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1 Introduction
Hash-based signature is one of the most promising candidates for (and perhaps the most conservative
approach to) post-quantum digital signatures. An advantage of hash-based signatures is that its (classical
as well as quantum) security strength is better understood (and easier to evaluate) than other candidates,
by solely relying on the idealized hardness1 of the cryptographic hash functions.

Stateful signatures. Ralph Merkle proposed a hash-based signature [20] that builds upon Lamport’s
one-time signature (OTS) [18]. The recent efforts towards improving stateful signatures lead to the
eXtended Merkle Signature Scheme (XMSS) [16] and the Leighton-Micali Signature (LMS) [19], stan-
dardized by NIST [9] and IETF.

Stateless signatures. In a typical stateful signature, e.g., Merkle’s signature scheme (MSS), the signer
keeps track of which private key of the OTS has been used to avoid security issues from subsequent reuse.
This is however not always possible in many practical scenarios. Goldreich proposed a stateless hash-
based signature construction [12, 13] which removes the need for maintaining a local state but results
in prohibitively large signatures. Recently, this line of research gets renewed interest. By incorporating
the hypertree structure, SPHINCS [5] offered a practical instantiation of the Goldreich-style stateless
hash-based signature. SPHINCS serves as a basis for subsequent works driven by the NIST PQC stan-
dardization process, including Gravity-SPHINCS [3], SPHINCS-Simpira [14] and SPHINCS+ [6]. Among
these schemes, SPHINCS+ employs a new design framework based on few-time signature (FTS), and a
new security analysis framework from “tweakable hash function”. It is generally considered as the current
state-of-the-art of stateless hash-based signatures and is to be standardized by NIST.

Table 1: Performance comparison between SPHINCS+ and SPHINCS-α, with simple tweakable hash
function instantiated with shake. Key generation, signing and verification time are in terms of CPU
cycles; public key, secret key and signature size are in bytes. All cycle counts are the median of 100 runs.

SPHINCS+ SPHINCS-α Relative Change
Param. KeyGen Sign Verify Size KeyGen Sign Verify Size KeyGen Sign Verify Size

128f 1143558 26872236 2204802 17088 1036602 26635716 2028186 16720 −9.35% −0.88% −8.01% −2.15%
192f 1662498 45405504 3003534 35664 2199276 45218790 1744038 34896 32.29% −0.41% −41.93% −2.15%
256f 4327632 92059542 2967642 49856 4286574 91335474 3175290 49312 −0.95% −0.79% 7.00% −1.09%
128s 72597852 551233638 846486 7856 51421086 537033762 2689650 6880 −29.17% −2.58% 217.74% −12.42%
192s 105310692 1022229270 1201230 16224 78050718 988899534 3845970 14568 −25.89% −3.26% 220.17% −10.21%
256s 69033492 918473904 1701324 29792 52048332 764352612 6005448 27232 −24.60% −16.78% 252.99% −8.59%

Summary of our Work. We propose SPHINCS-α, a stateless hash-based signature scheme, which
improves upon the state-of-the-art stateless hash-based signature scheme SPHINCS+, while preserving
the core elements that made the original SPHINCS+ a standout project.

Our optimization mainly stems from the optimization of the one-time signature scheme, which we
prove to have a size-optimal encoding scheme among all tree structured one-time signatures. Moreover,
no DAG-based construction offers better size efficiency, making our proposal size-optimal among all
known schemes to the best of our knowledge [27].

Since our modification upon the SPHINCS+ scheme is limited to the encoding scheme of the under-
lying WOTS+one-time signature, the security analysis of our new scheme remains largely the same as
the original analysis. Based on the security analysis of the original work, we estimate the security level
and carefully choose parameters in order to achieve optimized performance.

To facilitate a fair comparison, we implement SPHINCS-α by adapting the code of SPHINCS+ and
compare their performance on a desktop computer. As shown in Table 1, under the “small” series
parameters (optimized towards small signature size) our scheme reduces signature size and running time
by 8-12% and 2-16% respectively at all security levels while under the “fast” series (optimized towards
fast signing operations) our scheme exhibits better performance in general.

We refer to more detailed comparisons for the full spectrum of parameter choices in Section 11.
As summarized in Table 7, our scheme offers an overall performance improvement for most parameter
settings, in terms of signing time and signature size. On the downside, we experience an up to 253%

1The design philosophy of symmetric primitives (including hash functions) is that they should only admit generic attacks,
otherwise the design is considered to be flawed.
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increase in verification time. Nevertheless, we argue that for specific scenarios where verification time is
critical, we can re-tune the parameters towards fast verification.

Other Changes Made. Following the decisions made by NIST [21], we remove haraka and robust
version from tweakable hash function.

Acknowledgement. We acknowledge the SPHINCS+ team for their great work on the original SPHINCS+

project. A significant portion of our code and documentation derives from their commendable efforts.

2 SPHINCS-α vs. SPHINCS+

In this section we highlight our improvement upon the original SPHINCS+ scheme, namely, the one-time
signature component. Our optimized scheme, CS-WOTS+, allows a larger message space / signature
size ratio as compared to the original WOTS+ scheme, allowing a smaller one-time signature size. As a
result, the parameters of the hash-based signature scheme can thus be re-tuned to reduce the signature
size without exacerbating the computation time.

We explain the details of our optimization as well as some technical proofs in this section.

2.1 The WOTS+ Encoding
The reason that the WOTS+(as well as other Winternitz-type OTS) scheme introduces the checksum
is that in absence of the checksum the adversary can efficiently forge signatures given a single pair of
valid message signature. That is, given (σ,m) he forges any m′ satisfying ∀i(mi ≤ m′

i) by computing
Fm′

i(ski) = Fm′
i−mi

(
Fmi(ski)

)
.

The checksum addresses the issue: an increase in any mi leads to a decrease in at least one Ci (recall
C =

∑l1
i=1(w−1−mi)). Therefore, the adversary cannot forge any (m′, C ′) satisfying both ∀i(mi ≤ m′

i)
and ∀i(Ci ≤ C ′

i) at the same time.

2.2 Size-Optimal Encoding
More formally, the problem of constructing one-time signature reduces to that of building an efficient
encoding scheme Enc :M→ C ⊆ [w]l for some incomparable codeword set C (see Definition 1). In case
of WOTS+, the encoding function Enc simply appends the checksum to the original message. Note that
WOTS+ fixes the size of the message to l1 (i.e., M = [w]ll) and then constructs as small codewords as
possible (minimizing l − l1).

Definition 1 ((In)comparability). For a, b ∈ [w]l, we denote by a ≤ b if for every i ∈ [l] we have
ai+1 ≤ bi+1. If a ≤ b or b ≤ a we say that a and b comparable, or otherwise a and b are incomparable. A
set S ⊆ {a : a ∈ [w]l} is said to be incomparable (or called an “antichain” in order theory terminology)
if any two elements of S are incomparable.

We take a slightly different approach to encoding the messages. That is, we first fix the size of the
codewords to l, C ⊆ [w]l, and strive to accommodate as large message space M as possible. Given
that Enc is an injection it is essentially to maximize the size of C ⊆ [w]l. A natural approach is to
encode the codewords such that all elements of every codeword sum to the same value, and therefore
the checksum is not explicitly needed. Bos and Chaum [8] studied this approach for the special case of
w = 2. Vaudenay [25] generalized it to arbitrary w, but he did not provide an encoding algorithm. Perin
et al. provided a similar encoding algorithm in [22], but they did not present a size-optimal proof.

Theorem 2.1. For any m ∈ [l(w − 1) + 1], Cm
def
= {v ∈ [w]l :

∑l
i=1 vi = m} is incomparable.

Proof. Suppose towards contradiction that Cm (for some fixed m ∈ [l(w − 1) + 1]) is not incomparable,
then there exist distinct a, b ∈ Cm s.t. a ≤ b. There must be an index j such that aj < bj (otherwise
a = b). However, due to equal sum

∑
i ai =

∑
i bi we have

∑
1≤i≤l∧i ̸=j(ai− bi) > 0, and there must exist

some 1 ≤ k ≤ l such that ak > bk, which is a contradiction to a ≤ b.

Every Cm gives an encoding scheme but with different size. For m = 0 or m = l(w − 1), Cm consists
of only a single codeword. We argue that the size of Cm reaches its maximal in the middle, i.e., when
m = ⌊ l(w−1)

2 ⌋. One easily verifies that this holds in the binary case (i.e., w = 2) where |Cm| =
(
l
m

)
. Perin
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et al. [22] proved that |Cm| reaches its maximum when m = ⌊ l(w−1)
2 ⌋. We prove a stronger optimality

result in Theorem 2.2 that the size of Cm, when m = ⌊ l(w−1)
2 ⌋, is not only the largest in all Cm for

m ∈ [l(w − 1) + 1] but the largest among all valid sets of codewords.

Theorem 2.2 (Size-optimal encoding). For every incomparable C∗ ∈ P ([w]l), it holds that

|C∗| ≤ |C⌊ l(w−1)
2 ⌋| .

We defer its proof to Theorem 2.4, which rephrases Theorem 2.2 in the language of order theory.
Prior to that, we discuss how to compute |Cm| by recursion, and give an explicit construction of encoding
messages into Cm for m = ⌊ l(w−1)

2 ⌋. Hereafter, we denote such Cm with maximal size by C for brevity.

Counting the size. Now we need to figure out the size of C. As a special case, |C| =
(

l
⌊l/2⌋

)
when

w = 2. Fix w, let

Dn,m = |{v ∈ [w]n :

n∑
i=1

vi = m}| ,

we have their initial values

D1,m = 1, for m ∈ {0, 1, . . . , w − 1}
Dn,m = 0, for 2 ≤ n ∈ Z,m ∈ Z− ,

and recurrence relation

Dn,m =

w−1∑
i=0

Dn−1,m−i, 2 ≤ n ∈ Z,m ∈ {0, 1, . . . , l(w − 1)} . (1)

Note when w = 2, this method is equivalent to recurrence relation of binomial coefficient, i.e.,(
n
m

)
=
(
n−1
m−1

)
+
(
n−1
m

)
.

Let us explain the recurrence relation. To compute Dn,m, consider the value of its last summand,
which could be any value in {0, 1, . . . , w− 1}. If this value is set to i, the sum of the first n− 1 elements
must be m − i. Therefore, we notice that the problem “n elements with sum to m” into those “n − 1
elements with sum to m − i”. Thus we can simply count Dn,m by accumulating Dn−1,m−i. Following
this method, Dl,⌊l(w−1)/2⌋ gives the size of C.

Related works. Dn,m is also the m-th coefficient of (1+x+x2+ · · ·+xw−1)n. Euler [11] has studied
w = 3, 4, 5, known as trinomial, quadrinomial and quintinomial coefficients respectively. The generalized
form was studied in the literature, e.g., [1, 26, 4]. Actually, we can use an inclusion-exclusion argument
to express it as a function of binomial coefficients [15]

Dn,m =

⌊m/w⌋∑
s=0

(−1)s
(
n

s

)(
m+ n− sw − 1

n− 1

)
.

Encoding algorithm. Now we make the construction explicit by giving an efficient encoding algo-
rithm, which maps a message x ∈ [|C|] into an element in C. We give the pseudocode of the encoding
algorithm in Algorithm 1.

Let us explain the encoding algorithm. As previously stated, the problem can be divided into several
subproblems by considering the value of the first element vl−i. To encode a natural number x ∈ [0, Di,m),
we can simply determine vl−i = j by seeking which j satisfies x ∈ [

∑
k<j Di−1,m−k,

∑
k≤j Di−1,m−k).

Once the value of vl−i is determined, we proceed to the next terms until all elements are decided.
In order to prove the optimality of the encoding, we need some prerequisites about the order theory.

The relationship between one-time signature and order theory has been investigated in [7].

Preliminaries of Order Theory

Definition 2 (Poset). A poset (S,≤) consists of a set S together with an antisymmetric, transitive and
reflexive binary relation ‘≤’, where are certain pairs (x, y) ∈ S are comparable (x ≤ y or y ≤ x).

6



Algorithm 1: Encode:[|C|]→ C.
Function Encode(x)

Let v be an array of size l;
m← ⌊l(w − 1)/2⌋;
for i← l . . . 1 do

for j ← 0 . . . min(w − 1,m) do
if x ≥ Di−1,s−j then

x← x−Di−1,s−j ;
else

vl−i ← j;
break;

m← m− vl−i;
return v;

Note that a poset does not require all pairs in S to be comparable, and thus it is also known as a
partially ordered set.

Definition 3 ((Anti)chain and decomposition). A chain (resp., antichain) refers to a subset of a poset,
whose every pair of elements is comparable (resp., incomparable). A chain decomposition is a partition
of a poset into disjoint chains.

Theorem 2.3 (Dilworth’s theorem [10]). For any finite poset P , the size of P ’s maximum antichain
equals the size of a minimum chain decomposition of P .

Let P = ([w]l,≤) be a finite poset. According to Dilworth’s theorem, we can prove that C is the
maximum antichain of P by arguing that (1) C is an antichain and (2) we can find a chain decomposition
whose size equals to |C|.

Theorem 2.4. C is the maximum antichain, i.e., C is size-optimal.

Proof. We have proved that C is an antichain in Theorem 2.1. It remains to construct the chain de-
composition of size |C| as follows. Our proof can be viewed as a generalization of the proof of Sperner’s
theorem [24], which considers the special case for w = 2.

