
Hawkes-Rose variant of IAPM and message integrity

This note should be read in conjunction with
http://csrc.nist.gov/encryption/modes/proposedmodes/iapm/integrityproofs.pdf

In this note we show that the variant of IAPM proposed by Hawkes and
Rose is secure for message integrity. In this variant, not all blocks need be sent
encrypted. Without loss of generality, let all the plaintexts which need to be sent
unencrypted be at the beginning of the message. We allow the adversary to pick
for each message how many blocks are to be sent unencrypted. Let this random
variable be called U i, i.e. U i of the Li blocks are to be sent unencrypted, and
this includes the �rst block (0th block) which is just the IV.

The HR scheme works as follows. The blocks 1 to U i � 1 are encrypted
anyway, to generate ciphertext blocks as usual (i.e. as in IAPM). However, only
the plaintext is sent to the receiving party. In other words, for j in 1::U i � 1
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But now a new checksum Ai is computed as follows
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In other words, this checksum is the xor sum of what used to be the ciphertext
blocks upto block U i � 1. This is then xored to what used to be Ci
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. Thus,
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Proof (Message Integrity): We follow the proof idea of Johan H�astad as given
in section 6.1. Note that section 6.1 inturn refers to section 6 (Theorem 1) for
details. At some point, we hope to write this proof complete in itself.

There are two di�erent ways of proving this result. The proof of message
integrity goes by �rst building the tree of computation paths, and labelling each
leaf with C = c. Now we could include in C and c the blocks of \ciphertext" which
the adversary does not see, but then we have to restrict the paths by forcing
the adversary to take the same \next choice" when the part of C visible to it is
same. In another proof, which we prefer, we leave C and c to be exactly what it
is , i.e. it doesn't include the N i

j � Si
j and its �xed values, for 0 < j � U i � 1.

However, the de�nition of event E6, and hence proof of lemma 4 needs to be
modi�ed.

Each constant ciphertext c, now has an auxillary information u correspnding
to U . Given C = c, and G = g, where c is a constant sequence of ciphertexts
and g is a constant permutation, the M values are �xed, because M i
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j .

The variable P i
j is completely �xed by c, and Si

j is �xed by g(ci
0
)'s. We will write
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and y � z, de�ne E6(y; c; g) to be
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We add a pseudo round to the �rst z rounds of queries made by the adversary.
This pseudo rounds is built out of the query made by the adversary in the second
stage, i.e. using C 0. In the pseudo round z+1, for j 2 [U 0::L0�2], ifN 0

j is not equal
to any of the previous N values, then it is decrypted to yield the corresponding
M value. Note that we do not decrypt the last block.

Now we generalize event E6 above to round z + 1, where for round z + 1 we
only consider those M and N blocks as in the previous paragraph (i.e. new Ns
and their corresponding Ms). Recall that c0 is completely determined by c.
Now we can generalize lemma 4 of section 6.1 as follows:
For every constant c, and for any permutation g such that E6(z + 1; c; g),

Pr[G = gjC = c ^ E6(z + 1; c; G)] =
Pr[G = g]

Pr[E6(z + 1; c; G)]

Proof: Let U be the universe of G. Under the condition C = c and E6(z+1; c; G)
we show that every g such that E6(z + 1; c; g) holds, is equally likely to be G.
Since c is �xed, �xing G to g, �xes the N variables to a single value for all
i; j : ui � j � li�1 (with all N 's di�erent, for otherwise E6(z+1; c; g) wouldn't
hold). This value of the N variables is not ruled out as all the M variables are
di�erent (by E6(z; c; G)), and F is a random permutation.

For the other N values we have the following condition (for each i)
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Again, for each value of g (which �xes S), given E6(z + 1; c; g), the number
of possibilites for the remaining N variables is the same (one could actually
calculate this expression, but that is not required), as F is a random permutation.

Thus,
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Thus,
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Now for the main proof. Let's assume that c0 has the same C0 as some �rst
stage message (query) Ck (case (b) claim 4), because the other case is routine{
needs to be written though! There are three cases.
(a) If in the second stage, the �rst Uk blocks are the same in C 0 as in Ck

(regardless of whether U 0 = Uk), and there is a ciphertext later than Uk � 1
which is di�erent, then the analysis is similar to original IAPM.

In the other cases we can assume that U 0 = Uk, for it is unlikely for the
adversary to �gure out unknown portions of ciphertexts. This needs to be written
too.
(b) If, the ciphertext is same in the latter half, i.e blocks U 0 to L0 � 1, but
di�erent in the �rst half, then we show that N 0

L0
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is di�erent from all previous
N (i.e. upto round z + 1). First note,
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By E6(z + 1; c; G), the M 's are all di�erent and hence the probability of this
event is (about) 2�n, given that there is at least one x such that M 0

x 6=Mk
x .

Next for 0 < s < U 0,
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If x = s is the only x such that M 0

x is di�erent from Mk
x , then by uniformity of
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(by lemma 4) the probability above is 2�n. Otherwise given E6, N 0

x can
be chosen from a set of size almost 2n.

If s > U 0, the proof is similar. Finally, a similar proof shows that N 0

L0
�1

is
di�erent from all N i

s, for all other i.
(c) If the ciphertext is di�erent in both halves, the proof is same as in case (b),
except that it is possible that c0L0

�1
6= ckL0

�1
, in which case for the case
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we get another additive term c0L0
�1
� ckL0

�1
, which doesn't make any di�erence

to the analysis.

Thus, by an equation similar to equation (1) we get that in all cases (a), (b)
and (c), the checksum validates with negligible probability 2
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