P = (xP , yP ), where:

2.4.1. If q = p is an odd prime, compute the field element α ≡ x3
P + axP + b(mod p),

and compute a square root β of α modulo p. Output ‘invalid’ and stop if there are
no square roots of α modulo p, otherwise set yP = β if β ≡ ỹP (mod 2), and set
yP = p− β if β 6≡ ỹP (mod 2).

2.4.2. If q = 2m and xP = 0, output yP = b2m−1
in F2m .
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2.4.3. If q = 2m and xP 6= 0, compute the field element β = xP + a + bx−2
P in F2m , and

find an element z = zm−1x
m−1 + · · ·+ z1x+ z0 such that z2 + z = β in F2m . Output

‘invalid’ and stop if no such z exists, otherwise set yP = xP z in F2m if z0 = ỹP , and
set yP = xP (z + 1) in F2m if z0 6= ỹP .

2.5. Output P = (xP , yP ).

3. If M has length 2d(log2 q)/8e+ 1 octets, proceed as follows:

3.1. Parse M = W ‖X ‖Y as a single octet W followed by d(log2 q)/8e octets X followed by
d(log2 q)/8e octets Y .

3.2. Check that W = 0416. If W 6= 0416, output ‘invalid’ and stop.

3.3. Convert X to a field element xP of Fq using the conversion routine specified in Sec-
tion 2.3.6. Output ‘invalid’ and stop if the routine outputs ‘invalid’.

3.4. Convert Y to a field element yP of Fq using the conversion routine specified in Sec-
tion 2.3.6. Output ‘invalid’ and stop if the routine outputs ‘invalid’.

3.5. Check that P = (xP , yP ) satisfies the defining equation of the elliptic curve.

3.6. Output P = (xP , yP ).

2.3.5 Field-Element-to-Octet-String Conversion

Field elements should be converted to octet strings as described in this section. Informally the
idea is that, if the field is Fp, convert the integer to an octet string, and if the field is F2m , view the
coefficients of the polynomial as a bit string with the highest degree term on the left and convert
the bit string to an octet string. Formally the conversion routine is specified as follows:

Input: An element a of the field Fq.

Output: An octet string M of length mlen = dlog2 q/8e octets.

Actions: Convert a to an octet string M = M0M1 . . .Mmlen−1 as follows:

1. If q = p is an odd prime, then a is an integer in the interval [0, p− 1]. Convert a to M using
the conversion routine specified in Section 2.3.7. Output M .

2. If q = 2m, then a = am−1x
m−1 + · · · + a1x + a0 is a binary polynomial. Convert a to M as

follows:

2.1. For 0 < i ≤ mlen− 1, let:

Mi = a7+8(mlen−1−i)a6+8(mlen−1−i) . . . a8(mlen−1−i).

2.2. Let M0 have its leftmost 8(mlen)−m bits set to 0, and its rightmost 8− (8(mlen)−m)
bits set to am−1am−2 . . . a8(mlen)−8.

2.3. Output M .
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2.3.6 Octet-String-to-Field-Element Conversion

Octet strings should be converted to field elements as described in this section. Informally the idea
is that, if the field is Fp, convert the octet string to an integer, and if the field is F2m , use the bits of
the octet string as the coefficients of the binary polynomial with the rightmost bit as the constant
term. Formally the conversion routine is specified as follows:

Input: An indication of the field Fq used and an octet string M of length mlen = dlog2q/8e octets.

Output: An element a in Fq, or ‘invalid’.

Actions: Convert M = M0M1 . . .Mmlen−1 with Mi = M0
iM

1
i . . .M

7
i to a field element a as follows:

1. If q = p is an odd prime, then a needs to be an integer in the interval [0, p− 1]. Convert M
to an integer a using the conversion routine specified in Section 2.3.8. Output ‘invalid’ and
stop if a does not lie in the interval [0, p− 1], otherwise output a.

2. If q = 2m, then a needs to be a binary polynomial of degree m − 1 or less. Set the field
element a to be a = am−1x

m−1 + · · ·+ a1x+ a0 with:

ai = M
7−i+8(bi/8c)
mlen−1−bi/8c.

Output ‘invalid’ and stop if the leftmost 8(mlen) − m bits of M0 are not all 0, otherwise
output a.

2.3.7 Integer-to-Octet-String Conversion

Integers should be converted to octet strings as described in this section. Informally the idea is to
represent the integer in binary then convert the resulting bit string to an octet string. Formally
the conversion routine is specified as follows:

Input: A non-negative integer x together with the desired length mlen of the octet string. It must
be the case that:

28(mlen) > x.

Output: An octet string M of length mlen octets.

Actions: Convert x = xmlen−128(mlen−1) + xmlen−228(mlen−2) + · · · + x128 + x0 represented in base
28 = 256 to an octet string M = M0M1 . . .Mmlen−1 as follows:

1. For 0 ≤ i ≤ mlen− 1, set:

Mi = xmlen−1−i.

2. Output M .
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2.3.8 Octet-String-to-Integer Conversion

Octet strings should be converted to integers as described in this section. Informally the idea
is simply to view the octet string as the base 256 representation of the integer. Formally the
conversion routine is specified as follows:

Input: An octet string M of length mlen octets.

Output: An integer x.

Actions: Convert M = M0M1 . . .Mmlen−1 to an integer x as follows:

1. View Mi as an integer in the range [1, 256] and set:

x =
mlen−1∑
i=0

28(mlen−1−i)Mi.

2. Output x.

2.3.9 Field-Element-to-Integer Conversion

Field elements should be converted to integers as described in this section. Informally the idea
is that, if the field is Fp no conversion is required, and if the field is F2m first convert the binary
polynomial to an octet string then convert the octet string to an integer. Formally the conversion
routine is specified as follows:

Input: An element a of the field Fq.

Output: An integer x.

Actions: Convert the field element a to an integer x as follows:

1. If q = p is an odd prime, then a must be an integer in the interval [0, p− 1]. Output x = a.

2. If q = 2m, then a must be a binary polynomial of degree m − 1 — i.e. a = am−1x
m−1 +

am−2x
m−2 + · · ·+ a1x+ a0. Set:

x =
m−1∑
i=0

2iai.

Output x.
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3 Cryptographic Components

This section describes the various cryptographic components that are used to build signature
schemes, encryption schemes, and key agreement schemes later in this document.

See Appendix B for a commentary on the contents on this section, including implementation
discussion, security discussion, and references.

3.1 Elliptic Curve Domain Parameters

The operation of each of the public-key cryptographic schemes described in this document involves
arithmetic operations on an elliptic curve over a finite field determined by some elliptic curve
domain parameters.

This section addresses the provision of elliptic curve domain parameters. It describes what elliptic
curve domain parameters are, how they should be generated, and how they should be validated.

Two types of elliptic curve domain parameters may be used: elliptic curve domain parameters over
Fp, and elliptic curve domain parameters over F2m . Section 3.1.1 describes elliptic curve domain
parameters over Fp, and Section 3.1.2 describes elliptic curve domain parameters over F2m .

Elliptic curve domain parameters can be verifiably random, which means that the parameters are
obtained in part as the output of a secure hash function, applied to some seed value S. Verifiably
random elliptic domain parameters are recommended, but others may be used for various reasons,
such as superior performance.

3.1.1 Elliptic Curve Domain Parameters over Fp

Elliptic curve domain parameters over Fp are a sextuple:

T = (p, a, b, G, n, h)

consisting of an integer p specifying the finite field Fp, two elements a, b ∈ Fp specifying an elliptic
curve E(Fp) defined by the equation:

E : y2 ≡ x3 + ax+ b (mod p),

a base point G = (xG, yG) on E(Fp), a prime n which is the order of G, and an integer h which is
the cofactor h = #E(Fp)/n.

Elliptic curve domain parameters over Fp precisely specify an elliptic curve and base point. This
is necessary to precisely define public-key cryptographic schemes based on ECC.

If the elliptic curve domain parameters T are verifiably random, then they should be accompanied
by the seed value S from which they are derived.

Section 3.1.1.1 describes how to generate elliptic curve domain parameters over Fp, and Sec-
tion 3.1.1.2 describes how to validate elliptic curve domain parameters over Fp.
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3.1.1.1 Elliptic Curve Domain Parameters over Fp Generation Primitive

Elliptic curve domain parameters over Fp should be generated as follows:

Input: The approximate security level in bits required from the elliptic curve domain parameters
— this must be an integer t ∈ {80, , 112, 128, 192, 256}. Optionally, a seed value S.

Output: Elliptic curve domain parameters over Fp:

T = (p, a, b, G, n, h)

such that taking logarithms on the associated elliptic curve requires approximately 2t operations.

Actions: Generate elliptic curve domain parameters over Fp as follows:

1. Select a prime p such that dlog2 pe = 2t if 80 < t < 256, such that dlog2 pe = 521 if t = 256,
and such that dlog2 pe = 192 if t = 80 to determine the finite field Fp.

2. Select elements a, b ∈ Fp to determine the elliptic curve E(Fp) defined by the equation:

E : y2 ≡ x3 + ax+ b (mod p),

a base point G = (xG, yG) on E(Fp), a prime n which is the order of G, and an integer h
which is the cofactor h = #E(Fp)/n, subject to the following constraints:

• 4a3 + 27b2 6≡ 0(mod p).

• #E(Fp) 6= p.

• pB 6≡ 1(mod n) for any 1 ≤ B < 100.

• h ≤ 2t/16.

• n− 1 should have a large prime factor.

If seed S is provided, then the coefficietns a andd b, or the point G should be derived from
S, or both.

3. Output T = (p, a, b, G, n, h).

This primitive allows any of the known curve selection methods to be used — for example the
methods based on complex multiplication and the methods based on general point counting algo-
rithms. However to foster interoperability it is strongly recommended that implementers use one
of the elliptic curve domain parameters over Fp specified in SEC 2 [SEC00]. See Appendix B for
further discussion.

3.1.1.2 Validation of Elliptic Curve Domain Parameters over Fp
Frequently it is either necessary or desirable for an entity using elliptic curve domain parameters
over Fp to receive an assurance that the parameters are valid — that is that they satisfy the
arithmetic requirements of elliptic curve domain parameters — either to prevent malicious insertion
of insecure parameters, or to detect inadvertent coding or transmission errors.
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There are four acceptable methods for an entity U to receive an assurance that elliptic curve domain
parameters over Fp are valid. Only one of the methods must be supplied, although in many cases
greater security may be obtained by carrying out more than one of the methods.

The four acceptable methods are:

1. Entity U performs validation of the elliptic curve domain parameters over Fp itself using the
validation primitive described in Section 3.1.1.2.1.

2. Entity U generates the elliptic curve domain parameters over Fp itself using a trusted system
using the primitive specified in Section 3.1.1.1.

3. Entity U receives assurance in an authentic manner that a party trusted with respect to
entity U ’s use of the elliptic curve domain parameters over Fp has performed validation of
the parameters using the validation primitive described in Section 3.1.1.2.1.

4. Entity U receives assurance in an authentic manner that a party trusted with respect to entity
U ’s use of the elliptic curve domain parameters over Fp generated the parameters using a
trusted system using the primitive specified in Section 3.1.1.1.

Usually when entity U accepts another party’s assurance that elliptic curve domain parameters are
valid, the other party is a CA.

3.1.1.2.1 Elliptic Curve Domain Parameters over Fp Validation Primitive

The elliptic curve domain parameters over Fp validation primitive should be used to check elliptic
curve domain parameters over Fp are valid as follows:

Input: Elliptic curve domain parameters over Fp:

T = (p, a, b, G, n, h),

along with an integer t ∈ {80, 112, 128, 192, 256} which is the approximate security level in bits
required from the elliptic curve domain parameters. Optionally, a seed value S.

Output: An indication of whether the elliptic curve domain parameters are valid or not — either
‘valid’ or ‘invalid’.

Actions: Validate the elliptic curve domain parameters over Fp as follows:

1. Check that p is an odd prime such that dlog2 pe = 2t if t 6= 256 or such that dlog2 pe = 521
if t = 256.

2. Check that a, b, xG, and yG are integers in the interval [0, p− 1].

3. Check that 4a3 + 27b2 6≡ 0(mod p).

4. Check that y2
G ≡ x3

G + axG + b(mod p).

5. Check that n is prime.
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6. Check that h ≤ 2t/16, and that h = b(√p+ 1)2/nc.
7. Check that nG = O.

8. Check that qB 6≡ 1(mod n) for any 1 ≤ B < 100, and that nh 6= p.

9. If any of the checks fail, output ‘invalid’, otherwise output ‘valid’.

Step 8 above excludes the known weak classes of curves which are susceptible to either the Menezes-
Okamoto-Vanstone attack, or the Frey-Rück attack, or the Semaev-Smart-Satoh-Araki attack. See
Appendix B for further discussion.

If the elliptic curve domain parameters have been generated verifiably at random using SHA-1 as
described in ANSI X9.62 [ANS05b], it may also be checked that a and b have been correctly derived
from the seed S or that G has been correctly derived from the seed S, or all have.

3.1.2 Elliptic Curve Domain Parameters over F2m

Elliptic curve domain parameters over F2m are a septuple:

T = (m, f(x), a, b, G, n, h)

consisting of an integer m specifying the finite field F2m , an irreducible binary polynomial f(x) of
degree m specifying the representation of F2m , two elements a, b ∈ F2m specifying the elliptic curve
E(F2m) defined by the equation:

y2 + xy = x3 + ax2 + b in F2m ,

a base point G = (xG, yG) on E(F2m), a prime n which is the order of G, and an integer h which
is the cofactor h = #E(F2m)/n.

Elliptic curve domain parameters over F2m precisely specify an elliptic curve and base point. This
is necessary to precisely define public-key cryptographic schemes based on ECC.

If the elliptic curve domain parameters T are verifiably random, then they should be accompanied
by the seed value S from which they are derived.

Section 3.1.2.1 describes how to generate elliptic curve domain parameters over F2m , and Sec-
tion 3.1.2.2 describes how to validate elliptic curve domain parameters over F2m .

3.1.2.1 Elliptic Curve Domain Parameters over F2m Generation Primitive

Elliptic curve domain parameters over F2m should be generated as follows:

Input: The approximate security level in bits required from the elliptic curve domain parameters
— this must be an integer t ∈ {80, 112, 128, 192, 256}. Optionally, a seed value S.

Output: Elliptic curve domain parameters over F2m :

T = (m, f(x), a, b, G, n, h)

such that taking logarithms on the associated elliptic curve requires approximately 2t operations.

Actions: Generate elliptic curve domain parameters over F2m as follows:
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1. Let t′ denote the smallest integer greater than t in the set {112, 128, 192, 256, 512}. Select
m ∈ {163, 233, 239, 283, 409, 571} such that 2t < m < 2t′ to determine the finite field F2m .

2. Select a binary irreducible polynomial f(x) of degree m from Table 1 in Section 2.1.2 to
determine the representation of F2m .

3. Select elements a, b ∈ F2m to determine the elliptic curve E(F2m) defined by the equation:

E : y2 + xy = x3 + ax2 + b in F2m ,

a base point G = (xG, yG) on E(F2m), a prime n which is the order of G, and an integer h
which is the cofactor h = #E(F2m)/n, subject to the following constraints:

• b 6= 0 in F2m .

• #E(F2m) 6= 2m.

• 2mB 6≡ 1(mod n) for any 1 ≤ B < 100.

• h ≤ 2t/16.

• n− 1 should have a large prime factor.

If seed value S is provided, then coefficients a and b, or point G should be derived from it,
or both.

4. Output T = (m, f(x), a, b, G, n, h).

This primitive also allows any of the known curve selection methods to be used. However to
foster interoperability it is strongly recommended that implementers use one of the recommended
elliptic curve domain parameters over F2m specified in SEC 2 [SEC00]. See Appendix B for further
discussion.

3.1.2.2 Validation of Elliptic Curve Domain Parameters over F2m

Frequently it is either necessary or desirable for an entity using elliptic curve domain parameters
over F2m to receive an assurance that the parameters are valid — that is that they satisfy the
arithmetic requirements of elliptic curve domain parameters — either to prevent malicious insertion
of insecure parameters, or to detect inadvertent coding or transmission errors.

There are four acceptable methods for an entity U to receive an assurance that elliptic curve domain
parameters over F2m are valid. Only one of the methods must be supplied, although in many cases
greater security may be obtained by carrying out more than one of the methods.

The four acceptable methods are:

1. Entity U performs validation of the elliptic curve domain parameters over F2m itself using
the validation primitive described in Section 3.1.2.2.1.

2. Entity U generates the elliptic curve domain parameters over F2m itself using a trusted system
using the primitive specified in Section 3.1.2.1.
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3. Entity U receives assurance in an authentic manner that a party trusted with respect to
entity U ’s use of the elliptic curve domain parameters over F2m has performed validation of
the parameters using the validation primitive described in Section 3.1.1.2.1.

4. Entity U receives assurance in an authentic manner that a party trusted with respect to
entity U ’s use of the elliptic curve domain parameters over F2m generated the parameters
using a trusted system using the primitive specified in Section 3.1.2.1.

3.1.2.2.1 Elliptic Curve Domain Parameters over F2m Validation Primitive

The elliptic curve domain parameters over F2m validation primitive should be used to check elliptic
curve domain parameters over F2m are valid as follows:

Input: Elliptic curve domain parameters over F2m :

T = (m, f(x), a, b, G, n, h)

along with an integer t ∈ {80, 112, 128, 192, 256} which is the approximate security level in bits
required from the elliptic curve domain parameters.

Output: An indication of whether the elliptic curve domain parameters are valid or not — either
‘valid’ or ‘invalid’.

Actions: Validate the elliptic curve domain parameters over F2m as follows:

1. Let t′ denote the smallest integer greater than t in the set {112, 128, 192, 256, 512}. Check
that m is an integer in the set {163, 233, 239, 283, 409, 571} such that 2t < m < 2t′.

2. Check that f(x) is a binary irreducible polynomial of degree m which is listed in Table 1 in
Section 2.1.2.

3. Check that a, b, xG, and yG are binary polynomials of degree m− 1 or less.

4. Check that b 6= 0 in F2m .

5. Check that y2
G + xGyG = x3

G + ax2
G + b in F2m .

6. Check that n is prime.

7. Check that h ≤ 2t/16, and that h = b(√2m + 1)2/nc.
8. Check that nG = O.

9. Check that 2mB 6≡ 1(mod n) for any 1 ≤ B < 100, and that nh 6= 2m.

10. If any of the checks fail, output ‘invalid’, otherwise output ‘valid’.

Step 9 above excludes the known weak classes of curves which are susceptible to either the Menezes-
Okamoto-Vanstone attack, or the Frey-Rück attack, or the Semaev-Smart-Satoh-Araki attack. See
Appendix B for further discussion.

If the elliptic curve domain parameters have been generated verifiably at random using SHA-1 as
described in ANSI X9.62 [ANS05b], it may also be checked that a and b have been correctly derived
from the seed, and it may also checked that G has been correctly derived from S.
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3.1.3 Verifiably Random Curves and Base Point Generators

The section specified how to derive from a seed S the elliptic curve coefficients a and b, and the
base point generator G. These methods are consistent with ANS X9.62 [ANS05b].

3.1.3.1 Curve Selection

Subject to revision. Preliminary summary.

Apply the hash function to S. The resulting output is converted to a j-invariant. The j-invariant
is used to determine a and b. For a given j, there is some freedom in the selection of a and b.
Generally, a is chosen to make the ellitpic curve operations slightly more efficient.

3.1.3.2 Point Selection

Subject to revision. Preliminary summary.

Apply the hash function to S. Convert the bit string to a field element and an extra bit. The result
is converted to a compressed point and then decompressed. If decompression succeeds, cofactor
multiplication is used to obtain a point of correct order.

A counter is the input of the hash. It is incremented when the decompression fails, or when cofactor
multipliation yields the point at infinity.

3.2 Elliptic Curve Key Pairs

All the public-key cryptographic schemes described in this document use key pairs known as elliptic
curve key pairs.

Given some elliptic curve domain parameters T = (p, a, b, G, n, h) or (m, f(x), a, b, G, n, h), an
elliptic curve key pair (d,Q) associated with T consists of an elliptic curve secret key d which is an
integer in the interval [1, n − 1], and an elliptic curve public key Q = (xQ, yQ) which is the point
Q = dG.

Section 3.2.1 describes how to generate elliptic curve key pairs, Section 3.2.2 describes how to
validate elliptic curve public keys, and Section 3.2.3 describes how to partially validate elliptic
curve public keys.

3.2.1 Elliptic Curve Key Pair Generation Primitive

Elliptic curve key pairs should be generated as follows:

Input: Valid elliptic curve domain parameters T = (p, a, b, G, n, h) or (m, f(x), a, b, G, n, h).

Output: An elliptic curve key pair (d,Q) associated with T .

Actions: Generate an elliptic curve key pair as follows:

1. Randomly or pseudorandomly select an integer d in the interval [1, n− 1].
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2. Calculate Q = dG.

3. Output (d,Q).

3.2.2 Validation of Elliptic Curve Public Keys

Frequently it is either necessary or desirable for an entity using an elliptic curve public key to receive
an assurance that the public key is valid — that is that it satisfies the arithmetic requirements
of an elliptic curve public key — either to prevent malicious insertion of an invalid public key to
enable attacks like small subgroup attacks, or to detect inadvertent coding or transmission errors.

There are four acceptable methods for an entity U to receive an assurance that an elliptic curve
public key is valid. Only one of the methods must be supplied, although in many cases greater
security may be obtained by carrying out more than one of the methods.

The four acceptable methods are:

1. Entity U performs validation of the elliptic curve public key itself using the public key vali-
dation primitive described in Section 3.2.2.1.

2. Entity U generates the elliptic curve public key itself using a trusted system.

3. Entity U receives assurance in an authentic manner that a party trusted with respect to U ’s
use of the elliptic curve public key has performed validation of the public key using the public
key validation primitive described in Section 3.2.2.1.

4. Entity U receives assurance in an authentic manner that a party trusted with respect to U ’s
use of the elliptic curve public key generated the public key using a trusted system.

Usually when U accepts another party’s assurance that an elliptic curve public key is valid, the
other party is a CA who validated the public key during the certification process. Occasionally U
may also receive assurance from another party other than a CA. For example, in the Station-to-
Station protocol described in ANS X9.63 [ANS01a], U receives an ephemeral public key from V . V
is trusted with respect to U ’s use of the public key because U is attempting to establish a key with
V and U only combines the public key with its own ephemeral key pair. It is therefore acceptable
in this circumstance for U to accept assurance from V that the public key is valid because the
public key is received in a signed message.

3.2.2.1 Elliptic Curve Public Key Validation Primitive

The elliptic curve public key validation primitive should be used to check an elliptic curve public
key is valid as follows:

Input: Valid elliptic curve domain parameters T = (p, a, b, G, n, h) or (m, f(x), a, b, G, n, h), and
an elliptic curve public key Q = (xQ, yQ) associated with T .

Output: An indication of whether the elliptic curve public key is valid or not — either ‘valid’ or
‘invalid’.

Actions: Validate the elliptic curve public key as follows:
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1. Check that Q 6= O.

2. If T represents elliptic curve domain parameters over Fp, check that xQ and yQ are integers
in the range [1, p− 1], and that:

y2
Q ≡ x3

Q + axQ + b (mod p).

3. If T represents elliptic curve domain parameters over F2m , check that xQ and yQ are binary
polynomials of degree at most m− 1, and that:

y2
Q + xQyQ = x3

Q + ax2
Q + b in F2m .

