
1999 Certicom Corp. License to this copy is granted provided it is identified as “Standards for Efficient Cryptography (SEC)”
in all materials mentioning or referencing it.

ECC in X.509

SECG X.509 WG Working Document

Working Group Draft, Version 0.2

Thursday, August 26, 1999

Contact: Peter de Rooij (Certicom Corp.), pderooij@certicom.com.

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 2 of 24

Table of Contents
TABLE OF CONTENTS..2

1 INTRODUCTION...4

1.1 GOAL ..4
1.2 OBJECTIVES ..4
1.3 CURRENT SITUATION..4
1.4 WHAT TO SPECIFY ..4

1.4.1 Areas of Impact ..4
1.4.2 ASN.1 Types ...5

1.5 CONTRIBUTORS ..6
1.6 TO BE DONE ..6

2 X.509 SYNTAX ...7

2.1 INTRODUCTION ...7
2.2 GENERAL FORMAT OF AN X.509 CERTIFICATE ..7
2.3 X.509 ALGORITHM IDENTIFIER SYNTAX ...8
2.4 PKIX PROFILE ...8
2.5 X9.55 PROFILE ..9

3 EXISTING ECC SYNTAX..10

3.1 ANSI X9.62 (ECDSA) .. 10
3.1.1 Introduction ...10
3.1.2 Algorithm Identifier..10
3.1.3 Parameters...11
3.1.4 Public Keys...14
3.1.5 Signatures ..14

3.2 X9.63 ... 14

4 PROPOSED X.509 ECC SYNTAX...15

4.1 INTRODUCTION .. 15
4.1.1 Algorithm Identifiers in Public Key Info ...15
4.1.2 Algorithm Identifiers for Signature Type Identification ..15
4.1.3 Summary..15
4.1.4 Section Outline ...15

4.2 ALGORITHM IDENTIFIERS .. 15
4.3 ALGORITHM OBJECT IDENTIFIERS.. 16
4.4 PARAMETERS... 16

5 EC CERTIFICATE SIGNATURE FORMAT ..18

6 EC PUBLIC KEY FORMAT...19

6.1 ECDSA KEYS ... 19

7 SUPPORTED ALGORITHM INDICATION...20

7.1 INTRODUCTION .. 20
7.2 OIDS ... 20

8 ASN.1 MODULE..21

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 3 of 24

REFERENCES ..24

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 4 of 24

1 Introduction

1.1 Goal
To enable and standardize the use of elliptic curve keys within the X.509 framework. The
current scope is limited to those aspects of a Public Key Infrastructure (PKI) that are defined in
X.509 [5]. That is, the certificate format and the format of certificate revocation lists (CRLs) are
in scope. Management issues and supporting protocols (such as certificate request) are out of
scope – these will be the subject of a follow-on document.

? Is this the right scope?

1.2 Objectives
v To specify how to indicate ECC keys and their usage within X.509 certificates.

v The chosen mechanism must be generic in the sense that wherever possible it should
be applicable to any profile (specialization) of X.509 [5], such as PKIX [11] and X9.55
[10].

v Moreover, it should be compatible with any current initiatives to standardize ECC in
X.509, in X.509 profiles, or outside of X.509.

v In addition, it should be flexible enough to be ready for more future profiles, for future
extensions (new uses, new algorithms, etc.).

v Finally, the mechanism must be simple, and have the fewest options possible. (Of
course, this nicely matches the other requirements.)

1.3 Current Situation
The X.509 standard [5] does not discuss algorithms; it only contains a placeholder for a list of
supported algorithms and related parameters, with the intention that this be further specified
by profiles based on the standard. Indeed, some profiles do, such as PKIX [11], X9.55 [10] and
SET.

What is missing to achieve the above objectives is a general, universal way to specify ECC keys
and all relevant aspects of the usage within X.509 [5].

On the other hand, several other standards and initiatives do define syntax for ECC keys and
their usage. These include X9.62 [11], SEC1 [1], and the ECDSA extension proposal for PKIX
[14].

1.4 What to specify

1.4.1 Areas of Impact
The choice of public key algorithm affects the following things in a certificate.

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 5 of 24

Certificate Signature Format – the certificate must uniquely identify the public key
algorithm used by the CA for certificate signing. This involves the field that identifies
this algorithm as well as the format of the signature itself.

Public Key Format – an X.509 certificate explicitly contains the certified subject public key.
Therefore, the format of the public key must be specified. Again, this involves the field
that identifies the algorithm (type) as well as the public key format itself. Note that by
definition of its ASN.1 type, the algorithm type field may include the public key
parameters (curve and base field).

Key Usage – certificates may list acceptable uses of the certified subject public key. This
includes the mechanism (signature verification, encryption, key agreement, etc.), and
potentially also the public key algorithms that may be used (ECDSA, ECDH, etc.). Only
the latter is algorithm specific; the public key algorithm does not influence the
encoding of the mechanism.

Each of these areas is discussed in a separate section in the remainder of this document. First,
however, the ASN.1 types that must be described in these sections are listed (Section 1.4.2).

1.4.2 ASN.1 Types
A single ASN.1 type in an X.509 certificate identifies the choice of public key algorithm:

AlgorithmIdentifier – defines the (type of) public key algorithm used, possibly
including parameters. It consists of an algorithm field and an optional parameters
field. (Note: a given profile may mandate the presence of this optional field.)

 The algorithm field may contain an algorithm type (such as RSA, discrete log, and
elliptic curve) or an algorithm (such as RSA-PKCS1-with-SHA-1, DSA-with-SHA-1, and
ECDSA-with-SHA-1). It is an OID (object identifier).