Consider poset Sn = ([w]n,≤), and we sometimes denote an element of Sn by (a1, ..., an) ∈ [w]n or
by ci ∈ [w]n. We slightly abuse the notation |(a1, ..., an)|

def
= a1 + ...+ an.

We construct the chain decomposition for Sn by induction, where every chain {c1, . . . , cm} satisfies
the following two properties:

• |ci+1| = |ci|+ 1, ∀i ∈ {1, 2, . . . ,m− 1},

• |c1|+ |cm| = n · (w − 1).

The case for n = 1 is trivial, i.e., D1,⌊(w−1)/2⌋ = 1, which correspond to the chain of S1 =
{(0), (1), . . . , (w − 1)}.

Assume that we have a chain decomposition for Sn−1 satisfying the above two properties, we proceed
to the construction of a chain decomposition for Sn. For each chain c = {c1, c2, . . . , cm} (from the chain
decomposition of Sn−1) satisfying the two properties, we build k + 1 chains for Sn as follows, where
k = min(w − 1,m− 1). That is, for every j ∈ {0, ..., k} the j-th chain consists of:

(c1, j) ≤ . . . ≤ (cm−j , j) ≤ (cm−j , j + 1) ≤ ... ≤ (cm−j , w − 1) .

This yields the k + 1 chains as shown in Fig. 1 below:
It is easy to verify that |(c1, j)|+ |(cm−j , w−1)| = |(c1, 0)|+ j+ |(cm, 0)|− j+(w−1) = n(w−1), and

every subsequent element increase the sum value of its predecessor by one. Namely, the two properties
are preserved for all the constructed chains of Sn.

It remains to argue that all the chains constructed (from the decomposed chains of Sn−1) constitute
a partition of [w]n. That is, for every ci ∈ Sn−1, each of its augmented elements (ci, 0), ..., (ci, w − 1)

7



(c1, 0) . . . . . . . . . (cm, 0) . . . (cm, w − 1)
... . . . . . . . .

.
. . . . . .

...
(c1, k) . . . (cm−k, k) . . . . . . . . . (cm−k, w − 1)

Figure 1: A demonstration of how a chain from Sn−1 is expanded into k + 1 chains for Sn, where every
row is an expanded chain. Note that it is not a rectangular matrix (every row has two less elements than
the previous).

Table 2: Comparison of length l between WOTS+ and CS-WOTS+ for different values of Winternitz
parameters w and security parameter λ.

128bit 192bit 256bit
w WOTS+ Ours WOTS+ Ours WOTS+ Ours
8 46 45 67 66 90 88
16 35 34 51 50 67 66
24 31 30 45 44 59 58
32 28 27 42 40 55 53
40 27 26 39 38 52 50
48 25 25 37 36 48 48

appears in the constructed chains exactly once. Note that every ci belongs to (and can only belong to)
one of the decomposed chains of Sn−1, say c = {c1, . . . , cm}. We discuss the following cases.

Case m ≤ w: We have k = m− 1 ≤ w − 1. [(ci, 0), . . . , (ci, k + 1− i)] appears as the first (k + 2− i)
elements of the i-th column, and then [(ci, k+1− i), . . . , (ci, w− 1)]T as the last (w+ i− k− 1) elements
of the (k + 2− i)-th row in Fig. 1.

Case m > w: We have k = w − 1 < m − 1. If 1 ≤ i ≤ m − w + 1, then [(ci, 0), (ci, w − 1)]
appears as the i-th column in Fig. 1. Otherwise, m − w + 1 < i ≤ m. [(ci, 0), . . . , (ci,m − i)] and
[(ci,m− i), . . . , (ci, w− 1)]T are the first m− i+1 elements of the i-th column, and the last (w+ i−m)
elements of the (m− i+ 1)-th row respectively.

Therefore, we have shown that for every a ∈ [w]n−1, (a, 0), . . .,(a,w− 1) appears exactly once in the
newly constructed chains, namely, the chains constitutes as a chain decomposition for Sn. Finally, it
remains to count the number of chains in the decomposition. The two properties guarantee that every
chain contains exactly one element cmid with |cmid| = ⌊l(w− 1)/2⌋ (i.e., cmid ∈ C). Thus, the size of chain
decomposition |C| = Dl,⌊l(w−1)/2⌋. This completes the proof that C is the maximum antichain.

2.3 Theoretical Performance
Constant Sum WOTS+ has two advantages over WOTS+.

• Stable computing time. The number of hash function calls is fixed in our construction, in contrast
to possibly variable numbers for the signing and verification algorithm of WOTS+. While no
timing attacks are identified against the implementations of our construction and WOTS+, stable
computing time is always preferable (especially for signing algorithms whose computation involves
a private key).

• Reduced signature size and number of hash calls. For instance, the SPHINCS+-256s parameter set
suggests w = 16 and l = 67. In our construction, for w = 16 we require l = 66, which reduces 1.5%
in both running time (in terms of the expected number of hash function calls) and size. We refer
to Table 2 for more details.

Although our encoding algorithm costs slightly more than the checksum method, it is less dominant
compared to the number of hash function calls used in the signature scheme, which will be confirmed in
the performance comparison to SPHINCS+.
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3 Notation
In the following we start defining basic mathematical operations on integers and bit strings. From that
we work our way to more specific basic methods used later in the specification.

3.1 Data Types
Bytes and byte strings are the fundamental data types. A byte is a sequence of eight bits. The set of
bytes is denoted as B. A single byte is denoted as a pair of hexadecimal digits with a leading “0x”. A byte
string is an ordered sequence of zero or more bytes and is denoted as an ordered sequence of hexadecimal
characters with a leading “0x”. For example, 0xe534f0 is a byte string of length 3. An array of byte
strings is an ordered, indexed set starting with index 0 in which all byte strings have identical length.
We assume big-endian representation for any data types or structures.

3.2 Functions
We define the following functions:

⌈x⌉ (or ceil(x)) for x a real number returns the smallest integer greater than or equal to x.

⌊x⌋ (or floor(x)) for x a real number returns the largest integer less than or equal to x.

log(x) for x a non-negative real number returns the logarithm to base 2 of x. In pseudocode this
function is written as lg.

Truncℓ(x) truncates the bit-string x to the first ℓ bits.

3.3 Operations
When a and b are integers, mathematical operators are defined as follows:

• ˆ : ab denotes the result of a raised to the power of b.

• · : a · b denotes the product of a and b. This operator is sometimes omitted in the absence of
ambiguity, as in usual mathematical notation.

• / : a/b denotes the quotient of a by non-zero b.

• % : a%b denotes the non-negative remainder of the integer division of a by b.

• + : a+ b denotes the sum of a and b.

• − : a− b denotes the difference of a and b.

• ++ : a++ denotes incrementing a by 1, i.e., a = a+ 1.

• << : a << b denotes a logical left shift of a by b positions, for b being non-negative, i.e., a · 2b.

• >> : a >> b denotes a logical right shift of a by b positions, for b being non-negative, i.e.,
floor(a/2b).

The standard order of operations is used when evaluating arithmetic expressions.
Arrays are used in the common way, where the i-th element of an array A is denoted A[i]. Byte

strings are treated as arrays of bytes where necessary: If X is a byte string, then X[i] denotes its i-th
byte, where X[0] is the leftmost, highest order byte.

If A and B are byte strings of equal length, then:

• A AND B denotes the bitwise logical conjunction operation.

• A XOR B (or A⊕B) denotes the bitwise logical exclusive disjunction operation.

When B is a byte and i is an integer, then B >> i denotes the logical right-shift by i positions.
If X is an x-byte string and Y a y-byte string, then X∥Y denotes the concatenation of X and Y ,with

X∥Y = X[0]...X[x− 1]Y [0]...Y [y − 1].
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3.4 Integer to Byte Conversion (Function toByte)
For x and y non-negative integers, we define Z = toByte(x, y) to be the y-byte string containing the
binary representation of x in big-endian byte-order.

3.5 Member Functions (Functions set, get)
To simplify algorithm descriptions, we assume the existence of member functions. If a complex data
structure like a public key PK contains a variable X then PK.getX() returns the value of X for this
public key. Accordingly, PK.setX(Y) sets variable X in PK to the value held by Y. Since camelCase is
used for member function names, a value z may be referred to as Z in the function name, e.g., getZ.

3.6 Cryptographic (Hash) Function Families
3.6.1 Tweakable Hash Functions (Functions T, F, H)

Following SPHINCS+, a tweakable hash function takes a public seed PK.seed and an address ADRS in
addition to the message input. This effectively renders hash function calls for each key pair and position
in the virtual tree independent. The addressing scheme will be described in Section 3.6.3.

The schemes described in this specification build upon several instantiations of tweakable hash func-
tions of the form

Tℓ : Bn × B32 × Bℓn → Bn

md← Tℓ(PK.seed, ADRS,M) ,

mapping and ℓn-byte message M to an n-byte hash value md using an n-byte seed PK.seed and a
32-byte address ADRS. The function Tℓ is denoted by T_l in pseudocode.

There are two special cases which we rename for consistency with previous descriptions of hash-based
signature schemes:

F : Bn × B32 × Bn → Bn

F
def
= T1

H : Bn × B32 × B2n → Bn

H
def
= T2

3.6.2 PRF and Message Digest (Functions PRF, PRF_msg, H_msg)

SPHINCS-α uses a pseudorandom function PRF for pseudorandom key generation:

PRF : Bn × B32 → Bn .

In addition, SPHINCS-α uses a pseudorandom function PRFmsg to generate randomness for the
message compression:

PRFmsg : Bn × Bn × B∗ → Bn .

To compress the message to be signed, SPHINCS-α uses an additional keyed hash function Hmsg

that can process arbitrary length messages:

Hmsg : Bn × Bn × Bn × B∗ → Bm .

3.6.3 Hash Function Address Scheme (Structure of ADRS)

An address ADRS is a 32-byte value that follows a defined structure. In addition, it comes with set
methods to manipulate the address. We explain the generation of addresses in the following sections
where they are used. Essentially, all functions have to keep track of the current context, updating the
addresses after each hash call.

There are five different types of addresses for the different use cases. One type is used for the hashes
in CS-WOTS+ schemes, one is used for compression of the CS-WOTS+ public key, the third is used for
hashes within the main Merkle tree construction, another is used for the hashes in the Merkle tree in
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FORS, and the last is used for the compression of the tree roots of FORS. These types largely share a
common format. We describe them in more detail, below.

The structure of an address complies with word borders, with a word being 32 bits long in this
context. Only the tree address (i.e. the index of a specific subtree in the main tree) is too long to fit a
single word: for this, we reserve three words. An address is structured as follows. It always starts with
a layer address of one word in the most significant bits, followed by a tree address of three words. These
addresses describe the position of a tree within the hypertree. The layer address describes the height of
a tree within the hypertree starting from height zero for trees on the bottom layer. The tree address
describes the position of a tree within a layer of a multi-tree starting with index zero for the leftmost
tree. The next word defines the type of the address. It is set to 0 for a CS-WOTS+ hash address, to 1
for the compression of the CS-WOTS+ public key, to 2 for a hash tree address, to 3 for a FORS address,
and to 4 for the compression of FORS tree roots.

We first describe the CS-WOTS+ address (Fig. 2). In this case, the type word is followed by the
key pair address that encodes the index of the CS-WOTS+ key pair within the specified tree. The next
word encodes the chain address (i.e. the index of the chain within CS-WOTS+ ), followed by a word
that encodes the address of the hash function call within the chain. Note that for the generation of the
secret keys based on SK.seed a different type of address is used (see below).

Layer Address Tree Address

type = 0 Key Pair Address Chain Address Hash Address

Figure 2: CS-WOTS+ hash address.

The second type (Fig. 3) is used to compress the CS-WOTS+ public keys. The type word is set to
1. Similar to the address used within CS-WOTS+ , the next word encodes the key pair address. The
remaining two words are not needed, and thus remain zero. We zero pad the address to the constant
length of 32 bytes.

Layer Address Tree Address

type = 1 Key Pair Address Padding = 0

Figure 3: CS-WOTS+ public key compression address.

The third type (Fig. 4) addresses the hash functions in the main tree. In this case the type word is
set to 2, followed by a zero padding of one word. The next word encodes the height of the tree node that
is being computed, followed by a word that encodes the index of this node at that height.

Layer Address Tree Address

type = 2 Padding = 0 Tree Height Tree Index

Figure 4: hash tree address.

The next type (Fig. 5) is of a similar format, and is used to describe the hash functions in the FORS
tree. The type word is set to 3. The key pair address is used to signify which FORS key pair is used,
identical to the key pair address in the CS-WOTS+ hash addresses. Its value is the same as that of the
CS-WOTS+ key pair that is used to authenticate it, i.e. its index as a leaf in the specified tree. The
tree height and tree index fields are used to address the hashes within the FORS tree. This is done like
for the above-mentioned hashes in the main tree, with the additional consideration that the tree indices
are counted continuously across the different FORS trees. To generate the leaf nodes from SK.seed a
different type of address is used (see below).

The next type (Fig. 6) is used to compress the tree roots of the FORS trees. The type word is set to
4. Like the CS-WOTS+ public key compression address, it contains only the address of the FORS key
pair, but is padded to the full length.

