
INTRO(9P) INTRO(9P)

NAME

intro – introduction to the Plan 9 File Protocol, 9P

SYNOPSIS

#include <fcall.h>

DESCRIPTION

A Plan 9 server is an agent that provides one or more hierarchical file systems — file trees — that may be
accessed by Plan 9 processes. A server responds to requests by clients to navigate the hierarchy, and to
create, remove, read, and write files. The prototypical server is a separate machine that stores large num­
bers of user files on permanent media; such a machine is called, somewhat confusingly, a file server.
Another possibility for a server is to synthesize files on demand, perhaps based on information on data struc­
tures maintained in memory; the plumber(4) server is an example of such a server.

A connection to a server is a bidirectional communication path from the client to the server. There may be a
single client or multiple clients sharing the same connection.

The Plan 9 File Protocol, 9P, is used for messages between clients and servers. A client transmits requests
(T-messages) to a server, which subsequently returns replies (R-messages) to the client. The combined
acts of transmitting (receiving) a request of a particular type, and receiving (transmitting) its reply is called a
transaction of that type.

Each message consists of a sequence of bytes. Two-, four-, and eight-byte fields hold unsigned integers rep­
resented in little-endian order (least significant byte first). Data items of larger or variable lengths are repre­
sented by a two-byte field specifying a count, n, followed by n bytes of data. Text strings are represented this
way, with the text itself stored as a UTF-8 encoded sequence of Unicode characters (see utf(7)). Text strings
in 9P messages are not NUL-terminated: n counts the bytes of UTF-8 data, which include no final zero byte.
The NUL character is illegal in all text strings in 9P, and is therefore excluded from file names, user names,
and so on.

Each 9P message begins with a four-byte size field specifying the length in bytes of the complete message
including the four bytes of the size field itself. The next byte is the message type, one of the constants in the
enumeration in the include file <fcall.h>. The next two bytes are an identifying tag, described below. The
remaining bytes are parameters of different sizes. In the message descriptions, the number of bytes in a field
is given in brackets after the field name. The notation parameter[n] where n is not a constant represents a
variable-length parameter: n[2] followed by n bytes of data forming the parameter. The notation string[s]
(using a literal s character) is shorthand for s[2] followed by s bytes of UTF-8 text. (Systems may choose to
reduce the set of legal characters to reduce syntactic problems, for example to remove slashes from name
components, but the protocol has no such restriction. Plan 9 names may contain any printable character
(that is, any character outside hexadecimal 00-1F and 80-9F) except slash.) Messages are transported in
byte form to allow for machine independence; fcall(3) describes routines that convert to and from this form
into a machine-dependent C structure.

MESSAGES

size[4] Tversion tag[2] msize[4] version[s]
size[4] Rversion tag[2] msize[4] version[s]

size[4] Tauth tag[2] afid[4] uname[s] aname[s]
size[4] Rauth tag[2] aqid[13]

size[4] Rerror tag[2] ename[s]

size[4] Tflush tag[2] oldtag[2]
size[4] Rflush tag[2]

size[4] Tattach tag[2] fid[4] afid[4] uname[s] aname[s]
size[4] Rattach tag[2] qid[13]

size[4] Twalk tag[2] fid[4] newfid[4] nwname[2] nwname*(wname[s])
size[4] Rwalk tag[2] nwqid[2] nwqid*(wqid[13])

size[4] Topen tag[2] fid[4] mode[1]
size[4] Ropen tag[2] qid[13] iounit[4]

size[4] Topenfd tag[2] fid[4] mode[1]
size[4] Ropenfd tag[2] qid[13] iounit[4] unixfd[4]

1

INTRO(9P) INTRO(9P)

size[4] Tcreate tag[2] fid[4] name[s] perm[4] mode[1]
size[4] Rcreate tag[2] qid[13] iounit[4]

size[4] Tread tag[2] fid[4] offset[8] count[4]
size[4] Rread tag[2] count[4] data[count]

size[4] Twrite tag[2] fid[4] offset[8] count[4] data[count]
size[4] Rwrite tag[2] count[4]

size[4] Tclunk tag[2] fid[4]
size[4] Rclunk tag[2]

size[4] Tremove tag[2] fid[4]
size[4] Rremove tag[2]

size[4] Tstat tag[2] fid[4]
size[4] Rstat tag[2] stat[n]

size[4] Twstat tag[2] fid[4] stat[n]
size[4] Rwstat tag[2]

