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Introduction 22 

1.1 Authority 23 

This publication has been developed by NIST to further its statutory responsibilities under the 24 
Federal Information Security Management Act (FISMA), Public Law (P.L.) 107-347.  NIST is 25 
responsible for developing information security standards and guidelines, including minimum 26 
requirements for Federal information systems, but such standards and guidelines shall not 27 
apply to national security systems without the express approval of appropriate Federal officials 28 
exercising policy authority over such systems. This guideline is consistent with the 29 
requirements of the Office of Management and Budget (OMB) Circular A-130, Section 8b(3), 30 
Securing Agency Information Systems, as analyzed in Circular A-130, Appendix IV: Analysis 31 
of Key Sections.  Supplemental information is provided in Circular A-130, Appendix III, 32 
Security of Federal Automated Information Resources. 33 

Nothing in this publication should be taken to contradict the standards and guidelines made 34 
mandatory and binding on Federal agencies by the Secretary of Commerce under statutory 35 
authority. Nor should these guidelines be interpreted as altering or superseding the existing 36 
authorities of the Secretary of Commerce, Director of the OMB, or any other Federal official.  37 
This publication may be used by nongovernmental organizations on a voluntary basis and is 38 
not subject to copyright in the United States. Attribution would, however, be appreciated by 39 
NIST. 40 

1.2 Purpose and Scope 41 

Approximate matching is a promising technology for designed to identify similarities between 42 
two digital artifacts. It is used to find objects that resemble each other or to find objects that are 43 
contained in another object. This can be very useful for filtering data for security monitoring, 44 
digital forensics, or other applications.   45 

1.3 Audience 46 

The intended audience of this document is security digital forensics programmers and other 47 
technical professionals with a need to determine, build, or use technology to identify similarity. 48 
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2. Definition and terminology 49 

Approximate matching is a generic term describing any technique designed to identify 50 
similarities between two digital artifacts. In this context, an artifact (or an object) is defined as 51 
an arbitrary byte sequence, such as a file, which has some meaningful interpretation. 52 

Different approximate matching methods may operate at different levels of abstraction. At the 53 
lowest level, generic techniques may detect the presence of common byte sequences 54 
(substrings) without any attempt to interpret the artifacts. At higher levels, approximate 55 
matching can incorporate more abstract analysis that is closer to what a human analyst might 56 
do. The overall expectation is that lower level methods would be faster, and more generic in 57 
their applicability, whereas higher level ones would be more targeted and require more 58 
processing. 59 

One common approach in security and forensic analysis is to find identical objects using 60 
cryptographic hashing. Approximate matching can be viewed as a generalization of that idea in 61 
that, instead of providing a yes/no {0, 1} answer to a comparison, it provides a range of 62 
outcomes, [0, 1], with the result interpreted as a measure of similarity. 63 

2.1 Use cases 64 

Broadly, there are two types of similarity queries that are of interest – resemblance and 65 
containment [1]. In the case of resemblance, we compare two similarly sized objects and 66 
interpret the result as a measure of the commonality between them; for example, two 67 
successive versions of a piece of code are likely to resemble each other substantially. When the 68 
compared objects differ in size significantly, such as a file and a whole-disk image, the test for 69 
commonality is interpreted as a containment query because it addresses the question of 70 
whether the large object contains the smaller one. 71 

An approximate matching algorithm should be able to handle at least one of the following 72 
challenges (divided according to whether the query type is (R)esemblance or (C)ontainment) 73 
[2, 3]: 74 

Object similarity detection (R):  identify related artifacts, e.g., different versions of 75 
a document. 76 

Cross correlation (R):  identify artifacts that share a common object, e.g., a 77 
Microsoft Word document and a PDF document containing the same image, or 78 
other embedded object. 79 

Embedded object detection (C):  identify a given object inside an artifact, e.g., an 80 
image within a compound document or an executable inside a memory capture. 81 