The final two types are used for secret key value generation in CS-WOTS+ and FORS. A CS-WOTS+

key generation address (Fig. 7) is the same as a CS-WOTS+ hash address with two differences. First, the
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Layer Address Tree Address

type = 3 Key Pair Address Tree Height Tree Index

Figure 5: FORS tree address.

Layer Address Tree Address

type = 4 Key Pair Address Padding = 0

Figure 6: FORS tree roots compression address.

type word is set to 5. Second, the hash address word is constantly set to 0. When generating the secret
key value for a given chain, the remaining words have to be set the same way as for the CS-WOTS+

hash addresses used for this chain.

Layer Address Tree Address

type = 5 Key Pair Address Chain Address Hash Address = 0

Figure 7: CS-WOTS+ key generation address.

Similarly, the FORS key generation type (Fig. 8) is the same as the FORS tree address type, except
that the type word is set to 6, and the tree height word is set to 0. As for the CS-WOTS+ key generation
address, the remaining words have to be set as for the FORS tree address used when processing the
generated value.

All fields within these addresses encode unsigned integers. When describing the generation of ad-
dresses we use set methods that take positive integers and set the bits of a field to the binary represen-
tation of that integer, in big-endian notation. Throughout this document, we adhere to the convention
of assuming that changing the type word of an address (indicated by the use of the setType() method)
initializes the subsequent three words to zero.

In order to make keeping track of the types easier throughout the pseudo-code in the rest of this
document, we refer to them respectively using the constants WOTS_HASH, WOTS_PK, TREE, FORS_TREE,
FORS_ROOTS, WOTS_PRF, and FORS_PRF.

4 CS-WOTS+ One-Time Signatures
This section describes the CS-WOTS+ scheme, while a private key can be used to sign any message,
each private key MUST NOT be used to sign more than a single message.

4.1 CS-WOTS+ Parameters
CS-WOTS+ uses the parameters n,w and len; They are positive integer values. These parameters are
summarized as follows:

• n: the security parameter; it is the message length as well as the length of a private key, public
key, or signature element in bytes.

• w: the Winternitz parameter;

• len: the number of n-byte-string elements in a CS-WOTS+ private key, public key, and signature.

4.2 CS-WOTS+ Chaining Function (Function chain)
The chaining function (Algorithm 2) computes an iteration of F on an n-byte input using a CS-WOTS+

hash address ADRS and a public seed PK.seed. The address ADRS MUST have the first seven 32-bit
words set to encode the address of this chain. In each iteration, the address is updated to encode the
current position in the chain before ADRS is used to process the input by F.
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Layer Address Tree Address

type = 6 Key Pair Address Tree Height = 0 Tree Index

Figure 8: FORS key generation address.

In the following, ADRS is a 32-byte CS-WOTS+ hash address as specified in Section 3.6.3 and PK.seed
is a n-byte string. The chaining function takes as input an n-byte string X, a start index i, a number of
steps s, as well as ADRS and PK.seed. The chaining function returns as output the value obtained by
iterating F for s times on input X.

Algorithm 2: chain — Chaining function used in CS-WOTS+.
1 # Input: Input string X, start index i, number of steps s, public seed PK.seed,

address ADRS↪→

2 # Output: value of F iterated s times on X
3 chain(X, i, s, PK.seed, ADRS) {
4 if ( s == 0 ) {
5 return X;
6 }
7 if ( (i + s) > (w - 1) ) {
8 return NULL;
9 }

10 byte[n] tmp = chain(X, i, s - 1, PK.seed, ADRS);
11 ADRS.setHashAddress(i + s - 1);
12 tmp = F(PK.seed, ADRS, tmp);
13 return tmp;
14 }

4.3 CS-WOTS+ Private Key (Function wots_SKgen)
The CS-WOTS+ private key, denoted by SK, is a length len array of n-byte strings. This private key
MUST NOT be used to sign more than one message. This private key is only implicitly used. Therefore,
the following is just to support a better understanding of the following algorithms. Each n-byte string
in the CS-WOTS+ private key is derived from a secret seed SK.seed which is part of the SPHINCS-α
secret key and a CS-WOTS+ key generation address skADRS using PRF. The same secret seed is used to
generate all secret key values within SPHINCS-α. The address used to generate the i-th n-byte string of
SK MUST encode the position of the i-th hash chain of this CS-WOTS+ instance within the SPHINCS-α
structure.

The following pseudocode (Algorithm 3) describes an algorithm to generate a CS-WOTS+ private
key.

4.4 CS-WOTS+ Public Key Generation (Function wots_PKgen)
A CS-WOTS+ key pair defines a virtual structure that consists of len hash chains of length w. Each
of the len stings of n-bytes in the private key defines the start node for one hash chain. The public
key is the tweakable hash of the end nodes of these hash chains. To compute the hash chains, the
chaining function (Algorithm 2) is used. A CS-WOTS+ hash address ADRS and a seed PK.seed have
to be provided by the calling algorithm as well as a secret seed SK.seed. The address ADRS MUST
encode the address of the CS-WOTS+ key pair within the SPHINCS-α structure. Hence, a CS-WOTS+

algorithm MUST NOT manipulate any parts of ADRS other than the last three 32-bit words. Note that
the PK.seed used here is public information also available to a verifier.

The following pseudocode (Algorithm 4) describes an algorithm for generating the public key PK.
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Algorithm 3: wots_SKgen — Generating a CS-WOTS+ private key.
1 # Input: secret seed SK.seed, address ADRS
2 # Output: CS-WOTS+ private key sk
3 wots_SKgen(SK.seed, ADRS) {
4 skADRS = ADRS; // copy address to create key generation address
5 skADRS.setType(WOTS_PRF);
6 skADRS.setKeyPairAddress(ADRS.getKeyPairAddress());
7 for ( i = 0; i < len; i++ ) {
8 skADRS.setChainAddress(i);
9 skADRS.setHashAddress(0);

10 sk[i] = PRF(SK.seed, skADRS);
11 }
12 return sk;
13 }

Algorithm 4: wots_PKgen — Generating a CS-WOTS+ public key.
1 # Input: secret seed SK.seed, address ADRS, public seed PK.seed
2 # Output: CS-WOTS+ public key pk
3 wots_PKgen(SK.seed, PK.seed, ADRS) {
4 wotspkADRS = ADRS; // copy address to create OTS public key address
5 skADRS = ADRS; // copy address to create key generation address
6 skADRS.setType(WOTS_PRF);
7 skADRS.setKeyPairAddress(ADRS.getKeyPairAddress());
8 for ( i = 0; i < len; i++ ) {
9 skADRS.setChainAddress(i);

10 skADRS.setHashAddress(0);
11 sk[i] = PRF(SK.seed, skADRS);
12 ADRS.setChainAddress(i);
13 ADRS.setHashAddress(0);
14 tmp[i] = chain(sk[i], 0, w - 1, PK.seed, ADRS);
15 }
16 wotspkADRS.setType(WOTS_PK);
17 wotspkADRS.setKeyPairAddress(ADRS.getKeyPairAddress());
18 pk = T_len(PK.seed, wotspkADRS, tmp);
19 return pk;
20 }
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4.5 CS-WOTS+ Encoding (Function wots_encode)
Let us explain the encoding algorithm (Algorithm 5). The problem can be divided into several subprob-
lems by considering the value of the first element cl−i. To encode a natural number x ∈ [0, Di,m), we can
simply determine cl−i = j by seeking which j satisfies x ∈ [

∑
k<j Di−1,m−k,

∑
k≤j Di−1,m−k). Once the

value of vl−i is determined, we proceed to its next terms until all elements are decided. All arithmetic
operations MUST be compute in unsigned 256-bit. Array D can be precomputed to avoid computing D
for each encoding function call.

Algorithm 5: wots_encode — Encoding message to constant-sum encoding.
1 # Input: Message M
2 # Output: Constant-Sum Encoding of M
3 wots_encode(M) {
4

5 s=floor(len*(w-1)/2)
6 Let D be an 2d array of size (len+1)*(s+1) initialized to 0
7

8 D[0][0]=1
9 for( i = 1 ; i <= len ; i++ ){

10 for( j = 0 j <= s ; j++ ){
11 for( k = 0 ; k < w and k <= j ; k++ ){
12 D[i][j] = D[i][j] + D[i-1][j-k]
13 }
14 }
15 }
16 // array D can be precomputed
17

18 Let c be an array of size len
19 for( i = len ; i >= 1 ; i-- ){
20 for( j = 0 ; j < w and j <= s ; j++ ){
21 if( M >= D[i-1][s-j] ){
22 M = M - D[i-1][s-j]
23 } else {
24 c[len-i] = j
25 break
26 }
27 }
28 s = s - c[len-i]
29 }
30

31 return c;
32 }

4.6 CS-WOTS+ Signature Generation (Function wots_sign)
A CS-WOTS+ signature is a length len array of n-byte strings. The CS-WOTS+ signature is first
generated by mapping a message M to len integers between 0 and w− 1, and the sum of them is equals
to ⌊len·(w−1)/2⌋. A CS-WOTS+ hash address ADRS, a public seed PK.seed, and a secret seed SK.seed
have to be provided by the calling algorithm. The address will encode the address of the CS-WOTS+

key pair within a greater structure. Hence, a CS-WOTS+ algorithm MUST NOT manipulate any parts
of ADRS other than the last three 32-bit words. Note that the PK.seed used here is public information
also available to a verifier while the secret seed SK.seed is private information. The pseudocode for
generating a CS-WOTS+ signature SIG is shown below (Algorithm 6).

The data format for a signature is given in Fig. 9.
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Algorithm 6: wots_sign — Generating a CS-WOTS+ signature on a message M .
1 # Input: Message M, secret seed SK.seed, public seed PK.seed, address ADRS
2 # Output: CS-WOTS+ signature sig
3 wots_sign(M, SK.seed, PK.seed, ADRS) {
4 msg = wots_encode(M);
5 skADRS = ADRS; // copy address to create key generation address
6 skADRS.setType(WOTS_PRF);
7 skADRS.setKeyPairAddress(ADRS.getKeyPairAddress());
8 for ( i = 0; i < len; i++ ) {
9 skADRS.setChainAddress(i);

10 skADRS.setHashAddress(0);
11 sk = PRF(SK.seed, skADRS);
12 ADRS.setChainAddress(i);
13 ADRS.setHashAddress(0);
14 sig[i] = chain(sk, 0, msg[i], PK.seed, ADRS);
15 }
16 return sig;
17 }

SIGOTS[0]

...

...

SIGOTS[len− 1]

Figure 9: CS-WOTS+ Signature Data Format.

4.7 CS-WOTS+ Compute Public Key from Signature (Function wots_pkFromSig)
SPHINCS-α uses implicit signature verification for CS-WOTS+. In order to verify a CS-WOTS+ sig-
nature SIG on a message M , the verifier computes a CS-WOTS+ public key value from the signature.
This can be done by “completing” the chain computations starting from the signature values, using the
base-w values of the message hash and its checksum. This step, called wots_pkFromSig, is described
below in Algorithm 7. The result of wots_pkFromSig then has to be verified. In a standalone version,
this would be done by simple comparison. When used in SPHINCS-α the output value is verified by
using it to compute a SPHINCS-α public key.

A CS-WOTS+ hash address ADRS and a public seed PK.seed have to be provided by the calling
algorithm. The address will encode the address of the CS-WOTS+ key pair within the SPHINCS-α
structure. Hence, a CS-WOTS+ algorithm MUST NOT manipulate any parts of ADRS other than the
last three 32-bit words. Note that the PK.seed used here is public information also available to a verifier.

5 The SPHINCS-α Hypertree
In this section, we explain how the SPHINCS-α hypertree is built. We first explain how CS-WOTS+

gets combined with a binary hash tree, leading to a fixed input-length version of the eXtended Merkle
Signature Scheme (XMSS). Afterwards, we explain how to go to a hypertree from there. The hypertree
might be viewed as a fixed input-length version of multi-tree XMSS (XMSSMT).
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Algorithm 7: wots_pkFromSig — Computing a CS-WOTS+ public key from a message and
its signature.

1 # Input: Message M, CS-WOTS+ signature sig, address ADRS, public seed PK.seed
2 # Output: CS-WOTS+ public key pk_sig derived from sig
3 wots_pkFromSig(sig, M, PK.seed, ADRS) {
4 wotspkADRS = ADRS;
5 msg = wots_encode(M)
6 for ( i = 0; i < len; i++ ) {
7 ADRS.setChainAddress(i);
8 tmp[i] = chain(sig[i], msg[i], w - 1 - msg[i], PK.seed, ADRS);
9 }

10 wotspkADRS.setType(WOTS_PK);
11 wotspkADRS.setKeyPairAddress(ADRS.getKeyPairAddress());
12 pk_sig = T_len(PK.seed, wotspkADRS, tmp);
13 return pk_sig;
14 }

5.1 (Fixed Input-Length) XMSS
XMSS is a method for signing a potentially large but fixed number of messages. It is based on the Merkle
signature scheme. It authenticates 2h

′ CS-WOTS+ public keys using a binary tree of height h′. Hence,
an XMSS key pair for height h′ can be used to sign 2 different messages. Each node in the binary tree
is an n-byte value which is the tweakable hash of the concatenation of its two child nodes. The leaves
are the CS-WOTS+ public keys. The XMSS public key is the root node of the tree. In SPHINCS-α, the
XMSS secret key is the single secret seed that is used to generate all CS-WOTS+ secret keys.