 The parameters field (if given) containsidentifies the system parameters that define
the “environment” in which public and private keys live. For ECC, the parameters
object identifies the base field (incl. representation), the curve, the basis point, the
generator, and some additional optional parameters (seed used for random generation
of the curve, co-factor, etc.).

 Note: If the parameters field is not given (i.e., is NULL), the system parameters are
inherited from the CA certificate.

All other fields in a certificate that depend on the public key algorithm are binary (BIT
STRING); the parsing is determined by an AlgorithmIdentifier:

v The encrypted field of the signed certificate (i.e., the certificate signature itself) is a
BIT STRING, whose interpretation is determined by the algorithmIdentifier field,
which is of type AlgorithmIdentifier. (PKIX calls this field signatureValue.)

v The signature field of the to-be-signed certificate duplicates the
algorithmIdentifier field of the signed certificate. (PKIX calls this field
signatureAlgorithm.)

v The subjectPublicKey field (inside the subjectPublicKeyInfo field of the to-be-
signed certificate) is a BIT STRING, whose interpretation is determined by the
algorithm field inside subjectPublicKeyInfo, which is of type
AlgorithmIdentifier.

v The supportedAlgorithms attribute lists algorithms that may be supported with the
given subject public key. The attribute contains an AlgorithmIdentifier, and
optionally a KeyUsage and/or CertificatePolicies field.

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 6 of 24

 (The public key algorithm does not (directly) affect the keyUsage and
extendedKeyUsage extensions.)

The first two uses of AlgorithmIdentifier indicate a specific algorithm – the signature
algorithm used to sign the certificate; the use in subjectPublicKey indicates an public key
algorithm type – e.g., RSA, discrete log, or elliptic curve based. The use in
supportedAlgorithms presumably would be used to indicate a specific algorithm (since the
type already is indicated in the subjectPublicKey field).

1.5 Contributors
SECG ECC X.509 Certificate Working Group Members:

v Peter de Rooij (Certicom Corp.), Chair, pderooij@certicom.com.

v Michael Crerar (Diversinet Corp.), mcrerar@dvnet.com.

v Young Etheridge (Xcert International Inc.), yhe@xcert.com

v Don Johnson (Certicom Corp.), djohnson@certicom.com.

v Mark Shuttleworth (Thawte Consulting Inc.), marks@thawte.com

v William Whyte (Baltimore), william@baltimore.ie.

Simon Blake-Wilson, Bill Lattin and John Goyo (Certicom) provided additional comments and
input.

1.6 To be done

! Remove options: this version is based on X9.62 and PKIX; all irrelevant code and all options not
supported by SEC1 must be removed!

! Replace references to PKIX or X9.62 by references to SEC1 or GEC1, where possible.

! Discussion of impact on CRLs, CRL signing, certificate request format (?).

? Open Issue: should this document be split into multiple documents? E.g., a separate document for
each of: X.509, PKIX profile, X9.55 profile, …

! This document currently is a discussion document rather than a standard or guideline. This is to
be changed in later editions.

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 7 of 24

2 X.509 Syntax

2.1 Introduction
The X.509 standard itself does not go into details concerning formatting of signatures and
public keys. Instead, it provides the means to identify the formatting of these fields. This is
done by means of an AlgorithmIdentifier. As outlined in Section 1.4, the
AlgorithmIdentifier allows for identification of both public keys and signatures.

This section details the X.509 syntax proper, and therefore focuses on the
AlgorithmIdentifier only (identification of formatting).

The formatting itself (specification and interpretation of the bit strings that represent public
keys and signatures) is specific to the algorithm. The specifications that currently exist for
formatting of ECC based public keys and signatures are discussed in Section 3.

Section 4 links the identification and formatting into one proposed ECC X.509 syntax.

2.2 General Format of an X.509 Certificate
A Certificate contains a signature. The signature algorithm that was chosen for certificate
signing determines its format. This is done by inserting an AlgorithmIdentifier in the
signed message (the to-be-signed certificate) as well as in the signature itself.

The ASN.1 in X.509 for the certificate is:
CERTIFICATE ::= SIGNED { SEQUENCE {
 version [0] Version DEFAULT v1,
 serialNuMBER CertificateSerialNumer,
 signature AlgorithmIdentifier,
 issuer Name,
 validity Validity,
 subject Name,
 subjectPublickeyInfo SubjectPublickeyInfo,
 issuerUniqueIdentifier [1] IMPLICIT UniqueIdentifier OPTIONAL,
 subjectUniqueIdentifier [2] IMPLICIT UniqueIdentifier OPTIONAL,
 extensions Extensions OPTIONAL } }

The signature field specifies the public key algorithm used by the CA to sign this certificate.

The signature (i.e., the SIGNED macro) is defined as:
SIGNATURE {ToBeSigned} ::= SEQUENCE {
 algorithmIdentifier AlgorithmIdentifier,
 encrypted ENCRYPTED-HASH {ToBeSigned}}

ENCRYPTED-HASH { ToBeSigned } ::= BIT STRING (CONSTRAINED BY {
 -- must be the result of applying a hashing procedure to the --
 -- DER encoded octets of a value of --
 ToBeSigned
 –-and then applying an encipherment procedure to these octets--}

SIGNED {ToBeSigned} ::= SEQUENCE {
 toBeSigned ToBeSigned,

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 8 of 24

 COMPONENTS OF Signature { ToBeSigned }}

In other words, a signature is a sequence of the message to be signed, an
AlgorithmIdentifier, and an encrypted hash (the signature itself). The
AlgorithmIdentifier must accurately define the signature algorithm used.