Fragment detection (C):  identify the presence of traces/fragments of a known 82 
artifact, e.g., identify the presence of a file in a network stream based on individual 83 
packets. 84 

In most analytical scenarios, approximate matching is used to filter data in, or out, based on a 85 
known reference set. In security monitoring applications, approximate matching could 86 
potentially be used to blacklist known bad artifacts, and (by extension) anything closely 87 
resembling them. However, approximate matching is not nearly as useful when it comes to 88 
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whitelisting artifacts as malicious content can often be quite similar to benign content; e.g., a 89 
backdoored ssh server would look very similar to a regular one.  90 

2.2 Terminology 91 

Although the common language definition of ‘similarity’ is sufficient to give an intuitive sense 92 
of the term, the multitude of ways in which two artifacts can be said to be similar poses a 93 
challenge when attempting to describe the purpose and behavior of approximate matching 94 
algorithms. For example, two strings ‘ababa’ and ‘cdcdc’ might be considered similar in that 95 
they both have five characters ranging over two alternating values, or they might be treated as 96 
dissimilar because they have no common characters. To resolve this ambiguity, approximate 97 
matching algorithms define similarity in terms of features that represent the characteristics of 98 
the artifacts pertinent to the algorithm’s method of comparison. 99 

Features.  Features are the basic elements through which artifacts are compared. 100 
Comparison of two features always yields a binary {0, 1} outcome indicating a 101 
match or non-match; because features are defined as the most basic comparison 102 
unit that the algorithm considers, partial matches are not permitted. Generally, a 103 
feature can be any value derived from an artifact. Each approximate matching 104 
algorithm must define the structure of its features and the method by which they 105 
are derived. For example, an algorithm might define a feature as a (byte, offset) 106 
pair produced by reading the value of a byte and storing it along with the offset at 107 
which it was read. 108 

Feature set.  The set of all features associated with a single artifact is its feature 109 
set. Each algorithm must include a criteria by which candidate features are selected 110 
for inclusion in this set. For example, an algorithm might select all the (byte, 111 
offset) pairs produced by reading every 16th byte in the artifact. 112 

Similarity.  The similarity of two artifacts, as measured by a particular approximate 113 
matching algorithm, is defined as an increasing monotonic function of the number 114 
of matching features contained in their respective feature sets. 115 

Based on the level of abstraction of the similarity analysis performed, approximate matching 116 
methods can be placed in one of three main categories [4]: 117 

Bytewise matching relies only on the sequences of bytes that make up a digital 118 
object, without reference to any structures within the data stream, or to any 119 
meaning the byte stream may have when appropriately interpreted. Such 120 
methods have the widest applicability as they can be applied to any piece of data; 121 
however, they also carry the implicit assumption that artifacts that humans 122 
perceive as similar have similar byte-level encodings. The validity of this 123 
assumption varies widely and the analysts must have the appropriate background 124 
to interpret the results correctly. 125 

Syntactic matching uses internal structures present in digital objects. For ex- 126 
ample, the structure of a TCP network packet is defined by an international 127 
standard and matching tools can make use of this structure during network 128 
packet analysis to match the source, destination or content of the packet. Syntax-129 
sensitive similarity measurements are specific to a particular class of objects that 130 
share an encoding but require no interpretation of the content to produce 131 
meaningful results. 132 
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Semantic matching uses contextual attributes of the digital object to interpret the 133 
artifact in a manner that more closely resembles human cognitive processing. For 134 
example, perceptual hashes allow the matching of visually similar images and 135 
are unconcerned with the low-level details of how the images are persistently 136 
stored. Semantic methods tend to provide the most specific results but also tend 137 
to be the most computationally expensive ones. 138 