Each T-message has a tag field, chosen and used by the client to identify the message. The reply to the
message will have the same tag. Clients must arrange that no two outstanding messages on the same con­
nection have the same tag. An exception is the tag NOTAG, defined as (ushort)~0 in <fcall.h>: the
client can use it, when establishing a connection, to override tag matching in version messages.

The type of an R-message will either be one greater than the type of the corresponding T-message or
Rerror, indicating that the request failed. In the latter case, the ename field contains a string describing the
reason for failure.

The version message identifies the version of the protocol and indicates the maximum message size the
system is prepared to handle. It also initializes the connection and aborts all outstanding I/O on the connec­
tion. The set of messages between version requests is called a session.

Most T-messages contain a fid, a 32-bit unsigned integer that the client uses to identify a ‘‘current file’’ on the
server. Fids are somewhat like file descriptors in a user process, but they are not restricted to files open for
I/O: directories being examined, files being accessed by stat(3) calls, and so on— all files being manipulated
by the operating system — are identified by fids. Fids are chosen by the client. All requests on a connection
share the same fid space; when several clients share a connection, the agent managing the sharing must
arrange that no two clients choose the same fid.

The fid supplied in an attach message will be taken by the server to refer to the root of the served file tree.
The attach identifies the user to the server and may specify a particular file tree served by the server (for
those that supply more than one).

Permission to attach to the service is proven by providing a special fid, called afid, in the attach message.
This afid is established by exchanging auth messages and subsequently manipulated using read and
write messages to exchange authentication information not defined explicitly by 9P. Once the authentica­
tion protocol is complete, the afid is presented in the attach to permit the user to access the service.

A walk message causes the server to change the current file associated with a fid to be a file in the directory
that is the old current file, or one of its subdirectories. Walk returns a new fid that refers to the resulting file.
Usually, a client maintains a fid for the root, and navigates by walks from the root fid.

A client can send multiple T-messages without waiting for the corresponding R-messages, but all outstanding
T-messages must specify different tags. The server may delay the response to a request and respond to
later ones; this is sometimes necessary, for example when the client reads from a file that the server synthe­
sizes from external events such as keyboard characters.

Replies (R-messages) to auth, attach, walk, open, and create requests convey a qid field back to the
client. The qid represents the server’s unique identification for the file being accessed: two files on the same
server hierarchy are the same if and only if their qids are the same. (The client may have multiple fids point­
ing to a single file on a server and hence having a single qid.) The thirteen-byte qid fields hold a one-byte
type, specifying whether the file is a directory, append-only file, etc., and two unsigned integers: first the four-
byte qid version, then the eight-byte qid path. The path is an integer unique among all files in the hierarchy.
If a file is deleted and recreated with the same name in the same directory, the old and new path components
of the qids should be different. The version is a version number for a file; typically, it is incremented every
time the file is modified.

2

INTRO(9P) INTRO(9P)

An existing file can be opened, or a new file may be created in the current (directory) file. I/O of a given
number of bytes at a given offset on an open file is done by read and write.

A client should clunk any fid that is no longer needed. The remove transaction deletes files.

Openfd is an extension used by Unix utilities to allow traditional Unix programs to have their input or output
attached to fids on 9P servers. See openfd(9p) and 9pclient(3) for details.

The stat transaction retrieves information about the file. The stat field in the reply includes the file’s name,
access permissions (read, write and execute for owner, group and public), access and modification times,
and owner and group identifications (see stat(3)). The owner and group identifications are textual names.
The wstat transaction allows some of a file’s properties to be changed.

A request can be aborted with a flush request. When a server receives a Tflush, it should not reply to the
message with tag oldtag (unless it has already replied), and it should immediately send an Rflush. The
client must wait until it gets the Rflush (even if the reply to the original message arrives in the interim), at
which point oldtag may be reused.