2.3 X.509 Algorithm Identifier Syntax
The ASN.1 syntax for the type AlgorithmIdentifier in X.509 is:

AlgorithmIdentifier ::= SEQUENCE {
 algorithm ALGORITHM.&id({SupportedAlgorithms}),
 parameters ALGORITHM.&Type({SupportedAlgorithms}{@algorithm}) OPTIONAL }

ALGORITHM ::= TYPE-IDENTIFIER

In X.509, SupportedAlgorithms is not specified, and no list of supported ALGORITHMs
(SupportedAlgorithms) is defined. This document does not define an exhaustive list for
SupportedAlgorithms either. This is left to the applications based on this document.
However, this document does define the format for AlgorithmIdentifier values for ECC
keys.

2.4 PKIX Profile
The following syntax is the 1993 ASN.1 Syntax copied from Appendix B of PKIX [11]. First,
PKIX rephrases the AlgorithmIdentifier syntax (renaming of ALGORITHM to ALGORITHM-
ID).

AlgorithmIdentifier ::= SEQUENCE {
 algorithm ALGORITHM-ID.&id({SupportedAlgorithms}),
 parameters ALGORITHM-ID.&Type({SupportedAlgorithms}{@algorithm}) OPTIONAL }

The type ALGORITHM-ID is defined as follows:
ALGORITHM-ID ::= CLASS {
 &id OBJECT IDENTIFIER UNIQUE,
 &Type OPTIONAL
} WITH SYNTAX { OID &id [PARMS &Type] }

This allows definition of SupportedAlgorithms:
SupportedAlgorithms ALGORITHM-ID ::= {
 . . . , -- extensible
 rsaPublicKey | rsaSHA-1 | rsaMD5 | rsaMD2 |
 dssPublicKey | dsaSHA-1 | dhPublicKey }

This, finally, allows definition of AlgorithmIdentifiers, for example:
dssPublicKey ALGORITHM-ID ::= { OID id-dsa PARMS Dss-Params }
dsaSHA-1 ALGORITHM-ID ::= { OID id-dsa-with-sha1 }
. . .
id-dsa-with-sha1 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) x9-57(10040) x9algorithm 3 }
id-dsa OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) x9-57(10040) x9algorithm 1 }
. . .
Dss-Params ::= . . . -- details omitted here

The former of these algorithm identifiers (dsspublicKey) is used in subjectPublicKeyInfo
(indicating an algorithm type); the latter (dsaSHA-1) is used in the signature field (indicating
a specific signature algorithm)

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 9 of 24

Note: the next release of the DSS (Digital Signature Standard, [4]) will specify a number of
algorithms, including the DSA (Digital Signature Algorithm) as well as ECDSA and RSA. The
prefix dss in the naming refers to DSA; this is a historical leftover from the first version of the
DSS, that only contained DSA.

2.5 X9.55 Profile
This profile never goes into details concerning public key algorithms.

? Correct?

? It does mention the Supported Algorithms Attribute as a “Directory Attribute”. What does this
mean? Is it signed (part of a certificate) or is it appended to a certificate only to facilitate
identification of a particular certificate (in case a user has multiple certificates with different
public keys, to be used with different algorithms)?

? Any other profiles I should mention?

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 10 of 24

3 Existing ECC Syntax

3.1 ANSI X9.62 (ECDSA)

3.1.1 Introduction
This section compiles the ECC syntax from the ANSI X9.62 standard [11]. Those familiar with
that standard may skip this section; it is supplied to render this document self-contained only.

3.1.2 Algorithm Identifier
The following syntax is copied from ANSI X9.62 [11]. In this standard,
AlgorithmIdentifier is parameterized by {{ECPKAlgorithms}}:

SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier {{ECPKAlgorithms}},
 subjectPublicKey BIT STRING }

The parameterized type AlgorithmIdentifier is then defined as:
AlgorithmIdentifier {ALGORITHM:IOSET} ::= SEQUENCE {
 algorithm ALGORITHM.&id({IOSET}),
 parameters ALGORITHM.&Type({IOSET}{@algorithm}) OPTIONAL }

(Note: the parameters are mandatory here; absence must be indicated by specifying NULL.)

The type ECPKAlgorithms is then defined as follows:
ECPKAlgorithms ALGORITHM ::= {
 ecPublicKeyType,
 . . . }

ecPublicKeyType ALGORITHM ::= { Parameters IDENTIFIED BY id-ecPublicKey }

ALGORITHM ::= TYPE_IDENTIFIER

id-ecPublicKey OBJECT IDENTIFIER ::= { ansi-X9-62 keyType(2) 1 }

Thus, an ECC public key is identified as a sequence of the OID id-ecPublicKey and an
instance of the type Parameters. The type Parameters is defined below, in 3.1.3.

An ECDSA signature is identified by an OID:
id-ecSigType OBJECT IDENTIFIER ::= { ansi-X9-62 signatures(4) }
ecdsa-with-SHA1 OBJECT IDENTIFIER ::= { id-ecSigType 1 }

Note: the OIDs are formed as in PKIX [11]. In particular, ecdsa-with-
SHA1ecPublicKeyType is used to indicate a algorithm type in SubjectPublciKeyInfo, id-
ecSigTypeSubjectPublicKeyInfo, ecdsa-with-SHA1 is used to indicate a specific
(signature) algorithm in the signature field.

However, the ecdsa-with-SHA1 OID is not declared as part of the supported algorithms
ECPKAlgorithms. (In PKIX, both dsspublicKeydssPublicKey (the DL analogue of
ecPublicKeyType) and dsa-SHA1 (the ALGORITHM that contains the analogue of ecdsa-
with-SHA1) are part of the supported algorithms SupportedAlgorithms.)

This is a consequence of the fact that ECDSA does not specify certificates, and therefore does
not need to explicitly identify the ECDSA signature as an AlgorithmIdentifier. This

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 11 of 24

specification will follow the PKIX model [11], as such an explicit identification is required in
the current context.

? Does this make sense?