4. Check that nQ = O.

5. If any of the checks fail, output ‘invalid’, otherwise output ‘valid’.

In the above routine, Steps 1, 2, and 3 check that Q is a point on E other than the point at infinity,
and Step 4 checks that Q is a scalar multiple of G.

In Step 4, it may not be necessary to compute the point nQ. For example, if h = 1, then nQ = O
is implied by the checks in Steps 2 and 3, because this property holds for any point Q ∈ E. If
h = 2 and T represents elliptic curve domain parameters over F2m , then it sufficices to check that
the trace of xQ is 1. A similar computation may be done in other situations where h is small.

3.2.3 Partial Validation of Elliptic Curve Public Keys

Sometimes it is sufficient for an entity using an elliptic curve public key to receive an assurance
that the public key is partially valid, rather than ‘fully’ valid — here an elliptic curve public key Q
is said to be partially valid if Q is a point on the associated elliptic curve but it is not necessarily
the case that Q = dG for some d.

The MQV key agreement scheme and the Diffie-Hellman scheme using the cofactor Diffie-Hellman
primitive are both examples of schemes designed to provide security even when entities only check
that the public keys involved are partially valid. (This feature is desirable because it means that
the schemes enjoy a computational advantage in some circumstances over schemes like the Diffie-
Hellman scheme with the ‘standard’ Diffie-Hellman primitive which require ‘fully’ valid public keys.
The computational advantage stems from the fact that public key partial validation is more efficient
than public key ‘full’ validation.)

There are four acceptable methods for an entity U to receive an assurance that an elliptic curve
public key is partially valid. Only one of the methods must be supplied, although in many cases
greater security may be obtained by carrying out more than one of the methods.

The four acceptable methods are:

1. Entity U performs partial validation of the elliptic curve public key itself using the public
key partial validation primitive described in Section 3.2.3.1.
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2. Entity U generates the elliptic curve public key itself using a trusted system.

3. Entity U receives assurance in an authentic manner that a party trusted with respect to U ’s
use of the elliptic curve public key has performed partial validation of the public key using
the public key partial validation primitive described in Section 3.2.3.1.

4. Entity U receives assurance in an authentic manner that a party trusted with respect to U ’s
use of the elliptic curve public key generated the public key using a trusted system.

3.2.3.1 Elliptic Curve Public Key Partial Validation Primitive

The elliptic curve public key partial validation primitive should be used to check an elliptic curve
public key is partially valid as follows:

Input: Valid elliptic curve domain parameters T = (p, a, b, G, n, h) or (m, f(x), a, b, G, n, h), and
an elliptic curve public key Q = (xQ, yQ) associated with T .

Output: An indication of whether the elliptic curve public key is partially valid or not — either
‘valid’ or ‘invalid’.

Actions: Partially validate the elliptic curve public key as follows:

1. Check that Q 6= O.

2. If T represents elliptic curve domain parameters over Fp, check that xQ and yQ are integers
in the range [1, p− 1], and that:

y2
Q ≡ x3

Q + axQ + b (mod p).

3. If T represents elliptic curve domain parameters over F2m , check that xQ and yQ are binary
polynomials of degree at most m− 1, and that:

y2
Q + xQyQ = x3

Q + ax2
Q + b in F2m .

4. If any of the checks fail, output ‘invalid’, otherwise output ‘valid’.

In the above routine, Steps 1, 2, and 3 check that Q is a point on E other than the point at infinity.

3.2.4 Verifiable and Assisted Key Pair Generation and Validation

Subject to revision.

In certain situations an authority may wish to contribute to the generation of an entity U ’s key
pair. For example, to be certain that entity U has not stolen or fabricated the key pair for a
malicious purpose such as identity theft or an unknown key share attack, an authority may give
some input into the key pair. As another example, if entity U is not able to provide sufficient
entropy into the private key, the authority may wish to supplement the entropy while in a secure
environment.
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A self-signed signature is a signature in which the message signed contains the signature. It is
possible to generate a self-signed ECDSA signature. This is done by selecting by first selected the
signature, then the rest of the message, and finally the key pair.

In the case of ECDSA, a self-signed signature ensures a unique key pair per message signed. The
function from a self-signed signature to a key pair is essentially one-way, so it is difficult to produce
a self-signture that produces a given key pair.

If an authority contributes unique information to message signed, then the authority ensures that
the key pair is unique. A unique key pair ensures that the key pair is not somebody else’s key pair
and that the key pair was not specifically created as part of an attack. (Such as an unknown key
share attack.)

An authority can also contribute entropy to the key pair generation by providing some entropy
in the message information to be signed. Inclusion of the information in the self-signed signature
ensures to the authority the entropy provided was employed in the key pair generation. A reason to
do this is if the key pair generator does not have very reliable entropy generation. In that case, the
authority can assist the key pair generator. In this situtation, however, to protect the security of
the key pair, the authority must be trusted and the self-signed message must be kept confidential.

3.3 Elliptic Curve Diffie-Hellman Primitives

This section specifies the elliptic curve Diffie-Hellman primitives which are the basis for the op-
eration of the Elliptic Curve Integrated Encryption Scheme in Section 5.1, and the elliptic curve
Diffie-Hellman scheme in Section 6.1.

Two primitives are specified: the elliptic curve Diffie-Hellman primitive and the elliptic curve
cofactor Diffie-Hellman primitive. The basic idea of both primitives is the same — to generate a
shared secret value from a private key owned by one entity U and a public key owned by another
entity V so that if both entities execute the primitive simultaneously with corresponding keys as
input they will recover the same shared secret value.

However the two primitives are subtlely different: the elliptic curve Diffie-Hellman primitive is the
straightforward analogue of the well-known Diffie-Hellman key agreement method, whereas the
elliptic curve cofactor Diffie-Hellman primitive incorporates the cofactor into the calculation of the
shared secret value to provide efficient resistance to attacks like small subgroup attacks.

The elliptic curve Diffie-Hellman primitive is specified in Section 3.3.1, and the elliptic curve
cofactor Diffie-Hellman primitive is specified in Section 3.3.2.

3.3.1 Elliptic Curve Diffie-Hellman Primitive

U should employ the following process to calculate a shared secret value with V using the elliptic
curve Diffie-Hellman primitive:

Input: The elliptic curve Diffie-Hellman primitive takes as input:

1. Valid elliptic curve domain parameters T = (p, a, b, G, n, h) or (m, f(x), a, b, G, n, h).
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2. An elliptic curve private key dU associated with T owned by U .

3. A valid elliptic curve public key QV associated with T purportedly owned by V .

The public key QV should at a minimum be partially valid.

Output: A shared secret field element z, or ‘invalid’.

Actions: Calculate a shared secret value as follows:

1. Compute the elliptic curve point P = (xP , yP ) = dUQV .

2. Check that P 6= O. If P = O, output ‘invalid’ and stop.

3. Output z = xP as the shared secret field element.

3.3.2 Elliptic Curve Cofactor Diffie-Hellman Primitive

Entity U should employ the following process to calculate a shared secret value with V using the
elliptic curve cofactor Diffie-Hellman primitive:

Input: The elliptic curve cofactor Diffie-Hellman primitive takes as input:

1. Valid elliptic curve domain parameters T = (p, a, b, G, n, h) or (m, f(x), a, b, G, n, h).

2. An elliptic curve private key dU associated with T owned by U .

3. A partially valid elliptic curve public key QV associated with T purportedly owned by V .

The public key QV should at a minimum be partially valid.

Output: A shared secret field element z, or ‘invalid’.

Actions: Calculate a shared secret value as follows:

1. Compute the elliptic curve point P = (xP , yP ) = hdUQV .

2. Check that P 6= O. If P = O, output ‘invalid’ and stop.

3. Output z = xP as the shared secret field element.

3.4 Elliptic Curve MQV Primitive

This section specifies the elliptic curve MQV primitive which is the basis for the operation of the
elliptic curve MQV scheme specified in Section 6.2.

The basic idea of this primitive is to generate a shared secret value from two elliptic curve key
pairs owned by one entity U and two elliptic curve public keys owned by another entity V so that
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if both entities execute the primitive simultaneously with corresponding keys as input they will
recover the same shared secret value.

U should employ the following process to calculate a shared secret value with V using the elliptic
curve MQV primitive:

Input: The elliptic curve MQV primitive takes as input:

1. Valid elliptic curve domain parameters T = (p, a, b, G, n, h) or (m, f(x), a, b, G, n, h).

2. Two elliptic curve key pairs (d1,U , Q1,U) and (d2,U , Q2,U) associated with T owned by U .

3. Two partially valid elliptic curve public keys Q1,V and Q2,V associated with T purportedly
owned by V .

The public keys Q1,V and Q2,V should at a minimum be partially valid.

Output: A shared secret field element z, or ‘invalid’.

Actions: Calculate a shared secret value as follows:

1. Set q = p if T = (p, a, b, G, n, h), or q = 2m if T = (m, f(x), a, b, G, n, h).

2. Compute an integer Q2,U using Q2,U = (xQ, yQ) as follows:

2.1. Convert xQ to an integer x using the conversion routine specified in Section 2.3.9.

2.2. Calculate:

x ≡ x (mod 2d(log2 n)/2e).

2.3. Calculate:

Q2,U = x+ 2d(log2 n)/2e.

3. Compute the integer:

s ≡ d2,U +Q2,Ud1,U (mod n).

4. Compute an integer Q2,V using Q2,V = (x′Q, y
′
Q) as follows:

4.1. Convert x′Q to an integer x′ using the conversion routine specified in Section 2.3.9.

4.2. Calculate:

x′ ≡ x′ (mod 2d(log2 n)/2e).

4.3. Calculate:

Q2,V = x′ + 2d(log2 n)/2e.

5. Compute the elliptic curve point:

P = (xP , yP ) = hs(Q2,V +Q2,VQ1,V ).

6. Check that P 6= O. If P = O, output ‘invalid’ and stop.

7. Output z = xP as the shared secret field element.
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3.5 Hash Functions

Subject to revision.

Days before the release date, an attack was announced that finds a collision in SHA-1 in about 269

hash operations.

This decreases the security of SHA-1 against collision resistance. Collision resistance is most
important for ECDSA in this standard, because it is necessary to resist exisential forgery by an
active chosen message attack.

In situations where ECDSA with SHA-1 is used and 80 bits of security against existential forgery
by active chosen messsage attacks is necessary, then some countermeasures may be recommended
in a future revision of this document.

This section specifies the cryptographic hash functions supported in this document.

The hash functions are used by the key derivation functions specified in Section 3.6, and by the
Elliptic Curve Digital Signature Algorithm specified in Section 4.1.

The hash functions will be used to calculate the hash value associated with an octet string.

The list of supported hash functions at this time is:

SHA-1
SHA-224
SHA-256
SHA-384
SHA-512

These hash functions are specified in FIPS 180-2 [FIP04]. They map octet strings of length less
than a certain number of octets to hash values which are octet strings of a fixed length .

For clarity in the remainder of this section, the generic operation of the hash functions is described
so that their use can be precisely specified later on.

Hash values should be calculated as follows:

Setup: Select one of the approved hash functions. Let Hash denote the hash function chosen,
hashlen denote the length in octets of hash values computed using Hash, and hashmaxlen denote
the maximum length in octets of messages that can be hashed using Hash.

Input: The input to the hash function is an octet string M .

Output: The hash value H which is an octet string of length hashlen octets, or ‘invalid’.

Actions: Calculate the hash value H as follows:

1. Check that M is less than hashmaxlen octets long — i.e. check that:

||M || < hashmaxlen.

If ||M || ≥ hashmaxlen, output ‘invalid’ and stop.
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2. Convert M to a bit string M using the conversion routine specified in Section 2.3.2.

3. Calculate the hash value H corresponding to M using the selected hash function:

H = Hash(M).

4. Convert H to an octet string H using the conversion routine specified in Section 2.3.1.

5. Output H.

3.6 Key Derivation Functions

This section specifies the key derivation functions supported in this document.

The key derivation functions are used by the Elliptic Curve Integrated Encryption Scheme specified
in Section 5.1, and the key agreement schemes specified in Section 6.

The key derivation functions will be used to derive keying data from a shared secret octet string.

The list of supported key derivation functions at this time is:

ANSI-X9.63-KDF
IKEv2-KDF
TLS-KDF

The key derivation function ANSI-X9.63-KDF is the simple hash function construct described in
ANSI X9.63 [ANS01a]. This key derivation function is described in Section 3.6.1 — partly for
completeness since at the time of this edition ANSI X9.63 is only a draft standard, and partly so
that the use of the key derivation function can be precisely described later on. Support for other
key derivation functions may be added to future editions of this document.

The key derivation functions IKEv2-KDF and TLS-KDF may only be used with the elliptic curve
Diffie-Hellman scheme for use in the IVEv2 and TLS protocols, respectively. The function IKEv2-
KDF is specified in [HC98] and [Kau05]. The function TLS-KDF is specified in [DA99] and
[GBWM+04].

3.6.1 ANSI X9.63 Key Derivation Function

Keying data should be calculated using ANSI-X9.63-KDF as follows:

Setup: Select one of the approved hash functions listed in Section 3.5. Let Hash denote the hash
function chosen, hashlen denote the length in octets of hash values computed using Hash, and
hashmaxlen denote the maximum length in octets of messages that can be hashed using Hash.

Input: The input to the key derivation function is:

1. An octet string Z which is the shared secret value.
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2. An integer keydatalen which is the length in octets of the keying data to be generated.

3. (Optional) An octet string SharedInfo which consists of some data shared by the entities
intended to share the shared secret value Z.

Output: The keying data K which is an octet string of length keydatalen octets, or ‘invalid’.

Actions: Calculate the keying data K as follows:

1. Check that ||Z|| + ||SharedInfo|| + 4 < hashmaxlen. If ||Z|| + ||SharedInfo|| + 4 ≥
hashmaxlen, output ‘invalid’ and stop.

2. Check that keydatalen < hashlen× (232 − 1). If keydatalen ≥ hashlen× (232 − 1), output
‘invalid’ and stop.

3. Initiate a 4 octet, big-endian octet string Counter as 0000000116.

4. For i = 1 to dkeydatalen/hashlene, do the following:

4.1. Compute:

Ki = Hash(Z ‖Counter ‖ [SharedInfo])

using the selected hash function from the list of approved hash functions in Section 3.5.

4.2. Increment Counter.

4.3. Increment i.

5. Set K to be the leftmost keydatalen octets of:

K1 ‖K2 ‖ . . . ‖Kdkeydatalen/hashlene.

6. Output K.

3.7 MAC schemes

This section specifies the MAC schemes supported in this document.

The MAC schemes will be used by the Elliptic Curve Integrated Encryption Scheme specified in
Section 5.1.

MAC schemes are designed to be used by two entities — a sender U and a recipient V — when U
wants to send a message M to V in an authentic manner and V wants to verify the authenticity
of M .

Here the MAC schemes are described in terms of a tagging operation, a tag checking operation, and
associated setup and key deployment procedures. U and V should use the schemes as follows when
they want to communicate. First U and V should use the setup and key deployment procedures
to establish which options to use the scheme with, and to create a shared secret key K to control
the tagging and tag checking operations. Then each time U wants to send a message M to V ,
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U should apply the tagging operation to M under the shared secret key K to compute the tag
D on M , and convey M and D to V . Finally when V receives M and D, V should apply the
tag checking operation to M and D under K to verify the authenticity of M . If the tag checking
operation outputs ‘valid’, V concludes that M is indeed authentic.

Loosely speaking, MAC schemes are designed so that it is hard for an adversary to forge valid
message and tag pairs so that the schemes provide data origin authentication and data integrity.

The list of supported MAC schemes at this time is:

HMAC–SHA-1–160 with 20 octet or 160 bit keys
HMAC–SHA-1–80 with 20 octet or 160 bit keys

HMAC–SHA-224–112 with 28 octet or 224 bit keys
HMAC–SHA-224–224 with 28 octet or 224 bit keys
HMAC–SHA-256–128 with 32 octet or 256 bit keys
HMAC–SHA-256–256 with 32 octet or 256 bit keys
HMAC–SHA-384–192 with 48 octet or 384 bit keys
HMAC–SHA-384–284 with 48 octet or 384 bit keys
HMAC–SHA-512–256 with 64 octet or 512 bit keys
HMAC–SHA-512–512 with 64 octet or 512 bit keys

The first two of these MAC schemes are specified in IETF RFC 2104 [KBC97] and ANSI X9.71 [ANS01b]
based on the hash function SHA-1 specified in FIPS 180-1 [FIP95]. Following the notation sug-
gested in [KBC97], here HMAC–Hash–x denotes the HMAC function used in conjunction with the
hash function Hash to produce message tags of length x/8 octets or x bits. Both the supported
MAC schemes are designed to be existentially unforgeable in the presence of an adversary capable
of launching chosen-message attacks.

(Note that this document does not suggest that other MAC schemes should not be used elsewhere
in a system — it merely says that only the MAC schemes listed above should be used to build
ECIES.)

For clarity in the remainder of this section, the generic operation of the MAC schemes by U and V
is described so that the use of the schemes can be specified precisely later on. The setup procedure
is described in Section 3.7.1, the key deployment procedure is specified in Section 3.7.2, the tagging
operation is specified in Section 3.7.3, and the tag checking operation is specified in Section 3.7.4.

3.7.1 Scheme Setup

Entities U and V should perform the following setup procedure to use a MAC scheme:

1. Entities U and V should establish which of the supported MAC schemes to use (and if
appropriate select any initial values required by the MAC scheme). Let MAC denote the
MAC scheme chosen, mackeylen denote the length in octets of the keys used by the scheme,
and maclen denote the length in octets of the tags produced by the scheme.
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3.7.2 Key Deployment

Entities U and V should perform the following key deployment procedure to use the MAC scheme:

1. Entities U and V should establish a shared secret key K of length mackeylen octets. K
should be chosen randomly or pseudorandomly.

3.7.3 Tagging Operation

Entity U should tag messages to send to V using the keys and parameters established during the
setup procedure and the key deployment procedure as follows:

Input: An octet string M which is the data to be tagged.

Output: An octet string D of length maclen octets which is the tag on M , or ‘invalid’.

Actions: Compute the tag D on M as follows:

1. Convert M to a bit string M and K to a bit string K using the conversion routine specified
in Section 2.3.2.

2. Calculate the tag D on M using the selected MAC scheme under the shared secret key K:

D = MACK(M).

If the MAC scheme outputs ‘invalid’, output ‘invalid’ and stop.

3. Convert D to an octet string D using the conversion routine specified in Section 2.3.1

4. Output the octet string D of length maclen octets.

3.7.4 Tag Checking Operation

Entity V should check the authenticity of tagged messages from U using the keys and parameters
established during the setup procedure and the key deployment procedure as follows:

Input: The input to the tag checking operation is:

1. An octet string M which is the message.

2. An octet string D which is the purported tag on M .

Output: An indication of whether the tagged message is valid or not — either ‘valid’ or ‘invalid’.

Actions: Check the tag D on M as follows:

1. Convert M to a bit string M , D to a bit string D, and K to a bit string K using the
conversion routine specified in Section 2.3.2.
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2. Calculate the tag D′ on M using the selected MAC scheme under the shared secret key K:

D′ = MACK(M).

If the MAC scheme outputs ‘invalid’, output ‘invalid’ and stop.

3. Compare D′ and D. If D′ = D, output ‘valid’, and if D′ 6= D, output ‘invalid’.

3.8 Symmetric Encryption Schemes

This section specifies the symmetric encryption schemes supported in this document.

The symmetric encryption schemes will be used by the Elliptic Curve Integrated Encryption Scheme
specified in Section 5.1.

Symmetric encryption schemes are designed to be used by two entities — a sender U and a recipient
V — when U wants to send a message M to V confidentially, and V wants to recover M .

Here symmetric encryption schemes are described in terms of an encryption operation, a decryption
operation, and associated setup and key deployment procedures. U and V should use the scheme as
follows when they want to communicate. First U and V should use the setup and key deployment
procedures to establish which options to use the scheme with, and to create a shared secret key K
to control the encryption and decryption operations. Then each time U wants to send a message
M to V , U should apply the encryption operation to M under the shared secret key K to compute
the encryption or ciphertext C of M , and convey C to V . Finally when V receives C, V should
apply the decryption operation to C under K to recover the message M .

Loosely speaking, symmetric encryption schemes are designed so that it is hard for an adversary
to recover messages from their ciphertexts so that the schemes provide data confidentiality.

The list of supported symmetric encryption schemes at this time is:

3-key TDES in CBC mode
XOR encryption scheme
AES-128 in CBC mode
AES-192 in CBC mode
AES-256 in CBC mode

The block cipher 3-key TDES in CBC mode is specified in ANSI X9.52 [ANS98a]. Here it is
considered to use shared secret keys of length 24 octets or 192 bits — which are split up into 3
subkeys K1, K2, and K3 by interpreting the leftmost 8 octets or 64 bits as K1, the middle 8 octets
or 64 bits as K2, and the rightmost 8 octets or 64 bits as K3, and replacing the appropriate bits of
K1, K2, and K3 with parity bits.

The block cipher AES is specified in [FIP01b]. The CBC mode of AES is specified in [NIS01b].

Furthermore here the 8 octet or 64 bit IV for TDES in CBC mode should always take the value
0000000016. Furthermore here the 16 octet or 128 bit IV for AES in CBC mode should always
take the value 000000000000000016.
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The XOR encryption scheme is the simple encryption scheme in which encryption consists of
XORing the key and the message, and decryption consists of XORing the key and the ciphertext
to recover the message. The XOR scheme is commonly used either with truly random keys when it
is known as the ‘one-time pad’, or with pseudorandom keys as a component in the construction of
stream ciphers. The XOR encryption scheme uses keys which are the same length as the message
to be encrypted or the ciphertext to be decrypted.

The block ciphers 3-key TDES AES in CBC mode is designed to provide semantic security in
the presence of adversaries launching chosen-message and chosen-ciphertext attacks. The XOR
encryption scheme is designed to provide semantic security when used to encrypt a single message
in the presence of adversaries capable of launching only passive attacks. (Although this limits use
of the XOR encryption scheme in general, it is sufficient for the purposes of building ECIES.)

The requirements above apply to ECIES. Other symmetric encryption schemes may be used in
elsewhere in the system. In general uses of CBC mode, the IV should be chosen as an unpredictable
value.

For clarity in the remainder of this standard, the generic operation of the symmetric encryption
schemes by U and V is described so that the use of the schemes can be specified precisely later
on. The setup procedure is described in Section 3.8.1, the key deployment procedure is specified in
Section 3.8.2, the encryption operation is specified in Section 3.8.3, and the decryption operation
is specified in Section 3.8.4.

3.8.1 Scheme Setup

Entities U and V should perform the following setup procedure to use a symmetric encryption
scheme:

1. Entities U and V should establish which of the supported symmetric encryption schemes to
use (and if appropriate select any initial values required by the encryption scheme). Let ENC
denote the encryption scheme chosen, and enckeylen denote the length in octets of the keys
used by the scheme.

3.8.2 Key Deployment

Entities U and V should perform the following key deployment procedure to use the symmetric
encryption scheme:

1. Entities U and V should establish a shared secret key K of length enckeylen octets.

3.8.3 Encryption Operation

Entity U should encrypt messages to send to entity V using the keys and parameters established
during the setup procedure and the key deployment procedure as follows:

Input: An octet string M which is the data to be encrypted.
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Output: An octet string C which is the ciphertext corresponding to M , or ‘invalid’.

