

The attached DRAFT document (provided here for historical purposes) has been superseded by
the following publication:

Publication Number: NIST Special Publication 800-168

Title: Approximate Matching: Definition and Terminology

Publication Date: 05/31/2014

• Final Publication: http://dx.doi.org/10.6028/NIST.SP.800-168
(which redirects to:
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-168.pdf).

• Information on other NIST Cybersecurity publications and programs can be
found at: http://csrc.nist.gov/

http://dx.doi.org/10.6028/NIST.SP.800-168
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-168.pdf
http://csrc.nist.gov/

DRAFT NIST Special Publication 800-168

Approximate Matching:
Definition and Terminology

Frank Breitinger
Barbara Guttman

Michael McCarrin
Vassil Roussev

http://dx.doi.org/10.6028/NIST.SP.xxx

DRAFT NIST Special Publication 800-168

Approximate Matching:
Definition and Terminology

Frank Breitinger

Hochschule Darmstadt University of Applied Sciences

Barbara Guttman
Software and Systems Division

Information Technology Laboratory

Michael McCarrin
Naval Postgraduate School

Vassil Roussev

University of New Orleans

http://dx.doi.org/10.6028/NIST.SP.xxx

January 2014

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology

Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director

iii

Authority

This publication has been developed by NIST to further its statutory responsibilities under the
Federal Information Security Management Act (FISMA), Public Law (P.L.) 107-347. NIST is
responsible for developing information security standards and guidelines, including minimum
requirements for Federal information systems, but such standards and guidelines shall not apply
to national security systems without the express approval of appropriate Federal officials
exercising policy authority over such systems. This guideline is consistent with the requirements
of the Office of Management and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency
Information Systems, as analyzed in Circular A-130, Appendix IV: Analysis of Key Sections.
Supplemental information is provided in Circular A-130, Appendix III, Security of Federal
Automated Information Resources.

Nothing in this publication should be taken to contradict the standards and guidelines made
mandatory and binding on Federal agencies by the Secretary of Commerce under statutory
authority. Nor should these guidelines be interpreted as altering or superseding the existing
authorities of the Secretary of Commerce, Director of the OMB, or any other Federal official.
This publication may be used by nongovernmental organizations on a voluntary basis and is not
subject to copyright in the United States. Attribution would, however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-168
Natl. Inst. Stand. Technol. Spec. Publ. 800-168, 14 pages (January 2014)

http://dx.doi.org/10.6028/NIST.SP.xxx
CODEN: NSPUE2

Public comment period: January 27, 2014 through March 21, 2014
National Institute of Standards and Technology

Attn: Software and Systems, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8970) Gaithersburg, MD 20899-8970

Email: match@nist.gov

Certain commercial entities, equipment, or materials may be identified in this document in order to
describe an experimental procedure or concept adequately. Such identification is not intended to imply
recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or
equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST
in accordance with its assigned statutory responsibilities. The information in this publication, including
concepts and methodologies, may be used by Federal agencies even before the completion of such
companion publications. Thus, until each publication is completed, current requirements, guidelines,
and procedures, where they exist, remain operative. For planning and transition purposes, Federal
agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and
provide feedback to NIST. All NIST Computer Security Division publications, other than the ones
noted above, are available at http://csrc.nist.gov/publications.

mailto:match@nist.gov?subject=Comments%20on%20SP%20800-168

iv

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance the
development and productive use of information technology. ITL’s responsibilities include the
development of management, administrative, technical, and physical standards and guidelines for
the cost-effective security and privacy of other than national security-related information in
Federal information systems. The Special Publication 800-series reports on ITL’s research,
guidelines, and outreach efforts in information system security, and its collaborative activities
with industry, government, and academic organizations.

v

Acknowledgements

This document is based on the work of the NIST Approximate Matching Working Group, which
consists of Frank Breitinger, John Delaroderie, Simson Garfinkel, Barbara Guttman, John Kelsey,
Jesse Kornblum, Mary Laamanen, Michael McCarrin, Vassil Roussev, Clay Shields, John
Tebbutt, Douglas White, and Joel Young.

Conformance Testing

This publication has been developed by NIST to further its statutory responsibilities under the
Federal Information Security Management Act (FISMA), Public Law (P.L.) 107-347. NIST is
responsible for developing information security standards and guidelines, including minimum
requirements for Federal information systems, but such standards and guidelines shall not apply
to national security systems without the express approval of appropriate Federal officials
exercising policy authority over such systems. This guideline is consistent with the requirements
of the Office of Management and Budget (OMB) Circular A-130, Section 8b(3), Securing
Agency Information Systems, as analyzed in Circular A-130, Appendix IV: Analysis of Key
Sections. Supplemental information is provided in Circular A-130, Appendix III, Security of
Federal Automated Information Resources.