In current literature, researchers use a number of terms to refer to various approximate 139 
matching methods: fuzzy hashing and similarity hashing denote bytewise approximate 140 
matching; perceptual hashing and robust hashing denote semantic approximate matching. 141 
There is no widely-used pre-existing terminology for syntactic approximate matching as it is 142 
mostly viewed as pre-processing (to separate the features) before hashing, or applying a 143 
bytewise approximate matching algorithms. For example, network flows are usually 144 
reconstructed before any processing is done on them. 145 

Bytewise approximate matching algorithms work in two phases. In the first, a similarity digest 146 
representation (also referred to as a signature or fingerprint) is generated from the original 147 
data. In the second phase, digests are compared to produce a similarity score. More precisely: 148 

Similarity digest.  A similarity digest is a (compressed) representation of the original data 149 
object’s feature set that is suitable for comparison with other similarity digests created by the 150 
same algorithm. In most cases, the digest is much smaller than the original artifact and the 151 
original object is not recoverable from the digest. 152 

Every bytewise approximate matching technique requires at least two core functions: 153 

Feature extraction function:  identifies and extracts features/attributes from each 154 
objectk, allowing a compressed representation of the original object. The 155 
mechanism by which features are picked and interpreted depends on the 156 
approximate matching algorithm. The representation of this collection is the 157 
similarity digest of the object. 158 

Similarity function:  compares two similarity digests and outputs a score. The 159 
recommended approach is to assign a score s in the 0 ≤ s ≤ 1 range, where 0 160 
indicates no similarity and 1 indicates high similarity. This score represents a 161 
normalized estimate of the number of matching features in the feature sets 162 
corresponding to the artifacts from which the similarity digests were created. 163 

Normalization strategy: The similarity function can follow one of two 164 
normalization strategies, depending on whether the algorithm describes 165 
resemblance or containment. For resemblance queries, the number of matching 166 
features will be weighed against the total number of features in both objects. In 167 
the case of containment queries, the algorithm may disregard unmatched features 168 
in the larger of the objects’ two-feature set. 169 

Because features and feature sets can be arbitrarily complex and, furthermore, deal with byte-170 
level structures to which meaning is not clearly assigned, the interpretation of the similarity 171 
score can prove challenging. To address this problem, some approximate matching algorithms 172 
make use of an empirically determined threshold value to attempt to correlate bytewise 173 
similarity scores with higher-level properties of interest. In such cases, the similarity score can 174 
be treated as a confidence score, where results above the threshold value are considered likely 175 
to exhibit common human-recognizable traits. 176 
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2.3 Essential requirements 177 

Like traditional hash functions, there are several defining characteristics that approximate 178 
matching functions should exhibit. Each algorithm should define how it incorporates each of 179 
these properties and how it satisfies the reporting requirements for those properties, where 180 
appropriate. 181 

Similarity preservation:  Similarity digests must be constructed such that the 182 
outcome of a comparison between any two digests is uniquely determined by the 183 
similarity of the artifacts from which they were produced. That is, if A′ is a 184 
similarity digest created from artifact A and B′ is a similarity digest created from 185 
artifact B, the results of comparing A′ and B′ should be uniquely determined by 186 
the similarity of A and B. 187 

Self-evaluation:  The similarity measure should be accompanied by a measure of 188 
the accuracy of the matching technique under the circumstances in which it is 189 
used, e.g., a margin of error or confidence level. The description of the output 190 
score should also state whether a score of 1 indicates an exact match. 191 

Compression:  A compact similarity digest is desired as it normally allows a 192 
faster comparison and requires less storage space. In the best case, it will have a 193 
fixed length like the output of traditional hash functions. If the efficiency and 194 
reliability of the results remains unchanged, then a shorter similarity digest is 195 
preferable. 196 

Ease of computation:  First, the algorithm description should include the results 197 
of testing the runtime efficiency of the feature extraction function and of the 198 
similarity function. The former might be expressed relative to a standard hashing 199 
algorithm, such as SHA-1. 200 

Second, the algorithm description should state the theoretical complexity for a 201 
similarity digest comparison which is known as O-notation. For instance, 202 
common lookup complexities for comparing a single digest against a database 203 
with n entries, are: 204 