Actions: Compute the ciphertext C as follows:

1. Convert M to a bit string M and K to a bit string K using the conversion routine specified
in Section 2.3.2.

2. Calculate the encryption C of M using the encryption operation of the selected symmetric
encryption scheme under the shared secret key K. If the encryption operation outputs
‘invalid’, output ‘invalid’ and stop.

3. Convert C to an octet string C using the conversion routine specified in Section 2.3.1.

4. Output the octet string C.

3.8.4 Decryption Operation

Entity V should decrypt ciphertext from entity U using the keys and parameters established during
the setup procedure and the key deployment procedure as follows:

Input: An octet string C which is the ciphertext and a symmetric encryption key K.

Output: An octet string M which is the decryption of C, or ‘invalid’.

Actions: Decrypt C as follows:

1. Convert C to a bit string C and K to a bit string K using the conversion routine specified
in Section 2.3.2.

2. Calculate the decryption M of C using the decryption operation of the selected symmetric
encryption scheme under the shared secret key K. If the decryption operation outputs
‘invalid’, output ‘invalid’ and stop.

3. Convert M to an octet string M using the conversion routine specified in Section 2.3.1.

4. Output the octet string M .

3.9 Key Wrap Schemes

This subsection specifies that either the NIST AES key wrap algorithm or the CMS TDES key
wrap algorithm are

• must be used as the key wrap schem in the Wrapped Key Agreement Key Transport Scheme,
and

• should be used more generally when wrapping an existing symmetric key with another sym-
metric key.
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The AES key wrap algorithm was first specified in [NIS01a]. It has also been re-specified in [SH02].
Currently, ASC X9 is also re-specifying it, with some minor extension for additional input in
[ANS03], and has requested public review of the algorithms therein [Dwo04].

The AES key wrap algorithm may be used with the AES block cipher or the TDES block cipher.
When using the AES block cipher to wrap keys, the AES key wrap algorithm must be used. When
using the TDES block cipher, however, another key wrap algorithm, the CMS TDES key wrap
algorithm, may be used for backwards interoperability reasons. This algorithm was first specified
[Hou99] and is also being re-specified in [ANS03].

For clarity in the remainder of this standard, the generic operation of the symmetric encryption
schemes by U and V is described so that the use of the schemes can be specified precisely later
on. The setup procedure is described in Section 3.9.1, the key deployment procedure is specified in
Section 3.9.2, the wrap operation is specified in Section 3.9.3, and the unwrap operation is specified
in Section 3.9.4.

3.9.1 Key Wrap Scheme Setup

Entities U and V should perform the following setup procedure to use a key wrap scheme:

1. Entities U and V should establish which of the supported key wrap schemes to use (and if
appropriate select any initial values required by the key wrap scheme). Let WRAP denote
the encryption scheme chosen, and wrapkeylen denote the length in octets of the keys used
by the scheme.

3.9.2 Key Wrap Schemes Key Generation

Entities U and V should perform the following key deployment procedure to use the key wrap
scheme:

1. Entities U and V should establish a key-encryption key K of length wrapkeylen octets.

3.9.3 Key Wrap Schemes Wrap Operation

Entity U should wrap keys to send to entity V using the key-encryption key and key wrap param-
eters established during the setup procedure and the key deployment procedure as follows:

Input: An octet string C which is the key to be wrapped.

Output: An octet string W which is the wrapped key corresponding to C, or ‘invalid’.

Actions: Compute the wrapped key W as follows:

1. Convert C to a bit string C and K to a bit string K using the conversion routine specified
in Section 2.3.2.
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2. Calculate the wrapped key W of C using the key wrap operation of the selected key wrap
scheme under the key-encryption key K. If the key wrap operation outputs ‘invalid’, output
‘invalid’ and stop.

3. Convert W to an octet string W using the conversion routine specified in Section 2.3.1.

4. Output the octet string W .

3.9.4 Key Wrap Schemes Unwrap Operation

Entity V should unwrapped a wrapped key from entity U using the key-encryption key and key
wrap parameters established during the setup procedure and the key deployment procedure as
follows:

Input: A key-encryption key K and an octet string W which is the wrapped key.

Output: An octet string C which is the unwrapping of W , or ‘invalid’.

Actions: Unwrap W as follows:

1. Convert W to a bit string W and K to a bit string K using the conversion routine specified
in Section 2.3.2.

2. Calculate the unwrapping C of W using the unwrap operation of the selected key wrap
scheme under the shared key-encryption key K. If the unwrap operation outputs ‘invalid’,
output ‘invalid’ and stop.

3. Convert C to an octet string C using the conversion routine specified in Section 2.3.1.

4. Output the octet string C.

3.10 Random Number Generation

Subject to revision.

Cryptographic keys must be generated in a way that prevents an adversary from guessing the
private key. Private keys should be generated with the help of a random number generator.

Random number generators must comply with ANS X8.92 [ANS05a] or any corresponding NIST
publication.

For convenience, a subset of the specification are included here. Implementations may optionally
choose to comply with this subset, but implementations are not restricted to this subset.

3.10.1 Entropy

A random number generator (RNG) maintains a state. The output of the random number generator
is a function of the state. The security of the RNG depends on the maximum probability that its
state taking any one value. For a security level of t bits, the maximum probability of any state
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value must be at most 2−t. Generally, the security level of a cryptographic system is no more than
the security level of the RNG from which its cryptographic keys are derived.

Note: When the maximum probability in a probability distributaion is 2−t, that distribution is said
to have min-entropy of t bits. Min-entropy is never more than Shannon entropy. Shannon entropy
is generally not enough to ensure an adequate security in cryptography, because of pathological
probability distributions.

As a precautionary measure against the risk that two different RNG will collide with the same
state, an RNG should also be personalized with a value that is not likely to repeated for over 264

uses. The personalization value need not be secret. One way to achieve personalization is increase
the amount of min-entropy necessary at the instantiation of the RNG to t+ 64 bits.

3.10.2 Deterministic Generation of Pseudorandom Bit Strings

The output of an RNG must be a one-way function of its state to ensure that the state is not
revealed. Several one-way function are available. Upon output, the state must be updated, so that
the future outputs cannot be different.

The state should be updated with a one-way function, so that past states cannot be learnt from
a future compromised state. This attribute is sometimes called forward secrecy or backtracking
resistance. Some of the schemes in the standard, such as MQV, provide forward secrecy. When
forward secrecy is a security objective of these schemes, then the RNG used must also provide
forward secrecy.

In some circumstances, it is necessary that the RNG be able to recover from compromise of the
current state. This can only be accomplished by the injection of new entropy. This security
attribute is sometimes recoverable security or prediction resistance. This is an optional attribute,
for very high security applications.

Some allowed deteriministic random bit generators will be specified.

3.10.3 Converting Random Bit Strings to Random Numbers

Elliptic curve private keys are integers in a certain range. For full security, these integers should
have a probability distribution that is as close to possible to uniform. (Otherwise, a variety of
attacks may become possible.)

The deterministic algorithms in the previous section produced random bit strings. Bit strings can
be converted to integers, but the range is not exactly that needed for the elliptic private key. The
following process may be used to convert a random bit string to a random integer, in such a way
that if the bit string is uniform then so is the integer.

To be added.
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3.11 Security Levels and Protection Lifetimes

Data protected with cryptography today may continue to need protection in the future. Advances
in cryptanalysis can be predicated, at least approximately.

Based on current approximations, this document requires that data that needs protection beyond
the year 2010 must be protected with 112-bit security or higher. Data that needs protection beyond
the year 2030 must be protected with 128-bit security or higher.
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4 Signature Schemes

This section specifies the signature schemes based on ECC supported in this document.

Signature schemes are designed to be used by two entities — a signer U and a verifier V — when
U wants to send a message M in an authentic manner and V wants to verify the authenticity of
M .

Here signature schemes are described in terms of a signing operation, a verifying operation, and
associated setup and key deployment procedures. U and V should use the schemes as follows when
they want to communicate. First U and V should use the setup procedure to establish which
options to use the scheme with, then U should use the key deployment procedure to select a key
pair and V should obtain U ’s public key — U will use the key pair to control the signing operation,
and V will use the public key to control the verifying operation. Then each time U wants to send
a message M , U should apply the signing operation to M under its key pair to obtain a signature
S on M , form a signed message from M and S, and convey the signed message to V . Finally when
V receives the signed message, V should apply the verifying operation to the signed message under
U ’s public key to verify its authenticity. If the verifying operation outputs ‘valid’, V concludes the
signed message is indeed authentic.

There are two types of signature schemes, depending on the form of the signed message U must
convey to V : signature schemes with appendix in which U must convey both M and S to V , and
signature schemes with message recovery in which M can be recovered from S, so U need convey
only S to V .

Loosely speaking signature schemes are designed so that it is hard for an adversary who does
not know U ’s secret key to forge valid signed messages so that the schemes provide data origin
authentication, data integrity, and non-repudiation.

The only signature scheme supported at this time is the Elliptic Curve Digital Signature Algorithm
(ECDSA). ECDSA is specified in Section 4.1.

See Appendix B for a commentary on the contents on this section, including implementation
discussion, security discussion, and references.

4.1 Elliptic Curve Digital Signature Algorithm

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a signature scheme with appendix
based on ECC. It is designed to be existentially unforgeable, even in the presence of an adversary
capable of launching chosen-message attacks.

The setup procedure for ECDSA is specified in Section 4.1.1, the key deployment procedure is
specified in Section 4.1.2, the signing operation is specified in Section 4.1.3, and the verifying
operation is specified in Section 4.1.4.
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4.1.1 Scheme Setup

Entities U and V should perform the following setup procedure to prepare to use ECDSA:

1. U should establish which of the hash functions supported in Section 3.5 to use when generating
signatures. Let Hash denote the hash function chosen, and hashlen denote the length in
octets of the hash values produced using Hash.

2. U should establish elliptic curve domain parameters T = (p, a, b, G, n, h) or (m, f(x), a, b, G, n, h)
at the desired security level. The elliptic curve domain parameters T should be generated
using the primitive specified in Section 3.1.1.1 or the primitive specified in Section 3.1.2.1. U
should receive an assurance that the elliptic curve domain parameters T are valid using one
of the methods specified in Section 3.1.1.2 or Section 3.1.2.2.

3. V should obtain in an authentic manner the hash function Hash and elliptic curve domain
parameters T established by U .

Entity V must receive an assurance that the elliptic curve domain parameters T are valid using
one of the methods specified in Section 3.1.1.2 or Section 3.1.2.2.

4.1.2 Key Deployment

Entities U and V should perform the following key deployment procedure to prepare to use ECDSA:

1. U should establish an elliptic curve key pair (dU , QU) associated with T to use with the signa-
ture scheme. The key pair should be generated using the primitive specified in Section 3.2.1.

2. V should obtain in an authentic manner the elliptic curve public key QU selected by U .

Entity V must receive an assurance that the elliptic curve public key QU is valid using one of the
methods specified in Section 3.2.2.

4.1.3 Signing Operation

Entity U should sign messages using ECDSA using the keys and parameters established during the
setup procedure and the key deployment procedure as follows:

Input: The signing operation takes as input an octet string M which is the message to be signed.

Output: A signature S = (r, s) on M consisting of a pair of integers r and s, or ‘invalid’.

Actions: Generate a signature S on M as follows:

1. Select an ephemeral elliptic curve key pair (k,R) with R = (xR, yR) associated with the
elliptic curve domain parameters T established during the setup procedure using the key pair
generation primitive specified in Section 3.2.1.
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2. Convert the field element xR to an integer xR using the conversion routine specified in Sec-
tion 2.3.9.

3. Set r ≡ xR (mod n). If r = 0, return to step 1.

4. Use the hash function selected during the setup procedure to compute the hash value:

H = Hash(M)

of length hashlen octets as specified in Section 3.5. If the hash function outputs ‘invalid’,
output ‘invalid’ and stop.

5. Derive an integer e from H as follows:

5.1. Convert the octet string H to a bit string H using the conversion routine specified in
Section 2.3.2.

5.2. Set E = H if dlog2 ne ≥ 8(hashlen), and set E equal to the leftmost dlog2 ne bits of H
if dlog2 ne < 8(hashlen).

5.3. Convert the bit string E to an octet string E using the conversion routine specified in
Section 2.3.1.

5.4. Convert the octet string E to an integer e using the conversion routine specified in
Section 2.3.8.

6. Compute:

s ≡ k−1(e+ rdU) (mod n).

If s = 0, return to step 1.

7. Output S = (r, s).

4.1.4 Verifying Operation

Entity V should verify signed messages from entity U using ECDSA using the keys and parameters
established during the setup procedure and the key deployment procedure as follows:

Input: The verifying operation takes as input:

1. An octet string M which is the message.

2. U ’s purported signature S = (r, s) on M .

Output: An indication of whether the purported signature on M is valid or not — either ‘valid’
or ‘invalid’.

Actions: Verify the purported signature S on M as follows:

1. If r and s are not both integers in the interval [1, n− 1], output ‘invalid’ and stop.
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2. Use the hash function established during the setup procedure to compute the hash value:

H = Hash(M)

of length hashlen octets as specified in Section 3.5. If the hash function outputs ‘invalid’,
output ‘invalid’ and stop.

3. Derive an integer e from H as follows:

3.1. Convert the octet string H to a bit string H using the conversion routine specified in
Section 2.3.2.

3.2. Set E = H if dlog2 ne ≥ 8(hashlen), and set E equal to the leftmost dlog2 ne bits of H
if dlog2 ne < 8(hashlen).

3.3. Convert the bit string E to an octet string E using the conversion routine specified in
Section 2.3.1.

3.4. Convert the octet string E to an integer e using the conversion routine specified in
Section 2.3.8.

4. Compute:

u1 ≡ es−1 (mod n) and u2 ≡ rs−1 (mod n).

5. Compute:

R = (xR, yR) = u1G+ u2QU .

If R = O, output ‘invalid’ and stop.

6. Convert the field element xR to an integer xR using the conversion routine specified in Sec-
tion 2.3.9.

7. Set v ≡ xR (mod n).

8. Compare v and r — if v = r, output ‘valid’, and if v 6= r, output ‘invalid’.

4.1.5 Alternative Verifying Operation

A signer U may verify U ’s own signatures more efficiently with the following operation, which use
U ’s private key.

A situation where this could be useful is a CA that verifies its own certificates.

Details to be added. For now, a brief summary follows. All verification steps are the same, except
that in Step 5, the verifier instead computes

R = (xR, yR) = (u1 + u2d)G

The benefit of this is that the verifier needs just a single scalar multiplication.
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4.1.6 Public Key Recovery Operation

Subject to revision. Details to be added.

Given an ECDSA signature (r, s) and EC domain parameters, it is generally possible to determine
the public key Q, at least to within a small number of choices.

This is useful for generating self-signed signatures.

This is also useful in bandwidth constrained environments, when transmission of public keys cannot
be afforded. Entity U could send a signature to entity V , who recovers QU . Entity V can look up
the public key in some certificate or directory, and if it matches then the signature can be accepted.
Alternatively, entity U may transmit the signature together with the certificate except the public
key is omitted from the certificate. For example, in long certificate chains signed with ECDSA,
bandwidth can be saved by omission of the public keys.

Potentially, several possible public keys can be recovered from a signature. At a small cost, the
signer can generate the ECDSA signature in such a way that only one of the potential public keys
is viable, and such that the verifier has a very small additional cost of determining which is the
correct public key.

4.1.7 Self-Signing Operation

Subject to revision. Details to be added.

To generate a self-signed ECDSA signature the following operation can be used.

Select a random signature value (r, s). Form a message M containing a copy (r, s).

Use the Public Key Recovery Operation in §4.1.6 to recover a public key Q.
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5 Encryption and Key Transport Schemes

This section specifies the public-key encryption and key transport schemes based on ECC supported
in this document.

Public-key encryption schemes are designed to be used by two entities — a sender U and a recipient
V — when U wants to send a message M to V confidentially, and V wants to recover M .

Key transport schemes are a special class of public-key encryption schemes where the message
M is restricted to be a cryptographic key, usually a symmetric key. Except for this restriction,
most of the discusssion below about to public-key encryption schemes also applies to key transport
schemes.

Here public-key encryption schemes are described in terms of an encryption operation, a decryption
operation, and associated setup and key deployment procedures. U and V should use the scheme
as follows when they want to communicate. First U and V should use the setup procedure to
establish which options to use the scheme with, then V should use the key deployment procedure
to select a key pair and U should obtain V ’s public key — U will use V ’s public key to control the
encryption procedure, and V will use its key pair to control the decryption operation. Then each
time U wants to send a message M to V , U should apply the encryption operation to M under V ’s
public key to compute an encryption or ciphertext C of M , and convey C to V . Finally when V
receives C, V should apply the decryption operation to C under its key pair to recover the message
M .

Loosely speaking public-key encryption schemes are designed so that it is hard for an adversary
who does not possess V ’s secret key to recover messages from their ciphertexts so that the schemes
provide data confidentiality.

The public-key encryption schemes specified in this section may be used to encrypt messages of
any kind. They may be used to transport keying data from U to V , or to encrypt information
data directly. This flexibility allows the schemes to be applied in a broad range of cryptographic
systems. Nonetheless it is envisioned that the majority of applications will apply the schemes
for key transport, and subsequently use the transported key in conjunction with a symmetric
bulk encryption scheme to encrypt information data. This is the traditional usage for public-key
encryption schemes.

The public-key encryptions schemes supported at this time are the Elliptic Curve Integrated
Encryption Scheme (ECIES) and the the general construction of combining a key agreement scheme
with a key wrap mechanism. The first, ECIES, is specified in Section 5.1. The second general
construction is specified in Section 5.2.

See Appendix B for a commentary on the contents on this section, including implementation
discussion, security discussion, and references.

5.1 Elliptic Curve Integrated Encryption Scheme

The Elliptic Curve Integrated Encryption Scheme (ECIES) is a public-key encryption scheme
based on ECC. It is designed to be both semantically secure and plaintext-aware , in the presence
of an adversary capable of launching chosen-plaintext and chosen-ciphertext attacks. Note that
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the Elliptic Curve Integrated Encryption Scheme or ECIES is unrelated to the AES symmetric
scheme.

The setup procedure for ECIES is specified in Section 5.1.1, the key deployment procedure is
specified in Section 5.1.2, the encryption operation is specified in Section 5.1.3, and the decryption
operation is specified in Section 5.1.4.

5.1.1 Scheme Setup

Entities U and V should perform the following setup procedure to prepare to use ECIES:

1. Entity V should establish which of the key derivation functions supported in Section 3.6 to
use, and select any options involved in the operation of the key derivation function. Let KDF
denote the key derivation function chosen.

2. Entity V should establish which of the MAC schemes supported in Section 3.7 to use, and
select any options involved in the operation of the MAC scheme. Let MAC denote the MAC
scheme chosen, mackeylen denote the length in octets of the keys used by MAC , and maclen
denote the length in octets of tags produced by MAC .

3. Entity V should establish which of the symmetric encryption schemes supported in Section 3.8
to use, and select any options involved in the operation of the encryption scheme. Let ENC
denote the encryption scheme chosen, and enckeylen denote the length in octets of the keys
used by ENC.

4. Entity V should establish whether to use the ‘standard’ elliptic curve Diffie-Hellman primitive
specified in Section 3.3.1, or the elliptic curve cofactor Diffie-Hellman primitive specified in
Section 3.3.2.

5. Entity V should establish EC domain parameters T = (p, a, b, G, n, h) or (m, f(x), a, b, G, n, h)
at the desired security level. The elliptic curve domain parameters T should be generated
using the primitive specified in Section 3.1.1.1 or the primitive specified in Section 3.1.2.1. V
should receive an assurance that the elliptic curve domain parameters T are valid using one
of the methods specified in Section 3.1.1.2 or Section 3.1.2.2.

6. Entity U should obtain in an authentic manner the selections made by V — the key derivation
function KDF , the MAC scheme MAC , the symmetric encryption scheme ENC, the elliptic
curve domain parameters T , and an indication whether to use the ‘standard’ elliptic curve
Diffie-Hellman primitive or the cofactor Diffie-Hellman. U should also receive an assurance
that the elliptic curve domain parameters T are valid using one of the methods specified in
Section 3.1.1.2 or Section 3.1.2.2.

7. Entity U should establish whether or not to represent elliptic curve points using point com-
pression.

8. Entities U and V should establish an expected format of SharedInfo2 that is suffix-free.
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5.1.2 Key Deployment

U and V should perform the following key deployment procedure to prepare to use ECIES:

1. Entity V should establish an elliptic curve key pair (dV , QV ) associated with the elliptic
curve domain parameters T established during the setup procedure. The key pair should be
generated using the primitive specified in Section 3.2.1.

2. Entity U should obtain in an authentic manner the elliptic curve public key QV selected by
V . If the ‘standard’ elliptic curve Diffie-Hellman primitive is being used, U should receive
an assurance that QV is valid using one of the methods specified in Section 3.2.2, and if the
elliptic curve cofactor Diffie-Hellman primitive is being used, U should receive an assurance
that QV is at least partially valid using one of the methods specified in Section 3.2.2 or
Section 3.2.3.

5.1.3 Encryption Operation

U should encrypt messages using ECIES using the keys and parameters established during the
setup procedure and the key deployment procedure as follows:

Input: The input to the encryption operation is:

1. An octet string M which is the message to be encrypted.

2. (Optional) Two octet strings SharedInfo1 and SharedInfo2 which consist of some data shared
by U and V .

Output: An octet string C which is an encryption of M , or ‘invalid’.

Actions: Encrypt M as follows:

1. Select an ephemeral elliptic curve key pair (k,R) with R = (xR, yR) associated with the
elliptic curve domain parameters T established during the setup procedure. Generate the
key pair using the key pair generation primitive specified in Section 3.2.1.

2. Convert R to an octet string R using the conversion routine specified in Section 2.3.3. Decide
whether or not to represent R using point compression according to the convention established
during the setup procedure.

3. Use one of the Diffie-Hellman primitives specified in Section 3.3 to derive a shared secret field
element z ∈ Fq from the ephemeral secret key k and V ’s public key QV obtained during the
key deployment procedure. If the Diffie-Hellman primitive outputs ‘invalid’, output ‘invalid’
and stop. Decide whether to use the ‘standard’ elliptic curve Diffie-Hellman primitive or
the elliptic curve cofactor Diffie-Hellman primitive according to the convention established
during the setup procedure.

4. Convert z ∈ Fq to an octet string Z using the conversion routine specified in Section 2.3.5.
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5. Use the key derivation function KDF established during the setup procedure to generate
keying data K of length enckeylen+mackeylen octets from Z and [SharedInfo1]. If the key
derivation function outputs ‘invalid’, output ‘invalid’ and stop.

6. Parse the leftmost enckeylen octets of K as an encryption key EK and the rightmost
mackeylen octets of K as a MAC key MK.

7. Use the encryption operation of the symmetric encryption scheme ENC established during
the setup procedure to encrypt M under EK as ciphertext EM . If the encryption scheme
outputs ‘invalid’, output ‘invalid’ and stop.

8. Use the tagging operation of the MAC scheme MAC established during the setup procedure to
compute the tag D on EM ‖ [SharedInfo2] under MK. If the MAC scheme outputs ‘invalid’,
output ‘invalid’ and stop.

