
An Update on the LWC Finalist Sparkle

Christof Beierle1, Alex Biryukov2, Luan Cardoso dos Santos2, Johann Großschädl2, Amir
Moradi1, Léo Perrin3, Aein Rezaei Shahmirzadi1, Aleksei Udovenko2,4, Vesselin

Velichkov5, and Qingju Wang2

1Ruhr University Bochum, Germany
2DCS and SnT, University of Luxembourg, Luxembourg

3Inria, Paris, France
4CryptoExperts, Paris, France
5University of Edinburgh, U.K.

September 30, 2022

sparkle-lwc.github.io
sparklegrupp@googlegroups.com

Introduction

Sparkle is a family of lightweight cryptographic permutations used to build the Schwaemm
Authenticated Encryptions with Associated Data (AEAD), and the Esch hash functions. These
algorithms are optimized for efficiency on micro-controllers, which allows them to be top performers
in terms of speed and memory consumption at the same time. Furthermore, unlike for instance
for the AES, it is easy to write constant-time implementations.

In this short note, we summarise recent implementation improvements along with respective
benchmarks, and survey recent works providing additional security analysis for the Sparkle al-
gorithms.

Implementations and Benchmarks

The Sparkle group has slightly improved the Assembler implementations of the permutations
for 8-bit AVR ATmega and 32-bit ARM Cortex-M3/M4 microcontrollers compared to the sec-
ond round of evaluation. The source code of these improved implementations can be found in
the GitHub repository at https://github.com/cryptolu/sparkle. However, the surrounding
C code for the mode and the full AEAD and hash algorithm did not change since the second
round. In addition, the Sparkle group developed new size-optimized and speed-optimized As-
sembler implementations of the Sparkle384 permutation for the 32-bit RISC-V platform. These
implementations can optionally make use of the 32-bit rotation instructions provided by the bit-
manipulation extension if it is available.

In the past two years, various software implementations of Sparkle, Schwaemm, and Esch
have been contributed by third-party developers. For example, Cheng et al. present in [CGM+22]
highly-optimized Assembler implementations of Schwaemm256-128 and the other nine final-round
AEAD candidates for a 32-bit RISC-V processor that supports the bit-manipulation extension,
which means single-cycle rotate instructions are available. Furthermore, they also designed In-
struction Set Extensions (ISEs) for each candidate, whereby the custom instructions adhere to
the standard three-register format (i.e. two source registers and one destination register). Ex-
perimental results obtained with an FPGA implementation of the 32-bit Rocket core show that
Schwaemm256-128 is the most efficient final-round candidate on RISC-V, both with and without

1

https://sparkle-lwc.github.io
mailto:sparklegrupp@googlegroups.com
https://github.com/cryptolu/sparkle


ISEs. For example, an ISE-supported implementation of Schwaemm256-128 outperforms AS-
CON128 and Xoodyak by a factor of 3.21 and 2.61, respectively (encryption of 128 bytes of data
and the same amount of associated data). Some preliminary implementation results were presented
at the NIST Workshop on Lightweight Cryptography, which took place in May 2022. The final
version of this paper containing the most recent results has been submitted to IACR TCHES and
is, at the time of writing this note (i.e. September 2022), undergoing a minor revision to address
the comments of the reviewers.

The paper of Blanc et al. [BLLG+22], which was published very recently, contains benchmarking
results for 20 AEAD algorithms, including all 10 NIST finalists, for 8-bit AVR Atmega128, 16-bit
MSP430, and 32-bit ARM Cortex-M3 platforms. These benchmarks are based on the reference and
optimized implementations from the designer teams and third-party developers. Though most of
these implementations have already been evaluated by other benchmarking initiatives before, some
of the results are original and interesting because they shed some new light on the performance of
the final-round candidates. In particular, this paper is the first to provide benchmarking results for
a 16-bit platform, namely the MSP430F1611 from Texas Instruments. Schwaemm256-128 does not
only have the smallest code size on MSP430, but is also the by far fastest AEAD algorithm among
the ten finalists. However, all these results are based on C implementations without Assembly
optimizations for the performance-critical parts.