O(1) search of cryptographic hash values stored in hash tables (e.g. 205 
dictionaries) 206 

O(log2 n) cryptographic hash values stored in binary trees or a sorted list 207 
O(n) cryptographic hash values stored in an unsorted list, or another 208 

kind of search in which no indexing or sorting is possible 209 

2.4 Reliability of results 210 

The reliability of the results for a given approximate matching technique depends on three 211 
factors. Each algorithm should define how it incorporates these factors and how it satisfies 212 
their reporting requirements. 213 

Sensitivity & robustness:  The algorithms should provide some measure of their 214 
robustness. A technique’s robustness will define the operating conditions in which 215 
it can function effectively, also called its performance envelope. For example, 216 
robustness addresses the minimum and maximum object sizes that an algorithm 217 
can reliably distinguish between. 218 
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Precision & recall:  The algorithms should include a description of the methods 219 
used to determine its reliability and to select the test data. Specifically, it should 220 
indicate whether test data is culled from existing collections or developed solely to 221 
specifically support testing. Test results may include precision & recall rates as 222 
well as false positive and false negative rates. 223 

Security of results: The algorithms should indicate whether they include security 224 
properties designed to prevent attacks. Such attacks include manipulation of the 225 
matching technique or input data such that a data object appears dissimilar to 226 
another object to which it is similar or similar to another object with which it has 227 
little in common. 228 
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3. Standardized testing for bytewise approximate matching 229 

Currently, algorithm developers use different methods and test data to evaluate approximate 230 
matching algorithm performance[3]. The remainder of this discussion focuses on putting forth 231 
a set of tests that can be used to characterize approximate matching methods.  These are not a 232 
definitive set, but demonstrate various attributes that can be tested and some approaches for 233 
doing so. 234 

3.1 Efficiency 235 

There are at least three basic types of efficiency for which algorithms should be evaluated: 236 

Generation efficiency.  Generation efficiency measures the throughput rate of an 237 
algorithm while it processes the raw input to produce the similarity digest. To 238 
enable useful comparisons across different architectures, it is recommended that 239 
the throughput rate of a standard algorithm implementation, such as SHA-1 in 240 
openssh, be included as a reference point. 241 

Comparison efficiency.  The comparison efficiency measures the rate at which 242 
similarity digest comparisons can be executed. It is useful to have both a formal 243 
analysis, which provides the theoretical complexity of the comparison (in O- 244 
notation) and an empirical evaluation based on a reference data set. 245 

Another evaluation aspect is the ability of the technique to efficiently utilize parallel 246 
computational resources; these may include conventional multi-core CPU architectures, as 247 
well as massively parallel ones, such as GPUs. To that end, tests should include scalability 248 
analysis, which shows speedup as a function of available hardware concurrency. 249 

Space efficiency.  Traditional hash functions return a fixed length fingerprint; in 250 
contrast, the length of similarity digests is sometimes variable and proportional to 251 
the input length. If the digest is of variable length, space efficiency measures the 252 
ratio between input  and the digest and returns a percentage value. More precisely, 253 

space efficiency =  digest length
input length

                                                          (1) 

 254 

3.2 Sensitivity and robustness 255 

Sensitivity is a measure of the ability of an approximate matching algorithm to find 256 
correlations among objects based on fine-grain commonality–the smaller the 257 
features being correlated, the more sensitive the algorithm is. Clearly, there is a 258 
threshold below which the sensitivity will be too high and all objects will appear 259 
similar; it is up to the algorithm designer to identify that threshold and incorporate 260 
it into the implementation. 261 