9. Output C = R ‖EM ‖D.

5.1.4 Decryption Operation

V should decrypt ciphertext using the keys and parameters established during the setup procedure
and the key deployment procedure as follows:

Input: The input to the decryption operation is:

1. An octet string C which is the ciphertext.

2. (Optional) Two octet strings SharedInfo1 and SharedInfo2 which consist of some data shared
by U and V .

Output: An octet string M which is the decryption of C, or ‘invalid’.

Actions: Decrypt C as follows:

1. If the leftmost octet of C is 0216 or 0316, parse the leftmost dlog2 qe+1 octets of C as an octet
string R, the rightmost maclen octets of C as an octet string D, and the remaining octets of
C as an octet string EM . If the leftmost octet of C is 0416, parse the leftmost 2dlog2 qe+ 1
octets of C as an octet string R, the rightmost maclen octets of C as an octet string D, and
the remaining octets of C as an octet string EM . If the leftmost octet of C is not 0216, 0316,
or 0416, output ‘invalid’ and stop.

2. Convert the octet string R to an elliptic curve point R = (xR, yR) associated with the elliptic
curve domain parameters T established during the setup procedure using the conversion
routine specified in Section 2.3.4. If the conversion routine outputs ‘invalid’, output ‘invalid’
and stop.

3. If the ‘standard’ elliptic curve Diffie-Hellman primitive is being used, receive an assurance
that R is a valid elliptic curve public key using one of the methods specified in Section 3.2.2.
If the elliptic curve cofactor Diffie-Hellman primitive is being used, receive an assurance that
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R is at least a partially valid elliptic curve public key using one of the methods specified in
Section 3.2.2 Section 3.2.3. If an appropriate assurance is not obtained, output ‘invalid’ and
stop.

4. Use one of the Diffie-Hellman primitives specified in Section 3.3 to derive a shared secret field
element z ∈ Fq from V ’s secret key dV established during the key deployment procedure and
the public key R. If the Diffie-Hellman primitive outputs ‘invalid’, output ‘invalid’ and stop.
Decide whether to use the ‘standard’ elliptic curve Diffie-Hellman primitive or the elliptic
curve cofactor Diffie-Hellman primitive according to the convention established during the
setup procedure.

5. Convert z ∈ Fq to an octet string Z using the conversion routine specified in Section 2.3.5.

6. Use the key derivation function KDF established during the setup procedure to generate
keying data K of length enckeylen+mackeylen octets from Z and [SharedInfo1]. If the key
derivation function outputs ‘invalid’, output ‘invalid’ and stop.

7. Parse the leftmost enckeylen octets of K as an encryption key EK and the rightmost
mackeylen octets of K as a MAC key MK.

8. Use the tag checking operation of the MAC scheme MAC established during the setup pro-
cedure to check that D is the tag on EM ‖ [SharedInfo2] under MK. If the MAC scheme
outputs ‘invalid’, output ‘invalid’ and stop.

9. Use the decryption operation of the symmetric encryption scheme ENC established during
the setup procedure to decrypt EM under EK as M . If the encryption scheme outputs
‘invalid’, output ‘invalid’ and stop.

10. Output M .

5.2 Wrapped Key Transport Scheme

To be revised. Follows NIST SP 800-56 [NIS03] and RFC 3278 [BWBL02].

The wrapped key transport scheme uses a combination of a key wrap scheme and a key agreement
scheme. The key agreement used can be either Diffie-Hellman (§6.1) or MQV (§6.2), but in either
case it must be a 1-pass variant. In a 1-pass variant of a key agreement scheme, in the key
deployment phase, entity U must obtain authentic copies of all of the keys of V , in addition to
the usual key deployment operations. For Diffie-Hellman, entity U must additionally obtain QV in
an authentic manner. For MQV, entity U must additionally obtain Q2,V in an authentic manner,
which may be achieved most easily if Q2,V = Q1,V , which is the default choice in the absent of any
indication otherwise.

Once U has obtained all of the keys of V in an authentic manner, such as by extracting them from
a certificate, then to complete key deployment entity U needs only to send any of its remaining
keys to entity V . Hence, all ephemeral keys are exchanged in a single pass.
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In wrapped key tranport, entity U uses a 1-pass key agreement operation with entity V to agree
on a key K and then wraps a key C with K to obtain a wrapped key W . The wrapped key W is
sent together with the public keys of U in the single pass of the exchange.

Any format for combining the public keys and wrapped keys into a single pass message are allowed,
including the formats used in S/MIME [BWBL02]. For convenience, this will include a pre-defined
format that may find use in future applications.

A typical application of the transport key C is for encrypting and authenticating content data, in a
single pass. The key C is often called a content-encryption key. Generally, the encrypted message
and authentication tag, or both, will be sent in a single pass together with wrapped key and any
necessary public keys. The most familiar single pass application is email.

If entity U wraps a single key C for many different recipients, which is useful for protecting an
email sent to many recipients, say V1, V2, . . . , then U may re-use the same ephemeral public key
with for each Vi. We denote Ki by the key agreed between U and Vi, and Wi the wrapping of C
with Ki.

In this situation, entity Vi learns the key C. This brings a risk that entity Vi will abuse C against
another recipient Vj to alter the message and make Vj think the altered message came from U .

Entity U often wish to prevent this problem. IfM is the message authenticated and T = MACC(M)
is the MAC tag used to authenticated. Entity U may include T as part of the SharedInfo used in
the KDF with key agreement operation. When this is done, any modification to the message will
modify T , which will modify Kj, which will modify Wj. Entity Vi will not be able to produce the
correctly modified Wj, so if entity Vi modifies the message, then entity Vj will not re-compute the
key C correctly and the message authentication will fail.

Alternatively, entity U may include T as an optional parmater intot the key wrap scheme. This
has a similar effect. Yet another option is for entity U to compute a separate tag Ti for each
recipient. If the message is very long and the number of recipients is large, then computing many
MAC tags on a long message is very slow. For a faster approach, entity U can instead compute
Ti = MACKi(T ), where T is as before.
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6 Key Agreement Schemes

This section specifies the key agreement schemes based on ECC supported in this document.

Key agreement schemes are designed to be used by two entities — an entity U and an entity V —
when U and V want to establish shared keying data that they can later use to control the operation
of a symmetric cryptographic scheme.

Here key agreement schemes are described in terms of a key agreement operation, and associated
setup and key deployment procedures. U and V should use the schemes as follows when they
want to establish keying data. First U and V should use the setup procedure to establish which
options to use the scheme with, then they should use the key deployment procedure to select key
pairs and exchange public keys. Finally when U and V want to establish keying data they should
simultaneously use the key agreement operation. Provided U and V operate the key agreement
operation with corresponding keys as inputs, they will obtain the same keying data.

Note that this document does not address how specific keys should be derived from keying data
established using a key agreement scheme. This detail is left to be determined on an application
by application basis. Some applications may wish simply to use the keying data directly as a key,
others may wish to split the keying data into more than one key, and others may wish to process
the keying data to exclude weak keys.

Key agreement schemes are designed to meet a wide variety of security goals depending on how
they are applied — security goals that the schemes described here are designed to provide include
unilateral implicit key authentication, mutual implicit key authentication, known-key security, and
forward secrecy, in the presence of adversaries capable of launching both passive and active attacks.

Two key agreement schemes are supported at this time: the elliptic curve Diffie-Hellman scheme,
and the elliptic curve MQV scheme. The elliptic curve Diffie-Hellman scheme is specified in Sec-
tion 6.1, and the elliptic curve MQV scheme is specified in Section 6.2.

See Appendix B for a commentary on the contents on this section, including implementation
discussion, security discussion, and references.

6.1 Elliptic Curve Diffie-Hellman Scheme

The elliptic curve Diffie-Hellman scheme is a key agreement scheme based on ECC. It is designed
to provide a variety of security goals depending on its application — goals it can provide include
unilateral implicit key authentication, mutual implicit key authentication, known-key security, and
forward secrecy — depending on issues like whether or not public keys are exchanged in an authentic
manner, and whether key pairs are ephemeral or static. See Appendix B for a further discussion.

The setup procedure for the elliptic curve Diffie-Hellman scheme is specified in Section 6.1.1, the
key deployment procedure is specified in Section 6.1.2, and the key agreement operation is specified
in Section 6.1.3.
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6.1.1 Scheme Setup

Entities U and V should perform the following setup procedure to prepare to use the elliptic curve
Diffie-Hellman scheme:

1. U and V should establish which of the key derivation functions supported in Section 3.6 to
use, and select any options involved in the operation of the key derivation function. Let KDF
denote the key derivation function chosen.

2. U and V should establish whether to use the ‘standard’ elliptic curve Diffie-Hellman primitive
specified in Section 3.3.1, or the elliptic curve cofactor Diffie-Hellman primitive specified in
Section 3.3.2.

3. U and V should establish at the desired security level elliptic curve domain parameters
T = (p, a, b, G, n, h) or (m, f(x), a, b, G, n, h). The elliptic curve domain parameters T should
be generated using the primitive specified in Section 3.1.1.1 or the primitive specified in
Section 3.1.2.1. Both U and V should receive an assurance that the elliptic curve domain
parameters T are valid using one of the methods specified in Section 3.1.1.2 or Section 3.1.2.2.

6.1.2 Key Deployment

Entities U and V should perform the following key deployment procedure to prepare to use the
elliptic curve Diffie-Hellman scheme:

1. U should establish an elliptic curve key pair (dU , QU) associated with the elliptic curve domain
parameters T established during the setup procedure. The key pair should be generated using
the primitive specified in Section 3.2.1.

2. V should establish an elliptic curve key pair (dV , QV ) associated with the elliptic curve domain
parameters T established during the setup procedure. The key pair should be generated using
the primitive specified in Section 3.2.1.

3. U and V should exchange their public keys QU and QV .

4. If the ‘standard’ elliptic curve Diffie-Hellman primitive is being used, U should receive an
assurance that QV is valid using one of the methods specified in Section 3.2.2, and if the
elliptic curve cofactor Diffie-Hellman primitive is being used, U should receive an assurance
that QV is at least partially valid using one of the methods specified in Section 3.2.2 or
Section 3.2.3.

5. If the ‘standard’ elliptic curve Diffie-Hellman primitive is being used, V should receive an
assurance that QU is valid using one of the methods specified in Section 3.2.2, and if the
elliptic curve cofactor Diffie-Hellman primitive is being used, V should receive an assurance
that QU is at least partially valid using one of the methods specified in Section 3.2.2 or
Section 3.2.3.
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6.1.3 Key Agreement Operation

Entities U and V should perform the key agreement operation described in this section to establish
keying data using the elliptic curve Diffie-Hellman scheme. For clarity U ’s use of the operation is
described. V ’s use of the operation is analogous, but with the roles of U and V reversed.

Entity U should establish keying data with V using the keys and parameters established during
the setup procedure and the key deployment procedure as follows:

Input: The input to the key agreement operation is:

1. An integer keydatalen which is the number of octets of keying data required.

2. (Optional) An octet string SharedInfo which consists of some data shared by U and V .

Output: An octet string K which is the keying data of length keydatalen octets, or ‘invalid’.

Actions: Establish keying data as follows:

1. Use one of the Diffie-Hellman primitives specified in Section 3.3 to derive a shared secret
field element z ∈ Fq from U ’s secret key dU established during the key deployment procedure
and V ’s public key QV obtained during the key deployment procedure. If the Diffie-Hellman
primitive outputs ‘invalid’, output ‘invalid’ and stop. Decide whether to use the ‘standard’
elliptic curve Diffie-Hellman primitive or the elliptic curve cofactor Diffie-Hellman primitive
according to the convention established during the setup procedure.

2. Convert z ∈ Fq to an octet string Z using the conversion routine specified in Section 2.3.5.

3. Use the key derivation function KDF established during the setup procedure to generate
keying data K of length keydatalen octets from Z and [SharedInfo]. If the key derivation
function outputs ‘invalid’, output ‘invalid’ and stop.

4. Output K.

6.2 Elliptic Curve MQV Scheme

The elliptic curve MQV scheme is a key agreement scheme based on ECC. It is designed to provide
a variety of security goals depending on its application — goals it can provide include mutual
implicit key authentication, known-key security, and forward secrecy — depending on issues like
whether or not U and V both contribute ephemeral key pairs. See Appendix B for a further
discussion.

The setup procedure for the elliptic curve MQV scheme is specified in Section 6.2.1, the key
deployment procedure is specified in Section 6.2.2, and the key agreement operation is specified in
Section 6.2.3.
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6.2.1 Scheme Setup

Entities U and V should perform the following setup procedure to prepare to use the elliptic curve
MQV scheme:

1. U and V should establish which of the key derivation functions supported in Section 3.6 to
use, and select any options involved in the operation of the key derivation function. Let KDF
denote the key derivation function chosen.

2. U and V should establish at the desired security level elliptic curve domain parameters
T = (p, a, b, G, n, h) or (m, f(x), a, b, G, n, h). The elliptic curve domain parameters T should
be generated using the primitive specified in Section 3.1.1.1 or the primitive specified in
Section 3.1.2.1. Both U and V should receive an assurance that the elliptic curve domain
parameters T are valid using one of the methods specified in Section 3.1.1.2 or Section 3.1.2.2.

6.2.2 Key Deployment

Entities U and V should perform the following key deployment procedure to prepare to use the
elliptic curve MQV scheme:

1. U should establish two elliptic curve key pairs (d1,U , Q1,U) and (d2,U , Q2,U) associated with
the elliptic curve domain parameters T established during the setup procedure. The key pairs
should both be generated using the primitive specified in Section 3.2.1.

2. V should establish two elliptic curve key pairs (d1,V , Q1,V ) and (d2,V , Q2,V ) associated with
the elliptic curve domain parameters T established during the setup procedure. The key pairs
should both be generated using the primitive specified in Section 3.2.1.

3. U should obtain in an authentic manner the first elliptic curve public key Q1,V selected by
V . U should receive an assurance that Q1,V is valid using one of the methods specified in
Section 3.2.2.

4. V should obtain in an authentic manner the first elliptic curve public key Q1,U selected by
U . V should receive an assurance that Q1,U is valid using one of the methods specified in
Section 3.2.2.

5. U and V should exchange their second public keys Q2,U and Q2,V .

6. U should receive an assurance that Q2,V is at least partially valid using one of the methods
specified in Section 3.2.2 or Section 3.2.3.

7. V should receive an assurance that Q2,U is partially valid using one of the methods specified
in Section 3.2.2 or Section 3.2.3.
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6.2.3 Key Agreement Operation

Entities U and V should perform the key agreement operation described in this section to establish
keying data using the elliptic curve MQV scheme. For clarity U ’s use of the operation is described.
V ’s use of the operation is analogous, but with the roles of U and V reversed.

Entity U should establish keying data with V using the keys and parameters established during
the setup procedure and the key deployment procedure as follows:

Input: The input to the key agreement operation is:

1. An integer keydatalen which is the number of octets of keying data required.

2. (Optional) An octet string SharedInfo which consists of some data shared by U and V .

Output: An octet string K which is the keying data of length keydatalen octets, or ‘invalid’.

Actions: Establish keying data as follows:

1. Use the elliptic curve MQV primitive specified in Section 3.4 to derive a shared secret field
element z ∈ Fq from U ’s key pairs (d1,U , Q1,U) and (d2,U , Q2,U) established during the key
deployment procedure and V ’s public keys Q1,V and Q2,V obtained during the key deployment
procedure. If the MQV primitive outputs ‘invalid’, output ‘invalid’ and stop.

2. Convert z ∈ Fq to an octet string Z using the conversion routine specified in Section 2.3.5.

3. Use the key derivation function KDF established during the setup procedure to generate
keying data K of length keydatalen octets from Z and [SharedInfo]. If the key derivation
function outputs ‘invalid’, output ‘invalid’ and stop.

4. Output K.
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A Glossary

This section supplies a glossary to the terms and notation used in this document.

The section is organized as follows. Section A.1 lists the terms used in this document, Section A.2
lists the acronyms used, and Section A.3 specifies the notation used.

A.1 Terms

Terms used in this document include:

active attack The ability of an adversary of a cryptographic scheme to subvert
communications between entities by deleting, injecting, substi-
tuting, or generally subverting messages in any way.

addition rule An addition rule describes the addition of two elliptic curve
points P1 and P2 to produce a third elliptic curve point P3.
See Section 2.2.

base point A distinguished point G on an elliptic curve.

binary polynomial A polynomial whose coefficients are either 0’s or 1’s.

bit string A bit string is an ordered sequence of 0’s and 1’s.

certificate The public key and identity of an entity together with some other
information, rendered unforgeable by signing the certificate with
the secret key of a Certification Authority.

Certification
Authority

A Center trusted by one or more entities to create and assign
certificates.

characteristic 2 finite
field

A finite field containing 2m elements, where m ≥ 1 is an integer.

chosen-ciphertext
attack

The ability of an adversary of an encryption scheme to obtain
the decryptions of ciphertexts of its choice in an attempt to
compromise the scheme.

chosen-message
attack

The ability of an adversary of a signature scheme to obtain sig-
natures on messages of its choice in an attempt to compromise
the scheme. Similarly the ability of an adversary of a MAC
scheme to obtain tags on messages of its choice in an attempt
to compromise the scheme.

chosen-plaintext
attack

The ability of an adversary of an encryption scheme to obtain
the encryptions of plaintexts of its choice in an attempt to com-
promise the scheme.

ciphertext The result of applying an encryption operation to a message.
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cryptographic
scheme

A cryptographic scheme consists of an unambiguous specifica-
tion of a set of operations capable of providing a security service
when properly implemented and maintained.

data confidentiality The assurance that data is unintelligible to unauthorized parties.

data integrity The assurance that data has not been modified by unauthorized
parties.

data origin
authentication

The assurance that the purported origin of data is correct.

elliptic curve An elliptic curve over Fq is a set of points which satisfy a certain
equation specified by two parameters a and b, which are elements
of the field Fq. See Section 2.2.

elliptic curve domain
parameters

Elliptic curve domain parameters are comprised of a field size q,
a reduction polynomial f(x) in the case q = 2m, two elements
a, b in Fq which define an elliptic curve E over Fq, a point G of
prime order in E(Fq), the order n of G, and the cofactor h. See
Section 3.1.

elliptic curve key pair Given particular elliptic curve domain parameters, an elliptic
curve key pair (d,Q) consists of an elliptic curve secret key d
and the corresponding elliptic curve public key Q.

elliptic curve point If E is an elliptic curve defined over Fq, then an elliptic curve
point P is either a pair of field elements (xP , yP ) (where xP , yP ∈
Fq) such that the values x = xP and y = yP satisfy the equation
defining E, or a special point O called the point at infinity.

elliptic curve public
key

Given particular elliptic curve domain parameters, and an el-
liptic curve secret key d, the corresponding elliptic curve public
key Q is the elliptic curve point Q = dG, where G is the base
point.

elliptic curve secret
key

Given particular elliptic curve domain parameters, an elliptic
curve secret key d is an integer in the interval [1, n − 1], where
n is the prime order of the base point G.

encryption scheme An encryption scheme is a cryptographic scheme consisting of
an encryption operation and a decryption operation which is
capable of providing data confidentiality.

entity A party involved in the operation of a cryptographic system.

ephemeral Ephemeral data is relatively short-lived. Usually ephemeral data
refers to data specific to a particular execution of a crypto-
graphic scheme.
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existentially
unforgeable

A signature scheme is existentially unforgeable if it is infeasible
for an adversary to forge a signature on any message that has
not previously been signed by the scheme’s legitimate user. Sim-
ilarly a MAC scheme is existentially unforgeable if it is infeasible
for an adversary to forge the tag on any message that has not
previously been tagged by one of the scheme’s legitimate users.

forward secrecy The assurance that a session key established between some par-
ties will not be compromised by the compromise some of the
parties’ static secret keys in the future. Also known as perfect
forward secrecy.

hash function
(cryptographic hash
function)

A cryptographic hash function is a function which maps bit
strings from a large (possibly very large) domain into a smaller
range. The function possesses the following properties: it is
computationally infeasible to find any input which maps to any
pre-specified output, and it is computationally infeasible to find
any two distinct inputs which map to the same output.

implicit key
authentication

A key establishment scheme provides implicit key authentication
if only authorized parties are possibly capable of computing any
session key.

irreducible binary
polynomial

A binary polynomial f(x) is irreducible if it does not factor over
F2 as a product of two or more binary polynomials, each of
degree less than the degree of f(x).

key
(cryptographic key)

A parameter that determines the execution of a cryptographic
operation such as the transformation from plaintext to cipher-
text and vice versa, the synchronized generation of keying ma-
terial, or a digital signature computation or validation.

key agreement
scheme

A key agreement scheme is a key establishment scheme in which
the keying data established is a function of contributions pro-
vided by each party to the scheme in such a way that no party
can predetermine the value of the keying data.

key derivation
function

A key derivation function is a function which takes as input a
shared secret value and outputs keying data suitable for later
cryptographic use.

key establishment
scheme

A key establishment scheme is a cryptographic scheme which
reveals keying data suitable for subsequent cryptographic use
by cryptographic schemes to its legitimate users.

keying data Data suitable for use as cryptographic keys.

known-key security The assurance that a session key established by an execution
of a key establishment scheme will not be compromised by the
compromise of other session keys.
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MAC scheme A MAC scheme is a cryptographic scheme consisting of a mes-
sage tagging operation and a tag checking operation which is ca-
pable of providing data origin authentication and data integrity.

non-repudiation The assurance that the origin and integrity of data can be proved
to a third party.

octet An octet is a bit string of length 8. An octet is represented by
a hexadecimal string of length 2. The first hexadecimal digit
represents the four leftmost bits of the octet, and the second
hexadecimal digit represents the four rightmost bits of the octet.
For example, 9D represents the bit string 10011101. An octet
also represents an integer in the interval [0, 255]. For example,
9D represents the integer 157.

octet string An octet string is an ordered sequence of octets.

order of a curve The order of an elliptic curve E defined over the field Fq is the
number of points on the elliptic curve E, including O. This is
denoted by #E(Fq).

order of a point The order of a point P is the smallest positive integer n such
that nP = O (the point at infinity).

partially valid
elliptic
curve public key

An elliptic curve public key Q = (xQ, yQ) is partially valid if
the values x = xQ and y = yQ satisfy the defining equation of
the associated elliptic curve E, but it is not necessarily the case
that Q = dG for some d. The elliptic curve public key partial
validation primitive in Section 3.2.3.1 checks whether or not an
elliptic curve public key is partially valid.

passive attack The ability of an adversary of a cryptographic scheme merely to
observe entities communicating using the scheme.

pentanomial A binary polynomial of the form xm +xk3 +xk2 +xk1 + 1, where
1 ≤ k1 < k2 < k3 ≤ m− 1.

plaintext A message to be encrypted; the opposite of ciphertext.

plaintext-awareness An encryption scheme is plaintext-aware if it is infeasible to
generate a valid ciphertext without knowing the corresponding
message.

point compression Point compression allows a point P = (xP , yP ) to be represented
compactly using xP and a single additional bit ỹP derived from
xP and yP . See Section 2.3.

prime finite field A finite field containing p elements, where p is an odd prime
number.

primitive
(cryptographic
primitive)

A cryptographic primitive is an operation not by itself capable
of providing a security service, but which can be incorporated
in a cryptographic scheme.
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public key In a public-key scheme, that key of an entity’s key pair which
can be publicly known.

public-key
cryptographic
scheme

A cryptographic scheme in which each operation is controlled
by one of two keys; either the public key or the private key.
The two keys have the property that, given the public key, it is
computationally infeasible to derive the private key. Also known
as asymmetric cryptographic scheme.

reduction polynomial The irreducible binary polynomial f(x) of degree m that is used
to determine a representation of F2m .

scalar multiplication If k is a positive integer, then k × P or kP denotes the point
obtained by adding together k copies of the point P . The process
of computing kP from P and k is called scalar multiplication.

secret key In a public-key system, that key of an entity’s key pair which
must be known only by that entity. Also known as private key.

semantically secure An encryption scheme is semantically secure if it is infeasible
for an adversary to learn anything from ciphertext about the
corresponding plaintext apart from the length of the plaintext.

session key A key (usually short-lived) established using a key establishment
scheme.

shared secret value An intermediate value in a key establishment scheme from which
keying data is derived.

signature scheme A signature scheme is a cryptographic scheme consisting of a
signing operation and a verifying operation which is capable of
providing data origin authentication, data integrity, and non-
repudiation.

static Static data is relatively long-lived. Usually static data refers
to data common to a number of executions of a cryptographic
scheme.

symmetric
cryptographic
scheme

A cryptographic scheme in which each operation is controlled
by the same key.

trinomial A binary polynomial of the form xm + xk + 1, where 1 ≤ k ≤
m− 1.

unknown key-share
resilience

The assurance that all the parties who share a session key are
aware which parties they share the key with.
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valid elliptic curve
domain parameters

Elliptic curve domain parameters are valid if they satisfy the
arithmetic requirements of elliptic curve domain parameters.
Equivalently elliptic curve domain parameters are valid if they
have been generated as specified in Section 3.1.1.1 or 3.1.2.1.
The elliptic curve domain parameter validation primitives in
Sections 3.1.1.2.1 and 3.1.2.2.1 check whether or not elliptic
curve domain parameters are valid.

valid elliptic curve
public key

An elliptic curve public key Q = (xQ, yQ) is valid if it satisfies the
arithmetic requirements of an elliptic curve public key — namely
that Q = dG for some d in the interval [1, n− 1] where G is the
base point of the associated elliptic curve domain parameters
and n is the order of G. The elliptic curve public key validation
primitive in Section 3.2.2.1 checks whether or not an elliptic
curve public key is valid.

x-coordinate The x-coordinate of an elliptic curve point, P = (xP , yP ), is xP .

y-coordinate The y-coordinate of an elliptic curve point, P = (xP , yP ), is yP .