A team composed of students and research staff of the University of Luxembourg developed op-
timized implementations of the five final-round candidates ASCON128, GIFT-COFB, TinyJambu
v2, Schwaemm256-128, and Xoodyak for the 16-bit MSP430 platform. These implementations
come with optimized Assembly code for the underlying primitive, which is a permutation in the case
of ASCON, TinyJambu, Schwaemm, and Xoodyak, and a block cipher for GIFT-COFB. Though
this project is still work in progress, the Assembler components are already available online on
GitHub at https://github.com/johgrolux/aead430. The execution times for the permutations
indicate that Schwaemm256-128 will be roughly twice as fast as Xoodyak and about 2.5 times
faster than ASCON128. More detailed benchmarking results will most likely become available in
October 2022.

In his PhD thesis [Alr21], Alrowaithy investigated the performance of all second round candi-
dates on 8-bit micro-controllers. We reproduce part of their conclusion [Alr21, page 148] below.

“Finally, trying to find a primitive that does well on all three performance metrics is
challenging. For example, primitives that are optimised for speed incur extra code size
or memory usage. The only primitive we found to show a good balance between the
three metrics is SPARKLE.”

In addition to the above-mentioned microcontroller implementations, there exist also some
implementations of Sparkle, Schwaemm, and Esch for more powerful CPUs and even Graphics
Processing Units (GPUs). For example, Anna Weine developed a vector implementation of the
Sparkle384 permutation using AVX2 instructions, which is available on the GitHub repository of
the Sparkle group. Lee et al. describe in [LJS+22] an efficient implementation of Esch and some
other final-round hash candidates for an RTX 3080 GPU. According to the results presented in
Figure 8 of [LJS+22], Esch reaches a roughly two times higher throughput than the hash functions
of the candidates ASCON and Xoodyak.

Comparison with AES-GCM. One of the core requirements for AEAD candidates mentioned in
NIST’s call for proposals is that the submitted algorithms should “perform significantly better” in
constrained environments than the current NIST standards (i.e. AES-GCM). Schwaemm clearly
over-achieves this requirement; for example, according to NIST’s official second-round benchmark-
ing results, Schwaemm256-128 is able to encrypt 128 bytes of data more than five times faster
than AES-GCM on each of the three main evaluation platforms, which are AVR ATmega, ARM
Cortex-M0, and ARM Cortex-M4.

It is sometimes claimed that the software performance of AES-GCM is “good enough” for many
or even most IoT applications. However, this view is not the consensus, and may stem from a form
of “survivor bias.” While it is true that the developers of applications which actually use AES-GCM
obviously found a way to deal with the (by today’s standards) mediocre software performance of
AES-GCM, it should also be taken into account that there exist a large number of IoT applications

2

https://github.com/johgrolux/aead430


that do not use the AES, typically for performance reasons. In many cases, the developers of the
affected applications resort to some obscure and insecure encryption techniques or, even worse,
do not use any encryption algorithm at all (see e.g. [WAF17]). Therefore, bad software execution
times are not only a performance problem, but also constitute a massive security problem for the
whole IoT ecosystem. Having a lightweight AEAD standard that is five times more efficient than
AES-GCM will contribute to make strong cryptography much more viable for applications that,
due to performance reasons, use currently either some weak encryption algorithm or no encryption
at all.

State of the Cryptanalysis

What we established. By design, the algorithms in the Sparkle suite are secure from single
trail differential and linear cryptanalysis, with some security margin. Indeed, the structure of the
permutations combined with the specifics of the modes of operation we chose allowed us to prove
strong bounds on the probabilities of the relevant differential and linear trails.

At its core, the Sparkle permutations have a modular structure, which means that we can gain
precise insights into their properties by studying the non-linear component: the Alzette ARX-box.

Third party findings. Besides our own cryptanalysis, there have been a decent amount of external
analysis of Sparkle and its component Alzette recently. All existing attacks are only on round-
reduced variants of Sparkle, so they further contribute to the understanding and strengthen the
confidence in the security of our design.

In [SS22], the authors presented improved guess-and-determine distinguishers on Sparkle
covering 4 steps of Sparkle256 and Sparkle384 and 5 steps of Sparkle512 with practical
complexity.