Because the message size is negotiable and some elements of the protocol are variable length, it is possible
(although unlikely) to have a situation where a valid message is too large to fit within the negotiated size. For
example, a very long file name may cause a Rstat of the file or Rread of its directory entry to be too large to
send. In most such cases, the server should generate an error rather than modify the data to fit, such as by
truncating the file name. The exception is that a long error string in an Rerror message should be truncated
if necessary, since the string is only advisory and in some sense arbitrary.

Most programs do not see the 9P protocol directly; on Plan 9, calls to library routines that access files are
translated by the kernel’s mount driver into 9P messages.

Unix

On Unix, 9P services are posted as Unix domain sockets in a well-known directory (see getns(3) and
9pserve(4)). Clients connect to these servers using a 9P client library (see 9pclient(3)).

DIRECTORIES

Directories are created by create with DMDIR set in the permissions argument (see stat(9P)). The members
of a directory can be found with read(9P). All directories must support walks to the directory .. (dot-dot)
meaning parent directory, although by convention directories contain no explicit entry for .. or . (dot). The
parent of the root directory of a server’s tree is itself.

ACCESS PERMISSIONS

This section describes the access permission conventions implemented by most Plan 9 file servers. These
conventions are not enforced by the protocol and may differ between servers, especially servers built on top
of foreign operating systems.

Each file server maintains a set of user and group names. Each user can be a member of any number of
groups. Each group has a group leader who has special privileges (see stat(9P) and Plan 9’s users(6)).
Every file request has an implicit user id (copied from the original attach) and an implicit set of groups
(every group of which the user is a member).

Each file has an associated owner and group id and three sets of permissions: those of the owner, those of
the group, and those of ‘‘other’’ users. When the owner attempts to do something to a file, the owner, group,
and other permissions are consulted, and if any of them grant the requested permission, the operation is
allowed. For someone who is not the owner, but is a member of the file’s group, the group and other permis­
sions are consulted. For everyone else, the other permissions are used. Each set of permissions says
whether reading is allowed, whether writing is allowed, and whether executing is allowed. A walk in a direc­
tory is regarded as executing the directory, not reading it. Permissions are kept in the low-order bits of the
file mode: owner read/write/execute permission represented as 1 in bits 8, 7, and 6 respectively (using 0 to
number the low order). The group permissions are in bits 5, 4, and 3, and the other permissions are in bits 2,
1, and 0.

The file mode contains some additional attributes besides the permissions. If bit 31 (DMDIR) is set, the file is
a directory; if bit 30 (DMAPPEND) is set, the file is append-only (offset is ignored in writes); if bit 29 (DMEXCL) is
set, the file is exclusive-use (only one client may have it open at a time); if bit 27 (DMAUTH) is set, the file is an
authentication file established by auth messages; if bit 26 (DMTMP) is set, the contents of the file (or direc­
tory) are not included in nightly archives. (Bit 28 is skipped for historical reasons.) These bits are repro­
duced, from the top bit down, in the type byte of the Qid: QTDIR, QTAPPEND, QTEXCL, (skipping one bit)
QTAUTH, and QTTMP. The name QTFILE, defined to be zero, identifies the value of the type for a plain file.

3

ATTACH(9P) ATTACH(9P)

NAME

attach, auth – messages to establish a connection

SYNOPSIS

size[4] Tauth tag[2] afid[4] uname[s] aname[s]
size[4] Rauth tag[2] aqid[13]

size[4] Tattach tag[2] fid[4] afid[4] uname[s] aname[s]
size[4] Rattach tag[2] qid[13]

DESCRIPTION

The attach message serves as a fresh introduction from a user on the client machine to the server. The
message identifies the user (uname) and may select the file tree to access (aname). The afid argument
specifies a fid previously established by an auth message, as described below.

As a result of the attach transaction, the client will have a connection to the root directory of the desired file
tree, represented by fid. An error is returned if fid is already in use. The server’s idea of the root of the file
tree is represented by the returned qid.

If the client does not wish to authenticate the connection, or knows that authentication is not required, the afid
field in the attach message should be set to NOFID, defined as (u32int)~0 in <fcall.h>. If the client
does wish to authenticate, it must acquire and validate an afid using an auth message before doing the
attach.