A.2 Acronyms

The acronyms used in this document denote:

AES Advanced Encryption Standard. See [FIP01b].

ANS American National Standard.

ANSI American National Standards Institute.

ASC X9 Accredited Standards Committee X9.

ASN.1 Abstract Syntax Notation One.

CA Certification Authority. See [BHP02].

CMS Cryptographic Message Syntax. See [Hou99].

CRL Certificate Revocation List. See [BHP02].

DER Distinguished Encoding Rules. See [ITUb].

DES Data Encryption Standard. See [FIP93b].

DSA Digital Signature Algorithm. See [FIP01a].

DSS Digital Signature Standard. See [FIP01a].

EC Elliptic Curve.

ECC Elliptic Curve Cryptography.

ECIES Elliptic Curve Integrated Encryption Scheme. See Section 5.1.

ECDH Elliptic Curve Diffie-Hellman. See Section 6.1.
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ECDLP Elliptic Curve Discrete Logarithm Problem.

ECDSA Elliptic Curve Digital Signature Algorithm. See Section 4.1.

ECMQV Elliptic Curve Menezes-Qu-Vanstone. See Section 6.2.

FIPS Federal Information Processing Standard.

FSML Financial Services Markup Language.

FSTC Financial Services Technology Consortium.

GEC Guideline for Efficient Cryptography.

HMAC Hash-based Message Authentication Code. See [KBC97].

IACR International Association for Cryptologic Research

IEC International Electrotechnical Commission.

IEEE Institute of Electrical and Electronics Engineers.

IETF Internet Engineering Task Force.

IKE Internet Key Exchange.

ISO International Organization for Standardization.

ITU International Telecommunications Union.

LNCS Lecture Notes in Computer Science

KDF Key Derivation Function.

MQV Menezes-Qu-Vanstone. See [LMQ+98].

NIST (U.S.) National Institute of Standards and Technology.

PKI Public Key Infrastructure.

PKIX Public Key Infrastructure for the Internet.

RFC Request for Comment.

RNG Random Number Genrator.

SEC Standard for Efficient Cryptography

SHA-1 Secure Hash Algorithm Revision One. See [FIP95].

SSL Secure Sockets Layer.

TDES Triple Data Encryption Standard. See [ANS98a].

TLS Transport Layer Security.

WAP Wireless Application Protocol.

WTLS Wireless Transport Layer Security.
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A.3 Notation

The notation adopted in this document is:

[X] Indicates that the inclusion of X is optional.

[x, y] The interval of integers between and including x and y.

dxe Ceiling: the smallest integer ≥ x. For example, d5e = 5 and
d5.3e = 6.

bxc Floor: the largest integer≤ x. For example, b5c = 5 and b5.3c =
6.

x mod n The unique remainder r, 0 ≤ r ≤ n− 1, when x is divided by n.
For example, 23 mod 7 = 2.

C Ciphertext.

d An EC private key.

E An elliptic curve over the field Fq defined by a and b.

E(Fq) The set of all points on an elliptic curve E defined over Fq and
including the point at infinity O.

#E(Fq) If E is defined over Fq, then #E(Fq) denotes the number of
points on the curve (including the point at infinity O). #E(Fq)
is called the order of the curve E.

F2m The finite field containing 2m elements, where m is a positive
integer.

Fp The finite field containing p elements, where p is a prime.

Fq The finite field containing q elements. In this document atten-
tion is restricted to the cases that q is an odd prime number (p)
or a power of 2 (2m).

G A distinguished point on an elliptic curve called the base point
or generating point.

gcd(x, y) The greatest common divisor of integers x and y.

h h = #E(Fq)/n, where n is the order of the base point G. h is
called the co-factor.

k An EC private key specific to one particular instance of a cryp-
tographic scheme.

K Keying data.

log2 x The logarithm of x to the base 2.

m The degree of the finite field F2m .

M A message.

mod Modulo.
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modf(x) Arithmetic modulo the polynomial f(x).

modn Arithmetic modulo n.

n The order of the base point G.

O A special point on an elliptic curve, called the point at infinity.
This is the additive identity of the elliptic curve group.

p An odd prime number.

P An EC point.

q The number of elements in the field Fq.
Q An EC public key.

R An EC public key specific to one particular instance of a cryp-
tographic scheme.

S A digital signature.

T Elliptic curve domain parameters.

U , V Entities.

‖X‖ Length in octets of the octet string X.

X ‖Y Concatenation of two strings X and Y . X and Y are either both
bit strings or both octet strings.

X ⊕ Y Bitwise exclusive-or of two bit strings X and Y of the same bit
length.

xP The x-coordinate of a point P .

yP The y-coordinate of a point P .

ỹP The representation of the y-coordinate of a point P when point
compression is used.

z, or Z A shared secret value. z denotes a shared secret integer or field
element, and Z a shared secret bit string or octet string.

Zp The set of integers modulo p, where p is an odd prime number.

Furthermore positional notation is used to indicate the association of a value to a particular entity.
For example dU denotes an EC private key owned by entity U . Occasionally positional notation is
also used to indicate a counter value associated with some data, or to indicate the base in which
a particular value is being expressed if there is some possibility of ambiguity. For example, Hash1

denotes the value of Hashi when the counter i has value 1, and 0116 denotes that the value 01 is
written in hexadecimal.

With the exception of notation that has been well-established in other documents, where possible
in this document capital letters are used in variable names that denote bit strings or octet strings,
and capital letters are excluded from variable names that denote field elements or integers. For
example, d is used to denote the integer that specifies an EC private key, and M is used to denote
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the octet string to be signed using a signature scheme.

§A Glossary Page 65 of 107



SEC 1 (Draft) Ver. 1.5

B Commentary

This section to be updated further. Current updates are preliminary and very limited.

This section provides a commentary on the main body of this document, including implementation
discussion, security discussion, and references.

The aim of this section is to supply implementers with relevant guidance. However the section
does not attempt to provide exhaustive information but rather focuses on giving basic information
and including pointers to references which contain additional material. Furthermore the section
concentrates on supplying information specific to ECC rather than providing extensive information
on components like SHA-1 and TDES which are specified elsewhere.

The information in this section is current as of February 2005 . The information is likely to
change over time, and implementers should therefore survey the state-of-the-art at the time of
implementation and carry out periodic reviews subsequent to deployment.

This section is organized as follows. Sections B.1 through B.5 respectively provide commentary
on Sections 2 through 6 of the main body of this document. Section B.6 supplies information
regarding the alignment of this document with other standards efforts which include ECC.

B.1 Commentary on Section 2 — Mathematical Foundations

This section provides a commentary on Section 2 of the main body of this document.

Finite fields and elliptic curves have been studied as mathematical objects for hundreds of years.
The body of literature on these structures is vast. Introductions to finite fields can be found in the
books of Jungnickel [Jun93], Lidl and Neiderreiter [LN87], and McEliece [McE87]. An introduction
to elliptic curves can be found in the book of Silverman [Sil85].

Elliptic curves over finite fields were first proposed for use to build cryptographic schemes in 1985
by Koblitz [Kob87] and Miller [Mil92]. Excellent treatments focusing on ECC are contained in
Blake, Seroussi, and Smart [BSS99], Koblitz [Kob94], Koblitz, Menezes, and Vanstone [KMV], and
Menezes [Men93].

The security of all cryptographic schemes based on ECC relies on the elliptic curve discrete loga-
rithm problem or ECDLP. The ECDLP is stated as follows in the case of interest here — namely
when the elliptic curve in question has order divisible by a large prime n.

Let E be an elliptic curve defined over a finite field Fq, and let G ∈ E(Fq) be a point on E of large
prime order n. The ECDLP is, given E, G, and a scalar multiple Q of G, to determine an integer
l such that Q = lG.

No general subexponential algorithms are known for the ECDLP. The best general algorithms
known to date are based on the Pollard-ρ method and the Pollard-λ method [Pol78]. The Pollard-
ρ method takes about

√
πn/2 steps, and the Pollard-λ method takes about 2

√
n steps. Both

methods can be parallelized effectively — see [vOW94].

Gallant, Lambert, and Vanstone [GLV], and Wiener and Zuccherato [WZ99] recently showed that
the Pollard-ρ method can be sped up by a factor of

√
2. Thus the expected running time of the
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Pollard-ρ method with this speedup is
√
πn/4 steps.

They also showed that this speedup can be enhanced when E is an elliptic curve over F2ed which
is defined over F2e . In this case they show that the Pollard-ρ method can be sped up by a factor
of
√

2d. For example, the Koblitz curve E : y2 + xy = x3 + x2 + 1 over F2163 has the property
that #E(F2163) = 2n where n is a 162-bit prime. As a result of the enhancement to the Pollard-ρ
method, the ECDLP in E(F2163) can be solved in about 277 steps as opposed to the 281 steps
required to solve the ECDLP for a random curve of similar order.

Table 5 below illustrates the difficulty of the ECDLP. It contains estimates in MIPS years of the
computing power required to solve the ECDLP on a general curve in software using the improved
Pollard-ρ method. To place Table 5 in context, Odlyzko has estimated that 0.1% of the world’s
computing power working for 1 year will amount to 108 MIPS years in 2004, and 1010 or 1011 MIPS
years in 2014 [Odl95]. Table 5 is reproduced from ANS X9.62 [ANS05b]. More details on how the
estimates were obtained can be found there.

Size of n (in bits)
√
πn/4 MIPS years

160 280 8.5× 1011

186 293 7.0× 1015

234 2117 1.2× 1023

354 2177 1.3× 1041

426 2213 9.2× 1051

Table 5: Computing power required to solve ECDLP

The difficulty of the ECDLP is further illustrated by van Oorschot and Wiener’s 1994 paper [vOW94].
Van Oorschot and Wiener carried out a detailed study of the feasibility of building special-purpose
hardware to solve the ECDLP. They estimated that for about $10 million a machine with 325,000
processors could be built that would solve the ECDLP for an elliptic curve E with n ≈ 2120 in
about 35 days. Hardware attacks on larger values of n, like n ≈ 2160, appear completely infeasible
at this time.

Finally, although no general subexponential algorithms to solve the ECDLP are known, three
classes of curves are susceptible to special-purpose algorithms. Firstly, elliptic curves E over Fq
with n dividing qB − 1 for small B are susceptible to the attacks described by Menezes, Okamoto,
and Vanstone [MOV93], and Frey and Rück [FR94]. These attacks efficiently reduce the ECDLP
on these curves to the traditional discrete logarithm problem in a small degree extension of Fq.
Secondly, elliptic curves E over Fq with #E(Fq) = q are susceptible to the attack described by
Semaev [Sem], Smart [Sma], and Satoh and Araki [SA]. This attack efficiently maps the elliptic
curve E into the additive group of Fq. Thirdly, for curves defined over Fq where q = 2m with
m composite, certain attacks based on Weil descent, more recently, index calculus, have been
discovered. This is an ongoing research area. On a precautionary basis, however, such curves
should be avoided. These weak classes of curves are excluded in this document.

Additional information on the difficulty of the ECDLP can be found in ANS X9.62 [ANS05b],
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ANS X9.63 [ANS01a], Blake, Seroussi, and Smart [BSS99], and Koblitz, Menezes, and Van-
stone [KMV]. A useful source of information on the state-of-the-art in practical attacks on the
ECDLP is Certicom’s ECC challenge [ECC].

The efficiency of cryptographic schemes based on ECC usually rests primarily on the efficiency
of field operation computations and in particular point scalar multiplication computation. Effi-
cient general techniques for computing field operations are well-known and are described in, for
example, [Knu81, McE87, MvOV97]. A variety of efficient general techniques for computing point
scalar multiplication are known and exploit tricks like switching to projective co-ordinates and
precomputation.

Both field operation computations and point scalar multiplication computation can be acceler-
ated by choosing particular underlying fields and elliptic curves. Examples of fields amenable to
particularly efficient implementation include F2m and Fp where p is a Mersenne prime — see, for
example [ABMV93, AMV93, AMOV91, NIS99]. Examples of elliptic curves amenable to particu-
larly efficient implementation include Koblitz curves over F2m [Kob92] which possess an efficiently
computable endomorphism.

Additional information on the implementation of efficient finite field operations and point scalar
multiplication can be found in Blake, Seroussi, and Smart [BSS99], and Koblitz, Menezes, and
Vanstone [KMV].

B.2 Commentary on Section 3 — Cryptographic Components

This section provides a commentary on Section 3 of the main body of this document.

B.2.1 Commentary on Elliptic Curve Domain Parameters

Elliptic curve domain parameters must be generated during the setup procedure of each of the
schemes specified in this document.

The first step in this process is to determine the security level desired by the application in question.
A number of criteria may affect this determination — factors may include, for example, the value
of the information which the scheme will be used to protect, the length of time the parameters will
be used for, and the security level of other schemes used in the application.

Table 6 below attempts to provide additional information which may help determine the security
level desired. It lists comparable key sizes for an ‘ideal’ symmetric scheme, an ECC-based scheme,
and a scheme such as DSA or RSA based on the integer factorization problem or traditional discrete
logarithm problem.

Once the desired security level has been selected, there are a number of ways to generate elliptic
curve domain parameters at a given strength. These include:

• Select an appropriate finite field. Then select an elliptic curve over the field at random,
count the number of points on the curve using Schoof’s algorithm [Sch85], or one of its
various improvements, check whether the number of points is nearly prime, and repeat until
appropriate parameters are found.
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Security level Symmetric ECC DSA/RSA Protects to year

80 80 160 1024 2010

112 112 224 2048 2030

128 128 256 3072 2030+

192 192 384 7680 2030+

256 256 512 15360 2030+

Table 6: Comparable key sizes

• Select an appropriate field, then select an appropriate curve order, and generate a curve
over the field with this number of points using techniques based on ’complex multiplication’
[LZ94].

• Select an appropriate finite field. Then select an elliptic curve over the field from a special
family of curves whose order is easily computable (such as the family of Koblitz curves),
compute the number of points on this curve, and check whether the number of points is
nearly prime.

The first method — known as selecting elliptic curve domain parameters at random — is the most
conservative choice because it offers a probabilistic guarantee against future special purpose attacks
of a similar nature to the Menezes-Okamoto-Vanstone and the Semaev-Smart-Satoh-Araki attacks
described in Section B.1. However existing implementations of Schoof’s algorithm are less efficient
than implementations of the other parameter selection methods. The second method — known as
selecting elliptic curve domain parameters using complex multiplication — generates parameters
more efficiently than the first method. The third method — known as selecting elliptic curve
domain parameters from a special family — also generates parameters more efficiently than the
first method, and has the added attraction than some special families of curves (such as the family
of Koblitz curves) enable tricks to speedup computations like point scalar multiplication. However
despite their efficiency benefits, the second and third methods should be used with a good deal
of caution because they produce parameters which may be susceptible to future special-purpose
attacks.

An attractive refinement of the idea of selecting elliptic curve domain parameters at random is
the idea of selecting elliptic curve domain parameters verifiably at random. This involves selecting
parameters at random from a seed in such a way that the parameters cannot be pre-determined. It
is appealing because the seed provides evidence that can be verified by anyone that no ‘trapdoors’
have been placed in the parameters. One method of selecting parameters verifiably at random is
specified in ANS X9.62 [ANS05b].

SEC 2 [SEC00] — a companion document to this document — provides a list of precomputed el-
liptic curve domain parameters at a variety of commonly required security levels that implementers
may use when implementing the schemes in this document. Use of these precomputed parameters
is strongly recommended in order to foster interoperability.
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Once elliptic curve domain parameters have been generated, either by the user themselves or
by a third party, it is desirable to receive some assurance that the parameters are valid — that is
that the parameters possess the arithmetic properties expected from secure parameters. Parameter
validation mitigates against inadvertent generation of insecure parameters caused by coding errors,
and against deliberate attempts to trick users into using insecure parameters.

Additional information on the generation and validation of elliptic curve domain parameters can
be found in ANS X9.62 [ANS05b], ANS X9.63 [ANS01a], and IEEE 1363 [IEE00].

B.2.2 Commentary on Elliptic Curve Key Pairs

Elliptic curve key pairs must be generated during the operation of each of the schemes specified
in this document. The key pair generation process requires a secure random or pseudorandom
number generator. Design of secure random and pseudorandom number generators is notoriously
difficult and implementers should therefore take care to pay attention to this aspect of their system
design.

Once a key pair has been generated, it is often necessary to convey the public key in an authentic
manner to other entities. One way of achieving this authentic distribution is to have the key
certified by a trusted Certification Authority within a Public Key Infrastructure.

In many schemes it is desirable for an entity to receive assurance that an elliptic curve public key
is valid or partially valid before they use the public key to, say, verify a signature. This process
can help prevent small subgroup attacks and other attacks based on the use of an invalid public
key.

A further discussion of the generation and validation of elliptic curve key pairs can be found in
ANS X9.63 [ANS01a].

B.2.3 Commentary on Elliptic Curve Diffie-Hellman Primitives

Both the elliptic curve Diffie-Hellman primitives here generate a field element from a secret key
owned by one entity U and a public key owned by a second entity V in such a way that if both
entities execute the primitive with corresponding keys as input, they will both compute the same
field element.

The primary security requirement of both the primitives is that an attacker who sees only U and V ’s
public keys should be unable to compute the shared field element. This requirement is equivalent
to the requirement that the elliptic curve Diffie-Hellman problem or ECDHP is hard. The ECDHP
is stated as follows.

Let E be an elliptic curve defined over a finite field Fq, and let G ∈ E(Fq) be a point on E on large
prime order n. The ECDHP is, given E, G, and two scalar multiples Q1 = d1G and Q2 = d2G of
G, to determine d1d2G.

The ECDHP is closely related to the ECDLP. It is clear, for example, that if the ECDLP is easy
then so is the ECDHP. Boneh and Lipton [BL96] show that for practical purposes the converse is
also true — they show that if the best algorithm for the ECDLP really is fully exponential, then
the ECDLP and the ECDHP are equivalent.
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Many schemes based on the Diffie-Hellman primitives actually rely on a stronger requirement that
the shared field element is not just hard for an attacker to predict, but that the element actually
looks random to the attacker. A discussion of this requirement, and its relationship to the ECDHP,
can be found in [BV96, Bon98].

So far the discussion of the elliptic curve Diffie-Hellman primitives has been germane to both
the ‘standard’ primitive and the cofactor primitive. The remainder of this section explains the
difference between the two primitives.

A direct assault on the ECDHP is not the only way an attacker might assault schemes which use
the Diffie-Hellman primitives. Many schemes which use the primitives are also susceptible to small
subgroup attacks [Joh96, LL97] in which an adversary substitutes V ’s public key with a point of
small order in an attempt to coerce U to calculate a predictable field element using one of the
primitives. The consequences of these attacks can be severe — in a key agreement scheme, for
example, the result can be compromise of a session key shared by U and V , or even compromise
of U ’s static secret key.

Two defenses against this attack are recommended here: either validate V ’s public key and use the
‘standard’ Diffie-Hellman primitive (validating V ’s public key checks that V ’s public key has order
n and hence prevents the attack), or partially validate V ’s public key and use the cofactor Diffie-
Hellman primitive (using the cofactor Diffie-Hellman primitive with a point in a small subgroup
will result in calculation of the point at infinity and hence rejection of the key).

Which of the defenses outlined above is appropriate in a given situation will depend on issues
like whether or not interoperability with existing use of the ‘standard’ Diffie-Hellman primitive
is desirable (the first defense interoperates and the second does not), and what the efficiency
requirements of the system are (the second defense is usually more efficient than the first.)

Additional information on the elliptic curve Diffie-Hellman primitives can be found in ANS X9.63
[ANS01a].

B.2.4 Commentary on the Elliptic Curve MQV Primitive

The elliptic curve MQV primitive generates a field element from two key pairs owned by one entity
U and two public keys owned by a second entity V in such a way that if both entities execute the
primitive with corresponding keys as input, they will both compute the same field element.

Again the primary security requirement of the primtive is that an adversary who sees only U
and V ’s public keys should be unable to compute the shared field element. This requirement is
conjectured to be equivalent to the requirement that the ECDHP is hard — see [LMQ+98] for a
discussion of this conjecture.

Additional information on the elliptic curve MQV primitive can be found in ANS X9.63 [ANS01a].

B.3 Commentary on Section 4 — Signature Schemes

This section provides a commentary on Section 4 of the main body of this document.
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B.3.1 Commentary on the Elliptic Curve Digital Signature Algorithm

The ECDSA is a signature scheme with appendix based on ECC. It is designed to be existentially
unforgeable, even in the presence of an adversary capable of launching chosen-message attacks.
ECDSA is an elliptic curve analog of the U.S. government’s Digital Signature Algorithm or DSA
[FIP93a]. It was first proposed in ANS X9.62 [ANS05b].

The ECDSA was chosen for inclusion in this document because it is widely standardized in, for
example, ANS X9.62 [ANS05b], IEEE 1363 [IEE00], and ISO 15946-2 [ISO98b]. It’s widespread
standardization, together with its close relationship to DSA, means that both specification details
and implementation details have been carefully scrutinized. Standardization also leads to the
provision of valuable tools like NIST’s proposed ECDSA validation system which implementers
will be able to use to check their code for errors.