By using the tools published in [HW19] and [HW20], Huang et al. proved in [HXW21] improved
bounds on the differential and linear properties of Alzette. We summarize their findings in Ta-
ble 1, comparing those bounds with our own findings listed in Table 3.2 of the specification of the
Sparkle finalist. As we can see, our initial analysis is confirmed, and the upper bounds we used
were pessimistic from our perspective (which further strengthen our confidence in our design). The
authors of [HXW21] also analyzed the probabilities of rotational-XOR differential probabilities of
all instances of Alzette used in Sparkle. Those probabilities (over one iteration of Alzette) were
reported to be in the range [2−52.66, 2−37.66] depending on the constant 𝑐𝑖 (see Tables 3 and 6
in [HXW21]).

Table 1: Differential and linear bounds for Alzette. In each row, the first line shows − log2 𝑝, where
𝑝 is the maximum expected differential trail probability for the differential case and the second
line shows − log2 𝑐, where 𝑐 is the maximum expected absolute linear trail correlation for the linear
case. The value set in parenthesis corresponds to the maximum absolute correlation of the linear
hull taking clustering into account, derived by experimental verification.

Ref. 1 2 3 4 5 6 7 8 9 10 11 12

our specification 0 1 2 6 10 18 26 ≥ 32 ≥ 36 ≥ 42 ≥ 46 ≥ 52
0 0 1 2 5 8 13 (11.64) 17 (15.79) – – – –

[HXW21] 0 1 2 6 10 18 26 34 40 46 51 ≥ 55
0 0 1 2 5 8 13 17 19 22 – –

In [LSL21], the authors introduced a generalization of differential-linear cryptanalysis, so-called
rotational differential-linear attacks. The general idea of those attacks is to replace the differential
part of a differential-linear distinuisher by a rotational-XOR difference. They analyzed (rotational)
differential-linear distinguishers of Alzette with the constant 𝑐0. More precisely, the authors found a
differential-linear distinguisher over one iteration of Alzette with correlation 2−0.27 (experimental
verification yielded 2−0.1), and a rotational differential-linear distinguisher over one iteration of
Alzette with correlation 2−11.37 (experimental verification yielded 2−7.35).

3



In [NSLL22], the authors further extended the analysis conducted in [LSL21] with respect to
(rotational) differential-linear attacks. Over one iteration of Alzette, they showed a determinis-
tic differential-linear distinguisher and a rotational differential-linear distinguisher of correlation
2−5.57 (experimental verification yielded 2−3.14). For two iterations of Alzette, the authors pre-
sented a differential-linear distinguisher with correlation −2−8.24 (experimental verification yielded
−2−5.50).

In the work [XLJ+22], the authors presented a refined method to compute probabilities of
differential characteristics over ARX ciphers, without using the Markov assumption. For Alzette,
they showed that their method can yield more accurate differential probabilities than what is
obtained by using the Markov assumption. When applying their approach to Alzette, they were
able to find some 4-round differential trails for which the probability estimates obtained using the
usual tools were off, either because the probability is in fact much lower (0 instead of 2−23 and
2−38), or very slightly underestimated (2−22 instead of 2−23). However, these pathological cases
are of little importance in practice as the best 4-round trail has a probability of 2−6.

The Bachelor thesis [Spe22] analyzed the security of one round of Sparkle for keyed hashing
with respect to differential collision attacks using 2-dimensional querysets. The 2-dimensional
queryset with highest differential probability found has differential probability of 1.87·2−5. Further,
that work analyzed the existence of dominant linear trails over a 5-round version (instead of the
original 4-round version) of Alzette. As a result, there are three dominant linear trails with absolute
correlation of 2−5, 2−7, and 2−9, respectively.

Security margin. Overall, while the third party analysis presented above gives us new information
about the behaviour of Sparkle in contexts we had not investigated, we are happy to say that
it does not affect the security margin of our algorithms. Indeed, while the attacks against some
round-reduced variants now have improved complexities, they do not cover more rounds overall.

4



Bibliography

[Alr21] Majed Humaid Alrowaithy. Performance-efficient cryptographic primitives in con-
strained devices. PhD thesis, Newcastle University, 2021.

[BLLG+22] Soline Blanc, Abdelkader Lahmadi, Kévin Le Gouguec, Marine Minier, and Lama
Sleem. Benchmarking of lightweight cryptographic algorithms for wireless IoT net-
works. Wireless Networks, ??(??):??–??, 2022.