The auth message contains afid, a new fid to be established for authentication, and the uname and aname
that will be those of the following attach message. If the server does not require authentication, it returns
Rerror to the Tauth message.

If the server does require authentication, it returns aqid defining a file of type QTAUTH (see intro(9P)) that may
be read and written (using read and write messages in the usual way) to execute an authentication proto­
col. That protocol’s definition is not part of 9P itself.

Once the protocol is complete, the same afid is presented in the attach message for the user, granting
entry. The same validated afid may be used for multiple attach messages with the same uname and
aname.

ENTRY POINTS

Fsmount and fsauth (see 9pclient(3)) generate attach and auth transactions.

SEE ALSO

9pclient(3), version(9P), Plan 9’s authsrv(6)

4

CLUNK(9P) CLUNK(9P)

NAME

clunk – forget about a fid

SYNOPSIS

size[4] Tclunk tag[2] fid[4]
size[4] Rclunk tag[2]

DESCRIPTION

The clunk request informs the file server that the current file represented by fid is no longer needed by the
client. The actual file is not removed on the server unless the fid had been opened with ORCLOSE.

Once a fid has been clunked, the same fid can be reused in a new walk or attach request.

Even if the clunk returns an error, the fid is no longer valid.

ENTRY POINTS

Clunk transactions are generated by fsclose and fsunmount (see 9pclient(3)) and indirectly by other actions
such as failed fsopen calls.

5

ERROR(9P) ERROR(9P)

NAME

error – return an error

SYNOPSIS

size[4] Rerror tag[2] ename[s]

DESCRIPTION

The Rerror message (there is no Terror) is used to return an error string describing the failure of a trans­
action. It replaces the corresponding reply message that would accompany a successful call; its tag is that of
the failing request.

By convention, clients may truncate error messages after ERRMAX-1 bytes; ERRMAX is defined in <libc.h>.

6

FLUSH(9P) FLUSH(9P)

NAME

flush – abort a message

SYNOPSIS

size[4] Tflush tag[2] oldtag[2]
size[4] Rflush tag[2]

DESCRIPTION

When the response to a request is no longer needed, such as when a user interrupts a process doing a
read(9p), a Tflush request is sent to the server to purge the pending response. The message being flushed
is identified by oldtag. The semantics of flush depends on messages arriving in order.

The server should answer the flush message immediately. If it recognizes oldtag as the tag of a pending
transaction, it should abort any pending response and discard that tag. In either case, it should respond with
an Rflush echoing the tag (not oldtag) of the Tflush message. A Tflush can never be responded to by
an Rerror message.

The server may respond to the pending request before responding to the Tflush. It is possible for a client to
send multiple Tflush messages for a particular pending request. Each subsequent Tflush must contain
as oldtag the tag of the pending request (not a previous Tflush). Should multiple Tflushes be received for
a pending request, they must be answered in order. A Rflush for any of the multiple Tflushes implies an
answer for all previous ones. Therefore, should a server receive a request and then multiple flushes for that
request, it need respond only to the last flush.

When the client sends a Tflush, it must wait to receive the corresponding Rflush before reusing oldtag for
subsequent messages. If a response to the flushed request is received before the Rflush, the client must
honor the response as if it had not been flushed, since the completed request may signify a state change in
the server. For instance, Tcreate may have created a file and Twalk may have allocated a fid. If no
response is received before the Rflush, the flushed transaction is considered to have been canceled, and
should be treated as though it had never been sent.

Several exceptional conditions are handled correctly by the above specification: sending multiple flushes for a
single tag, flushing after a transaction is completed, flushing a Tflush, and flushing an invalid tag.

ENTRY POINTS

The 9pclient(3) library does not generate flush transactions.. 9pserve(4) generates flush transactions to
cancel transactions pending when a client hangs up.