The features of ECDSA outlined above were considered to outweigh at this time the features of
other candidates like the Schnorr scheme [Sch91], which was shown to be provably secure in the
random oracle model based on the ECDLP in [PS96], or the Nyberg-Rueppel scheme [NR93, NR96],
which avoids the need for modular inversion during signature generation and verification and can
offer slightly smaller signature sizes through its message recovery capability. Future consideration
may be given to adding support for a signature scheme with features like provable security or added
efficiency if significant commercial interest in these features is forthcoming.

There are a number of known cryptographic attacks on ECDSA. The specification of ECDSA in this
document includes provision for preventing all of these attacks. Nonetheless implementers should
be aware of the attacks and monitor future advances. The attacks illustrate that it is important
that implementations of ECDSA perform all the security checks specified in the main body of this
document. The following is a list of some of the known attacks:

• Attacks on the ECDLP. The security of ECDSA relies on the difficulty of the ECDLP on the
elliptic curve domain parameters being used — otherwise an attacker may be able to recover
U ’s secret key from U ’s public key and use this information to forge U ’s signature on any
message.

• Attacks on key generation. Key generation is involved in both the key deployment procedure
and the signing operation of ECDSA. Secure random or pseudorandom number generation is
required during key generation to prevent, for example, U selecting a predictable secret key.
Insecure random and pseudorandom number generators are perhaps the most common cause
of cryptographic attacks on cryptographic systems.

• Attacks on the hash function. The hash function used by ECDSA during the signing operation
and the verifying operation must possess a number of properties such as one-wayness and
collision resistance. Otherwise if the hash function is not, say, collision resistant, an attacker
may be able to find a collision (M1,M2) and forge U ’s signature on M2 after persuading U
to sign M1.

• Attacks based on invalid domain parameters. The security of ECDSA relies on U using valid
domain parameters because, for example, invalid domain parameters may be susceptible to
the Pohlig-Hellman attack [PH78]. U should therefore receive assurance that the elliptic
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curve domain parameters used are valid. V may also desire to check that the elliptic curve
domain parameters are valid to prevent attacks like those described in [BWM99, CH98] and
to mitigate against the possibility of repudiation disputes in which U denies liability because
U was using invalid domain parameters.

• Attacks based on invalid public keys. It may be desirable for V to check that U ’s public key
is valid to prevent, for example, attacks like those described in [BWM99, CH98]. Another
class of attack to avoid is described in [ABM+03]. Another reason V may wish to check that
U ’s public key is valid is to mitigate against the possibility of a repudiation dispute in which
U denies liability because U was using an invalid public key.

• Vaudenay’s attack. Vaudenay has shown in [Vau96] that ECDSA is susceptible to attack if an
attacker is able to persuade U to use elliptic curve domain parameters with base point order n
chosen by the attacker and satisfying dlog2 ne ≤ 8(hashlen). This attack can be prevented, for
example, through exclusive use of elliptic curve domain parameters generated by U or by some
trusted party, through use of verifiably random elliptic curve domain parameters or elliptic
curve domain parameters from a small well-known family of parameters like parameters
associated with Koblitz curves, or through use of parameters with dlog2 ne > 8(hashlen).

Of course a variety of non-cryptographic attacks on ECDSA are also possible, and implementers
should take precautions to avoid, for example, ’implementation attacks’ such as fault-based attacks
[BDL97], power-analysis attacks [KJJ99], and timing-analysis attacks [Koc96].

The operation of ECDSA involves selection by implementers of a number of options. These choices
will typically be made based on concerns like efficiency, interoperability, and on security issues
like those outlined above. In particular, some of the choices involved are selection of elliptic
curve domain parameters, selection of a hash function (SHA-1 is the only hash function currently
supported), and selection of parameter and public key validation methods. Selection of elliptic
curve domain parameters will likely involve consideration of issues like those discussed in Sections
B.1 and B.2, and selection of parameter and public key validation methods will likely involve
consideration of issues like those discussed above.

Additional information on ECDSA, including extensive security discussion, can be found in ANS X9.62
[ANS05b] and IEEE 1363 [IEE00]. Test vectors for ECDSA can be found in SEC 2 [SEC00] .

B.4 Commentary on Section 5 — Encryption Schemes

This section provides a commentary on Section 5 of the main body of this document.

B.4.1 Commentary on the Elliptic Curve Integrated Encryption Scheme

The ECIES is a public-key encryption scheme based on ECC. It is designed to be both semantically
secure and plaintext-aware, in the presence of an adversary capable of launching chosen-plaintext
and chosen-ciphertext attacks. It was proposed in [ABR98, BR97].

(Note that the specification of ECIES here differs slightly from the description in [ABR98] where it
is mandated that R is included in the input to the key derivation function. This does not affect the
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applicability of the security results in [ABR98] to ECIES because elliptic curve domain parameters
specify use of a prime order group generated by the base point G. Nevertheless implementations
may of course choose to include R in the input to the key derivation function to achieve complete
alignment with [ABR98].)

The ECIES was chosen for inclusion in this document because it offers an attractive mix of provable
security and efficiency. It was proven secure based on a variant of the Diffie-Hellman problem in
[ABR98]. It is as efficient as or more efficient than comparable schemes. The dominant calculations
involved in encryption are two point scalar multiplications, and the dominant calculation involved
in decryption is a single point scalar multiplication. ECIES is also being standardized in ANS X9.63
[ANS01a].

The features of ECIES outlined above were considered to make it the most attractive ECC-based
public-key encryption scheme for standardization. In particular, of the other possibilities, the
elliptic curve analog of traditional ElGamal encryption [ElG85] does not offer security against
chosen-ciphertext attacks, while the elliptic curve analog of the Cramer-Shoup encryption scheme
[CS98] offers similar security properties but is considerably less efficient.

There are a number of known attacks on ECIES. The specification of ECIES in this document
includes provision for preventing all these attacks. Nonetheless implementers should be aware of
the attacks and monitor future advances. The attacks illustrate that it is important that imple-
mentations of ECDSA perform all the security checks specified in the main body of this document.
The following is a list of some of the known attacks:

• Attacks on the ECDLP or ECDHP. The security of the ECIES relies on the difficulty of the
ECDLP and ECDHP on the elliptic curve domain parameters used — otherwise an attacker
who sees an encrypted message sent from U to V may be able to recover the shared secret
value z from R and QV , and use this information to discover the message.

• Attacks on key generation. Key generation is involved in both the key deployment procedure
and the encryption operation of ECIES. Secure random or pseudorandom number generation
is required during key generation to prevent, for example, V selecting a predictable secret
key. Insecure random and pseudorandom number generators are perhaps the most common
cause of cryptographic attacks on cryptographic systems.

• Attacks on the symmetric encryption scheme. The symmetric encryption scheme used by the
ECIES needs to possess only mild security properties to ensure the security of ECIES. (That
is why the XOR encryption scheme may be used by ECIES.) Nonetheless severe compromise
of the symmetric encryption scheme may result in leakage of information about encrypted
messages.

• Attacks on the MAC scheme. As was the case for the symmetric encryption scheme, the MAC
scheme used by ECIES needs to possess only mild security properties to ensure the security
of ECIES. Nonetheless severe compromise of the MAC scheme may enable an attacker to
launch a chosen-ciphertext attack on ECIES.

• Attacks on the key derivation function. The key derivation function used by ECIES must
possess a number of properties to ensure the security of ECIES. If, for example, an attacker
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is able to predict some bits of the output of the key derivation function, or if portions of the
output of the key derivation function are correlated in some way, an attacker may be able to
learn some information about encrypted messages. These concerns provide some motivation
for the use of the TDES symmetric encryption scheme rather than the XOR symmetric
encryption scheme when using ECIES to convey long messages since this choice minimizes
the amount of output the key derivation function is asked to produce.

• Attacks based on the use of invalid domain parameters. The security of ECIES relies on
V using valid domain parameters because, for example, invalid domain parameters may be
susceptible to the Pohlig-Hellman attack [PH78]. V should therefore receive assurance that
the elliptic curve domain parameters used are valid.

• Attacks based on the use of invalid public keys. When the ECIES is used with the standard
elliptic curve Diffie-Hellman primitive, V should check that the public-key R is valid to
prevent Lim-Lee style small subgroup attacks [Joh96, LL97] which result in providing an
attacker with the ability to learn some bits of V ’s secret key. Similarly when ECIES is used
with the cofactor Diffie-Hellman primitive, V should check that the public-key R is partially
valid to prevent the possibility of similar attacks. (The cofactor Diffie-Hellman primitive is
designed specifically to enable efficient prevention of small subgroup attacks.)

Of course a variety of non-cryptographic attacks on ECIES are also possible, and implementers
should take precautions to avoid, for example, ’implementation attacks’ such as fault-based attacks
[BDL97], power-analysis attacks [KJJ99], and timing-analysis attacks [Koc96].

The operation of ECIES involves selection by implementers of a number of options. These choices
will typically be made based on concerns like efficiency, interoperability, and on security issues
like those outlined above. In particular, some of the choices involved are selection of elliptic curve
domain parameters, selection of a key derivation function, selection of a symmetric encryption
scheme and MAC scheme, selection of the standard or cofactor Diffie-Hellman primitive, selec-
tion of parameter and public key validation methods, and selection of appropriate data to include
in SharedInfo1 and SharedInfo2. Selection of elliptic curve domain parameters will likely involve
consideration of issues like those discussed in Sections B.1 and B.2. Selection of a symmetric en-
cryption scheme will likely be influenced by the length of messages which are going to be encrypted
and the amount of memory available. (When the TDES encryption scheme is used, messages can
be passed into the encryption operation a piece at a time, whereas when the XOR encryption
scheme is used to encrypt variable length messages, the length of the message must be known
before MAC computation can begin.) Selection of the HMAC–SHA-1–160 scheme or the HMAC–
SHA-1–80 scheme will likely be influenced by the need to balance the added security offered by the
former against the bandwidth savings offered by the latter. Selection of the standard or cofactor
Diffie-Hellman primitive will likely involve consideration of security concerns like small subgroup
attacks and the efficiency requirements of the application. Selection of parameter and public key
validation methods will likely involve consideration of security issues like those discussed above.
Selection of appropriate information to include in SharedInfo1 and SharedInfo2 will likely depend
on the particular application, but common things to include are, for example, the public key R for
alignment with the description of ECIES in [ABR98], or a counter value to mitigate against replay
of ciphertexts.
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Additional information on ECIES, including extensive security discussion, can be found in ANS X9.63
[ANS01a], and the paper of Abdullah, Bellare, and Rogaway [ABR98]. Test vectors for ECIES can
be found in GEC 2 [SEC99].

B.5 Commentary on Section 6 — Key Agreement Schemes

This section provides a commentary on Section 6 of the main body of this document.

B.5.1 Commentary on the Elliptic Curve Diffie-Hellman Scheme

The elliptic curve Diffie-Hellman scheme is a key agreement scheme based on ECC. It is designed
to provide a variety of security goals depending on its application — goals it can provide include
unilateral implicit key authentication, mutual implicit key authentication, known-key security, and
forward secrecy. It is the elliptic curve analog of the Diffie-Hellman scheme [DH76]. It was first
proposed in [DH76, Kob87, Mil92].

The elliptic curve Diffie-Hellman scheme was chosen for inclusion in this document because it is
well-known, well-scrutinized, widely-standardized, and versatile. It is standardized in ANS X9.63
[ANS01a], IEEE 1363 [IEE00], and ISO 15946-3 [ISO98c]. Examples of the application of the
elliptic curve Diffie-Hellman scheme to achieve a variety of security goals can be found in [BCK98,
BWJM97, DvOW92]. ECIES is also an example of an application of the elliptic curve Diffie-
Hellman scheme.

There are a number of known attacks on the elliptic curve Diffie-Hellman scheme. The specification
of the elliptic curve Diffie-Hellman scheme in this document includes provision for preventing
all these attacks. Nonetheless implementers should be aware of the attacks and monitor future
advances. The attacks illustrate that it is important that implementations of ECDSA perform all
the security checks specified in the main body of this document. The following is a list of some of
the known attacks:

• Attacks on the ECDLP or ECDHP. The security of the elliptic curve Diffie-Hellman scheme
relies on the difficulty of the ECDLP and ECDHP on the elliptic curve domain parameters
used — otherwise an attacker who sees an U to V using the scheme may be able to recover
the shared secret value z from QU and QV , and use this information to discover the keying
data they agreed.

• Attacks on key generation. Key generation is involved in the key deployment procedure of the
elliptic curve Diffie-Hellman scheme. Secure random or pseudorandom number generation is
required during key generation to prevent, for example, V selecting a predictable secret key.
Insecure random and pseudorandom number generators are perhaps the most common cause
of cryptographic attacks on cryptographic systems.

• Man-in-the-middle attacks. If the elliptic curve Diffie-Hellman scheme is not applied with
care, it may be possible for an adversary to attack the scheme by modifying QU or QV when
they are exchanged, and as a result prevent the scheme from achieving goals like implicit key
authentication or known-key security. Numerous defenses are commonly employed to prevent
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such active attacks — including exchanging QU and QV in signed messages, or certifying QU

and QV .

• Attacks on the key derivation function. The key derivation function used by the elliptic
curve Diffie-Hellman scheme must possess a number of properties to ensure the security of
the scheme. If, for example, an attacker is able to predict some bits of the output of the key
derivation function, or if portions of the output of the key derivation function are correlated
in some way, an attacker may be able to learn some information about the agreed keying
data.

• Attacks based on the use of invalid domain parameters. The security of the elliptic curve
Diffie-Hellman scheme relies on U and V using valid domain parameters because, for example,
invalid domain parameters may be susceptible to the Pohlig-Hellman attack [PH78]. U and
V should therefore receive assurance that the elliptic curve domain parameters used are valid.

• Attacks based on the use of invalid public keys. Because the elliptic curve Diffie-Hellman
scheme by its nature requires each entity to combine its private key with another entity’s
public key, the scheme is particularly susceptible to attacks based on the use of invalid public
keys. The best-known examples of such attacks are small subgroup attacks [Joh96, LL97],
which can result in, for example, an attacker coercing U and V into sharing predictable keying
data, or an attacker learning some bits of U ’s secret key. For this reason, when using the
elliptic curve Diffie-Hellman scheme with the standard Diffie-Hellman primitive, U should
receive an assurance that V ’s public key is valid and vice versa, and when using the scheme
with the cofactor Diffie-Hellman primitive, U should receive an assurance that V ’s public key
is partially valid and vice versa.

Of course a variety of non-cryptographic attacks on the elliptic curve Diffie-Hellman scheme are
also possible, and implementers should take precautions to avoid, for example, ’implementation
attacks’ such as fault-based attacks [BDL97], power-analysis attacks [KJJ99], and timing-analysis
attacks [Koc96].

The operation of the elliptic curve Diffie-Hellman scheme involves selection by implementers of a
number of options. These choices will typically be made based on concerns like efficiency, inter-
operability, and on security issues like those outlined above. In particular, some of the choices
involved are selection of elliptic curve domain parameters, selection of a key derivation function,
selection of the standard or cofactor Diffie-Hellman primitive, selection of parameter and public key
validation methods, and selection of SharedInfo, as well as selection of an appropriate application
of the scheme to meet the security requirements of the system. Selection of elliptic curve domain
parameters will likely involve consideration of issues like those discussed in Section B.1 and B.2.
Selection of the standard or cofactor Diffie-Hellman primitive will likely involve consideration of se-
curity concerns like small subgroup attacks and the efficiency requirements of the system. Selection
of parameter and public key validation methods will likely involve consideration of security issues
like those discussed above. Selection of appropriate information to include in SharedInfo will likely
depend on the particular application, but common things to include are, for example, the identities
of U and V , the public keys QU and QV , counter values, and an indication of the symmetric scheme
for which the agreed keying data will be used. If a number of fields are included in SharedInfo, it is
sensible to check that the encoding of the fields is unique. Selection of an appropriate application
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of the scheme will likely depend on issues like what the agreed key will be used for and whether U
and V are both on-line. ANS X9.63 contains guidance to help implementers make this selection.

Additional information on the elliptic curve Diffie-Hellman scheme, including extensive security
discussion, can be found in ANS X9.63 [ANS01a], and IEEE 1363 [IEE00]. Test vectors for the
elliptic curve Diffie-Hellman scheme can be found in GEC 2 [SEC99].

B.5.2 Commentary on the Elliptic Curve MQV Scheme

Like the elliptic curve Diffie-Hellman scheme, the elliptic curve MQV scheme is a key agreement
scheme based on ECC. It is designed to provide a variety of security goals depending on its appli-
cation — goals it can provide include mutual implicit key authentication, known-key security, and
forward secrecy. It was first proposed in [LMQ+98, MQV95].

The elliptic curve MQV scheme was chosen for inclusion in this document because it is a particularly
efficient method for achieving mutual implicit key authentication. The dominant calculations
involved in the key agreement operation are 1.5 point scalar multiplies. The elliptic curve MQV
scheme is also standardized in ANS X9.63 [ANS01a], and IEEE 1363 [IEE00].

There are a number of known attacks on the elliptic curve MQV scheme. The specification of the
elliptic curve MQV scheme in this document includes provision for preventing all these attacks.
Nonetheless implementers should be aware of the attacks and monitor future advances. The attacks
illustrate that it is important that implementations of ECDSA perform all the security checks
specified in the main body of this document. The following is a list of some of the known attacks:

• Attacks on the ECDLP or ECDHP. The security of the elliptic curve MQV scheme relies
on the difficulty of the ECDLP and ECDHP on the elliptic curve domain parameters used
— otherwise an attacker who sees an U to V using the scheme may be able to recover the
shared secret value z from Q1,U , Q2,U , Q1,V , and Q2,V , and use this information to discover
the keying data they agreed.

• Attacks on key generation. Key generation is involved in the key deployment procedure
of the elliptic curve MQV scheme. Secure random or pseudorandom number generation is
required during key generation to prevent, for example, V selecting a predictable secret key.
Insecure random and pseudorandom number generators are perhaps the most common cause
of cryptographic attacks on cryptographic systems.

• Attacks on the key derivation function. The key derivation function used by the elliptic curve
MQV scheme must possess a number of properties to ensure the security of the scheme. If,
for example, an attacker is able to predict some bits of the output of the key derivation
function, or if portions of the output of the key derivation function are correlated in some
way, an attacker may be able to learn some information about the agreed keying data.

• Attacks based on the use of invalid domain parameters. The security of the elliptic curve
MQV scheme relies on U and V using valid domain parameters because, for example, invalid
domain parameters may be susceptible to the Pohlig-Hellman attack [PH78]. U and V should
therefore receive assurance that the elliptic curve domain parameters used are valid.
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• Unknown key-share attacks. Kaliski [Kal98] has observed that the elliptic curve MQV scheme
may be susceptible to unknown key-share attacks if it is not applied with care. These attacks
may be damaging when the scheme is used to provide symmetric keys in order to both
encrypt and authenticate data. The attacks can be prevented by including data like U and
V ’s identities in SharedInfo, or by performing appropriate key confirmation subsequent to
key agreement.

Of course a variety of non-cryptographic attacks on the elliptic curve MQV scheme are also possible,
and implementers should take precautions to avoid, for example, ’implementation attacks’ such as
fault-based attacks [BDL97], power-analysis attacks [KJJ99], and timing-analysis attacks [Koc96].

The operation of the elliptic curve MQV scheme involves selection by implementers of a number
of options. These choices will typically be made based on concerns like efficiency, interoperability,
and on security issues like those outlined above. In particular, some of the choices involved are
selection of elliptic curve domain parameters, selection of a key derivation function, selection of
parameter and public key validation methods, and selection of SharedInfo, as well as selection of an
appropriate application of the scheme to meet the security requirements of the system. Selection
of elliptic curve domain parameters will likely involve consideration of issues like those discussed in
Section B.1 and B.2. Selection of parameter and public key validation methods will likely involve
consideration of security issues like those discussed above. Selection of appropriate information
to include in SharedInfo will likely depend on the particular application, but common things to
include are, for example, the identities of U and V , the public keys Q1,U , Q2,U , Q1,V , and Q2,V ,
counter values, and an indication of the symmetric scheme for which the agreed keying data will
be used. If a number of fields are included in SharedInfo, it is sensible to check that the encoding
of the fields is unique. Selection of an appropriate application of the scheme will likely depend on
issues like what the agreed key will be used for and whether U and V are both on-line. ANS X9.63
contains guidance to help implementers make this selection.

Additional information on the elliptic curve MQV scheme, including extensive security discussion,
can be found in ANS X9.63 [ANS01a], in IEEE 1363 [IEE00], and in the paper of Law, Menezes,
Qu, Solinas, and Vanstone [LMQ+98]. Test vectors for the elliptic curve MQV scheme can be found
in GEC 2 [SEC99].

B.6 Alignment with Other Standards

The cryptographic schemes in this document have been selected to conform with as many other
standards efforts on ECC as possible.

Core standards efforts on ECC include ANS X9.62 [ANS05b], ANS X9.63 [ANS01a], IEEE 1363
[IEE00], IPSec [HC98], ISO 14888-3 [ISO], and ISO 15946 [ISO98a, ISO98b, ISO98c]. Table 7
shows which of the schemes specified in this document are included in these efforts. More details
are given below.

The ANS X9.62 standard specifies ECDSA for use by the financial services industry. It requires
ECDSA to be used with the hash function SHA-1, and with elliptic curve domain parameters with
n > 2160 to meet the stringent security requirements of the banking industry. Subject to these
constraints and other procedural constraints like the use of an ANSI-approved pseudorandom
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Standard Schemes included

ANS X9.62 ECDSA

ANS X9.63 ECIES, ECDH, ECMQV

IEEE P1363 ECDSA, ECDH, ECMQV

IPSec ECDH

ISO 14888-3 ECDSA

ISO 15946 ECDSA, ECDH, ECMQV

Table 7: Alignment with other core ECC standards

number generator, the specification of ECDSA in this document should comply with ANS X9.62.

The draft ANS X9.63 standard specifies key agreement and key transport schemes based on ECC
for use by the financial services industry. In particular it specifies various schemes built from
ECIES, ECDH, and ECMQV. Like ANS X9.62, it requires various constraints like restriction to
the hash function SHA-1, use of elliptic curve domain parameters with n > 2160, and use of an
ANSI-approved pseudorandom number generator. Subject to these constraints, the specifications
of ECDH and ECMQV in this document should be compatible with ANS X9.63. The specification
of ECIES in this document should be similarly compatible with ANS X9.63 when used with the
XOR symmetric encryption scheme. (ANS X9.63 is concerned specifically with key transport of
short keys and hence support for a TDES symmetric encryption option is not so desirable there as
it is here where longer messages may be encrypted.)

The draft IEEE 1363 standard has a wide scope encompassing schemes based on the integer factor-
ization problem, the traditional discrete logarithm problem, and the ECDLP. The techniques based
on ECC specified in IEEE 1363 include general descriptions of ECDSA (known in IEEE 1363 as
ECSSA), ECDH (known as ECKAS-DH1), and ECMQV (known as ECKAS-MQV). The specifi-
cations of ECDSA, ECDH, and ECMQV in this document should comply with IEEE 1363. ECIES
has been submitted for inclusion in the proposed addendum to IEEE 1363, IEEE 1363A [IEE04].