Robustness is a measure of the ability of an approximate matching algorithm to 262 
find correlation among related objects in the presence of noise and routine 263 
transformations. Common transformations include fragmentation (e.g., during 264 
network transmission) and misalignment (adding content during artifact editing). 265 
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The following four tests (later called modifications) evaluate sensitivity & robustness for 266 
bytewise approximate matching algorithms: fragment detection, single-common-block 267 
correlation, alignment robustness, and white noise resistance. The first two are aimed at 268 
evaluating sensitivity, whereas the latter two measure robustness. 269 

For the purposes of this discussion, we refer to each modification by the combination of a test 270 
name and parameter, e.g., ‘fragment at 5%’ or ‘alignment at 4 KiB’. We denote as the 271 
examples indicate, the test parameter may be expressed as either an absolute or a relative 272 
value. In most cases, relative values tend to produce results that are more useful, but absolute 273 
values are particularly useful in alignment tests. In the follow the term option for this 274 
combination of a modification and a specific setting/test. 275 

Fragment detection.  Fragment detection quantifies the length of the shortest 276 
sample from a data object, for which the similarity tool reliably correlates the 277 
sample and the whole object. Common uses include correlating a disk block, or 278 
network packet to file. 279 

Therefore, it sequentially cuts X ∈{25%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 280 
97%, 98%, 99%} of the original input and compares both inputs. 281 

To simulate real-world scenarios by which fragments are created, two different cutting modes 282 
are suggested: 283 

1. Random cutting:  The test randomly decides at each step whether to 284 
cut at the beginning or the end of an input. 285 

2. End side cutting:  The test only cuts blocks at the end of an input.  286 

(Cutting from the beginning yields similar to the alignment test.) 287 

Single-common-block correlation.  The single-common-block correlation test is 288 
designed to characterize the behavior of an algorithm in the case where two files 289 
share a single common object. That is, given two files f1 and f2 that share a 290 
common object O (but are otherwise dissimilar), what is the smallest O for which 291 
the similarity tool reliably correlates the two targets? 292 

The test can be performed in controlled conditions as follows (parameters can be varied as 293 
necessary). First, two (pseudo-)random files f1 and f2 of size S ∈ {512, 2048, 8192} KiB are 294 
created followed by the common block O ∈{75%, 50%, 40%, 30%, 20%, 10%, 5%, 4%, 3%, 295 
2%, 1%} of S. Next, O overwrites f1 and f2 at different and randomly chosen offsets (the size 296 
of f1 and f2 remains equal to S and constant over time). Finally, we perform a comparison of f1 297 
and f2. If we obtain a match score greater than zero, we reduce O further and repeat the 298 
process. To obtain statistically significant results, the location and content of the fragment is 299 
varied over multiple runs. 300 

Alignment robustness.  Alignment robustness is an attempt to quantify the 301 
sensitivity of an algorithm to different alignments of the common data. 302 
Specifically, the test analyzes the impact of inserting byte sequences of size X at 303 
the beginning of an input, where the size of the sequence may be expressed in 304 
absolute, or relative terms. 305 

1. Fixed blocks: Suggested parameter values for X : {1, 2, 3, 4, 8, 16, 32, 306 
64} KiB. These cover the most common cases; also, the observed 307 
behavior tends to be periodic relative to the size of the modification. In 308 
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other words, testing intermediate parameters like {5, 6, 7} KiB do not 309 
produce unique scenarios. 310 

2. Relative blocks: Suggested parameter values for X : {10%, 25%, 50%, 311 
75%, 100%, 200%, 400%}; these numbers simulate changes on a 312 
larger scale. 313 

White noise resistance.  This test measures the amount of (uniformly)  random 314 
noise that can be added to an object before the approximate matching algorithm 315 
becomes unable to correlate the original and the modified version. For example, 316 
for ssdeep [5] it was shown that a few changes distributed over the input are 317 
sufficient to prevent a match [6]. 318 

A random change is simulated by applying typical edit operations (namely insertion, deletion, 319 
and substitution) where each edit operation is chosen with the same probability. Additionally, 320 
each byte in the input is equally likely to be changed. 321 