An XMSS signature in the context of SPHINCS-α consists of the CS-WOTS+ signature on the
message and the so-called authentication path. The latter is a vector of tree nodes that allow a verifier
to compute a value for the root of the tree starting from a CS-WOTS+ signature. A verifier computes the
root value and verifies its correctness. A standalone XMSS signature also contains the index of the used
CS-WOTS+ key pair. In the context of SPHINCS-α this is not necessary as the SPHINCS-α signature
allows to compute the index for each XMSS signature contained.

5.1.1 XMSS Parameters

XMSS has the following parameters:

• h′ : the height (number of levels− 1) of the tree.

• n: the length in bytes of messages as well as of each node.

• w : the Winternitz parameter as defined for CS-WOTS+ in the previous Section.

There are 2h
′ leaves in the tree. XMSS signatures are denoted by SIGXMSS (SIG_XMSS in pseudocode).

CS-WOTS+ signatures are denoted by SIG.
XMSS parameters are implicitly included in algorithm inputs as needed.

5.1.2 XMSS Private Key

In the context of SPHINCS-α, an XMSS private key is the single secret seed SK.seed contained in the
SPHINCS-α secret key. It is used to generate the CS-WOTS+ secret keys within the structure of an
XMSS key pair as described in Section 4.

5.1.3 TreeHash (Function treehash)

For the computation of the internal n-byte nodes of a Merkle tree, the subroutine treehash (Algo-
rithm 8) accepts a secret seed SK.seed, a public seed PK.seed, an unsigned integer s (the start index),
an unsigned integer z (the target node height), and an address ADRS that encodes the address of the
containing tree. For the height of a node within a tree, counting starts with the leaves at height zero.
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The treehash algorithm returns the root node of a tree of height z with the leftmost leaf being the
CS-WOTS+ pk at index s. It is REQUIRED that s % 2z = 0, i.e. that the leaf at index s is a leftmost
leaf of a sub-tree of height z. Otherwise the algorithm fails as it would compute non-existent nodes.
The treehash algorithm described here uses a stack holding up to (z − 1) nodes, with the usual stack
functions push() and pop(). We furthermore assume that the height of a node (an unsigned integer) is
stored alongside a node’s value (an n-byte string) on the stack.

Algorithm 8: treehash — The TreeHash algorithm.
1 # Input: Secret seed SK.seed, start index s, target node height z, public seed

PK.seed, address ADRS↪→

2 # Output: n-byte root node - top node on Stack
3 treehash(SK.seed, s, z, PK.seed, ADRS) {
4 if( s % (1 << z) != 0 ) return -1;
5 for ( i = 0; i < 2^z; i++ ) {
6 ADRS.setType(WOTS_HASH);
7 ADRS.setKeyPairAddress(s + i);
8 node = wots_PKgen(SK.seed, PK.seed, ADRS);
9 ADRS.setType(TREE);

10 ADRS.setTreeHeight(1);
11 ADRS.setTreeIndex(s + i);
12 while ( Top node on Stack has same height as node ) {
13 ADRS.setTreeIndex((ADRS.getTreeIndex() - 1) / 2);
14 node = H(PK.seed, ADRS, (Stack.pop() node));
15 ADRS.setTreeHeight(ADRS.getTreeHeight() + 1);
16 }
17 Stack.push(node);
18 }
19 return Stack.pop();
20 }

5.1.4 XMSS Public Key Generation (Function xmss_PKgen)

The XMSS public key is computed as described in xmss_PKgen (Algorithm 9). In the context of
SPHINCS-α the XMSS public key PK is the root of the binary hash tree. The root is computed
using treehash. The public key generation takes a secret seed SK.seed, a public seed PK.seed, and an
address ADRS. The latter encodes the position of this XMSS instance within the SPHINCS-α structure.

Algorithm 9: xmss_PKgen — Generating an XMSS public key.
1 # Input: Secret seed SK.seed, public seed PK.seed, address ADRS
2 # Output: XMSS public key PK
3 xmss_PKgen(SK.seed, PK.seed, ADRS) {
4 pk = treehash(SK.seed, 0, h', PK.seed, ADRS)
5 return pk;
6 }

5.1.5 XMSS Signature

An XMSS signature is a ((len+ h′) ∗ n)-byte string consisting of

• a CS-WOTS+ signature SIGOTS taking len · n bytes,

• the authentication path AUTH for the leaf associated with the used CS-WOTS+ key pair taking
h′ · n bytes.
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The authentication path is an array of h′ n-byte strings. It contains the siblings of the nodes in on
the path from the used leaf to the root. It does not contain the nodes on the path itself. These nodes in
AUTH are needed by a verifier to compute a root node for the tree from a CS-WOTS+ public key. A node
N is addressed by its position in the tree. N(x, y) denotes the y-th node on level x with y = 0 being
the leftmost node on a level. The leaves are on level 0, the root is on level h′. An authentication path
contains exactly one node on every layer 0 ≤ x ≤ (h′ − 1) . For the i-th CS-WOTS+ key pair, counting
from zero, the j-th authentication path node is

AUTH[j] = N

(
j, ⌊ i

2j
⌋ ⊕ 1

)
.

The computation of the authentication path is discussed in Section 5.1.6. The data format for a
signature is given in Fig. 10.

sig

AUTH[0]

...

...

AUTH[h− 1]

Figure 10: XMSS Signature

5.1.6 XMSS Signature Generation (Function xmss_sign)

To compute the XMSS signature of a message M in the context of SPHINCS-α, the secret seed SK.seed,
the public seed PK.seed, the index idx of the CS-WOTS+ key pair to be used, and the address ADRS of
the XMSS instance are needed. First, a CS-WOTS+ signature of the message digest is computed using
the CS-WOTS+ instance at index idx. Next, the authentication path is computed.

The node values of the authentication path MAY be computed in any way. The least memory-
intensive method is to compute all nodes using the treehash algorithm (Algorithm 8). This is described
here. Note that the details of how this step is implemented are not relevant to interoperability; it is not
necessary to know any of these details in order to perform the signature verification operation.

5.1.7 XMSS Compute Public Key from Signature (Function xmss_pkFromSig)

SPHINCS-α makes use of implicit signature verification of XMSS signatures. An XMSS signature is used
to compute a candidate XMSS public key, i.e., the root of the tree. This is used in further computations
(signature of the tree above) and implicitly verified by the outcome of that computation. Hence, this
specification does not contain an xmss_verify method but the method xmss_pkFromSig.

The method xmss_pkFromSig takes an n-byte message M , an XMSS signature SIGXMSS, a signature
index idx, a public seed PK.seed, and an address ADRS. The latter encodes the position of the current
XMSS instance within the virtual structure of the SPHINCS-α key pair. First, wots_pkFromSig is used to
compute a candidate CS-WOTS+ public key. This in turn is used together with the authentication path
to compute a root node which is then returned. The algorithm xmss_pkFromSig is given as Algorithm 11.

5.2 HT: The Hypertree
The SPHINCS-α hypertree HT is a variant of XMSSMT. It is essentially a certification tree of XMSS
instances. A HT is a tree of several layers of XMSS trees. The trees on top and intermediate layers
are used to sign the public keys, i.e., the root nodes, of the XMSS trees on the respective next layer
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Algorithm 10: xmss_sign — Generating an XMSS signature.
1 # Input: n-byte message M, secret seed SK.seed, index idx, public seed PK.seed,

address ADRS↪→

2 # Output: XMSS signature SIG_XMSS = (sig || AUTH)
3 xmss_sign(M, SK.seed, idx, PK.seed, ADRS) {
4 // build authentication path
5 for ( j = 0; j < h'; j++ ) {
6 k = floor(idx / (2^j)) XOR 1;
7 AUTH[j] = treehash(SK.seed, k * 2^j, j, PK.seed, ADRS);
8 }
9 ADRS.setType(WOTS_HASH);

10 ADRS.setKeyPairAddress(idx);
11 sig = wots_sign(M, SK.seed, PK.seed, ADRS);
12 SIG_XMSS = sig AUTH;
13 return SIG_XMSS;
14 }

Algorithm 11: xmss_pkFromSig — Computing an XMSS public key from an XMSS signature.
1 # Input: index idx, XMSS signature SIG_XMSS = (sig || AUTH), n-byte message M,

public seed PK.seed, address ADRS↪→

2 # Output: n-byte root value node[0]
3 xmss_pkFromSig(idx, SIG_XMSS, M, PK.seed, ADRS){ // compute WOTS+ pk from WOTS+

sig↪→

4 ADRS.setType(WOTS_HASH);
5 ADRS.setKeyPairAddress(idx);
6 sig = SIG_XMSS.getWOTSSig();
7 AUTH = SIG_XMSS.getXMSSAUTH();
8 node[0] = wots_pkFromSig(sig, M, PK.seed, ADRS);
9 // compute root from WOTS+ pk and AUTH

10 ADRS.setType(TREE);
11 ADRS.setTreeIndex(idx);
12 for ( k = 0; k < h'; k++ ) {
13 ADRS.setTreeHeight(k+1);
14 if ( (floor(idx / (2^k)) % 2) == 0 ) {
15 ADRS.setTreeIndex(ADRS.getTreeIndex() / 2);
16 node[1] = H(PK.seed, ADRS, (node[0] AUTH[k]));
17 } else {
18 ADRS.setTreeIndex((ADRS.getTreeIndex() - 1) / 2);
19 node[1] = H(PK.seed, ADRS, (AUTH[k] node[0]));
20 }
21 node[0] = node[1];
22 }
23 return node[0];
24 }
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below. Trees on the lowest layer are used to sign the actual messages, which are FORS public keys in
SPHINCS-α. All XMSS trees in HT have equal height.

Consider a HT of total height h that has d layers of XMSS trees of height h′ = h/d. Then layer d− 1
contains one XMSS tree, layer d− 2 contains 2h

′ XMSS trees, and so on. Finally, layer 0 contains 2h−h′

XMSS trees.

5.2.1 HT Parameters

In addition to all XMSS parameters, a HT requires the hypertree height h and the number of tree layers
d, specified as an integer value that divides h without remainder. The same tree height h′ = h/d and
the same Winternitz parameter w are used for all tree layers.

5.2.2 HT Key Generation (Function ht_PKgen)

The HT private key is the secret seed SK.seed which is used to generate all the CS-WOTS+ private
keys within the virtual structure spanned by the HT.

The HT public key is the public key (root node) of the single XMSS tree on the top layer. Its
computation is explained below. The public key generation takes as input a private and a public seed.

Algorithm 12: ht_PKgen — Generating an HT public key.
1 # Input: Private seed SK.seed, public seed PK.seed
2 # Output: HT public key PK_HT
3 ht_PKgen(SK.seed, PK.seed){
4 ADRS = toByte(0, 32);
5 ADRS.setLayerAddress(d-1);
6 ADRS.setTreeAddress(0);
7 root = xmss_PKgen(SK.seed, PK.seed, ADRS);
8 return root;
9 }

5.2.3 HT Signature

A HT signature SIGHT is a byte string of length (h + d ∗ len) ∗ n. It consists of d XMSS signatures (of
(h/d+ len) ∗ n bytes each).

The data format for a signature is given in Fig. 11.

XMSS Signature sigXMSS

AUTH[0]

...

...

AUTH[h− 1]

Figure 11: HT Signature.

5.2.4 HT Signature Generation (Function ht_sign)

To compute a HT signature SIGHT of a message M using, ht_sign (Algorithm 13) described below uses
xmss_sign as defined in Section 5.1.6. The algorithm ht_sign takes as input a message M , a private
seed SK.seed, a public seed PK.seed, and an index idx. The index identifies the leaf of the hypertree
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to be used to sign the message. The HT signature then consists of a stack of XMSS signatures using
the XMSS trees on the path from the leaf with index idx to the top tree. Note that idx is passed as two
separate arguments, split into an index to address the specific tree and the leaf index within that tree.
This allows for a somewhat higher hypertree, as one can use a 64-bit integer for tree_idx to support
parameters that conform to h < 64 + h/d. This matches the parameters in this specification If other
parameter sets are used that allow greater h, the data type of tree_idx MUST be adapted accordingly.

Algorithm ht_sign uses xmss_pkFromSig to compute the root node of an XMSS instance after that
instance was used for signing. An alternative is to use xmss_PKgen. However, xmss_PKgen rebuilds the
whole tree while xmss_pkFromSig only does one call to wots_pkFromSig and (h′ − 1) calls to H. The
algorithm ht_sign as described below is just one way to generate a HT signature. Other methods MAY
be used as long as they generate the same output.