7

OPEN(9P) OPEN(9P)

NAME

open, create – prepare a fid for I/O on an existing or new file

SYNOPSIS

size[4] Topen tag[2] fid[4] mode[1]
size[4] Ropen tag[2] qid[13] iounit[4]

size[4] Tcreate tag[2] fid[4] name[s] perm[4] mode[1]
size[4] Rcreate tag[2] qid[13] iounit[4]

DESCRIPTION

The open request asks the file server to check permissions and prepare a fid for I/O with subsequent read
and write messages. The mode field determines the type of I/O: 0 (called OREAD in <libc.h>), 1
(OWRITE), 2 (ORDWR), and 3 (OEXEC) mean read access, write access, read and write access, and execute
access, to be checked against the permissions for the file. In addition, if mode has the OTRUNC (0x10) bit
set, the file is to be truncated, which requires write permission (if the file is append-only, and permission is
granted, the open succeeds but the file will not be truncated); if the mode has the ORCLOSE (0x40) bit set,
the file is to be removed when the fid is clunked, which requires permission to remove the file from its direc­
tory. All other bits in mode should be zero. It is illegal to write a directory, truncate it, or attempt to remove it
on close. If the file is marked for exclusive use (see stat(9P)), only one client can have the file open at any
time. That is, after such a file has been opened, further opens will fail until fid has been clunked. All these
permissions are checked at the time of the open request; subsequent changes to the permissions of files do
not affect the ability to read, write, or remove an open file.

The create request asks the file server to create a new file with the name supplied, in the directory (dir) rep­
resented by fid, and requires write permission in the directory. The owner of the file is the implied user id of
the request, the group of the file is the same as dir, and the permissions are the value of

perm & (~0666 | (dir.perm & 0666))

if a regular file is being created and
perm & (~0777 | (dir.perm & 0777))

if a directory is being created. This means, for example, that if the create allows read permission to others,
but the containing directory does not, then the created file will not allow others to read the file.

Finally, the newly created file is opened according to mode, and fid will represent the newly opened file.
Mode is not checked against the permissions in perm. The qid for the new file is returned with the create
reply message.

Directories are created by setting the DMDIR bit (0x80000000) in the perm.

The names . and .. are special; it is illegal to create files with these names.

It is an error for either of these messages if the fid is already the product of a successful open or create
message.

An attempt to create a file in a directory where the given name already exists will be rejected; in this case,
the fscreate call (see 9pclient(3)) uses open with truncation. The algorithm used by the create system call is:
first walk to the directory to contain the file. If that fails, return an error. Next walk to the specified file. If the
walk succeeds, send a request to open and truncate the file and return the result, successful or not. If the
walk fails, send a create message. If that fails, it may be because the file was created by another process
after the previous walk failed, so (once) try the walk and open again.

ENTRY POINTS

Fsopen and fscreate (see 9pclient(3)) both generate open messages; only fscreate generates a create
message. The iounit associated with an open file may be discovered by calling fsiounit.

For programs that need atomic file creation, without the race that exists in the open-create sequence
described above, fscreate does the following. If the OEXCL (0x1000) bit is set in the mode for a fscreate call,
the open message is not sent; the kernel issues only the create. Thus, if the file exists, fscreate will draw
an error, but if it doesn’t and the fscreate call succeeds, the process issuing the fscreate is guaranteed to be
the one that created the file.

8

OPENFD(9P) OPENFD(9P)

NAME

openfd – prepare a fid for I/O using a file descriptor

SYNOPSIS

size[4] Topenfd tag[2] fid[4] mode[1]
size[4] Ropenfd tag[2] qid[13] iounit[4] unixfd[4]

DESCRIPTION

The openfd request behaves like open, except that it prepares and returns a Unix file descriptor correspond­
ing to the opened fid.

After a successful open transaction, fid is considered by the client to have been clunked and can be reused.

The returned Unix file descriptor is one end of a Unix pipe. A proxy process at the other end transfers data
between the pipe and the 9P server. Because it is a pipe, errors on reads and writes are discarded and
mode must be OREAD or OWRITE; it cannot be ORDWR.

Openfd is implemented by 9pserve(4). 9P servers that post their services using 9pserve(4) (or indirectly via
post9pservice(3)) will never see a Topenfd message.

ENTRY POINTS

Fsopenfd (see 9pclient(3)) generates an openfd message.