First, the original f1 is copied to have f2. Next, the test obfuscates f2, i.e., X % of f2 ’s bytes are 322 
manipulated where X ∈{0.1%, 0.25%, 0.5%, 0.75%, 1.0%, 1.5%, 2.0%, 2.5%}. (The range 323 
could be expanded but in actual testing no existing algorithm is able to correlate the original 324 
and the modified version if 2.5%, or more, of the bytes were manipulated. 325 

3.3 Testing approximate-matching 326 

Conceptually, there are two types of data that can be used to evaluate approximate matching 327 
algorithms-controlled (synthetic) data [7] and real data. The main advantage of controlled data 328 
experiments is that ground truth is constructed and, therefore, precisely known. This allows 329 
randomized tests to be run completely automatically and the results to be interpreted with 330 
standard statistical measures. 331 

The obvious downside is that much of real data is far from random so the applicability of the 332 
result to the general case remains uncertain. Nevertheless, running controlled tests is quite 333 
useful in characterizing the baseline capabilities of different algorithms. Indeed, the results 334 
provide the necessary context for interpreting algorithm behavior on real data. 335 

The obvious advantage of using real data is that the results can be directly be related to 336 
observable artifacts. However, the challenges of defining a representative sample, establishing 337 
the ground truth, and running experiments at scale (without a human in the loop) are non-338 
trivial. 339 

After surveying prior work in the field, we suggest that results from the two approaches are 340 
complementary and both should be considered in the evaluation process. The next two sections 341 
address the use of controlled and real world data.  342 

Testing with controlled data.  The main purpose of controlled data experiments is to know 343 
exactly the ground truth by carefully constructing the test cases. In this case, the goal is to build 344 
artifacts – files – that have known levels of commonality in the form of common substrings. 345 
The most practical way to accomplish this is to use (pseudo-)random data. 346 
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The first step is to determine the appropriate sizes for the constructed files. Based on a survey 347 
of the distribution of almost 1 000 000 file sizes in the govdoc-corpus1, it is suggested that 348 
evaluating algorithms at six reference file sizes–1, 4, 16, 64, 256 and 1024 KiB–would provide 349 
a representative sample. As shown in Table 1, nearly 91% of all files are smaller than 1 MiB. 350 

Table 1.  Cumulative empirical file size distribution in the govdoc-corpus. 351 

File size range (KiB) ≤ 4 ≤ 16 ≤ 64 ≤ 256 ≤ 1024 
Cumulative probability (%) 5.4 20.71 52.54 75.82 90.60 

Test methodology.  The proposed approach is conceptually simple and consists of four basic 352 
steps: build a set of unique files, create mutations of them using one of the four modification 353 
methods presented in Sec. 2.2, run the approximate matching comparisons between original 354 
and modified version (for all algorithms), and summarize the results with appropriate statistics. 355 

For every choice of file size and modification method, each test has two additional  356 
parameters: file count and number of runs. The former specifies the number of 357 
files in the test set; the latter specifies the number of independent test runs to be 358 
executed (where each run creates its own new test set). 359 

In terms of execution time, having a set of file-count files results in file-count2 360 
comparisons. Hence, the total number of comparisons per algorithm is calculated 361 
by file-count2 × runs × o where o is the number of all options. 362 

Test set manipulations:  The mutated set is created by applying the four generic modification 363 
techniques from Sec. 2.2. Specifically, the following parameter set- tings are recommended: 364 

Fragment detection:  f2 is a fragment of f1 where the size of f2 is X % of the size of f1 , where X 365 
= {1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 30%, 50%}. (The fragment is chosen randomly 366 
across runs.) 367 

Single-common-block correlation: f1 and f2 have equal size and share a common byte string 368 
(block) of size X = {1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 30%, 50%}. 369 

(The position of the common block, and its content are chosen randomly for each 370 
file/run combination.) 371 