Algorithm 13: ht_sign — Generating an HT signature.
1 # Input: Message M, private seed SK.seed, public seed PK.seed, tree index

idx_tree, leaf index idx_leaf↪→

2 # Output: HT signature SIG_HT
3 ht_sign(M, SK.seed, PK.seed, idx_tree, idx_leaf) {
4 // init
5 ADRS = toByte(0, 32);
6 // sign
7 ADRS.setLayerAddress(0);
8 ADRS.setTreeAddress(idx_tree);
9 SIG_tmp = xmss_sign(M, SK.seed, idx_leaf, PK.seed, ADRS);

10 SIG_HT = SIG_HT SIG_tmp;
11 root = xmss_pkFromSig(idx_leaf, SIG_tmp, M, PK.seed, ADRS);
12 for ( j = 1; j < d; j++ ) {
13 idx_leaf = (h / d) least significant bits of idx_tree;
14 idx_tree = (h - (j + 1) * (h / d)) most significant bits of idx_tree;
15 ADRS.setLayerAddress(j);
16 ADRS.setTreeAddress(idx_tree);
17 SIG_tmp = xmss_sign(root, SK.seed, idx_leaf, PK.seed, ADRS);
18 SIG_HT = SIG_HT SIG_tmp;
19 if ( j < d - 1 ) {
20 root = xmss_pkFromSig(idx_leaf, SIG_tmp, root, PK.seed, ADRS);
21 }
22 }
23 return SIG_HT;
24 }

5.2.5 HT Signature Verification (Function ht_verify)

HT signature verification (Algorithm 14) can be summarized as d calls to xmss_pkFromSig and one
comparison with a given value. HT signature verification takes a message M , a signature SIGHT, a public
seed PK.seed, an index idx (split into a tree index and a leaf index, as above), and a HT public key
PKHT.

6 FORS: Forest Of Random Subsets
The SPHINCS-α hypertree HT is not used to sign the actual messages but the public keys of FORS
instances which in turn are used to sign message digests. FORS, short for forest of random subsets, is a
few-time signature scheme (FTS). FORS is an improvement of HORST [5] which in turn is a variant of
HORS [23]. For security it is essential that the input to FORS is the output of a hash function. In the
following we describe FORS as acting on bit strings.

FORS uses parameters k and t = 2a (example parameters are t = 215, k = 10). FORS signs strings
of length ka bits. Here, we deviate from defining sizes in bytes as the message length in bits might not
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Algorithm 14: ht_verify — Verifying a HT signature SIGHT on a message M using a HT
public key PKHT .

1 # Input: Message M, signature SIG_HT, public seed PK.seed, tree index idx_tree,
leaf index idx_leaf, HT public key PK_HT.↪→

2 # Output: Boolean
3 ht_verify(M, SIG_HT, PK.seed, idx_tree, idx_leaf, PK_HT){
4 // init
5 ADRS = toByte(0, 32);
6 // verify
7 SIG_tmp = SIG_HT.getXMSSSignature(0);
8 ADRS.setLayerAddress(0);
9 ADRS.setTreeAddress(idx_tree);

10 node = xmss_pkFromSig(idx_leaf, SIG_tmp, M, PK.seed, ADRS);
11 for ( j = 1; j < d; j++ ) {
12 idx_leaf = (h / d) least significant bits of idx_tree;
13 idx_tree = (h - (j + 1) * h / d) most significant bits of idx_tree;
14 SIG_tmp = SIG_HT.getXMSSSignature(j);
15 ADRS.setLayerAddress(j);
16 ADRS.setTreeAddress(idx_tree);
17 node = xmss_pkFromSig(idx_leaf, SIG_tmp, node, PK.seed, ADRS);
18 }
19 if ( node == PK_HT ) {
20 return true;
21 } else {
22 return false;
23 }
24 }

be a multiple of eight. The private key consists of kt random n- byte strings grouped into k sets, each
containing tn-byte strings. The private key values are pseudorandomly generated from the main private
seed SK.seed in the SPHINCS-α private key. In SPHINCS-α, the FORS private key values are only
temporarily generated as an intermediate result when computing the public key or a signature.

The FORS public key is a single n-byte hash value. It is computed as the tweakable hash of the root
nodes of k binary hash trees. Each of these binary hash trees has height a and is used to authenticate
the t private key values of one of the k sets. Accordingly, the leaves of a tree are the (tweakable) hashes
of the values in its private key set.

A signature on a string M consists of k private key values — one per set of private key elements
— and the associated authentication paths. To compute the signature, md is split into k a-bit strings.
As md is a sequence of bytes, we first convert to a bit-string by enumerating the bytes in md, internally
enumerating the bits within a byte from least to most significant. Next, each of these bit strings is
interpreted as an integer between 0 and t − 1. Each of these integers is used to select one private key
value from a set. I.e., if the first integer is i, the i-th private key element of the first set gets selected
and so on. The signature consists of the selected private key elements and the associated authentication
paths.

SPHINCS-α uses implicit verification for FORS, only using a method to compute a candidate public
key from a signature. This is done by computing root nodes of the k trees using the indices computed
from the input string as well as the private key values and authentication paths form the signature. The
tweakable hash of these roots is then returned as candidate public key.

We now describe the parameters and algorithms for FORS.

6.1 FORS Parameters
FORS uses the parameters n, k, and t; they all take positive integer values. These parameters are
summarized as follows:

• n: the security parameter; it is the length of a private key, public key, or signature element in
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bytes.

• k: the number of private key sets, trees and indices computed from the input string.

• t: the number of elements per private key set, number of leaves per hash tree and upper bound on
the index values. The parameter t MUST be a power of 2. If t = 2a, then the trees have height a
and the input string is split into bit strings of length a.

Inputs to FORS are bit strings of length k log t.

r0 r1
r2

Figure 12: FORS trees and PK.

6.2 FORS Private Key (Function fors_SKgen)
In the context of SPHINCS-α, a FORS private key is the single private seed SK.seed contained in the
SPHINCS-α private key. It is used to generate the kt n-byte private key values using PRF with a
FORS key generation address. While these values are logically grouped into a two-dimensional array,
for implementations it makes sense to assume they are in a one dimensional array of length kt. The
jth element of the i-th set is then stored at SK[it+ j]. To generate one of these elements, a FORS key
generation address skADRS is used, that encodes the position of the FORS key pair within SPHINCS-α
and has tree height set to 0 and leaf index set to it+ j:

Algorithm 15: fors_SKgen — Computing a FORS private key value.
1 # Input: secret seed SK.seed, address ADRS, secret key index idx = it+j
2 # Output: FORS private key sk
3 fors_SKgen(SK.seed, ADRS, idx) {
4 skADRS = ADRS; // copy address to create key generation address
5 skADRS.setType(FORS_PRF);
6 skADRS.setKeyPairAddress(ADRS.getKeyPairAddress());
7

8 skADRS.setTreeHeight(0);
9 skADRS.setTreeIndex(idx);

10 sk = PRF(SK.seed, skADRS);
11 return sk;
12 }

6.3 FORS TreeHash (Function fors_treehash)
Before coming to the FORS public key, we have to discuss computation of the trees. For the computation
of the n-byte nodes in the FORS hash trees, the subroutine fors_treehash is used. It is essentially the
same algorithm as treehash (Algorithm 8) in Section 5.1. The two differences are how the leaf nodes
are computed and how addresses are handled. However, as the addresses are similar, an implementation
can implement both algorithms in the same routine easily.

Algorithm fors_treehash accepts a secret seed SK.seed, a public seed PK.seed, an unsigned integer
s (the start index), an unsigned integer z (the target node height), and an address ADRS that encodes the
address of the FORS key pair. As for treehash, the fors_treehash algorithm returns the root node of
a tree of height z with the leftmost leaf being the hash of the private key element at index s. Here, s
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is ranging over the whole kt private key elements. It is REQUIRED that s % 2z = 0, i.e. that the leaf
at index s is a leftmost leaf of a sub-tree of height z. Otherwise the algorithm fails as it would compute
non-existent nodes.

Algorithm 16: The fors_treehash algorithm.

1 # Input: Secret seed SK.seed, start index s, target node height z, public seed
PK.seed, address ADRS↪→

2 # Output: n-byte root node - top node on Stack
3 fors_treehash(SK.seed, s, z, PK.seed, ADRS) {
4 if( s % (1 << z) != 0 ) return -1;
5 for ( i = 0; i < 2^z; i++ ) {
6 sk = fors_SKgen(SK.seed, ADRS, s+i)
7 node = F(PK.seed, ADRS, sk);
8 ADRS.setTreeHeight(1);
9 ADRS.setTreeIndex(s + i);

10 while ( Top node on Stack has same height as node ) {
11 ADRS.setTreeIndex((ADRS.getTreeIndex() - 1) / 2);
12 node = H(PK.seed, ADRS, (Stack.pop() node));
13 ADRS.setTreeHeight(ADRS.getTreeHeight() + 1);
14 }
15 Stack.push(node);
16 }
17 return Stack.pop();
18 }

6.4 FORS Public Key (Function fors_PKgen)
In the context of SPHINCS-α, the FORS public key is never generated alone. It is only generated
together with a signature. We include fors_PKgen for completeness, a better understanding, and testing.
Algorithm fors_PKgen takes a private seed SK.seed, a public seed PK.seed, and a FORS address ADRS.
The latter encodes the position of the FORS instance within SPHINCS-α. It outputs a FORS public
key.

Algorithm 17: fors_PKgen — Generate a FORS public key.
1 # Input: Secret seed SK.seed, public seed PK.seed, address ADRS
2 # Output: FORS public key PK
3 fors_PKgen(SK.seed, PK.seed, ADRS) {
4 forspkADRS = ADRS; // copy address to create FTS public key address
5 for(i = 0; i < k; i++){
6 root[i] = fors_treehash(SK.seed, i*t, a, PK.seed, ADRS);
7 }
8 forspkADRS.setType(FORS_ROOTS);
9 forspkADRS.setKeyPairAddress(ADRS.getKeyPairAddress());

10 pk = T_k(PK.seed, forspkADRS, root);
11 return pk;
12 }

6.5 FORS Signature Generation (Function fors_sign)
A FORS signature is a length k(log t+1) array of n-byte strings. It contains k private key values, n-bytes
each, and their associated authentication paths, log t n-byte values each.
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The algorithm fors_sign takes a (k log t)-bit string M , a private seed SK.seed, a public seed
PK.seed, and an address ADRS. The latter encodes the position of the FORS instance within SPHINCS-α.
It outputs a FORS signature SIGFORS.

Algorithm 18: fors_sign — Generate a FORS signature on string M .
1 # Input: Bit string M, secret seed SK.seed, address ADRS, public seed PK.seed
2 # Output: FORS signature SIG_FORS
3 fors_sign(M, SK.seed, PK.seed, ADRS) {
4 // compute signature elements
5 for(i = 0; i < k; i++){
6 // get next index
7 unsigned int idx = bits i*log(t) to (i+1)*log(t) - 1 of M;
8 // pick private key element
9 SIG_FORS = SIG_FORS fors_SKgen(SK.seed, ADRS, i*t + idx) ;

10 // compute auth path
11 for ( j = 0; j < a; j++ ) {
12 s = floor(idx / (2^j)) XOR 1;
13 AUTH[j] = fors_treehash(SK.seed, i * t + s * 2^j, j, PK.seed, ADRS);
14 }
15 SIG_FORS = SIG_FORS AUTH;
16 }
17 return SIG_FORS;
18 }

The data format for a signature is given in Fig. 13.

Private Key Value (Tree 0)

AUTH (Tree 0)
...

...

Private Key Value (Tree k − 1)

AUTH (Tree k − 1)

Figure 13: FORS Signature.

6.6 FORS Compute Public Key from Signature (Function fors_pkFromSig)
SPHINCS-α makes use of implicit signature verification of FORS signatures. A FORS signature is used
to compute a candidate FORS public key. This public key is used in further computations (message
for the signature of the XMSS tree above) and implicitly verified by the outcome of that computation.
Hence, this specification does not contain a fors_verify method but the method fors_pkFromSig.

The method fors_pkFromSig takes a k log t-bit string M , a FORS signature SIGFORS, a public seed
PK.seed, and an address ADRS. The latter encodes the position of the FORS instance within the virtual
structure of the SPHINCS-α key pair. First, the roots of the k binary hash trees are computed using
fors_treehash. Afterwards the roots are hashed using the tweakable hash function Tk. The algo-
rithm fors_pkFromSig is given as Algorithm 19. The method fors_pkFromSig makes use of functions
SIGFORS.getSK(i) and SIGFORS.getAUTH(i). The former returns the i-th secret key element stored in the
signature, the latter returns the i-th authentication path stored in the signature.
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Algorithm 19: fors_pkFromSig — Compute a FORS public key from a FORS signature.
1 # Input: FORS signature SIG_FORS, (k lg t)-bit string M, public seed PK.seed,

address ADRS↪→

2 # Output: FORS public key
3 fors_pkFromSig(SIG_FORS, M, PK.seed, ADRS){
4 // compute roots
5 for(i = 0; i < k; i++){
6 // get next index
7 unsigned int idx = bits i*log(t) to (i+1)*log(t) - 1 of M;
8 // compute leaf
9 sk = SIG_FORS.getSK(i);

10 ADRS.setTreeHeight(0);
11 ADRS.setTreeIndex(i*t + idx);
12 node[0] = F(PK.seed, ADRS, sk);
13 // compute root from leaf and AUTH
14 auth = SIG_FORS.getAUTH(i);
15 ADRS.setTreeIndex(i*t + idx);
16 for ( j = 0; j < a; j++ ) {
17 ADRS.setTreeHeight(j+1);
18 if ( (floor(idx / (2^j)) % 2) == 0 ) {
19 ADRS.setTreeIndex(ADRS.getTreeIndex() / 2);
20 node[1] = H(PK.seed, ADRS, (node[0] auth[j]));
21 } else {
22 ADRS.setTreeIndex((ADRS.getTreeIndex() - 1) / 2);
23 node[1] = H(PK.seed, ADRS, (auth[j] node[0]));
24 }
25 node[0] = node[1];
26 }
27 root[i] = node[0];
28 }
29 forspkADRS = ADRS; // copy address to create FTS public key address
30 forspkADRS.setType(FORS_ROOTS);
31 forspkADRS.setKeyPairAddress(ADRS.getKeyPairAddress());
32 pk = T_k(PK.seed, forspkADRS, root);
33 return pk;
34 }
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7 SPHINCS-α
We now have all ingredients to describe our main construction SPHINCS-α. Essentially, SPHINCS-α
follows the fundamental structure of SPHINCS-α with the only difference being the one-time signature
component.