The IPSec standards include support for a variant of ECDH. The particular variant of ECDH
differs from ECDH as specified in this document in as much as it uses different octet string point
representations. In addition the default elliptic curve domain parameters in IPSec are parameters
over F2m with m composite and they do not use prime order base points. Aside from these
technicalities, the specification of ECDH in this document should be broadly compliant with IPSec.

The ISO 14888-3 standard specifies very general signature mechanisms. The specification of
ECDSA in this document should comply with ISO 14888-3.

The draft ISO 15946 standards specify cryptographic techniques based on ECC. ISO 15946-2
specifies a variety of signature schemes including ECDSA. The specification of ECDSA in this
document should comply with ISO 15946-2. ISO 15946-3 specifies a variety of key establishment
schemes including some based on ECDH and ECMQV. The specifications of ECDH and ECMQV
in this document should be compatible with ISO 15946-3.
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A variety of standards build on the core standards above. In particular: The FSTC FSML stan-
dard [Fin99] allows ECDSA as specified in ANS X9.62 to be used to sign electronic checks and
other electronic financial documents. The PKIX ECDSA standard [BJP99] specifies how to use
ECDSA as specified in ANS X9.62 within the PKIX certification framework. The SSL/TLS ECC
standard [DA98] specifies how to use ECDSA, ECDH, and ECMQV as specified in ANS X9.62,
ANS X9.63, and IEEE 1363 in SSL/TLS. The WAP WTLS standard [WAP99] specifies a protocol
similar in spirit to SSL/TLS but tailored to the needs of the wireless telecommunications industry.
It allows use of ECDSA and ECDH as specified in IEEE 1363. From the discussion above on the
alignment of this document with other core standards, it can be seen that the schemes in this
document should be appropriate for use by implementers of the FSTC FSML standard, the PKIX
ECDSA standard, the SSL/TLS ECC standard, and the WAP WTLS standard.
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C ASN.1

This section specifies the ASN.1 syntax that should be used when ASN.1 syntax is used to convey
parts of this information. Generally, the ASN.1 syntax needs to be suitably encoded via, for
example, DER [ITUb]. Several different types of information may need to be conveyed during the
operation of the schemes specified in this document. Section C.1 recommends syntax to describe
finite fields. Section C.2 recommends syntax to describe elliptic curve domain parameters. Section
C.3 recommends syntax to describe elliptic curve public keys. Section C.4 recommends syntax to
describe elliptic curve private keys. Section ?? recommends syntax to describe signature and key
establishment schemes. Section C.6 contains the ASN.1 module that holds the above.

Syntax for other aspects of elliptic curve cryptography, such as object identifiers for specific schemes,
may be added in future versions of this document. The syntax provided here profiles the syntax
used in ANSI X9.62 [ANS05b] and PKIX [HFPS99], [BHP02] and [Bro04].

C.1 Finite Fields

This section provides the recommended ASN.1 syntax to identify finite fields and specific elements
of said fields. The identity of a finite field and a specific field element therein may need to be
specified, for example, as part of some elliptic curve domain parameters. The syntax follows ANSI
X9.62 [ANS05b].

The finite fields of interest in this document are prime fields and characteristic-two fields. A finite
field is identified by a value of type FieldID:

FieldID { FIELD-ID:IOSet } ::= SEQUENCE { -- Finite field

fieldType FIELD-ID.&id({IOSet}),
parameters FIELD-ID.&Type({IOSet}{@fieldType})

}

The governor FIELD-ID of the parameter FIELD-ID:IOSet is defined as the following open type
that is defined in ITU-T X.681 [ITUa, Annex A].

FIELD-ID ::= TYPE-IDENTIFIER

(and hence the dummy argument IOSet must be of said type). The term “open type” means that
a ‘hole’ is left in both components that are filled at the time of usage. The component relation
constraint {IOSet}{@fieldType} binds the argument IOSet to the identifier fieldType.

Only two field types are permitted, namely, prime fields and characteristic-two fields.

FieldTypes FIELD-ID ::= {
{ Prime-p IDENTIFIED BY prime-field } |

{ Characteristic-two IDENTIFIED BY characteristic-two-field }
}

A prime field is specified by the identifier prime-field of type Prime-p (below) comprising an
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integer which is the size of the field.

prime-field OBJECT IDENTIFIER ::= { id-fieldType 1 }
Prime-p ::= INTEGER -- Field of size p.

The object identifier id-fieldType (above) is the root of a tree containing object identifiers of
each field type. It is defined as the following arc from ANSI.

id-fieldType OBJECT IDENTIFIER ::= { ansi-X9-62 fieldType(1)}

where

ansi-X9-62 OBJECT IDENTIFIER ::= {
iso(1) member-body(2) us(840) 10045

}

A characteristic-two finite field is specified by the identifier characteristic-two-field of type
Characteristic-two (below) comprising the size of the field, the type of basis used to express
elements of the field, and the polynomial used to generate the field (in the case of a polynomial
basis).

characteristic-two-field OBJECT IDENTIFIER ::= { id-fieldType 2 }
Characteristic-two ::= SEQUENCE {

m INTEGER, -- Field size 2m

basis CHARACTERISTIC-TWO.&id({BasisTypes}),
parameters CHARACTERISTIC-TWO.&Type({BasisTypes}{@basis})

}

The type CHARACTERISTIC-TWO (above) is defined by the following.

CHARACTERISTIC-TWO ::= TYPE-IDENTIFIER

The basis types of interest are normal bases (that are not used here), trinomial bases, or pen-
tanomial bases. (See Section 2.1.2 for further information.)

BasisTypes CHARACTERISTIC-TWO::= {
{ NULL IDENTIFIED BY gnBasis } |

{ Trinomial IDENTIFIED BY tpBasis } |

{ Pentanomial IDENTIFIED BY ppBasis },
...

}

Normal bases are specified by the object identifier gnBasis (below) with NULL parameters. Trino-
mial bases are specified by the object identifier tpBasis (below) with a parameter Trinomial that
specifies the degree of the middle term in the defining trinomial. Pentanomial bases are specified
by the object identifier ppBasis (below) with a parameter Pentanomial that specifies the degrees
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of the three middle terms in the defining pentanomial.

gnBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 1 }
tpBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 2 }
ppBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 3 }

The identifier id-characteristic-two-basis (above) is defined as the following.

id-characteristic-two-basis OBJECT IDENTIFIER ::= {
characteristic-two-field basisType(3)

}

The degrees of the polynomials that define the finite fields are specified by the following.

Trinomial ::= INTEGER

Pentanomial ::= SEQUENCE {
k1 INTEGER, -- k1 > 0

k2 INTEGER, -- k2 > k1

k3 INTEGER -- k3 > k2

}

Finally, a specific field element is represented by the following type

FieldElement ::= OCTET STRING

whose value is the octet string obtained from the conversion routines given in Section 2.3.5.

C.2 Elliptic Curve Domain Parameters

Elliptic curve domain parameters may need to be specified, for example, during the setup operation
of a cryptographic scheme based on elliptic curve cryptography. There are a number of ways
of specifying elliptic curve domain parameters. Here the following syntax, as a choice of three
parameters, is recommended (following [BJP99]) for use in X.509 certificates and elsewhere.

ECDomainParameters{ECDOMAIN:IOSet} ::= CHOICE {
specified SpecifiedECDomain,

named ECDOMAIN.&id({IOSet}),
implicitCA NULL

}

The choice of three parameters (above) allows detailed specification of all required values using the
choice ecParameters, the use of a specified as an object identifier substitute for a particular set
of elliptic curve domain parameters, or implicitCA to indicate that the parameters are explictly
defined elsewhere. The valid values for the namedCurve choice are constrained to those within the
class ECDOMAIN (defined below and explained further in SEC 2 [SEC00] ).
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The following syntax is used to describe explicit representations of elliptic curve domain parameters,
if need be. The inclusion of the cofactor is strongly recommended.

SpecifiedECDomain ::= SEQUENCE {
version SpecifiedECDomainVersion(ecdpVer1 | ecdpVer2 | ecdpVer3, ...),

fieldID FieldID {{FieldTypes}},
curve Curve,

base ECPoint,

order INTEGER,

cofactor INTEGER OPTIONAL,

hash HashAlgorithm OPTIONAL,

...

}

The components of type SpecifiedECDomainParameters have the following meanings.

• The component version is the version number of the ASN.1 type with a value of 1, 2 or 3.
The notation above is used to constrain version to a set of values. The meaning of these
three values are as follows. Details to be added.

• The component fieldID identifies the finite field over which the elliptic curve is defined and
was discussed in Section C.1.

• The component curve of type Curve (defined below) specifies the elliptic curve.

• The component base of type ECPoint (defined below) specifies the base point on the elliptic
curve curve.

• The component order is the order of the base point base.

• The component cofactor is the order of the curve divided by the order of the base point.
Inclusion of the cofactor is optional – however, it is recommended that that the cofactor be
included in order to facilitate interoperability between implementations.

• The component hash is the hash function used to generate the domain parameters verifiably
at random.

The type SpecifiedECDomainVersion is a subtype of INTEGER and is used to contrain the set of
versions.

SpecifiedECDomainVersion ::= INTEGER {
ecdpVer1(1),

ecdpVer2(2),

ecdpVer3(3)

}

The type Curve itself is by the following, namely by specifying the coefficients of the defining
equation of the elliptic curve and an optional seed. (If the curve was generated verifiably at
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random using a seed value with SHA-1 as specified in ANSI X9.62 [ANS05b] then said seed may
be included as the seed component so as to allow a recipient to verify that the curve was indeed
so generated using said seed.)

Curve ::= SEQUENCE {
a FieldElement,

b FieldElement,

seed BIT STRING OPTIONAL

-- Shall be present if used in SpecifiedECDomain with version equal to ecdpVer2

or ecdpVer3

}

An elliptic curve point itself is represented by the following type

ECPoint ::= OCTET STRING

whose value is the octet string obtained from the conversion routines given in Section 2.3.3.

The class ECDOMAIN, defined as follows, is used to specify a named curve.

ECDOMAIN ::= CLASS {
&id OBJECT IDENTIFIER UNIQUE

}
WITH SYNTAX { ID &id }

For example, the curve sect163k1, defined in SEC 2 [SEC00] , is denoted by the syntax ID

sect163k1.

The following syntax, included here for completeness, may be extended by other standards and
implementations to specify the list of supported named curves. One such extension may be found
in SEC 2 [SEC00] ; another such extension may be found in ANSI X9.62 [ANS05b].

SECGCurveNames ECDOMAIN::= {
... -- named curves

}

The following type HashAlgorithm is used to specify a hash function.

HashAlgorithm ::= AlgorithmIdentifier {{ HashFunctions }}

The information object set HashFunctions specifies the allowed hash functions currently:

HashFunctions ALGORITHM ::= {
{OID sha-1} | {OID sha-1 PARMS NULL } |

{OID id-sha224} | {OID id-sha224 PARMS NULL } |

{OID id-sha256} | {OID id-sha256 PARMS NULL } |

{OID id-sha384} | {OID id-sha384 PARMS NULL } |

{OID id-sha512} | {OID id-sha512 PARMS NULL } ,

Page 86 of 107 §C ASN.1



SEC 1 (Draft) Ver. 1.5 C.3 Elliptic Curve Public Keys

... -- Additional hash functions may be added in the future }

The following object identifiers are used above to identify specific hash functions.

sha-1 OBJECT IDENTIFIER ::= {iso(1) identified-organization(3)

oiw(14) secsig(3) algorithm(2) 26}
id-sha OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840)

organization(1) gov(101) csor(3) nistalgorithm(4) hashalgs(2) }
id-sha224 OBJECT IDENTIFIER ::= { id-sha 4 }
id-sha256 OBJECT IDENTIFIER ::= { id-sha 1 }
id-sha384 OBJECT IDENTIFIER ::= { id-sha 2 }
id-sha512 OBJECT IDENTIFIER ::= { id-sha 3 }

C.3 Elliptic Curve Public Keys

Elliptic curve public keys may need to be specified, for example, during the key deployment phase
of a cryptographic scheme based on elliptic curve cryptography. An elliptic curve public key is a
point on an elliptic curve and may be represented in a variety of ways using ASN.1 syntax. Here the
following syntax is recommended (following [BJP99]) for use in X.509 certificates and elsewhere,
where public keys are represented by the ASN.1 type SubjectPublicKeyInfo.

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier {{ECPKAlgorithms}},
subjectPublicKey BIT STRING

}

The component algorithm specifies the type of public key and associated parameters employed
and the component subjectPublicKey specifies the actual value of said public key.

The parameter type AlgorithmIdentifier above tightly binds together a set of algorithm object
identifiers and their associated parameters types. The type AlgorithmIdentifier is defined as
follows.

AlgorithmIdentifier{ ALGORITHM:IOSet } ::= SEQUENCE {
algorithm ALGORITHM.&id({IOSet}),
parameters ALGORITHM.&Type({IOSet}{@algorithm})

}

The governing type ALGORITHM (above) is defined to be the following object information object.

ALGORITHM ::= CLASS {
&id OBJECT IDENTIFIER UNIQUE,

&Type OPTIONAL

}
WITH SYNTAX { OID &id [PARMS &Type] }
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When SubjectPublicKeyInfo is used to specify an elliptic curve public key, the sole parameter in
the reference of type AlgorithmIdentifier refers either to the object ecPublicKeyType (below)
or the object ecdsa-SHA1 (as defined in ANSI X9.62 [ANS05b]). (Additional algorithm identifiers
may be added.)

ECPKAlgorithms ALGORITHM ::= {
ecPublicKeyType |

ecPublicKeyTypeRestricted |

ecPublicKeyTypeSupplemented ,

...

}
ecPublicKeyType ALGORITHM ::= {

OID id-ecPublicKey PARMS ECDomainParameters {{SECGCurveNames}}
}

The object identifier id-ecPublicKey designates an elliptic curve public key. It is defined by the
following (after ANSI X9.62 [ANS05b]) to be used whenever an object identifier for an elliptic curve
public key is needed. (Note that this syntax applies to all elliptic curve public keys regardless of
their designated use.)

id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 }

where

id-publicKeyType OBJECT IDENTIFIER ::= { ansi-X9-62 keyType(2) }

The following information object of class ALGORITHM indicates the type of the parmaters field of
an AlgorithmIdentifier {} containing the OID id-ecPublicKeyRestricted.

ecPublicKeyTypeRestricted ALGORITHM ::= {
OID id-ecPublicKeyTypeRestricted PARMS ECPKRestrictions

}

The OID id-ecPublicKeyTypeRestricted is used to identify a public key that has restrictions on
which ECC algorithms it can be used with.

id-ecPublicKeyTypeRestricted OBJECT IDENTIFIER ::= {
id-publicKeyType restricted(2) }

The type ECPKRestrictions identifies the restrictions on the algorithms that can be used with a
given elliptic curve public key.

ECPKRestrictions ::= SEQUENCE {
ecDomain ECDomainParameters {{ SECGCurveNames }},
eccAlgorithms ECCAlgorithms
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}

The type ECCAlgorithms is used to identify one or more ECC algorithms, possibly, but not neces-
sarily, in an order of preference.

ECCAlgorithms ::= SEQUENCE OF ECCAlgorithm

The type ECCAlgorithm is a constrained instance of the parameterized type AlgorithmIdentifier
{}, and is used to identify an ECC algorithm.

ECCAlgorithm ::= AlgorithmIdentifier {{ECCAlgorithmSet}}

The component ECDomainParameters was defined in Section C.2 and may contain the elliptic curve
domain parameters associated with the public key in question. (Thus the component algorithm

indicates that SubjectPublicKeyInfo not only specifies the elliptic curve public key but also the
elliptic curve domain parameters associated with said public key.)

Finally, SubjectPublicKeyInfo specifies the public key itself when algorithm indicates that the
public key is an elliptic curve public key.

The elliptic curve public key (a value of type ECPoint that is an OCTET STRING) is mapped to a
subjectPublicKey (a value encoded as type BIT STRING) as follows: The most significant bit of
the value of the OCTET STRING becomes the most significant bit of the value of the BIT STRING

and so on with consecutive bits until the least significant bit of the OCTET STRING becomes the
least significant bit of the BIT STRING.

The following information object of class ALGORITHM indicates the type of the parmaters field of
an AlgorithmIdentifier {} containing the OID id-ecPublicKeySupplemented.

ecPublicKeyTypeSupplemented ALGORITHM ::= {
OID id-ecPublicKeyTypeSupplemented PARMS ECPKSupplements

}

The OID id-ecPublicKeyTypeSupplemented is used to identify a public key that has restrictions
on which ECC algorithms it can be used with.

id-ecPublicKeyTypeSupplemented OBJECT IDENTIFIER ::= { iso(1)

identified-organization(3) certicom(132) schemes(1) supplementalPoints(0) }

The type ECPKSupplements identifies the supplements (and restrictions) on the algorithms that
can be used with a given elliptic curve public key.

ECPKSupplements ::= SEQUENCE {
ecDomain ECDomainParameters {{ SECGCurveNames }},
eccAlgorithms ECCAlgorithms,

eccSupplements ECCSupplements }

The type ECCSupplements serves to provide a list of multiples of the public key. These multiples
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can be used to accelerate the public key operations necessary with that public key.

ECCSupplements ::= CHOICE {
namedMultiples [0] NamedMultiples,

specifiedMultiples [1] SpecifiedMultiples

}
NamedMultiples ::= SEQUENCE {

multiples OBJECT IDENTIFIER,

points SEQUENCE OF ECPoint }
SpecifiedMultiples ::= SEQUENCE OF SEQUENCE {

multiple INTEGER,

point ECPoint }

C.4 Elliptic Curve Private Keys

An elliptic curve private key may need to be conveyed, for example, during the key deployment
operation of a cryptographic scheme in which a Certification Authority generates and distributes
the private keys. An elliptic curve private key is an unsigned integer. The following ASN.1 syntax
may be used.

ECPrivateKey ::= SEQUENCE {
version INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),

privateKey OCTET STRING,

parameters [0] ECDomainParameters {{ SECGCurveNames }} OPTIONAL,

publicKey [1] BIT STRING OPTIONAL

}

where

• The component version specifies the version number of the elliptic curve private key struc-
ture. The syntax above creates the element ecPrivkeyVer1 of type INTEGER whose value is
1.

• The component privateKey is the private key defined to be the octet string of length
dlog2 n/8e (where n is the order of the curve) obtained from the unsigned integer via the
encoding of Section 2.3.7.

• The optional component parameters specifies the elliptic curve domain parameters associated
to the private key. The type Parameters was discussed in Section C.2. If the parameters are
known by other means then this component may be NULL or omitted.

• The optional component publicKey contains the elliptic curve public key associated with the
private key in question. Public keys were discussed in Section C.3. It may be useful to send
the public key along with the private key, especially in a scheme such as MQV that involves
calculations with the public key.
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The syntax for ECPrivateKey may be used, for example, to convey elliptic curve private keys using
the syntax for PrivateKeyInfo as defined in PKCS #8 [RSA93]. In such a case, the value of the
component privateKeyAlgorithm within PrivateKeyInfo shall be id-ecPublicKey as discussed
in section C.3 above.

C.5 Signature and Key Establishment Schemes

Signatures may need to be conveyed from one party to another whenever ECDSA is used to sign a
message. The following syntax is recommended to represent actual signatures for use within X.509
certificates, CRLs (following [BJP99]), and elsewhere. The signature is conveyed using the param-
eterized type SIGNED. It comprises the specification of an algorithm of type AlgorithmIdentifier

together with the actual signature

When the signature is generated using ECDSA with SHA-1, the algorithm component shall contain
the object identifier ecdsa-with-SHA1 (defined below) and the parameters component shall either
contain NULL or be absent. The parameters component should be omitted.

ecdsa-with-SHA1 OBJECT IDENTIFIER ::= { id-ecSigType sha1(1)}
ecdsa-with-Recommended OBJECT IDENTIFIER ::= { id-ecSigType recommended(2) }
ecdsa-with-Specified OBJECT IDENTIFIER ::= { id-ecSigType specified(3)}
ecdsa-with-Sha224 OBJECT IDENTIFIER ::= { id-ecSigType specified(3) 1 }
ecdsa-with-Sha256 OBJECT IDENTIFIER ::= { id-ecSigType specified(3) 2 }
ecdsa-with-Sha384 OBJECT IDENTIFIER ::= { id-ecSigType specified(3) 3 }
ecdsa-with-Sha512 OBJECT IDENTIFIER ::= { id-ecSigType specified(3) 4 }
id-ecSigType OBJECT IDENTIFIER ::= { ansi-X9-62 signatures(4) }

The information object set ECDSAAlgorithmSet specifies how the object identifiers above are to
be used in algorithm identifiers and also serves to constrain the set of algorithms specifiable in this
ASN.1 syntax, when using ECDSA.

ECDSAAlgorithmSet ALGORITHM ::= {
{OID ecdsa-with-SHA1} |

{OID ecdsa-with-SHA1 PARMS NULL} |

{OID ecdsa-with-Recommended} |

{OID ecdsa-with-Recommended PARMS NULL} |

{OID ecdsa-with-Specified PARMS HashAlgorithm } |

{OID ecdsa-with-Sha224} |

{OID ecdsa-with-Sha256} |

{OID ecdsa-with-Sha384} |

{OID ecdsa-with-Sha512} ,

... -- More algorithms need to be added

}

The information object set ECCAlgorithmSet specifies the ECC algorithms that can be identied
with this syntax.
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ECCAlgorithmSet ALGORITHM ::= {
ECDSAAlgorithmSet |

ECDHAlgorithmSet |

ECMQVAlgorithmSet |

ECIESAlgorithmSet |

ECWKTAlgorithmSet ,

...

}

The information object set ECDHAlgorithmSet used above is defined below.

ECDHAlgorithmSet ALGORITHM ::= {
{OID dhSinglePass-stdDH-sha1kdf} |

{OID dhSinglePass-stdDH-sha1kdf PARMS NULL} |

{OID dhSinglePass-cofactorDH-sha1kdf} |

{OID dhSinglePass-cofactorDH-sha1kdf PARMS NULL} |

{OID dhSinglePass-cofactorDH-recommendedKDF} |

{OID dhSinglePass-cofactorDH-specifiedKDF PARMS KeyDerivationFunction} ,

... -- Future combinations may be added

}

The information object set ECMQVHAlgorithmSet used above is defined below.

ECMQVAlgorithmSet ALGORITHM ::= {
{OID mqvSinglePass-sha1kdf} |

{OID mqvSinglePass-recommendedKDF} |

{OID mqvSinglePass-specifiedKDF PARMS KeyDerivationFunction} |

{OID mqvFull-sha1kdf} |

{OID mqvFull-recommendedKDF} |

{OID mqvFull-specifiedKDF PARMS KeyDerivationFunction} ,

... -- Future combinations may be added

}

The object identifiers used in the two information object sets above are given below.

x9-63-scheme OBJECT IDENTIFIER ::= { iso(1) member-body(2)

us(840) ansi-x9-63(63) schemes(0) }
secg-scheme OBJECT IDENTIFIER ::= { iso(1)

identified-organization(3) certicom(132) schemes(1) }
dhSinglePass-stdDH-sha1kdf OBJECT IDENTIFIER ::= {x9-63-scheme 2}
dhSinglePass-cofactorDH-sha1kdf OBJECT IDENTIFIER ::= {x9-63-scheme 3}
mqvSinglePass-sha1kdf OBJECT IDENTIFIER ::= {x9-63-scheme 16}
mqvFull-sha1kdf OBJECT IDENTIFIER ::= {x9-63-scheme 17}
dhSinglePass-cofactorDH-recommendedKDF OBJECT IDENTIFIER ::=

{secg-scheme 1}
dhSinglePass-cofactorDH-specifiedKDF OBJECT IDENTIFIER ::=
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{secg-scheme 2}
mqvSinglePass-recommendedKDF OBJECT IDENTIFIER ::= {secg-scheme 3}
mqvSinglePass-specifiedKDF OBJECT IDENTIFIER ::= {secg-scheme 4}
mqvFull-recommendedKDF OBJECT IDENTIFIER ::= {secg-scheme 5}
mqvFull-specifiedKDF OBJECT IDENTIFIER ::= {secg-scheme 6}

The object identifiers above that end in recommendedKDF indicated that key derivation to use is
the default for the associated elliptic curve domain parameters.