3.1.3 Parameters

3.1.3.1 Parameter Specification
There are three ways of indicating parameters:

v By explicit specification. This option is not recommended unless neither of the other
(much more compact) options work.

v By reference. That is, by means of an OID for a specific parameter set. (This OID is
constrained by the values in the set CurveNames, see below.)

v By inheritance. The parameters for a subject public key can be inherited from the
issuer’s certificate signing public key. (Note that these parameters in turn may be
inherited from a higher level CA.) Inheritance is indicated by omission of the
parameters in the ALGORITHM. That is, if no parameters are given, they are inherited
from the parameters associated with the CA key.

This choice is encoded as:
Parameters ::= CHOICE {
 ecParameters ECParameters,
 namedCurve CURVES.&id({CurveNames}),
 implicitlyCA NULL }

Below, the ECParameters type (Sections 3.1.3.2 and 3.1.3.3), the CURVES type, and the list of
curves CurveNames (Section 3.1.3.4) are specified.

3.1.3.2 Domain Parameters

The ECParameters type explicitly specifies all elliptic curve domain parameters, as defined in
ANSI X9.62 [11].

ECParameters ::= SEQUENCE {
 version INTEGER { ecpVer1(1) (ecpVer1),
 fieldID FieldID {{ FieldTypes }},
 curve Curve,
 base ECPoint,
 order INTEGER,
 cofactor INTEGER OPTIONAL,
 . . . }

As detailed in SEC1 [1], the inclusion of the cofactor is strongly recommended.
FieldElement ::= OCTET STRING

The value of FieldElement shall be the octet string representation of a field element following
the conversion routine in X9.62, Section 4.3.1 [11].

Curve ::= SEQUENCE {
 a FieldElement,
 b FieldElement,
 seed BIT STRING OPTIONAL }

ECPoint ::= OCTET STRING

The value of ECPoint shall be the octet string representation of an elliptic curve point
following the conversion routine in X9.62, Section 4.3.6 [11].

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 12 of 24

The components of type ECParameters have the following meanings:

v version specifies the version number of the elliptic curve parameters. It shall have
the value 1 for this version of the Standard. The notation above creates an INTEGER
named ecpVer1 and gives it a value of one. It is used to constrain version to a single
value.

v fieldID identifies the finite field over which the elliptic curve is defined. Finite fields
are represented by values of the parameterized type FieldID, constrained to the
values of the objects defined in the information object set FieldTypes. Additional
detail regarding fieldID is provided below (Section 3.1.3.3).

v curve specifies the coefficients a and b of the elliptic curve E. Each coefficient shall be
represented as a value of type FieldElement, an OCTET STRING. seed is an optional
parameter used to derive the coefficients of a randomly generated elliptic curve.

v base specifies the base point P on the elliptic curve. The base point shall be
represented as a value of type ECPoint, an OCTET STRING.

v order specifies the order n of the base point.

v cofactor is the integer h = #E(F)/n. Note: This parameter is not used in ECDSA,
except in parameter validation. It is included for compatibility with Elliptic Curve Key
Agreement public key parameters. As detailed in SEC1 [1], the inclusion of the
(optional) cofactor is strongly recommended.

The AlgorithmIdentifier within subjectPublicKeyInfo is the only place within a
certificate where the parameters may be used. If the ECDSA algorithm parameters are absent
from the subjectPublicKeyInfo AlgorithmIdentifier and the CA signed the subject
certificate using ECDSA, then the certificate issuer's ECDSA parameters apply to the subject's
ECDSA key. If the ECDSA algorithm parameters are absent from the subjectPublicKeyInfo
AlgorithmIdentifier and the CA signed the certificate using a signature algorithm other
than ECDSA, then clients shall not validate the certificate.

3.1.3.3 Field Specification
FieldID { FIELD-ID:IOSet } ::= SEQUENCE {
 fieldType FIELD-ID.&id({IOSet}),
 parameters FIELD-ID.&Type({IOSet}{@fieldType}) OPTIONAL }

FieldTypes FIELD-ID ::= {
 { Prime-p IDENTIFIED BY prime-field } |
 { Characteristic-two IDENTIFIED BY characteristic-two-field },
 ...}

FIELD-ID ::= TYPE-IDENTIFIER

FieldID is a parameterized type composed of two components, fieldType and parameters.
These components are specified by the fields &id and &Type, which form a template for
defining sets of information objects, instances of the class FIELD-ID. This class is based on
the useful information object class TYPE-IDENTIFIER, described in X.681 Annex A. In an
instance of FieldID, "fieldType" will contain an object identifier value that uniquely
identifies the type contained in "parameters". The effect of referencing "fieldType" in both
components of the fieldID sequence is to tightly bind the object identifier and its type.

The information object set FieldTypes is used as the single parameter in a reference to type
FieldID. FieldTypes contains two objects followed by the extension marker ("..."). Each
object, which represents a finite field, contains a unique object identifier and its associated
type. The values of these objects define all of the valid values that may appear in an instance of

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 13 of 24

fieldID. The extension marker allows backward compatibility with future versions of this
standard, which may define objects to represent additional kinds of finite fields.