7.1 SPHINCS-α Parameters
SPHINCS-α has the following parameters:

• n: the security parameter in bytes.

• w: the Winternitz parameter as defined in Section 4.1.

• h: the height of the hypertree as defined in Section 5.2.1.

• d: the number of layers in the hypertree as defined in Section 5.2.1.

• k: the number of trees in FORS as defined in Section 6.1.

• t: the number of leaves of a FORS tree as defined in Section 6.1.

All the restrictions stated in the previous sections apply. Recall that we use a = log t. Moreover, from
these values the values m and len are computed as

• m: the message digest length in bytes. It is computed as

m = ⌊(k log t+ 7)/8⌋+ ⌊(h− h/d+ 7)/8⌋+ ⌊(h/d+ 7)/8⌋.

While only h+ k log t bits would be needed, using the longer m as defined above simplifies imple-
mentations significantly.

• len: the number of n-byte string elements in a CS-WOTS+ private key, public key, and signature.
The value len is chosen so that the size of the following poset is larger than the desired message
space {0, 1}n (cf. Section 2). ∣∣∣D

len,⌊ len·(w−1)
2 ⌋

∣∣∣ ≥ 2n .

In the following, we assume that all algorithms have access to these parameters.

7.2 SPHINCS-α Key Generation (Function spx_keygen)
The SPHINCS-α private key contains two elements. First, the n-byte secret seed SK.seed which is used
to generate all the CS-WOTS+ and FORS private key elements. Second, an n-byte PRF key SK.prf
which is used to deterministically generate a randomization value for the randomized message hash.

The SPHINCS-α public key also contains two elements. First, the HT public key, i.e. the root of
the tree on the top layer. Second, an n-byte public seed value PK.seed which is sampled uniformly at
random.

As spa_sign does not get the public key, but needs access to PK.seed (and possibly to PK.root
for fault attack mitigation), the SPHINCS-α secret key contains a copy of the public key.

The description of algorithm spa_keygen assumes the existence of a function sec_rand which on
input i returns i-bytes of cryptographically strong randomness.

The format of a SPHINCS-α private and public key is given in Fig. 14.

7.3 SPHINCS-α Signature
A SPHINCS-α signature SIGHT is a byte string of length (1 + k · (a+ 1)+ h+ d · len)n. It consists of an
n-byte randomization string R, a FORS signature SIGFORS consisting of k(a+1)n-byte strings, and a HT
signature SIGHT of (h+ d · len)n bytes.

The data format for a signature is given in Fig. 15.
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Algorithm 20: spa_keygen — Generate a SPHINCS-α key pair.
1 # Input: (none)
2 # Output: SPHINCS-α key pair (SK,PK)
3 spa_keygen( ){
4 SK.seed = sec_rand(n);
5 SK.prf = sec_rand(n);
6 PK.seed = sec_rand(n);
7 PK.root = ht_PKgen(SK.seed, PK.seed);
8 return ( (SK.seed, SK.prf, PK.seed, PK.root), (PK.seed, PK.root) );
9 }

SK.seed

SK.prf

PK.seed

PK.root

PK.seed

PK.root

Figure 14: Left: SPHINCS-α secret key. Right: SPHINCS-α public key.

7.4 SPHINCS-α Signature Generation (Function spa_sign)
Generating a SPHINCS-α signature consists of four steps. First, a random value R is pseudorandomly
generated. Next, this is used to compute a m byte message digest which is split into a ⌊(k log t+7)/8⌋-byte
partial message digest tmp_md, a ⌊(h− h/d+ 7)/8⌋-byte tree index tmp_idx_tree, and a ⌊(h/d+ 7)/8⌋-
byte leaf index tmp_idx_leaf. Next, the actual values md, idx_tree, and idx_leaf are computed by
extracting the necessary number of bits. The partial message digest md is then signed with the idx_leaf-
th FORS key pair of the idx_tree-th XMSS tree on the lowest HT layer. The public key of the FORS
key pair is then signed using HT.The index is never actually used as a whole, but immediately split into
a tree index and a leaf index, for ease of implementation.

When computing R, the PRF takes a n-byte string opt which is initialized with PK.seed but can be
overwritten with randomness if the global variable RANDOMIZE is set. This option is given as otherwise
SPHINCS-α signatures would be always deterministic.

7.5 SPHINCS-α Signature Verification (Function spa_verify)
SPHINCS-α signature verification (Algorithm 22) can be summarized as recomputing message digest
and index, computing a candidate FORS public key, and verifying the HT signature on that public key.
Note that the HT signature verification will fail if the FORS public key is not matching the real one
(with overwhelming probability). SPHINCS-α signature verification takes a message M , a signature SIG,
and a SPHINCS-α public key PK.

8 Instantiations
This section discusses instantiations for SPHINCS-α. SPHINCS-α can be viewed as a signature template.
It is a way to build a signature scheme by instantiating the cryptographic function families used. We
consider different ways to implement the cryptographic function families as different signature systems.
Orthogonal to instantiating the cryptographic function families are parameter sets. Parameter sets assign
specific values to the SPHINCS-α parameters described below.

In this section, we first define the requirements on parameters and discuss existing trade-offs be-
tween security, sizes, and speed controlled by the different parameters. Then we propose 6 different
parameter sets that match NIST security levels I, III, and V (2 parameter sets per security level). After-
wards we propose three different instantiations for the cryptographic function families of SPHINCS-α.
These instantiation are indeed three different signature schemes. We propose SPHINCS-α-SHAKE and
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SPHINCS-α-SHA2, which utilize the cryptographic hash functions defined in FIPS PUB 202, respectively
FIPS PUB 180, to instantiate the cryptographic function families.

8.1 SPHINCS-α Parameter Sets
SPHINCS-α is described by the following parameters already described in the previous sections. All
parameters take positive integer values.

• n: the security parameter in bytes.

• w : the Winternitz parameter.

• h: the height of the hypertree.

• d: the number of layers in the hypertree.

• k: the number of trees in FORS.

• t: the number of leaves of a FORS tree.

Recall that we use a = log t. Moreover, from these values the values m and len are computed as

• m: the message digest length in bytes. It is computed as

m = ⌊(k log t+ 7)/8⌋+ ⌊(h− h/d+ 7)/8⌋+ ⌊(h/d+ 7)/8⌋.

• len: the number of n-byte string elements in a CS-WOTS+ private key, public key, and signature.

len = min
{
ℓ :
∣∣∣Dℓ,⌊ `·(w−1)

2 ⌋

∣∣∣ ≥ 2n
}

,

where the size of D
ℓ,⌊ `·(w−1)

2 ⌋ is evaluated using the recurrence relation in Eq. (1).

We now repeat the roles of, requirements on, and properties of these parameters. Afterwards, we give
several formulas that show their exact influence on performance and security. The security parameter
n is also the output length of all cryptographic function families besides Hmsg. Therefore, it largely
determines which security level a parameter set reaches. It is also the size of virtually any node within
the SPHINCS-α structure and thereby also the size of all elements in a signature, i.e., the signature size
is a multiple of n.

The Winternitz parameter w determines the number and length of the hash chains per CS-WOTS+

instance. A greater value for w linearly increases the length of the hash chains but logarithmically
reduces their number. The number of hash chains exactly corresponds to the number of n-byte values in
a CS-WOTS+ signature. Thereby it largely influences the size of a SPHINCS-α signature. The product
of the number and the length of hash chains directly correlates with signing speed as essentially all time
in HT signature generation is spent computing CS-WOTS+ public keys. Therefore, greater w means
shorter signatures but slower signing. However, note the exponential gap. The bigger w gets, the more
expensive is the signature size reduction. The Winternitz parameter does not influence SPHINCS-α
security.

The height of the hypertree h determines the number of FORS instances. Hence, it determines the
probability that a FORS key pair is used several times, given the number of signatures made with a
SPHINCS-α key pair. Hence, the height has a direct impact on security: A taller hypertree gives more
security. On the other hand, a taller tree leads to larger signatures.

The number of layers d is a pure performance trade-off parameter and does not influence security.
It determines the number of layers of XMSS trees in the hypertree. Hence, d must divide h without
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Algorithm 21: spa_sign — Generating a SPHINCS-α signature.
1 # Input: Message M, private key SK = (SK.seed, SK.prf, PK.seed, PK.root)
2 # Output: SPHINCS-α signature SIG
3 spa_sign(M, SK){ // init
4 ADRS = toByte(0, 32);
5 // generate randomizer
6 opt = PK.seed;
7 if(RANDOMIZE){
8 opt = rand(n);
9 }

10 R = PRF_msg(SK.prf, opt, M);
11 SIG = SIG R;
12 // compute message digest and index
13 digest = H_msg(R, PK.seed, PK.root, M);
14 tmp_md = first floor((ka +7)/ 8) bytes of digest;
15 tmp_idx_tree = next floor((h - h/d +7)/ 8) bytes of digest;
16 tmp_idx_leaf = next floor((h/d +7)/ 8) bytes of digest;
17 md = first ka bits of tmp_md;
18 idx_tree = first h - h/d bits of tmp_idx_tree;
19 idx_leaf = first h/d bits of tmp_idx_leaf;
20 // FORS sign
21 ADRS.setLayerAddress(0);
22 ADRS.setTreeAddress(idx_tree);
23 ADRS.setType(FORS_TREE);
24 ADRS.setKeyPairAddress(idx_leaf);
25 SIG_FORS = fors_sign(md, SK.seed, PK.seed, ADRS);
26 SIG = SIG SIG_FORS;
27 // get FORS public key
28 PK_FORS = fors_pkFromSig(SIG_FORS, md, PK.seed, ADRS);
29 // sign FORS public key with HT
30 ADRS.setType(TREE);
31 SIG_HT = ht_sign(PK_FORS, SK.seed, PK.seed, idx_tree, idx_leaf);
32 SIG = SIG SIG_HT;
33 return SIG;
34 }

remainder. The parameter d thereby defines the height of the XMSS trees used. The greater d, the
smaller the subtrees, the faster signing. However, d also controls the number of layers and thereby the
number of CS-WOTS+ signatures within a HT and thereby a SPHINCS-α signature.

The parameters k and t determine the performance and security of FORS. The number of leaves of
a tree in FORS t must be a power of two while k can be chosen freely. A smaller t generally leads to
smaller and faster signatures. However, for a given security level a smaller t requires a greater k which
increases signature size and slows down signing. Hence, it is important to balance these two parameters.
This is best done using the formulas below.

The message digest length m is the output length of Hmsg in bytes. It is ⌊(k log t + 7)/8⌋ + ⌊(h −
h/d+ 7)/8⌋+ ⌊(h/d+ 7)/8⌋ bytes.

The number len of chains in a CS-WOTS+ key pair determines the CS-WOTS+ signature size.

8.1.1 Influence of Parameters on Security and Performance

In the following we provide formulas to compute speed, size and security for a given SPHINCS-α param-
eter set. This supports parameter selection. We also provide a SAGE script in Appendix A.

Key Generation. Generating the SPHINCS-α private key and PK.seed requires three calls to a
secure random number generator. Next we have to generate the top tree. For the leaves we need to do
2h/d CS-WOTS+ key generations (len calls to PRF for generating the SK and wlen calls to F for the
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Algorithm 22: spa_verify — Verify a SPHINCS-α signature SIG on a message M using a
SPHINCS-α public key PK.

1 # Input: Message M, signature SIG, public key PK
2 # Output: Boolean
3 spa_verify(M, SIG, PK){ // init
4 ADRS = toByte(0, 32);
5 R = SIG.getR();
6 SIG_FORS = SIG.getSIG_FORS();
7 SIG_HT = SIG.getSIG_HT();
8 // compute message digest and index
9 digest = H_msg(R, PK.seed, PK.root, M);

10 tmp_md = first floor((ka +7)/ 8) bytes of digest;
11 tmp_idx_tree = next floor((h - h/d +7)/ 8) bytes of digest;
12 tmp_idx_leaf = next floor((h/d +7)/ 8) bytes of digest;
13 md = first ka bits of tmp_md;
14 idx_tree = first h - h/d bits of tmp_idx_tree;
15 idx_leaf = first h/d bits of tmp_idx_leaf;
16 // compute FORS public key
17 ADRS.setLayerAddress(0);
18 ADRS.setTreeAddress(idx_tree);
19 ADRS.setType(FORS_TREE);
20 ADRS.setKeyPairAddress(idx_leaf);
21 PK_FORS = fors_pkFromSig(SIG_FORS, md, PK.seed, ADRS);
22 // verify HT signature
23 ADRS.setType(TREE);
24 return ht_verify(PK_FORS, SIG_HT, PK.seed, idx_tree, idx_leaf, PK.root);
25 }

PK) and we have to compress the CS-WOTS+ public key (one call to Tlen). Computing the root of the
top tree requires (2h/d − 1) calls to H.