The type KeyDerivationFunction is given below.

KeyDerivationFunction ::= HashAlgorithm

The information object set ECEISAlgorithmSet specifies how one identifies ECIES.

ECIESAlgorithmSet ALGORITHM ::= {
{OID ecies-recommendedParameters} |

{OID ecies-specifiedParameters PARMS ECIESParameters} ,

... -- Future combinations may be added

}

The object identifiers given above are:

ecies-recommendedParameters OBJECT IDENTIFIER ::= {secg-scheme 7}
ecies-specifiedParameters OBJECT IDENTIFIER ::= {secg-scheme 8}

The type ECIESParameters is defined below.

ECIESParameters ::= KeyDerivationFunction

The information object set ECWKTAlgorithmSet specifies how one identifies elliptic curve wrapped
key transport, if one is using the scheme as a single unit, not as a combination of the key. Typically,
one may identify a wrapped key transport scheme separately as a combination of a key agreement
schemes and key wrap scheme.

ECWKTAlgorithmSet ALGORITHM ::= {
{OID ecwkt-recommendedParameters} |

{OID ecwkt-specifiedParameters PARMS ECWKTParameters} ,

... -- Future combinations may be added

}

The object identifiers given above are:

ecwkt-recommendedParameters OBJECT IDENTIFIER ::= {secg-scheme 9}
ecwkt-specifiedParameters OBJECT IDENTIFIER ::= {secg-scheme 10}

The type ECWKTParameters are defined below.
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ECWKTParameters ::= KeyDerivationFunction

The actual value of an ECDSA signature , that is, a signature identified by ecdsa-with-SHA1 or
any other of the above identifiers, is encoded as follows.

ECDSA-Sig-Value ::= SEQUENCE {
r INTEGER,

s INTEGER

}

X.509 certificates and CRLs represent a signature as a bit string; in such cases, the entire encoding
of a value of ECDSA-Sig-Value is the value of said bit string.

The actual value of an ECIES ciphertext may be encoded in ASN.1 with the following type.

ECIES-Ciphertext-Value ::= SEQUENCE {
ephemeralPublicKey ECPoint,

symmetricCiphertext OCTET STRING,

macTag OCTET STRING

}

C.6 Module

To be revised.

The following comprimes the ASN.1 module for all the items specified in this standard, including
those that may have been defined in other modules.

SEC1-v1-5 {
iso(1) identified-organization(3) certicom(132) module(1) ver(2)

}
DEFINITIONS EXPLICIT TAGS ::= BEGIN

--

-- EXPORTS ALL;

--

FieldID { FIELD-ID:IOSet } ::= SEQUENCE { -- Finite field

fieldType FIELD-ID.&id({IOSet}),
parameters FIELD-ID.&Type({IOSet}{@fieldType})

}
FIELD-ID ::= TYPE-IDENTIFIER

FieldTypes FIELD-ID ::= {
{ Prime-p IDENTIFIED BY prime-field } |

{ Characteristic-two IDENTIFIED BY characteristic-two-field }
}
prime-field OBJECT IDENTIFIER ::= { id-fieldType 1 }
Prime-p ::= INTEGER -- Field of size p.
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id-fieldType OBJECT IDENTIFIER ::= { ansi-X9-62 fieldType(1)}
ansi-X9-62 OBJECT IDENTIFIER ::= {

iso(1) member-body(2) us(840) 10045

}
characteristic-two-field OBJECT IDENTIFIER ::= { id-fieldType 2 }
Characteristic-two ::= SEQUENCE {

m INTEGER, -- Field size 2m

basis CHARACTERISTIC-TWO.&id({BasisTypes}),
parameters CHARACTERISTIC-TWO.&Type({BasisTypes}{@basis})

}
CHARACTERISTIC-TWO ::= TYPE-IDENTIFIER

BasisTypes CHARACTERISTIC-TWO::= {
{ NULL IDENTIFIED BY gnBasis } |

{ Trinomial IDENTIFIED BY tpBasis } |

{ Pentanomial IDENTIFIED BY ppBasis },
...

}
gnBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 1 }
tpBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 2 }
ppBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 3 }
id-characteristic-two-basis OBJECT IDENTIFIER ::= {

characteristic-two-field basisType(3)

}
Trinomial ::= INTEGER

Pentanomial ::= SEQUENCE {
k1 INTEGER, -- k1 > 0

k2 INTEGER, -- k2 > k1

k3 INTEGER -- k3 > k2

}
FieldElement ::= OCTET STRING

ECDomainParameters{ECDOMAIN:IOSet} ::= CHOICE {
specified SpecifiedECDomain,

named ECDOMAIN.&id({IOSet}),
implicitCA NULL

}
SpecifiedECDomain ::= SEQUENCE {

version SpecifiedECDomainVersion(ecdpVer1 | ecdpVer2 | ecdpVer3, ...),

fieldID FieldID {{FieldTypes}},
curve Curve,

base ECPoint,

order INTEGER,

cofactor INTEGER OPTIONAL,

hash HashAlgorithm OPTIONAL,

...

}
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SpecifiedECDomainVersion ::= INTEGER {
ecdpVer1(1),

ecdpVer2(2),

ecdpVer3(3)

}
Curve ::= SEQUENCE {

a FieldElement,

b FieldElement,

seed BIT STRING OPTIONAL

-- Shall be present if used in SpecifiedECDomain with version equal to ecdpVer2

or ecdpVer3

}
ECPoint ::= OCTET STRING

ECDOMAIN ::= CLASS {
&id OBJECT IDENTIFIER UNIQUE

}
WITH SYNTAX { ID &id }
SECGCurveNames ECDOMAIN::= {

... -- named curves

}
HashAlgorithm ::= AlgorithmIdentifier {{ HashFunctions }}
HashFunctions ALGORITHM ::= {

{OID sha-1} | {OID sha-1 PARMS NULL } |

{OID id-sha224} | {OID id-sha224 PARMS NULL } |

{OID id-sha256} | {OID id-sha256 PARMS NULL } |

{OID id-sha384} | {OID id-sha384 PARMS NULL } |

{OID id-sha512} | {OID id-sha512 PARMS NULL } ,

... -- Additional hash functions may be added in the future }
sha-1 OBJECT IDENTIFIER ::= {iso(1) identified-organization(3)

oiw(14) secsig(3) algorithm(2) 26}
id-sha OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840)

organization(1) gov(101) csor(3) nistalgorithm(4) hashalgs(2) }
id-sha224 OBJECT IDENTIFIER ::= { id-sha 4 }
id-sha256 OBJECT IDENTIFIER ::= { id-sha 1 }
id-sha384 OBJECT IDENTIFIER ::= { id-sha 2 }
id-sha512 OBJECT IDENTIFIER ::= { id-sha 3 }
SubjectPublicKeyInfo ::= SEQUENCE {

algorithm AlgorithmIdentifier {{ECPKAlgorithms}},
subjectPublicKey BIT STRING

}
AlgorithmIdentifier{ ALGORITHM:IOSet } ::= SEQUENCE {

algorithm ALGORITHM.&id({IOSet}),
parameters ALGORITHM.&Type({IOSet}{@algorithm})

}
ALGORITHM ::= CLASS {
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&id OBJECT IDENTIFIER UNIQUE,

&Type OPTIONAL

}
WITH SYNTAX { OID &id [PARMS &Type] }

ECPKAlgorithms ALGORITHM ::= {
ecPublicKeyType |

ecPublicKeyTypeRestricted |

ecPublicKeyTypeSupplemented ,

...

}
ecPublicKeyType ALGORITHM ::= {

OID id-ecPublicKey PARMS ECDomainParameters {{SECGCurveNames}}
}
id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 }
id-publicKeyType OBJECT IDENTIFIER ::= { ansi-X9-62 keyType(2) }
ecPublicKeyTypeRestricted ALGORITHM ::= {

OID id-ecPublicKeyTypeRestricted PARMS ECPKRestrictions

}
id-ecPublicKeyTypeRestricted OBJECT IDENTIFIER ::= {
id-publicKeyType restricted(2) }
ECPKRestrictions ::= SEQUENCE {

ecDomain ECDomainParameters {{ SECGCurveNames }},
eccAlgorithms ECCAlgorithms

}
ECCAlgorithms ::= SEQUENCE OF ECCAlgorithm

ECCAlgorithm ::= AlgorithmIdentifier {{ECCAlgorithmSet}}
ecPublicKeyTypeSupplemented ALGORITHM ::= {

OID id-ecPublicKeyTypeSupplemented PARMS ECPKSupplements

}
id-ecPublicKeyTypeSupplemented OBJECT IDENTIFIER ::= { iso(1)

identified-organization(3) certicom(132) schemes(1) supplementalPoints(0) }
ECPKSupplements ::= SEQUENCE {

ecDomain ECDomainParameters {{ SECGCurveNames }},
eccAlgorithms ECCAlgorithms,

eccSupplements ECCSupplements }
ECCSupplements ::= CHOICE {

namedMultiples [0] NamedMultiples,

specifiedMultiples [1] SpecifiedMultiples

}
NamedMultiples ::= SEQUENCE {

multiples OBJECT IDENTIFIER,

points SEQUENCE OF ECPoint }
SpecifiedMultiples ::= SEQUENCE OF SEQUENCE {

multiple INTEGER,

point ECPoint }

§C ASN.1 Page 97 of 107



C.6 Module SEC 1 (Draft) Ver. 1.5

ECPrivateKey ::= SEQUENCE {
version INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),

privateKey OCTET STRING,

parameters [0] ECDomainParameters {{ SECGCurveNames }} OPTIONAL,

publicKey [1] BIT STRING OPTIONAL

}
ecdsa-with-SHA1 OBJECT IDENTIFIER ::= { id-ecSigType sha1(1)}
ecdsa-with-Recommended OBJECT IDENTIFIER ::= { id-ecSigType recommended(2) }
ecdsa-with-Specified OBJECT IDENTIFIER ::= { id-ecSigType specified(3)}
ecdsa-with-Sha224 OBJECT IDENTIFIER ::= { id-ecSigType specified(3) 1 }
ecdsa-with-Sha256 OBJECT IDENTIFIER ::= { id-ecSigType specified(3) 2 }
ecdsa-with-Sha384 OBJECT IDENTIFIER ::= { id-ecSigType specified(3) 3 }
ecdsa-with-Sha512 OBJECT IDENTIFIER ::= { id-ecSigType specified(3) 4 }
id-ecSigType OBJECT IDENTIFIER ::= { ansi-X9-62 signatures(4) }
ECDSAAlgorithmSet ALGORITHM ::= {

{OID ecdsa-with-SHA1} |

{OID ecdsa-with-SHA1 PARMS NULL} |

{OID ecdsa-with-Recommended} |

{OID ecdsa-with-Recommended PARMS NULL} |

{OID ecdsa-with-Specified PARMS HashAlgorithm } |

{OID ecdsa-with-Sha224} |

{OID ecdsa-with-Sha256} |

{OID ecdsa-with-Sha384} |

{OID ecdsa-with-Sha512} ,

... -- More algorithms need to be added

}
ECCAlgorithmSet ALGORITHM ::= {

ECDSAAlgorithmSet |

ECDHAlgorithmSet |

ECMQVAlgorithmSet |

ECIESAlgorithmSet |

ECWKTAlgorithmSet ,

...

}
ECDHAlgorithmSet ALGORITHM ::= {

{OID dhSinglePass-stdDH-sha1kdf} |

{OID dhSinglePass-stdDH-sha1kdf PARMS NULL} |

{OID dhSinglePass-cofactorDH-sha1kdf} |

{OID dhSinglePass-cofactorDH-sha1kdf PARMS NULL} |

{OID dhSinglePass-cofactorDH-recommendedKDF} |

{OID dhSinglePass-cofactorDH-specifiedKDF PARMS KeyDerivationFunction} ,

... -- Future combinations may be added

}
ECMQVAlgorithmSet ALGORITHM ::= {

{OID mqvSinglePass-sha1kdf} |
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{OID mqvSinglePass-recommendedKDF} |

{OID mqvSinglePass-specifiedKDF PARMS KeyDerivationFunction} |

{OID mqvFull-sha1kdf} |

{OID mqvFull-recommendedKDF} |

{OID mqvFull-specifiedKDF PARMS KeyDerivationFunction} ,

... -- Future combinations may be added

}
x9-63-scheme OBJECT IDENTIFIER ::= { iso(1) member-body(2)

us(840) ansi-x9-63(63) schemes(0) }
secg-scheme OBJECT IDENTIFIER ::= { iso(1)

identified-organization(3) certicom(132) schemes(1) }
dhSinglePass-stdDH-sha1kdf OBJECT IDENTIFIER ::= {x9-63-scheme 2}
dhSinglePass-cofactorDH-sha1kdf OBJECT IDENTIFIER ::= {x9-63-scheme 3}
mqvSinglePass-sha1kdf OBJECT IDENTIFIER ::= {x9-63-scheme 16}
mqvFull-sha1kdf OBJECT IDENTIFIER ::= {x9-63-scheme 17}
dhSinglePass-cofactorDH-recommendedKDF OBJECT IDENTIFIER ::=

{secg-scheme 1}
dhSinglePass-cofactorDH-specifiedKDF OBJECT IDENTIFIER ::=

{secg-scheme 2}
mqvSinglePass-recommendedKDF OBJECT IDENTIFIER ::= {secg-scheme 3}
mqvSinglePass-specifiedKDF OBJECT IDENTIFIER ::= {secg-scheme 4}
mqvFull-recommendedKDF OBJECT IDENTIFIER ::= {secg-scheme 5}
mqvFull-specifiedKDF OBJECT IDENTIFIER ::= {secg-scheme 6}
KeyDerivationFunction ::= HashAlgorithm

ECIESAlgorithmSet ALGORITHM ::= {
{OID ecies-recommendedParameters} |

{OID ecies-specifiedParameters PARMS ECIESParameters} ,

... -- Future combinations may be added

}
ecies-recommendedParameters OBJECT IDENTIFIER ::= {secg-scheme 7}
ecies-specifiedParameters OBJECT IDENTIFIER ::= {secg-scheme 8}
ECIESParameters ::= KeyDerivationFunction

ECWKTAlgorithmSet ALGORITHM ::= {
{OID ecwkt-recommendedParameters} |

{OID ecwkt-specifiedParameters PARMS ECWKTParameters} ,

... -- Future combinations may be added

}
ecwkt-recommendedParameters OBJECT IDENTIFIER ::= {secg-scheme 9}
ecwkt-specifiedParameters OBJECT IDENTIFIER ::= {secg-scheme 10}
ECWKTParameters ::= KeyDerivationFunction

ECDSA-Sig-Value ::= SEQUENCE {
r INTEGER,

s INTEGER

}
ECIES-Ciphertext-Value ::= SEQUENCE {
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ephemeralPublicKey ECPoint,

symmetricCiphertext OCTET STRING,

macTag OCTET STRING

}
END

Page 100 of 107 §C ASN.1



SEC 1 (Draft) Ver. 1.5 References

D References

[ABM+03] A. Antipa, D. Brown, A. Menezes, R. Struik, and S. Vanstone, Validation of elliptic
curve public keys, Public Key Cryptography — PKC 2003 (Y. G. Desmedt, ed.),
LNCS 2567, IACR, Springer, 2003, pp. 211–223.

[ABMV93] G. Agnew, T. Beth, R. Mullin, and S. Vanstone, Arithmetic operations in GF (2m),
J. of Cryptology 6 (1993), 3–13.

[ABR98] M. Abdullah, M. Bellare, and P. Rogaway, DHAES: An encryption scheme based
on the Diffie-Hellman problem, 1998, Full version of [BR97] at www-cse.ucsd.edu/

users/mihir.

[AMOV91] G. Agnew, R. Mullin, I. Onyszchuk, and S. Vanstone, An implementation for a fast
public-key cryptosystem, J. of Cryptology 3 (1991), 63–79.

[AMV93] G. Agnew, R. Mullin, and S. Vanstone, An implementation of elliptic curve cryp-
tosystems over F2155 , IEEE Journal on Selected Areas in Communications 11 (1993),
804–813.

[ANS98a] ANS X9.52-1998: Triple data encryption: Modes of operation, 1998, webstore.

ansi.org/ansidocstore/default.asp.

[ANS98b] ANS X9.62-1998: Public key cryptography for the financial services industry: The
elliptic curve digital signature algorithm (ECDSA), 1998, Revision scheduled for 2005.
webstore.ansi.org/ansidocstore/default.asp.

[ANS01a] ANS X9.63-2001: Public-key cryptography for the financial services industry: Key
agreement and key transport using elliptic curve cryptography, 2001, webstore.

ansi.org/ansidocstore/default.asp.

[ANS01b] ANS X9.71-2001: Key hash message authentication code, 2001, Not currently avail-
able.

[ANS03] Draft ANS X9.102-2003: Symmetric key cryptography for the financial services in-
dustry: Part 1: Wrapping of keys and associated data, 2003, Draft.

[ANS05a] Draft ANS X9.82: Random number generation, 2005, Tentative organization: Part
1: Overview; Part 2: Entropy Sources; Part 3: Deterministic Algorithms; Part 4:
Complete Systems.

[ANS05b] Draft ANS X9.62-2005: Public key cryptography for the financial services industry:
The elliptic curve digital signature algorithm (ECDSA), 2005, Draft revision.

[BCK98] M. Bellare, R. Canetti, and H. Krawczyk, A modular approach to the design and
analysis of authentication and key exchange protocols, Proceedings of the 30th Annual
Symposium on the Theory of Computing, 1998.

§D References Page 101 of 107



SEC 1 (Draft) Ver. 1.5

[BDL97] D. Boneh, R. A. DeMillo, and R. J. Lipton, On the importance of checking crypto-
graphic protocols for faults, Advances in Cryptology – EUROCRYPT ’97 (W. Fumy,
ed.), LNCS 1233, IACR, Springer, 1997, pp. 37–51.

[BHP02] L. Bassham, R. Housley, and W. Polk, RFC 3279: Algorithms and identifiers for
the internet X.509 public key infrastructure certificate and certificate revocation list
(CRL) profile, IETF, April 2002, www.ietf/rfc/rfc3279.txt.

[BJP99] L. Bassham, D. Johnson, and W. Polk, Representation of elliptic curve digital sig-
nature algorithm (ECDSA) keys and signatures in internet X.509 public key infras-
tructure certificates, IETF, June 1999, Expired Internet-Draft.

[BL96] D. Boneh and R. J. Lipton., Algorithms for black-box fields and their application to
cryptography, In Koblitz [Kob96], pp. 283–297.

[Bon98] D. Boneh, The decision Diffie-Hellman problem, Algorithmic Number Theory III
(J. P. Buehler, ed.), LNCS 1423, Springer, 1998, pp. 48–63.

[BR97] M. Bellare and P. Rogaway, Minimizing the use of random oracles in authenticated
encryption schemes, Proceedings of PKS ’97, 1997.

[Bro04] D. R. L. Brown, Additional algorithms and identifiers for use of
ECC with PKIX, IETF, July 2004, www.ietf.org/internet-drafts/

draft-ietf-pkix-ecc-pkalgs-00.txt.

[BSS99] I. Blake, G. Seroussi, and N. Smart, Elliptic curves in cryptography, Cambridge
University Press, 1999.

[BV96] D. Boneh and R. Venkatesan, Hardness of computing the most significant bits of
secret keys in Diffie-Hellman and related schemes, In Koblitz [Kob96], pp. 129–142.

[BWBL02] S. Blake-Wilson, D. Brown, and P. Lambert, RFC 3278: Use of ECC algorithms in
CMS, IETF, April 2002, www.ietf.org/rfc/rfc3278.txt.

[BWJM97] S. Blake-Wilson, D. Johnson, and A. J. Menezes, Key agreement protocols and their
security analysis, Proceedings of the 6th IMA International Conference on Cryptog-
raphy and Coding, 1997, pp. 30–45.

[BWM99] S. Blake-Wilson and A. J. Menezes, Unknown key-share attacks on the station-to-
station (STS) protocol, Public Key Cryptography — PKC ’99 (H. Ideki and Y. Zheng,
eds.), LNCS 1560, IACR, Springer, 1999, pp. 154–170.

[CH98] M. Chen and E. Hughes, Protocol failures related to order of encryption and signature:
Computation of discrete logarithms in RSA groups, ACISP ’98 (Queensland), 1998.

[CS98] R. Cramer and V. Shoup, A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack, Advances in Cryptology — CRYPTO ’98
(H. Krawczyk, ed.), LNCS 1462, IACR, Springer, 1998, pp. 13–25.

Page 102 of 107 §D References



SEC 1 (Draft) Ver. 1.5

[DA98] T. Dierks and B. Anderson, ECC cipher suites for TLS, IETF, March 1998, Expired
Internet Draft.

[DA99] T. Dierks and C. Allen, The TLS protocol, version 1.0, IETF, January 1999, www.
ietf.org/rfc/rfc2246.txt.

[DH76] W. Diffie and M. Hellman, New directions in cryptography, IEEE Transactions on
Information Theory IT-22 (1976), no. 6, 644–654.

[DvOW92] W. Diffie, P.C. van Oorschot, and M.J. Wiener, Authentication and authenticated
key exchanges, Designs, Codes and Cryptography 2 (1992), 107–125.

[Dwo04] Morris Dworkin, Request for review of key wrap algorithms, ASC X9, November 2004,
eprint.iacr.org/2004/340.

[ECC] ECC Challenge, Details at www.certicom.com.

[ElG85] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete
logarithms, IEEE Transactions on Information Theory IT-31 (1985), 469–472.

[Fin99] Financial Services Technology Consortium, Financial services markup language, Au-
gust 1999, Working Draft.

[FIP93a] NIST, FIPS 186: Digital signature standard, 1993, csrc.nist.gov/publications/
fips.

[FIP93b] NIST, FIPS 46-2: Data encryption standard, 1993, csrc.nist.gov/publications/
fips.

[FIP95] NIST, FIPS 180-1: Secure hash standard, 1995, csrc.nist.gov/publications/

fips.

[FIP01a] NIST, FIPS 186-2: Digital signature standard (change notice), October 2001, csrc.
nist.gov/publications/fips.

[FIP01b] NIST, FIPS 197: Advanced encryption standard (change notice), October 2001,
csrc.nist.gov/publications/fips.

[FIP04] NIST, FIPS 180-2: Secure hash standard (change notice), February 2004, csrc.

nist.gov/publications/fips.

[FR94] G. Frey and H.-G. Rück, A remark concerning m-divisibility and the discrete loga-
rithm problem in the divisor class group of curves, Mathematics of Computation 62
(1994), 865–874.
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