The object identifier id-fieldType represents the root of a tree containing the object
identifiers of each field type. It has the following value:

id-fieldType OBJECT IDENTIFIER ::= { ansi-X9-62 fieldType(1) }

The object identifiers prime-field and characteristic-two-field name the two kinds of fields
defined in this Standard. They have the following values:

prime-field OBJECT IDENTIFIER ::= { id-fieldType 1 }
characteristic-two-field OBJECT IDENTIFIER ::= { id-fieldType 2 }

Prime-p ::= INTEGER -- Field size p (p in bits)
Characteristic-two ::= SEQUENCE {
 m INTEGER, -- Field size 2^m (m in bits)
 basis CHARACTERISTIC-TWO.&id({BasisTypes}),
 parameters CHARACTERISTIC-TWO.&Type({BasisTypes}{@basis}) }

BasisTypes CHARACTERISTIC-TWO ::= {
 { NULL IDENTIFIED BY onBasisgnBasis } |
 { Trinomial IDENTIFIED BY tpBasis } |
 { Pentanomial IDENTIFIED BY ppBasis },
 ... }

Trinomial ::= INTEGER
Pentanomial ::= SEQUENCE {
 k1 INTEGER,
 k2 INTEGER,
 k3 INTEGER }

CHARACTERISTIC-TWO ::= TYPE-IDENTIFIER

The object identifier id-characteristic-two-basis represents the root of a tree containing
the object identifiers for each type of basis for the characteristic-two finite fields. It has the
following value:

id-characteristic-two-basis OBJECT IDENTIFIER ::= {
 characteristic-two-field basisType(1) }

The object identifiers onBasis,gnBasis, tpBasis and ppBasis name the three kinds of basis
for characteristic-two finite fields defined by X9.62 [11]. They have the following values:

onBasisgnBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 1 }
tpBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 2 }
ppBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 3 }

! Bring in line with SEC1. Only tpBasis is recommended.

3.1.3.4 Curves

CurveNames listsmust list all supported curves by their OIDs. It is suggested to add the
overarching list to GEC1 [2]. Each application then can support a subset of these curves, by
appropriately redefining (trimming down) CurveNames. X9.62 gives a specific list (not
reproduced here).

CurveNames CURVES ::= {...}
. . .
 -- see GEC1 -- }

CURVES ::= CLASS {
 &id OBJECT IDENTIFIER UNIQUE

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 14 of 24

} WITH SYNTAX { ID &id }

3.1.4 Public Keys
A public key is represented as the X.509 type SubjectPublicKeyInfo, using the following
syntax:

SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }

The elliptic curve public key (a value of type ECPoint which is an OCTET STRING) is mapped
to a subjectPublicKey (a value of type BIT STRING) as follows: the most significant bit of
the OCTET STRING value becomes the most significant bit of the BIT STRING value, etc.; the
least significant bit of the OCTET STRING becomes the least significant bit of the BIT STRING.

3.1.5 Signatures
When ECDSA and SHA-1 are used to sign an X.509 certificate or CRL, the signature shall be
identified by the value ecdsa-with-SHA1, as defined below:

id-ecSigType OBJECT IDENTIFIER ::= { ansi-X9-62 signatures(4) }
ecdsa-with-SHA1 OBJECT IDENTIFIER ::= { id-ecSigType 1 }

When the ecdsa-with-SHA1 OID appears in the algorithm field of the ASN.1 type
AlgorithmIdentifier, and the parameters field is a value of type NULL, the ECDSA
parameters for signature verification must be obtained from other sources, such as the
subjectPublicKeyInfo field of the certificate of the issuer.

When a digital signature is identified by the OID ecdsa-with-SHA1, the digital signature shall
be ASN.1 encoded using the following syntax:

ECDSA-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER }

X.509 certificates and CRLs represent signatures as a bit string. Where a certificate or CRL is
signed with ECDSA and SHA-1, the entire encoding of a value of ASN.1 type ECDSA-Sig-
Value shall be the value of the bit string.

3.2 X9.63

! to be added whenever X9.63 is ready…

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 15 of 24

4 Proposed X.509 ECC Syntax

4.1 Introduction

4.1.1 Algorithm Identifiers in Public Key Info
We propose to use the ANSI X9.62 format [11] to indicate the EC public key type. That is, the
X9.62 definition for ecPublicKeyType, when used in the subjectPublicKeyInfo
AlgorithmIdentifier, indicates any EC public key, irrespective of the algorithm this key is
used in.

Note: this AlgorithmIdentifier currently is the only one in a general standard. If and
when more identifiers are added these may be added to indicate distinction between different
types of EC algorithms. However, currently no such additional identifiers seem to be
forthcoming (e.g., ANSI X9.63).

4.1.2 Algorithm Identifiers for Signature Type Identification
For the certificate signature, currently only ECDSA is supported; of course, the same
formatting and the OID ecdsa-with-SHA1 can be reused. Similarly, the enumeration is open
to extension (addition of more signature algorithms). Extensions should always use existing
OIDs to ease interoperability.

Note: If and when more algorithms are supported, the corresponding OIDs must be used.
(None are currently planned to be added to SEC1.)

4.1.3 Summary
The AlgorithmIdentifier in subjectPublicKeyInfo is used to indicate the public key
type. All EC public key types will use ecPublicKeyType from X9.62.

The certificate signature is identified by the AlgorithmIdentifier from the ECDSA
signature standard (ANSI X9.62).

4.1.4 Section Outline
To describe both uses of AlgorithmIdentifier, the X.509 syntax [5] is adapted to
encompass the identification of the ECDSA type as an AlgorithmIdentifier. This is detailed
in Section 4.2. Furthermore, it is proposed to use the OIDs as specified in 4.3 (and in X9.62
[11]), and to specify the Parameters as in Section 4.4 (and in X9.62). Together, this defines the
required ALGORITHMs.

4.2 Algorithm Identifiers
The syntax for AlgorithmIdentifier and ALGORITHM is copied from ANSI X9.62 [11]X.509
[5]; this is interoperable with PKIX [11] and ANSI X9.62 [11]X.509 [5].