Signing. For randomization and message compression we need one call to PRFmsg, and one to Hmsg.
The FORS signature requires kt calls to PRF and F. Further, we have to compute the root of k binary
trees of height log t which adds k(t− 1) calls to H. Finally, we need one call to Tk. Next, we compute
one HT signature which consists of d trees similar to the key generation. Hence, we have to do d(2h/d)
times len calls to PRF and wlen calls to F as well as d(2h/d) calls to Tlen. For computing the root of
each tree we get additionally d(2h/d − 1) calls to H.

Verification. First we need to compute the message hash using Hmsg. We need to do one FORS
verification which requires k calls to F (to compute the leaf nodes from the signature elements), k log t
calls to H (to compute the root nodes using the leaf nodes and the authentication paths), and one call
to Tk for hashing the roots. Next, we have to verify d XMSS signatures which takes < wlen calls to F
and one call to Tlen each for CS-WOTS+ signature verification2. It also needs dh/d calls to H for the
d root computations.

The size of the SPHINCS-α private and public keys along with the signature are 4n, 2n, (h + k(a +
1) + d · len+ 1)n respectively.

The classical security level, or bit security of SPHINCS-α against generic attacks can be computed
as

bitsec = − log

(
1

28n
+
∑
γ

(
1−

(
1− 1

t

)γ)k (
q

γ

)(
1− 1

2h

)q−γ
1

2hγ

)
.

2It should be noted that the wlen bound for calls to F is a worst-case bound. This is a bound on the cost for CS-WOTS+

signature verification. Given that the messages are hash values which can assumed to be close to uniformly distributed,
this value will be closer to the average-case bound (w/2). len in actual measurements.
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Table 3: Parameter sets for the SPHINCS-α scheme.
Parameter Set n h d log t k w l bitsec sec level sig bytes
sphincs-a-128s 16 63 9 13 12 73 22 128 I 6880
sphincs-a-128f 16 63 21 8 25 14 36 128 I 16720
sphincs-a-192s 24 63 9 14 17 77 32 192 III 14568
sphincs-a-192f 24 64 16 8 37 8 66 192 III 34896
sphincs-a-256s 32 66 11 13 23 79 42 255 V 27232
sphincs-a-256f 32 68 17 9 35 16 66 255 V 49312

The quantum security level, or bit security of SPHINCS-α against generic attacks can be computed as

bitsec = −1

2
log

(
1

28n
+
∑
γ

(
1−

(
1− 1

t

)γ)k (
q

γ

)(
1− 1

2h

)q−γ
1

2hγ

)
.

Here, we are neglecting the small constant factors inside the logarithm.

8.1.2 Proposed Parameter Sets and Security Levels

As explained in the previous subsection, even for a fixed security level the design of SPHINCS-α supports
many different tradeoffs between signature size and speed. In Table 3 we list 6 parameter sets that —
together with the cycle counts given in Table 5 — illustrates how these tradeoffs can be used to obtain
concrete parameter sets optimizing for signature size and concrete parameter sets optimizing for speed.
Specifically, we propose parameter sets achieving security levels 1, 3, and 5; for each of these security
levels propose one size-optimized (ending on ‘s’ for “small”) and one speed-optimized (ending on ‘f’
for “fast”) parameter set. The parameter sets were obtained with the help of a Sage script that we
list in Appendix A. The output of the script will be a long list of possible parameters achieving this
security level together with the signature size and an estimate of the performance, using the formulas
from Section 8.1.1 above.

Note that we did not obtain our proposed parameter sets simply by searching this output for the
smallest or the fastest option. The reason is that, for example, optimizing for size without caring about
speed at all results in signatures of a size of ≈ 15 KB for a bit security of 256, but computing one
signature takes more than 20 minutes on our benchmark platform. Such a tradeoff might be interesting
for very few select applications, but we cannot think of many applications that would accept such a large
time for signing. Instead, the proposed parameter sets are what we consider “non-extreme”; i.e., with a
signing time of at most a few seconds in our non-optimized implementation.

The choice of these parameters is orthogonal to the choice of hash function. In Section 8.2 we describe
two different instantiations of the underlying hash function. Together with the six parameter sets listed
in Table 3 we obtain 12 different instantiations of SPHINCS-α.

8.2 Instantiations of Hash Functions
In this section we define different signature schemes, which are obtained by instantiating the crypto-
graphic function families of SPHINCS-α with SHA2 and SHAKE.

Recall that n and m are the security parameter and the message digest length, in bytes.

Table 4: Example parameter sets for SPHINCS-α targeting different security levels and different tradeoffs
between size and speed. Note that these parameter sets have been update for round 3. The column
labeled “bitsec” gives the bit security computed as described in Section 9; the column labeled “sec level”
gives the security level according to the levels specified in Section 4. A.5 of the Call for Proposals. As
explained later, for Haraka the security level is limited to 2: i.e., it is 1 for n = 16, and 2 for n = 24 or
n = 32.

8.2.1 SPHINCS-α-SHAKE

For SPHINCS-α-SHAKE we define
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Hmsg(R,PK.seed,PK.root,M) = SHAKE256(R∥PK.seed∥PK.root∥M,m),

PRF(PK.seed,SK.seed, ADRS) = SHAKE256(PK.seed∥ADRS∥SK.seed, 8n),

PRFmsg(SK.prf, OptRand,M) = SHAKE256(SK.prf, OptRand∥M, 8n) .

F(PK.seed, ADRS,M1) = SHAKE256(PK.seed∥ADRS∥M1, 8n),

H(PK.seed, ADRS,M1∥M2) = SHAKE256(PK.seed∥ADRS∥M1∥M2, 8n),

Tℓ(PK.seed, ADRS,M) = SHAKE256(PK.seed∥ADRS∥M, 8n) .

8.2.2 SPHINCS-α-SHA2

In a similar way we define the functions for SPHINCS-α-SHA2. In some places we use SHA2-256 for
n = 16 and SHA2-512 for n = 24 and n = 32. For this we use the shorthand SHA-X.

Hmsg(R,PK.seed,PK.root,M) = MGF1-SHA-X(R∥PK.seed∥SHA-X(R∥PK.seed∥PK.root∥M),m),

PRF(PK.seed,SK.seed, ADRS) = SHA2-256(BlockPad(PK.seed)∥ADRSc∥SK.seed),

PRFmsg(SK.prf, OptRand,M) = HMAC-SHA-X(SK.prf, OptRand∥M) .

For n = 32, we only take the first 32 bytes of output of PRF and discard the rest.

F(PK.seed, ADRS,M1) = SHA2-256(BlockPad(PK.seed)∥ADRSc∥M1),

H(PK.seed, ADRS,M1∥M2) = SHA-X(BlockPad(PK.seed)∥ADRSc∥M1∥M2),

Tℓ(PK.seed, ADRS,M) = SHA-X(BlockPad(PK.seed)∥ADRSc∥M) ,

Here, we use MGFI as defined in RFC 2437 and HMAC as defined in FIPS-198-1. Note that MGFI
takes as the last input the output length in bytes.

Padding PK.seed. Each of the instances of the tweakable hash function take PK.seed as its first
input, which is constant for a given key pair — and, thus, across a single signature. This leads to a lot
of redundant computation. To remedy this, we pad PK.seed to the length of a full 64-/128-byte SHA2
input block using

BlockPad(PK.seed) = PK.seed∥toByte(0, bl − n) .

where bl = 64 for SHA2-256 and bl = 128 for SHA2-512. Because of the Merkle-Damgård construction
that underlies SHA2, this allows for reuse of the intermediate SHA2 state after the initial call to the
compression function which improves performance.

Compressing ADRS. To ensure that we require the minimal number of calls to the SHA2 compression
function, we use a compressed ADRS for each of these instances. Where possible, this allows for the SHA2
padding to fit within the last input block. Rather than storing the layer address and type field in a
full 4-byte word each, we only include the least-significant byte of each. Similarly, we only include the
least-significant 8 bytes of the 12-byte tree address. This reduces the address from 32 to 22 bytes. We
denote such compressed addresses as ADRS.

Shorter Outputs. If a parameter set requires an output length n < 32-bytes for F, H, PRF, and
PRFmsg we take the first n bytes of the output and discard the remaining.

9 Design Rationale
The design rationale behind SPHINCS-α is to follow the original SPHINCS+ construction and apply the
optimized CS-WOTS+ one time signature scheme. The idea behind SPHINCS+ was as follows. One can
build a stateless hash-based signature scheme using a massive binary certification tree and selecting a
leaf at random for each message to be signed. The problem with this approach is that the tree has to be
extremely high, i.e., a height of about twice the security level would be necessary. This leads to totally
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unpractical signature sizes. Using a hypertree instead of a binary certification tree allows to trade speed
for signature size. However, this is still not sufficient to get practical sizes and speed.

Since one-time signature is extensively used in the SPHINCS+ hypertree structure, optimizing the
size of the one-time signature scheme has potentially great influence on the overall performance. The
reason is that with CS-WOTS+, we can re-tune the parameters of the signature scheme in order to
have more flexibility, e.g., to achieve smaller (resp. faster) signatures with comparable running time
(resp. signature size) as the original SPHINCS+ scheme.

We are able to prove that the encoding scheme in CS-WOTS+ is size optimal among all encoding
scheme over tree structures (even including those not necessarily efficiently computable). Moreover,
to the best of our knowledge, no existing DAG-based scheme achieves better performance in terms of
signature size, which renders our scheme the size optimal one among all known schemes [27]. We are
aware that the existence of probabilistic encoding schemes based on rejection sampling [17], and we
consider the techniques thereof as of independent interest, since one can reduce the message length using
the proof-of-work-style protocol in [17] and apply our scheme on the shorter digest.

10 Security Evaluation and Analysis with Respect to Known
Attacks.

We follow the security analysis of SPHINCS+ and adopt the suggestion of NIST [21] to discard the
robust version of the tweakable hash functions as well as the haraka hash function. As a result, the
EUF-CMA security of the signature scheme can be reduced to the security of different properties of
the tweakable hash functions. Since the tweakable hash functions are modelled as (quantum) random
oracles, the respective security properties can only be thwarted via generic attacks.

In particular, the EUF-CMA security of the signature scheme relies on the following security prop-
erties of the underlying components:

• The PRF security of PRF and PRFmsg,

• The interleaved target subset resilience (ITSR) of Hmsg,

• The single function, multi-target undetectability (SM-UD), target-collision (SM-TCR), and deci-
sional second-preimage resistance (SM-DSPR) of F,

• The SM-TCR of H and Tℓ.

Security Level of a Given Parameter Set. The security analysis is identical to SPHINCS+. The
classical security level, or bit security of SPHINCS-α against generic attacks can be computed as

b = − log
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The quantum security level, or bit security of SPHINCS-α against generic attacks can be computed as
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Here, we are neglecting the small constant factors inside the logarithm.
As we have mentioned above, the assumption that the underlying tweakable hash function behaving

like a random oracle effectively renders forgery attacks against the signature scheme being limited to
generic attacks, whose success probability is captured in the above formulas.

Now we discuss the security of the two instantiations of hash functions, namely SHAKE and SHA2.

Security of SPHINCS-α-SHAKE. NIST has standardized several applications of the Keccak per-
mutation, such as the SHA3-256 hash function and the SHAKE256 extendable-output function, after
a multi-year Cryptographic Hash Algorithm Competition involving extensive public input. All of these
standardized Keccak applications have a healthy security margin against all attacks known.

Discussions of the theory of cryptographic hash functions typically identify a few important properties
such as collision resistance, preimage resistance, and second-preimage resistance; and sometimes include
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a few natural variants of the attack model such as multi-target attacks and quantum attacks. It is
important to understand that cryptanalysts engage in a much broader search for any sort of behavior
that is feasible to detect and arguably “non-random”. NIST’s call for SHA-3 submissions highlighted
preimage resistance etc. but then stated the following:

Hash algorithms will be evaluated against attacks or observations that may threaten exist-
ing or proposed applications, or demonstrate some fundamental flaw in the design, such as
exhibiting nonrandom behavior and failing statistical tests.

It is, for example, non-controversial to use Keccak with a partly secret input as a PRF: any attack
against such a PRF would be a tremendous advance in SHA-3 cryptanalysis, even though the security
of such a PRF is not implied by properties such as preimage resistance. Similarly, a faster-than-generic
attack against the interleaved-target-subset-resilience property, being able to find an input with various
patterns of output bits, would be a tremendous advance.

The particular function SHAKE256 used in SPHINCS-α-SHAKE has an internal capacity of 512
bits. There are various attack strategies that search for 512-bit internal collisions, but this is not a
problem even at the highest security category that we aim for. There is also progress towards showing
the hardness of generic quantum attacks against the sponge construction. Of course, second-preimage
resistance is limited by the n-byte output length that we use.

Security of SPHINCS-α-SHA2. NISTs SHA-2 family has been standardized for many more years
than SHA-3. The standardization and popularity of SHA-2 mean that these functions are attractive
targets for cryptanalysts, but this has not produced any attacks of concern: each of the members of this
family has a comfortable security margin against all known attacks.

The broad cryptanalytic goal of finding non-random behavior (see above) is not a new feature of
SHA-3. For example, the security analysis of the popular HMAC-SHA-256 message authentication code
is based on the security analysis of NMAC-SHA-256, which in turn is based on a pseudorandomness
assumption for SHA-256.