9

READ(9P) READ(9P)

NAME

read, write – transfer data from and to a file

SYNOPSIS

size[4] Tread tag[2] fid[4] offset[8] count[4]
size[4] Rread tag[2] count[4] data[count]

size[4] Twrite tag[2] fid[4] offset[8] count[4] data[count]
size[4] Rwrite tag[2] count[4]

DESCRIPTION

The read request asks for count bytes of data from the file identified by fid, which must be opened for read­
ing, starting offset bytes after the beginning of the file. The bytes are returned with the read reply message.

The count field in the reply indicates the number of bytes returned. This may be less than the requested
amount. If the offset field is greater than or equal to the number of bytes in the file, a count of zero will be
returned.

For directories, read returns an integral number of directory entries exactly as in stat (see stat(9P)), one for
each member of the directory. The read request message must have offset equal to zero or the value of
offset in the previous read on the directory, plus the number of bytes returned in the previous read. In
other words, seeking other than to the beginning is illegal in a directory.

The write request asks that count bytes of data be recorded in the file identified by fid, which must be
opened for writing, starting offset bytes after the beginning of the file. If the file is append-only, the data will
be placed at the end of the file regardless of offset. Directories may not be written.

The write reply records the number of bytes actually written. It is usually an error if this is not the same as
requested.

Because 9P implementations may limit the size of individual messages, more than one message may be pro­
duced by a single read or write call. The iounit field returned by open(9P), if non-zero, reports the maximum
size that is guaranteed to be transferred atomically.

ENTRY POINTS

Fsread and fswrite (see 9pclient(3)) generate the corresponding messages. Because they take an offset
parameter, the fspread and fspwrite calls correspond more directly to the 9P messages. Although fsseek
affects the offset, it does not generate a message.

10

REMOVE(9P) REMOVE(9P)

NAME

remove – remove a file from a server

SYNOPSIS

size[4] Tremove tag[2] fid[4]
size[4] Rremove tag[2]

DESCRIPTION

The remove request asks the file server both to remove the file represented by fid and to clunk the fid, even
if the remove fails. This request will fail if the client does not have write permission in the parent directory.

It is correct to consider remove to be a clunk with the side effect of removing the file if permissions allow.

If a file has been opened as multiple fids, possibly on different connections, and one fid is used to remove the
file, whether the other fids continue to provide access to the file is implementation-defined. The Plan 9 file
servers remove the file immediately: attempts to use the other fids will yield a ‘‘phase error.’’ U9fs follows the
semantics of the underlying Unix file system, so other fids typically remain usable.

ENTRY POINTS

Fsremove (see 9pclient(3)) generates remove messages.

11

STAT(9P) STAT(9P)

NAME

stat, wstat – inquire or change file attributes

SYNOPSIS

size[4] Tstat tag[2] fid[4]
size[4] Rstat tag[2] stat[n]

size[4] Twstat tag[2] fid[4] stat[n]
size[4] Rwstat tag[2]

DESCRIPTION

The stat transaction inquires about the file identified by fid. The reply will contain a machine-independent
directory entry, stat, laid out as follows:

size[2] total byte count of the following data

type[2] for kernel use

dev[4] for kernel use

qid.type[1]
the type of the file (directory, etc.), represented as a bit vector corresponding to the high 8 bits of the
file’s mode word.

qid.vers[4]
version number for given path

qid.path[8]
the file server’s unique identification for the file

mode[4]
permissions and flags

atime[4]
last access time

mtime[4]
last modification time

length[8]
length of file in bytes

name[s]
file name; must be / if the file is the root directory of the server

uid[s] owner name

gid[s] group name

muid[s]
name of the user who last modified the file

Integers in this encoding are in little-endian order (least significant byte first). The convM2D and convD2M
routines (see fcall(3)) convert between directory entries and a C structure called a Dir.