AlgorithmIdentifier ::= SEQUENCE {
 algorithm ALGORITHM.&id({SupportedAlgorithms}),
 parameters ALGORITHM.&Type({SupportedAlgorithms}{@algorithm}) OPTIONAL }
ALGORITHM ::= TYPE-IDENTIFIER

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 16 of 24

The algorithm identifiers are:
ecPublicKeyType ALGORITHM ::= { OID id-ecPublicKey PARMS Parameters }
ecdsa-SHA1 ALGORITHM ::= { OID ecdsa-with-SHA1 }

This allows definition of the SupportedAlgorithms:
SupportedAlgorithms ALGORITHM ::= {
 . . . , -- extensible
 ecPublicKeyType | ecdsa-SHA1 }

! Add ECAES, ECMQV, ECDH, etc. as soon as defined in X9.63. See Section 7.

4.3 Algorithm Object Identifiers
Specify the relevant Algorithm OIDs for ECC support. These are already given in ANSI X9.62
(ECDSA) [11], as justified in Sections 5 and 6:

ansi-X9-62 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) 10045 }
ecdsa-with-SHA1 OBJECT IDENTIFIER ::= { ansi-X9-62 sigType(4) 1 }
id-ecPublicKey OBJECT IDENTIFIER ::= { ansi-X9-62 keyType(2) 1 }

The id-ecPublicKey OID is used in subjectPublicKeyInfo (indicating an algorithm type).
The ecdsa-with-SHA1 OID is used in the signature field (indicating a specific algorithm).

! Add the OIDs for ECAES, ECMQV, ECDH, etc. as soon as defined in X9.63. See Section 7.

4.4 Parameters
Parameter definition follows and extends X9.62 (ECDSA), see 3.1.3. In particular, the
inheritance is extended in the following sense. If parameters are inherited (indicated by
omission of the parameters in the ALGORITHM), they are defined in the domainParametersTBD
field of the CA if that exists, and otherwise they are inherited from the CA certificate signing
public key (i.e., from the key used to verify the current certificate).

This is just an extension of the interpretation of the omission of the parameters in the
ALGORITHM as far as the current certificate is concerned. The CA certificate may have an new
domainParametersTBD field. In absence of that field, there is no difference with the
definition of ECDSA. If that field is present in the CA certificate, there is a difference if the
subject certificate omits the parameters in the ALGORITHM.

That is, parameters are defined:

v By explicit specification. This option is not recommended unless neither of the other
(much more compact) options work.

v By reference. That is, by means of an OID for a specific parameter set.

v By inheritance. The parameters for a subject public key can be inherited from the
issuer’s certificate.

v If the issuer’s certificate contains a domainParametersTBD field, the
parameters are inherited from that field.

v If the issuer’s certificate does not contain a domainParametersTBD field, the
parameters are inherited from the issuer’s certificate signing public key.

 Inheritance is indicated by omission of the parameters in the ALGORITHM. That is, if no
parameters are given, they are inherited from the parameters associated with the CA
key as specified above.

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 17 of 24

CurveNames lists all supported curves by their OIDs. It is suggested to add the overarching
list to GEC1 [2]. Each application then can support a subset of these curves, by appropriately
redefining (trimming down) CurveNames.

CurveNames CURVES ::= {
 -- see GEC1 }

CURVES ::= CLASS {
 &id OBJECT IDENTIFIER UNIQUE
} WITH SYNTAX { ID &id }

? Incorporate the GEC1 list here?

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 18 of 24

5 EC Certificate Signature Format
For ECC based certificates, currently only ECDSA (ANSI X9.62) signatures are supported.
Therefore, the value for the signature algorithmIdentifier that identifies the certificate
signing signature algorithm is taken from X9.62 [11], see 4.1.2:

ansi-X9-62 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) 10045 }
ecdsa-with-SHA1 OBJECT IDENTIFIER ::= { ansi-X9-62 sigType(4) 1 }
ecdsa-SHA1 ALGORITHM ::= { OID ecdsa-with-SHA1 }

As in X9.62, the assumption is that the parameters are known to the verifier, as they are tied to
(part of) the CA public key. That is, they have been provided by means external to the current
certificate. (An example is: in the subjectPublicKey field (see Section 6) of a certificate of
the CA that issued the current certificate.)

The signature format itself is defined in X9.62 as well [11]:
ECDSA-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER }

The signature in an X.509 certificate is a BIT STRING. As specified in X9.62 [11], the value of
this BIT STRING shall be the entire encoding of a value of type ECDSA-Sig-Value.

? Caveat: encoding rules (BER/PER/DER).

Note: Future extension to other signature algorithms should follow the reasoning followed
here: the signature standard defines both the OID and the signature format.

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 19 of 24

6 EC Public Key Format
The subject public key formatting (in a certificate) is specified by the AlgorithmIdentifier
in the subjectPublickeyInfo field; see 4.1.1.

SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }

It is proposed to use the AlgorithmIdentifier value from ANSI X9.62 [11] for all ECC public
keys, see 4.1.1. (Note: this may change in the future.)

Therefore, we propose to use the formatting of the public key as defined in [11] for all ECC
public keys. The next section describes this format.

6.1 ECDSA Keys
The ECDSA standard (X9.62) contains an OID that is used as the algorithm identifier for ECC
type algorithms [11]:

id-ecPublicKey OBJECT IDENTIFIER ::= { ansi-X9-62 keyType(2) 1 }

This OID shall be used as detailed in 4.2:
ecPublicKeyType ALGORITHM ::= { OID id-ecPublicKey PARMS Parameters }

Section 3.1.3 specifies the encoding of Parameters.

Since the public key format depends on the public key type only and not on the specific
signature algorithm (in this case: ECDSA), we can reuse the same OID for any elliptic curve
public key.

The subject public key in an X.509 certificate is a BIT STRING. The value of this BIT STRING
is defined as in X9.62 [11], as explained below.