[CGM+22] Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page, and Thinh Pham. RISC-V
instruction set extensions for lightweight symmetric cryptography. 5th NISTWorkshop
on Lightweight Cryptography (LWC 2022), https://csrc.nist.gov/csrc/media/
Events/2022/lightweight-cryptography-workshop-2022/documents/papers/

risc-v-instruction-set-extensions-for-lightweight-symmetric-cryptography.

pdf, 2022.

[HW19] Mingjiang Huang and Liming Wang. Automatic tool for searching for differential
characteristics in ARX ciphers and applications. In Feng Hao, Sushmita Ruj, and
Sourav Sen Gupta, editors, INDOCRYPT 2019, volume 11898 of Lecture Notes in
Computer Science, pages 115–138. Springer, 2019.

[HW20] Mingjiang Huang and Liming Wang. Automatic search for the linear (hull) charac-
teristics of ARX ciphers: Applied to speck, sparx, chaskey, and CHAM-64. Secur.
Commun. Networks, 2020:4898612:1–4898612:14, 2020.

[HXW21] Mingjiang Huang, Zhen Xu, and Liming Wang. On the probability and automatic
search of rotational-XOR cryptanalysis on ARX ciphers. The Computer Journal,
2021.

[LJS+22] Wai-Kong Lee, Kyungbae Jang, Gyeongju Song, Hyunji Kim, Seong Oun Hwang, and
Hwajeong Seo. Efficient implementation of lightweight hash functions on gpu and
quantum computers for iot applications. IEEE Access, 10:59661–59674, 2022.

[LSL21] Yunwen Liu, Siwei Sun, and Chao Li. Rotational cryptanalysis from a differential-
linear perspective - practical distinguishers for round-reduced FRIET, Xoodoo, and
Alzette. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT
2021, Part I, volume 12696 of Lecture Notes in Computer Science, pages 741–770.
Springer, 2021.

[NSLL22] Zhongfeng Niu, Siwei Sun, Yunwen Liu, and Chao Li. Rotational differential-linear
distinguishers of ARX ciphers with arbitrary output linear masks. In Yevgeniy Dodis
and Thomas Shrimpton, editors, CRYPTO 2022, Lecture Notes in Computer Science.
Springer, 2022. (to appear).

[Spe22] Ties Speel. Cryptanalysis of SPARKLE’s ARX-box Alzette, 2022. Bachelor Thesis,
Radboud University.

[SS22] André Schrottenloher and Marc Stevens. Simplified MITM modeling for permutations:
New (quantum) attacks. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO
2022, Lecture Notes in Computer Science. Springer, 2022. to appear.

[WAF17] Daniel Wood, Noah J. Apthorpe, and Nick Feamster. Cleartext data transmissions in
consumer IoT medical devices. In Proceedings of the 2017 Workshop on Internet of
Things Security and Privacy, IoT S&P@CCS, Dallas, TX, USA, November 03, 2017,
pages 7–12. ACM, 2017.

5

https://csrc.nist.gov/csrc/media/Events/2022/lightweight-cryptography-workshop-2022/documents/papers/risc-v-instruction-set-extensions-for-lightweight-symmetric-cryptography.pdf
https://csrc.nist.gov/csrc/media/Events/2022/lightweight-cryptography-workshop-2022/documents/papers/risc-v-instruction-set-extensions-for-lightweight-symmetric-cryptography.pdf
https://csrc.nist.gov/csrc/media/Events/2022/lightweight-cryptography-workshop-2022/documents/papers/risc-v-instruction-set-extensions-for-lightweight-symmetric-cryptography.pdf
https://csrc.nist.gov/csrc/media/Events/2022/lightweight-cryptography-workshop-2022/documents/papers/risc-v-instruction-set-extensions-for-lightweight-symmetric-cryptography.pdf


[XLJ+22] Zheng Xu, Yongqiang Li, Lin Jiao, Mingsheng Wang, and Willi Meier. Do NOT
misuse the markov cipher assumption - automatic search for differential and impossible
differential characteristics in ARX ciphers. IACR Cryptol. ePrint Arch., page 135,
2022.

6