The mode contains permission bits as described in intro(9P) and the following: 0x80000000 (DMDIR, this file
is a directory), 0x40000000 (DMAPPEND, append only), 0x20000000 (DMEXCL, exclusive use),
0x04000000 (DMTMP, temporary); these are echoed in Qid.type. Writes to append-only files always place
their data at the end of the file; the offset in the write message is ignored, as is the OTRUNC bit in an open.
Exclusive use files may be open for I/O by only one fid at a time across all clients of the server. If a second
open is attempted, it draws an error. Servers may implement a timeout on the lock on an exclusive use file: if
the fid holding the file open has been unused for an extended period (of order at least minutes), it is reason­
able to break the lock and deny the initial fid further I/O. Temporary files are not included in nightly archives
(see Plan 9’s fossil(4)).

The two time fields are measured in seconds since the epoch (Jan 1 00:00 1970 GMT). The mtime field
reflects the time of the last change of content (except when later changed by wstat). For a plain file, mtime
is the time of the most recent create, open with truncation, or write; for a directory it is the time of the
most recent remove, create, or wstat of a file in the directory. Similarly, the atime field records the last
read of the contents; also it is set whenever mtime is set. In addition, for a directory, it is set by an attach,

12

STAT(9P) STAT(9P)

walk, or create, all whether successful or not.

The muid field names the user whose actions most recently changed the mtime of the file.

The length records the number of bytes in the file. Directories and most files representing devices have a
conventional length of 0.

The stat request requires no special permissions.

The wstat request can change some of the file status information. The name can be changed by anyone
with write permission in the parent directory; it is an error to change the name to that of an existing file. The
length can be changed (affecting the actual length of the file) by anyone with write permission on the file. It is
an error to attempt to set the length of a directory to a non-zero value, and servers may decide to reject
length changes for other reasons. The mode and mtime can be changed by the owner of the file or the group
leader of the file’s current group. The directory bit cannot be changed by a wstat; the other defined permis­
sion and mode bits can. The gid can be changed: by the owner if also a member of the new group; or by the
group leader of the file’s current group if also leader of the new group (see intro(9P) for more information
about permissions, users, and groups). None of the other data can be altered by a wstat and attempts to
change them will trigger an error. In particular, it is illegal to attempt to change the owner of a file. (These
conditions may be relaxed when establishing the initial state of a file server; see Plan 9’s fsconfig(8).)

Either all the changes in wstat request happen, or none of them does: if the request succeeds, all changes
were made; if it fails, none were.

A wstat request can avoid modifying some properties of the file by providing explicit ‘‘don’t touch’’ values in
the stat data that is sent: zero-length strings for text values and the maximum unsigned value of appropriate
size for integral values. As a special case, if all the elements of the directory entry in a Twstat message are
‘‘don’t touch’’ values, the server may interpret it as a request to guarantee that the contents of the associated
file are committed to stable storage before the Rwstat message is returned. (Consider the message to
mean, ‘‘make the state of the file exactly what it claims to be.’’)

A read of a directory yields an integral number of directory entries in the machine independent encoding
given above (see read(9P)).

Note that since the stat information is sent as a 9P variable-length datum, it is limited to a maximum of
65535 bytes.

ENTRY POINTS

Stat messages are generated by fsdirfstat and fsdirstat (see 9pclient(3)).

Wstat messages are generated by fsdirfwstat and fsdirwstat.

BUGS

To make the contents of a directory, such as returned by read(9P), easy to parse, each directory entry begins
with a size field. For consistency, the entries in Twstat and Rstat messages also contain their size, which
means the size appears twice. For example, the Rstat message is formatted as ‘‘(4+1+2+2+n)[4] Rstat
tag[2] n[2] (n-2)[2] type[2] dev[4]...,’’ where n is the value returned by convD2M.

13

VERSION(9P) VERSION(9P)

NAME

version – negotiate protocol version

SYNOPSIS

size[4] Tversion tag[2] msize[4] version[s]
size[4] Rversion tag[2] msize[4] version[s]

DESCRIPTION

The version request negotiates the protocol version and message size to be used on the connection and
initializes the connection for I/O. Tversion must be the first message sent on the 9P connection, and the
client cannot issue any further requests until it has received the Rversion reply. The tag should be NOTAG
(value (ushort)~0) for a version message.