The public key is a point on the elliptic curve defined by Parameters; that is, it is a value of
type ECPoint. An ECPoint is an OCTET STRING. The ECPoint is encoded as an OCTET
STRING as in Section 4.3.6 of X9.62 [11]; the OCTET STRING is encoded into a BIT STRING as
defined in X9.62, Section 6.4. (That is, map the most significant bit to the most significant bit;
map the least significant bit to the least significant bit.)

! Change references to SEC1, and check if compliant with that…

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 20 of 24

7 Supported Algorithm Indication

7.1 Introduction
The supportedAlgorithms ATTRIBUTE allows the specification of a list of algorithms, key
usage and certificate policies that may be used with the subject public key. As such, there is
no impact specific to ECC. However, use of this field for ECC keys requires the specification of
OIDs for all algorithms supported by SEC1 [1].

Note that this section is not intended to recommend use of the supportedAlgorithms
ATTRIBUTE; it is intended only to give guidance on its implementation when used. Note for
example, that PKIX does not describe this attribute.

From X.509, Sec. 12.2.2.8:
supportedAlgorithms ATTRIBUTE ::= {
 WITH SYNTAX SupportedAlgorithm
 EQUALITY MATCHING RULE algorithmIdentifierMatch
 ID id-at-supportedAlgorithms }

SupportedAlgorithm ::= SEQUENCE {
 algorithmIdentifier AlgorithmIdentifier,
 intendedUsage [0] KeyUsage OPTIONAL,
 intendedCertificatePolicies [1] CertificatePoliciesSyntax OPTIONAL }

The supported AlgorithmIdentifiers are given in Section 7.2 below

? Is this attribute inside the certificate or is it just in the directory, to ease searching? In the latter
case, this chapter can go?

7.2 OIDs
The following AlgorithmIdentifiers specify the algorithms currently supported by SEC1
[1]. SEC1 does not contain any (except ECDSA).

ansi-X9-62 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) 10045 }
ecdsa-with-SHA1 OBJECT IDENTIFIER ::= { ansi-X9-62 sigType(4) 1 }
ecdsa-SHA1 ALGORITHM ::= { OID ecdsa-with-SHA1 }

! To be added: ECAES, ECMQV, ECDH, … Level of detail to be determined.

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 21 of 24

8 ASN.1 Module
! Pseudo-ASN.1 -- to be cleaned up.

An ASN.1 expert and some developers should have a close look at this!
ECCX509CertificateTBD {
 iso(1) identified-organization(3) certicom(132) module(1) ...}

DEFINITIONS EXPLICIT TAGS ::= BEGIN
EXPORTS All;
IMPORTS
 Certificate
 FROM AuthenticationFramework authenticationFramework
 Parameters, AlgorithmIdentifier, ecPublicKeyType, ecdsa-SHA1
 FROM ANSI-X9-62;
certicom-arc OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) certicom(132) }

SupportedAlgorithms ALGORITHM ::= {
 ..., -- extensible
 ecPublicKeyType | ecdsa-SHA1 }

CurveNames CURVES ::= {
 ...,
 -- see GEC1 -- }

END

! Same stuff without imports
-- X.509 stuff
CERTIFICATE ::= SIGNED { SEQUENCE {
 version [0] Version DEFAULT v1,
 serialNuMBER CertificateSerialNumer,
 signature AlgorithmIdentifier,
 issuer Name,
 validity Validity,
 subject Name,
 subjectPublickeyInfo SubjectPublickeyInfo,
 issuerUniqueIdentifier [1] IMPLICIT UniqueIdentifier OPTIONAL,
 subjectUniqueIdentifier [2] IMPLICIT UniqueIdentifier OPTIONAL,
 extensions Extensions OPTIONAL } }
SIGNATURE {ToBeSigned} ::= SEQUENCE {
 algorithmIdentifier AlgorithmIdentifier,
 encrypted ENCRYPTED-HASH {ToBeSigned}}

ENCRYPTED-HASH { ToBeSigned } ::= BIT STRING (CONSTRAINED BY {
 -- must be the result of applying a hashing procedure to the --
 -- DER encoded octets of a value of --
 ToBeSigned
 –-and then applying an encipherment procedure to these octets--}

SIGNED {ToBeSigned} ::= SEQUENCE {
 toBeSigned ToBeSigned,
 COMPONENTS OF Signature { ToBeSigned }}

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 22 of 24

-- ADDITION: support ECDSA.
ECDSA-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER }
-- END ADDITION

AlgorithmIdentifier ::= SEQUENCE {
 algorithm ALGORITHM.&id({SupportedAlgorithms}),
 parameters ALGORITHM.&Type({SupportedAlgorithms}{@algorithm}) OPTIONAL }
ALGORITHM ::= TYPE-IDENTIFIER

-- ADDITION: support Elliptic Curve PKs and ECDSA.
ecPublicKeyType ALGORITHM ::= { Parameters IDENTIFIED BY id-ecPublicKey }
id-ecPublicKey OBJECT IDENTIFIER ::= { ansi-X9-62 keyType(2) 1 }

ecdsa-SHA1 ALGORITHM ::= { OID ecdsa-with-SHA1 }
id-ecSigType OBJECT IDENTIFIER ::= { ansi-X9-62 signatures(4) }
ecdsa-with-SHA1 OBJECT IDENTIFIER ::= { id-ecSigType 1 }

SupportedAlgorithms ALGORITHM ::= {
 . . . , -- extensible
 ecPublicKeyType | ecdsa-SHA1 }
-- END ADDITION

SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }

-- X9.62 stuff
Parameters ::= CHOICE {
 ecParameters ECParameters,
 namedCurve CURVES.&id({CurveNames}),
 implicitlyCA NULL }