Alignment robustness:  f2 is a copy of f1, prefixed with a random byte string of length X = 372 
{1%, 2%, 3%, 4%, 5%, 10%, 20%}. (Content of the prefix is randomized across runs.) 373 

Random-noise resistance:  f2 is an obfuscated version of f1, i.e., X % of f2 ’s bytes are edited, 374 
where X = {0.5%, 1.0%, 1.5%, 2.0%, 2.5%} of the file size. 375 

To sum up, there are 29 different options for the controlled data test. 376 

Testing with real data.  As already mentioned, two of the main challenges in testing with real 377 
data are the choice of representative samples, and the establishment of ground truth. The 378 

                                                      

1“These documents were obtained by performing searches for words randomly chosen from the Unix 
dictionary, numbers randomly chosen between 1 and 1 million, and randomized combinations of the two, 
for documents of specified file types that resided on web servers in the .gov domain using the Yahoo and 
Google search engines" (http://digitalcorpora.org/corpora/files). 

http://digitalcorpora.org/corpora/files
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former is outside the scope of this discussion, as the choice would depend, to some degree, on 379 
the expected characteristics of the target data. For example, for general evaluation of artifacts 380 
found on the Internet, the govdocs-corpus is a good starting point. 381 

The focus of this section is to provide an approach for establishing ground truth using 382 
automated means. The proposed approach is to use the longest common substring (LCS) as the 383 
reference metric and to characterize the behavior of bytewise approximate matching 384 
algorithms with respect to this metric. 385 

Using a string comparison algorithm as a reference is a natural choice given that the algorithms 386 
treat the data objects as plain strings with no attempt to parse or interpret them. LCS should be 387 
considered a first-order approximation as two objects may have a lot more in common than 388 
what the LCS result suggests, so further refinements are to be expected at a later stage. 389 

Given an unordered pair of files (f1, f2), define the absolute (La) and relative (Lr) results as 390 
follows: 391 

La  = LCS(f1, f2), where 0  ≤  La   ≤  min(|f1 |, |f2 |).                                    (2) 

Lr  =  La /min(|f1 |, |f2 |) , where 0  ≤  Lr  ≤  1.                                          (3) 

where |f | denotes the file size in bytes. 392 

Broadly, any two strings sharing a substring are related; however, we suggest a more practical 393 
lower bound on the minimum amount of commonality to declare two files related. 394 
Specifically, we require that the absolute size La is at least 100 (bytes) and that the relative 395 
result Lr exceeds 0.5% of the size of the smaller file. More formally, the true positive function 396 
T Plcs ( f1 , f2 ) is defined as  397 

T Plcs (f1, f2)  ≡  La  ≥  100  ∧   Lr  ≥  1                                                        (4) 

(Note: result of Lr is rounded and thus 0.5 is equal to 1.) 398 

Clearly, the true negative function T Nlcs (f1, f2)  =  ¬T Plcs (f1, f2). 399 

Approximate ground truth LCS is a well-studied problem and has known solutions of 400 
quadratic time complexity–O(mn), where m and n are the string lengths. Given that files could 401 
be quite large, the exact solution quickly becomes too burdensome to be practical. Therefore, 402 
we suggest an approximation of the longest common substring which, by design, provides a 403 
lower bound on LCS; details are given in Appendix A. 404 

 405 
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Appendix 1 

Approximate longest common substring 2 

The basic idea of the approximate longest common substring metric (aLCS) is not to compare files 3 
byte by byte but  rather block by block. To identify the blocks, we apply the rolling hash from 4 
ssdeep. Our settings aim at having blocks of ≈ 80 bytes. Instead of comparing blocks bytewise, 5 
each one is hashed and compared using the 64-bit FNV-1a hash [8]. Besides the hash value, we 6 
also store the entropy and length for each block in a final linear list called alcs-digest; a reference 7 
implementation is publicly available.2 8 