The client suggests a maximum message size, msize, that is the maximum length, in bytes, it will ever gen­
erate or expect to receive in a single 9P message. This count includes all 9P protocol data, starting from the
size field and extending through the message, but excludes enveloping transport protocols. The server
responds with its own maximum, msize, which must be less than or equal to the client’s value. Thenceforth,
both sides of the connection must honor this limit.

The version string identifies the level of the protocol. The string must always begin with the two characters
‘‘9P’’. If the server does not understand the client’s version string, it should respond with an Rversion mes­
sage (not Rerror) with the version string the 7 characters ‘‘unknown’’.

The server may respond with the client’s version string, or a version string identifying an earlier defined proto­
col version. Currently, the only defined version is the 6 characters ‘‘9P2000’’. Version strings are defined
such that, if the client string contains one or more period characters, the initial substring up to but not includ­
ing any single period in the version string defines a version of the protocol. After stripping any such period-
separated suffix, the server is allowed to respond with a string of the form 9Pnnnn, where nnnn is less than or
equal to the digits sent by the client.

The client and server will use the protocol version defined by the server’s response for all subsequent com­
munication on the connection.

A successful version request initializes the connection. All outstanding I/O on the connection is aborted; all
active fids are freed (‘clunked’) automatically. The set of messages between version requests is called a
session.

ENTRY POINTS

Fsversion (see 9pclient(3)) generates version messages; it is called automatically by fsmount.

14

WALK(9P) WALK(9P)

NAME

walk – descend a directory hierarchy

SYNOPSIS

size[4] Twalk tag[2] fid[4] newfid[4] nwname[2] nwname*(wname[s])
size[4] Rwalk tag[2] nwqid[2] nwqid*(qid[13])

DESCRIPTION

The walk request carries as arguments an existing fid and a proposed newfid (which must not be in use
unless it is the same as fid) that the client wishes to associate with the result of traversing the directory hier­
archy by ‘walking’ the hierarchy using the successive path name elements wname. The fid must represent a
directory unless zero path name elements are specified.

The fid must be valid in the current session and must not have been opened for I/O by an open or create
message. If the full sequence of nwname elements is walked successfully, newfid will represent the file that
results. If not, newfid (and fid) will be unaffected. However, if newfid is in use or otherwise illegal, an
Rerror is returned.

The name ‘‘..’’ (dot-dot) represents the parent directory. The name ‘‘.’’ (dot), meaning the current direc­
tory, is not used in the protocol.

It is legal for nwname to be zero, in which case newfid will represent the same file as fid and the walk will
usually succeed; this is equivalent to walking to dot. The rest of this discussion assumes nwname is greater
than zero.

The nwname path name elements wname are walked in order, ‘‘elementwise’’. For the first elementwise walk
to succeed, the file identified by fid must be a directory, and the implied user of the request must have per­
mission to search the directory (see intro(9P)). Subsequent elementwise walks have equivalent restrictions
applied to the implicit fid that results from the preceding elementwise walk.

If the first element cannot be walked for any reason, Rerror is returned. Otherwise, the walk will return an
Rwalk message containing nwqid qids corresponding, in order, to the files that are visited by the nwqid suc­
cessful elementwise walks; nwqid is therefore either nwname or the index of the first elementwise walk that
failed. The value of nwqid cannot be zero unless nwname is zero. Also, nwqid will always be less than or
equal to nwname. Only if it is equal, however, will newfid be affected, in which case newfid will represent the
file reached by the final elementwise walk requested in the message.

A walk of the name ‘‘..’’ in the root directory of a server is equivalent to a walk with no name elements.

If newfid is the same as fid, the above discussion applies, with the obvious difference that if the walk changes
the state of newfid, it also changes the state of fid; and if newfid is unaffected, then fid is also unaffected.

To simplify the implementation of the servers, a maximum of sixteen name elements or qids may be packed
in a single message. This constant is called MAXWELEM in fcall(3). Despite this restriction, the system
imposes no limit on the number of elements in a file name, only the number that may be transmitted in a sin­
gle message.

ENTRY POINTS

Fswalk (see 9pclient(3)) generates walk messages. One or more walk messages may be generated by any
call that evaluates file names: fsopen, fsopenfd, fsdirstat, fsdirwstat.

15