ECParameters ::= SEQUENCE {
 version INTEGER { ecpVer1(1) (ecpVer1),
 fieldID FieldID {{ FieldTypes }},
 curve Curve,
 base ECPoint,
 order INTEGER,
 cofactor INTEGER OPTIONAL,
 . . . }

FieldElement ::= OCTET STRING

Curve ::= SEQUENCE {
 a FieldElement,
 b FieldElement,
 seed BIT STRING OPTIONAL }

ECPoint ::= OCTET STRING

FieldID { FIELD-ID:IOSet } ::= SEQUENCE {
 fieldType FIELD-ID.&id({IOSet}),
 parameters FIELD-ID.&Type({IOSet}{@fieldType}) OPTIONAL }

FieldTypes FIELD-ID ::= {
 { Prime-p IDENTIFIED BY prime-field } |

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 23 of 24

 { Characteristic-two IDENTIFIED BY characteristic-two-field },
 ...}

FIELD-ID ::= TYPE-IDENTIFIER

id-fieldType OBJECT IDENTIFIER ::= { ansi-X9-62 fieldType(1) }
prime-field OBJECT IDENTIFIER ::= { id-fieldType 1 }
characteristic-two-field OBJECT IDENTIFIER ::= { id-fieldType 2 }

Prime-p ::= INTEGER -- Field size p (p in bits)
Characteristic-two ::= SEQUENCE {
 m INTEGER, -- Field size 2^m (m in bits)
 basis CHARACTERISTIC-TWO.&id({BasisTypes}),
 parameters CHARACTERISTIC-TWO.&Type({BasisTypes}{@basis}) }

BasisTypes CHARACTERISTIC-TWO ::= {
 { NULL IDENTIFIED BY onBasisgnBasis } |
 { Trinomial IDENTIFIED BY tpBasis } |
 { Pentanomial IDENTIFIED BY ppBasis },
 ... }

Trinomial ::= INTEGER
Pentanomial ::= SEQUENCE {
 k1 INTEGER,
 k2 INTEGER,
 k3 INTEGER }

CHARACTERISTIC-TWO ::= TYPE-IDENTIFIER
id-characteristic-two-basis OBJECT IDENTIFIER ::= {
 characteristic-two-field basisType(1) }
onBasisgnBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 1 }
tpBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 2 }
ppBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 3 }
CurveNames CURVES ::= {
. . .
 -- see GEC1 -- }

CURVES ::= CLASS {
 &id OBJECT IDENTIFIER UNIQUE
} WITH SYNTAX { ID &id }

Standards for Efficient Cryptography Working Group Draft, Version 0.2
SECG/X.509 WG August 26, 1999

ECC in X.509 SECG/X.509 WG Page 24 of 24

References
[1] SEC1, Elliptic Curve Cryptography, Standards for Efficient Cryptography Group, Feb 16,

1999. Available from http://www.secg.org.

[2] GEC1, Recommended Elliptic Curve Parameters, Standards for Efficient Cryptography
Group, Feb 16, 1999. Available from http://www.secg.org.

[3] FIPS 180-1, Secure Hash Standard, Federal Information Processing Standards Publication
180-1, U.S. Department of Commerce/N.I.S.T., National Information Service, Springfield,
Virginia, April 17, 1995. Available from http://csrc.nist.gov/fips/fip180-1.pdf.

[4] FIPS 186-1, Digital Signature Standard (DSS), Federal Information Processing Standards
Publication 186-1, U.S. Department of Commerce/N.I.S.T., National Information Service,
Springfield, Virginia, December 15, 1998. Available from
http://csrc.nist.gov/fips/fips1861.pdf

[5] ITU-T Recommendation X.509, Information Technology – Open Systems Interconnection –
The Directory: Authentication Framework. (Equivalent to ISO/IEC 9594-8.)

[6] ITU-T Recommendation X.680 (1994), Information Technology – Abstract Syntax Notation
One (ASN.1): Specification of Basic Notation. (Equivalent to ISO/IEC 8824-1:1995.)

[7] ITU-T Recommendation X.681 (1994), Information Technology – Abstract Syntax Notation
One (ASN.1): Information Object Specification. (Equivalent to ISO/IEC 8824-2:1995.)

[8] ITU-T Recommendation X.682 (1994), Information Technology – Abstract Syntax Notation
One (ASN.1): Constraint Specification. (Equivalent to ISO/IEC 8824-3:1995.)

[9] ITU-T Recommendation X.683 (1994), Information Technology – Abstract Syntax Notation
One (ASN.1): Parameterization of ASN.1 Specifications. (Equivalent to ISO/IEC 8824-
4:1995.)

[10] ANSI X9.55-1999, Public Key Cryptography for the Financial Services Industry: Extensions to
Public Key Certificates and Certificate Revocation Lists, American Bankers Association, June
18, 1997.

[11] ANSI X9.62-1999, Public Key Cryptography for the Financial Services Industry: the Elliptic
Curve Digital Signature Algorithm (ECDSA), American Bankers Association, 1999.

[12] ANSI X9.63-1999, Public Key Cryptography for the Financial Services Industry: Key
Agreement and Key Transport Using Elliptic Curve Cryptography, American Bankers
Association, Working Draft, April 20, 1999.

[13] R. Housley, W. Ford, et al., Internet X.509 Public Key Infrastructure Certificate and CRL
Profile, Internet Engineering Task Force (IETF), Internet RFC 2459. This is part of the PKIX
effort. The document is available from http://www.ietf.org/html.charters/pkix-
charter.html.

[14] L. Bassham, D. Johnson and W. Polk, Representation of Elliptic Curve Digital Signature
Algorithm (ECDSA) Keys and Signatures in Internet X.509 Public Key Infrastructure
Certificates, Internet Draft, June 3, 1999. Available from
http://www.ietf.org/html.charters/pkix-charter.html.