The particular function SHA2-256 used in SPHINCS-α-SHA2 has a chaining value of only 256 bits,
making it slightly weaker in some metrics than SHAKE256 with 256-bit output. Therefore we make use
of SHA2-512 in some cases to achieve the target security level.

11 Performance
We conduct our benchmarks on a Ubuntu 20.04 machine with Ryzen 5 3600 CPU and 16GB RAM,
compiled with gcc-9.3.0 -O3 -march=native -fomit-frame-pointer -flto. We also provide optimized imple-
mentations for platforms supporting the AVX2 instruction set.

For the defined parameter sets, the resulting cycle counts, the key and signature sizes (in bytes) are
listed in Table 5. Performance results are listed in Table 5, Table 6 and Table 7. In terms of memory
consumption, we remark that the reference implementation tends towards low stack usage.
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Table 5: Runtime benchmarks for SPHINCS-α. Key generation, signing and verification time are in the
number of cpu cycles; public key, secret key and signature size are in bytes. All cycle counts are the
median of 100 runs.

Parameter Set Impl. KeyGen Sign Verify Pk Sk Sig
sphincs-a-shake-128f ref 6861114 176440590 9035874 32 64 16720
sphincs-a-shake-192f ref 14555628 281397294 7353450 48 96 34896
sphincs-a-shake-256f ref 29112588 586596492 15740802 64 128 49312
sphincs-a-shake-128s ref 347407200 3628303722 12591234 32 64 6880
sphincs-a-shake-192s ref 533064942 6209945190 19292382 48 96 14568
sphincs-a-shake-256s ref 362125278 4942646316 31932360 64 128 27232
sphincs-a-sha2-128f ref 4157334 106933014 5569452 32 64 16720
sphincs-a-sha2-192f ref 8837622 173603070 4654278 48 96 34896
sphincs-a-sha2-256f ref 17439858 357693966 9646776 64 128 49312
sphincs-a-sha2-128s ref 208068264 2172320100 7584102 32 64 6880
sphincs-a-sha2-192s ref 319426722 3827118258 11723508 48 96 14568
sphincs-a-sha2-256s ref 215034228 3011033142 19147662 64 128 27232
sphincs-a-shake-128f avx2 2218014 57069090 3558492 32 64 16720
sphincs-a-shake-192f avx2 4614804 92073114 3028500 48 96 34896
sphincs-a-shake-256f avx2 9563742 191187306 5983920 64 128 49312
sphincs-a-shake-128s avx2 108983646 1139743980 4891482 32 64 6880
sphincs-a-shake-192s avx2 171004500 1996754616 7254738 48 96 14568
sphincs-a-shake-256s avx2 115604604 1582371720 11677806 64 128 27232
sphincs-a-sha2-128f avx2 1036602 26635716 2028186 32 64 16720
sphincs-a-sha2-192f avx2 2199276 45218790 1744038 48 96 34896
sphincs-a-sha2-256f avx2 4286574 91335474 3175290 64 128 49312
sphincs-a-sha2-128s avx2 51421086 537033762 2689650 32 64 6880
sphincs-a-sha2-192s avx2 78050718 988899534 3845970 48 96 14568
sphincs-a-sha2-256s avx2 52048332 764352612 6005448 64 128 27232
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Table 6: Runtime benchmarks for SPHINCS+. Key generation, signing and verification time are in the
number of cpu cycles; public key, secret key and signature size are in bytes. All cycle counts are the
median of 100 runs.

Parameter Set Impl. KeyGen Sign Verify Pk Sk Sig
sphincs-shake-128f ref 7622514 178188408 10775124 32 64 17088
sphincs-shake-192f ref 11240172 290022120 15972588 48 96 35664
sphincs-shake-256f ref 29488050 593083386 15949980 64 128 49856
sphincs-shake-128s ref 493648758 3747092580 3602178 32 64 7856
sphincs-shake-192s ref 717515010 6427813662 5332932 48 96 16224
sphincs-shake-256s ref 470748762 5584718124 7709508 64 128 29792
sphincs-sha2-128f ref 4600566 107749800 6402438 32 64 17088
sphincs-sha2-192f ref 6705198 181354752 9365400 48 96 35664
sphincs-sha2-256f ref 17695728 362443014 9947394 64 128 49856
sphincs-sha2-128s ref 294665274 2237140404 2282346 32 64 7856
sphincs-sha2-192s ref 428811300 3954195432 3266478 48 96 16224
sphincs-sha2-256s ref 283132530 3503794590 4785678 64 128 29792
sphincs-shake-128f avx2 2494854 58500990 4063716 32 64 17088
sphincs-shake-192f avx2 3541392 91863954 5919426 48 96 35664
sphincs-shake-256f avx2 9676188 193273884 6019830 64 128 49856
sphincs-shake-128s avx2 159844320 1210947264 1491894 32 64 7856
sphincs-shake-192s avx2 233254134 2093058036 2165706 48 96 16224
sphincs-shake-256s avx2 153274212 1799699922 3085776 64 128 29792
sphincs-sha2-128f avx2 1143558 26872236 2204802 32 64 17088
sphincs-sha2-192f avx2 1662498 45405504 3003534 48 96 35664
sphincs-sha2-256f avx2 4327632 92059542 2967642 64 128 49856
sphincs-sha2-128s avx2 72597852 551233638 846486 32 64 7856
sphincs-sha2-192s avx2 105310692 1022229270 1201230 48 96 16224
sphincs-sha2-256s avx2 69033492 918473904 1701324 64 128 29792
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Table 7: Performance comparison between the original and improved SPHINCS+ in terms of relative
changes.

Parameter Set Runtime

SPHINCS+ SPHINCS-α Impl. KeyGen Sign Verify Sig Size
sphincs-shake-128f sphincs-a-shake-128f ref −9.99% −0.98% −16.14% −2.15%
sphincs-shake-192f sphincs-a-shake-192f ref 29.50% −2.97% −53.96% −2.15%
sphincs-shake-256f sphincs-a-shake-256f ref −1.27% −1.09% −1.31% −1.09%
sphincs-shake-128s sphincs-a-shake-128s ref −29.62% −3.17% 249.55% −12.42%
sphincs-shake-192s sphincs-a-shake-192s ref −25.71% −3.39% 261.76% −10.21%
sphincs-shake-256s sphincs-a-shake-256s ref −23.07% −11.50% 314.19% −8.59%
sphincs-sha2-128f sphincs-a-sha2-128f ref −9.63% −0.76% −13.01% −2.15%
sphincs-sha2-192f sphincs-a-sha2-192f ref 31.80% −4.27% −50.30% −2.15%
sphincs-sha2-256f sphincs-a-sha2-256f ref −1.45% −1.31% −3.02% −1.09%
sphincs-sha2-128s sphincs-a-sha2-128s ref −29.39% −2.90% 232.29% −12.42%
sphincs-sha2-192s sphincs-a-sha2-192s ref −25.51% −3.21% 258.90% −10.21%
sphincs-sha2-256s sphincs-a-sha2-256s ref −24.05% −14.06% 300.10% −8.59%
sphincs-shake-128f sphincs-a-shake-128f avx2 −11.10% −2.45% −12.43% −2.15%
sphincs-shake-192f sphincs-a-shake-192f avx2 30.31% 0.23% −48.84% −2.15%
sphincs-shake-256f sphincs-a-shake-256f avx2 −1.16% −1.08% −0.60% −1.09%
sphincs-shake-128s sphincs-a-shake-128s avx2 −31.82% −5.88% 227.87% −12.42%
sphincs-shake-192s sphincs-a-shake-192s avx2 −26.69% −4.60% 234.98% −10.21%
sphincs-shake-256s sphincs-a-shake-256s avx2 −24.58% −12.08% 278.44% −8.59%
sphincs-sha2-128f sphincs-a-sha2-128f avx2 −9.35% −0.88% −8.01% −2.15%
sphincs-sha2-192f sphincs-a-sha2-192f avx2 32.29% −0.41% −41.93% −2.15%
sphincs-sha2-256f sphincs-a-sha2-256f avx2 −0.95% −0.79% 7.00% −1.09%
sphincs-sha2-128s sphincs-a-sha2-128s avx2 −29.17% −2.58% 217.74% −12.42%
sphincs-sha2-192s sphincs-a-sha2-192s avx2 −25.89% −3.26% 220.17% −10.21%
sphincs-sha2-256s sphincs-a-sha2-256s avx2 −24.60% −16.78% 252.99% −8.59%

12 Advantages and Limitations
Since the SPHINCS-α signature scheme is an optimization upon the original SPHINCS+ scheme, it
inherits almost all the advantages and limitations of the original scheme, as discussed in [2]. Nevertheless,
our new CS-WOTS+ introduces new changes to the overall scheme and thus we recapture different points
briefly.

• Advantage: Stable computing time. The number of hash function calls is fixed in our con-
struction, in contrast to possibly variable numbers for the signing and verification algorithm of
WOTS+. While no timing attacks are identified against the implementations of our construction
and WOTS+, stable computing time is always preferable (especially for signing algorithms whose
computation involves a private key).

• Disadvantage: Incompatibility with XMSS. Since we changed the underlying one-time sig-
nature component, the SPHINCS-α is no longer compatible with XMSS as SPHINCS+ is.

The rest of the points are the same as SPHINCS+.

• Disadvantage: Signature size and speed.

• Advantage: “Minimal Security Assumptions”.

• Advantage: State-of-the-art attacks are easily analyzed.

• Advantage: Small key sizes.

• Advantage: Reuse of established building blocks.
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A Parameter Evaluation Sage Script
maxsigs=2**64
F = RealField(256+100)

def pow(p,e):
return F(p)**e

def qhitprob(qs,r):
p = F(1/leaves)
return binomial(qs,r)*(pow(p,r))*(pow(1-p,qs-r))

def run(l,w):
s=l*(w-1)//2
dp=[]
for i in range(0,l+1):

dp.append([])
for j in range(0,s+1):

dp[i].append(0)
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dp[0][0]=1
for i in range(1,l+1):

for j in range(0,s+1):
for k in range(0,w):

if k>j:
continue

dp[i][j]+=dp[i-1][j-k]
return dp[l][s]

lenmap={}

for osec in [128,192,256]:
lenmap[osec]={}
lastl=100
for w in range(8,129):

lenmap[osec][w]=99999
ans = lastl
for l in range(lastl-1,1,-1):

if F(log(F(run(l,w)))/log2)>osec:
ans=l

else:
break

lenmap[osec][w]=ans
lastl=ans
print(osec,w,ans,w*ans/2.0)

print('preprocess end')

def size(sec,h,d,b,k,w1,hashbytes):
l=lenmap[sec][w1]
return ((b+1)*k+h+l*d+1)*hashbytes

def split(h,d):
ans=[0 for i in range(d)]
for i in range(h):

ans[i%d]+=1
return ans

def speed(sec,h,d,b,k,w1):
l=lenmap[sec][w1]
ans=k*(2**b)*(2)
ans+=d*(2**(h/d)*(l*w1+1))
return ans

def sec(h,d,b,k,w1):
s=F(0)
for r in range(100): # in fact, qhitprob(maxsigs,r)<2^{-256}*2^{-64} when r>100.

Thus we can omit all r>100↪→

p=F(1-(1-1/F(2**b))^r)**k
s+=qhitprob(maxsigs,r)*p

return -F(log(F(s))/log2)

def factor(h):
ans=[]
for d in range(6,h):
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if h%d==0:
ans.append(d)

return ans

paras={}
paras[128]={}
paras[192]={}
paras[256]={}

paras[128]['small']=(63,7,12,14,16)
paras[128]['fast']=(66,22,6,33,16)

paras[192]['small']=(63,7,14,17,16)
paras[192]['fast']=(66,22,8,33,16)

paras[256]['small']=(64,8,14,22,16)
paras[256]['fast']=(68,17,9,35,16)

for osec in [128,192,256]:
D={}
for w in range(8,129):

l=lenmap[osec][w]
if not l in D:

D[l]=w
good_w=list(D.values())
print(good_w)
for ty in ['small','fast']:

h,d,b,k,w1=paras[osec][ty]
max_size=size(osec,h,d,b,k,w1,osec//8)
max_hashcalls=speed(osec,h,d,b,k,w1)
print(osec,ty,max_size,max_hashcalls)
best_szsp=(max_size,max_hashcalls)
best_spsz=(max_hashcalls,max_size)
para_szsp=(h,d,b,k,w1)
para_spsz=(h,d,b,k,w1)
for h in [63,64,65,66,68]:

leaves=2**h
for b in range(3,15):

for k in range(6,40):
if sec(h,0,b,k,0)>=osec-1:

for d in factor(h):
for w1 in good_w:

sz=size(osec,h,d,b,k,w1,osec//8)
sp=speed(osec,h,d,b,k,w1)
if sec(h,d,b,k,w1)>=osec-1 and sz<=max_size and

sp<max_hashcalls:↪→

if (sz,sp)<best_szsp:
best_szsp=(sz,sp)
para_szsp=(h,d,b,k,w1,lenmap[osec][w1])

if (sp,sz)<best_spsz:
best_spsz=(sp,sz)
para_spsz=(h,d,b,k,w1,lenmap[osec][w1])

print(h)
print(para_szsp,best_szsp)
print(para_spsz,best_spsz)
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