Let La denote the absolute longest common substring of two alcs-digests. Comparing two alcs-9 
digests is equal to comparing two linear lists. If the hash of an item on list A has the same value as 10 
the hash of an item on list B, we are convinced that La is greater than or equal to the length of the 11 
blocks corresponding to the hashes. If two consecutive items on list A have the same hash values as 12 
two consecutive items on list B, we sum up the length of both blocks to receive La. Of course, the 13 
usage of hash functions implies the possibility of false positives. Nevertheless, this is an easy and 14 
fast method to get a good estimation of the longest common substring. 15 

Implementation details. The tool is implemented in C and separated into three steps: reading, 16 
hashing and comparing, which are declared in the main function. As it is a command line tool, it 17 
can be executed by ./aLCS <dir> . 18 

First, all files in dir are read. Out of the file names, we create “hash-tasks” which are added to a 19 
thread pool. A hash-task contains the path to a file and denotes “hash file”. Depending on the 20 
number of threads, these tasks are processed. Once all alcs-digests are created, we perform an all-21 
against-all comparison. Therefore, we create compare-tasks (compare file1 against file2 ) which are 22 
again added to the thread pool. The output is printed to the standard output. 23 

The reference implementation has three main settings configurable in header/config.h. 24 
MIN_LCS is the minimum La length which is printed to stdio and is by default 0 (all comparisons 25 
are printed). The THREAD_POOL_QUEUE_SIZE is the length of the queue and should 26 
be           fileamount × (fileamount − 1)/2.  NUMTHREADS is the number of threads which should be equal to the 27 
number of cores. 28 

Verification of ground truth.  To verify the correctness of our approximate longest common 29 
substring, we compared the results against LCS for a subset of t5. In order to do this, we 30 
implemented a parallelized LCS tool written in C++.3 The output is a summary file structured 31 
similarly to our aLCS output: file1 | file2 | LCS. A small, ruby script is used to compare the 32 
LCS- summary and aLCS-summary. 33 

Our subset consists of 201 randomly selected files. We compare these files using aLCS as well as 34 

LCS and finally compare both summaries. All  (200)x(201)
2

= 20, 100 comparisons yield alcs scores 35 

in the correct range, i.e.,  0  ≤  alcs  ≤  lcs. 36 

                                                      

2 https://www.dasec.h-da.de/staff/breitinger-frank/#downloads (last accessed 2013-05-09). 
 
3 https://www.dasec.h-da.de/staff/breitinger-frank/#downloads (last accessed 2013-05-09). 

https://www.dasec.h-da.de/staff/breitinger-frank/%23downloads
https://www.dasec.h-da.de/staff/breitinger-frank/%23downloads
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We also consider the distribution of the differences between the LCS and aLCS scores. 37 
Specifically, we define dr for files f1 and f2 as follows: 38 

𝑑𝑟 =  �𝑙𝑐𝑠(𝑓1,𝑓2)−𝑎𝑙𝑐𝑠 (𝑓1,𝑓2)
min (|𝑓1|,|𝑓2|)

� , 𝑑𝑟   ∈ 0, 1…,100. 

In other words, we consider the score difference relative  to the size of the smaller of the two files, 39 
and build the empirical distribution in Table 2. As we can see, upwards of 95% of the observed 40 
differences do not exceed 3% of the size of the smaller files – we consider this a reasonable starting 41 
point for our purposes (further research may refine this). If anything, this should give tools a slight 42 
boost as the available commonality would be underestimated. 43 

Table 2. Empirical probability distribution function (pdf) and cumulative distribution function (cdf) 44 
for dr. 45 

X 0 1 2 3 4 5 10 15 20 
          Pr{dr  =  X} 0.8869 0.0449 0.0155 0.0040 0.0047 0.0116 0.0062 0.0001 0.0000 

Pr{dr  ≤  X} 0.8869 0.9318 0.9473 0.9513 0.9561 0.9677 0.9834 0.9992 0.9999 
 46 
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