Nothing in this publication should be taken to contradict the standards and guidelines made
mandatory and binding on Federal agencies by the Secretary of Commerce under statutory
authority. Nor should these guidelines be interpreted as altering or superseding the existing
authorities of the Secretary of Commerce, Director of the OMB, or any other Federal official.
This publication may be used by nongovernmental organizations on a voluntary basis and is not
subject to copyright in the United States. Attribution would, however, be appreciated by NIST.

vi

Table of Contents 1

TABLE OF CONTENTS .. VI 2

INTRODUCTION ... 1 3

1.1 AUTHORITY... 1 4
1.2 PURPOSE AND SCOPE .. 1 5
1.3 AUDIENCE ... 1 6

2. DEFINITION AND TERMINOLOGY .. 2 7

2.1 USE CASES... 2 8
2.2 TERMINOLOGY .. 3 9
2.3 ESSENTIAL REQUIREMENTS .. 5 10
2.4 RELIABILITY OF RESULTS ... 5 11

3. STANDARDIZED TESTING FOR BYTEWISE APPROXIMATE MATCHING 7 12

3.1 EFFICIENCY ... 7 13
3.2 SENSITIVITY AND ROBUSTNESS .. 7 14
3.3 TESTING APPROXIMATE-MATCHING ... 9 15
TABLE 1. CUMULATIVE EMPIRICAL FILE SIZE DISTRIBUTION IN THE GOVDOC-CORPUS. 10 16

REFERENCES... 12 17

APPENDIX .. 13 18

TABLE 2. EMPIRICAL PROBABILITY DISTRIBUTION FUNCTION (PDF) AND CUMULATIVE 19
DISTRIBUTION FUNCTION (CDF) FOR DR. .. 14 20
 21

1

Introduction 22

1.1 Authority 23

This publication has been developed by NIST to further its statutory responsibilities under the 24
Federal Information Security Management Act (FISMA), Public Law (P.L.) 107-347. NIST is 25
responsible for developing information security standards and guidelines, including minimum 26
requirements for Federal information systems, but such standards and guidelines shall not 27
apply to national security systems without the express approval of appropriate Federal officials 28
exercising policy authority over such systems. This guideline is consistent with the 29
requirements of the Office of Management and Budget (OMB) Circular A-130, Section 8b(3), 30
Securing Agency Information Systems, as analyzed in Circular A-130, Appendix IV: Analysis 31
of Key Sections. Supplemental information is provided in Circular A-130, Appendix III, 32
Security of Federal Automated Information Resources. 33

Nothing in this publication should be taken to contradict the standards and guidelines made 34
mandatory and binding on Federal agencies by the Secretary of Commerce under statutory 35
authority. Nor should these guidelines be interpreted as altering or superseding the existing 36
authorities of the Secretary of Commerce, Director of the OMB, or any other Federal official. 37
This publication may be used by nongovernmental organizations on a voluntary basis and is 38
not subject to copyright in the United States. Attribution would, however, be appreciated by 39
NIST. 40

1.2 Purpose and Scope 41

Approximate matching is a promising technology for designed to identify similarities between 42
two digital artifacts. It is used to find objects that resemble each other or to find objects that are 43
contained in another object. This can be very useful for filtering data for security monitoring, 44
digital forensics, or other applications. 45

1.3 Audience 46

The intended audience of this document is security digital forensics programmers and other 47
technical professionals with a need to determine, build, or use technology to identify similarity. 48

2

2. Definition and terminology 49

Approximate matching is a generic term describing any technique designed to identify 50
similarities between two digital artifacts. In this context, an artifact (or an object) is defined as 51
an arbitrary byte sequence, such as a file, which has some meaningful interpretation. 52

Different approximate matching methods may operate at different levels of abstraction. At the 53
lowest level, generic techniques may detect the presence of common byte sequences 54
(substrings) without any attempt to interpret the artifacts. At higher levels, approximate 55
matching can incorporate more abstract analysis that is closer to what a human analyst might 56
do. The overall expectation is that lower level methods would be faster, and more generic in 57
their applicability, whereas higher level ones would be more targeted and require more 58
processing. 59

One common approach in security and forensic analysis is to find identical objects using 60
cryptographic hashing. Approximate matching can be viewed as a generalization of that idea in 61
that, instead of providing a yes/no {0, 1} answer to a comparison, it provides a range of 62
outcomes, [0, 1], with the result interpreted as a measure of similarity. 63

2.1 Use cases 64

Broadly, there are two types of similarity queries that are of interest – resemblance and 65
containment [1]. In the case of resemblance, we compare two similarly sized objects and 66
interpret the result as a measure of the commonality between them; for example, two 67
successive versions of a piece of code are likely to resemble each other substantially. When the 68
compared objects differ in size significantly, such as a file and a whole-disk image, the test for 69
commonality is interpreted as a containment query because it addresses the question of 70
whether the large object contains the smaller one. 71

An approximate matching algorithm should be able to handle at least one of the following 72
challenges (divided according to whether the query type is (R)esemblance or (C)ontainment) 73
[2, 3]: 74

Object similarity detection (R): identify related artifacts, e.g., different versions of 75
a document. 76

Cross correlation (R): identify artifacts that share a common object, e.g., a 77
Microsoft Word document and a PDF document containing the same image, or 78
other embedded object. 79

Embedded object detection (C): identify a given object inside an artifact, e.g., an 80
image within a compound document or an executable inside a memory capture. 81

Fragment detection (C): identify the presence of traces/fragments of a known 82
artifact, e.g., identify the presence of a file in a network stream based on individual 83
packets. 84

In most analytical scenarios, approximate matching is used to filter data in, or out, based on a 85
known reference set. In security monitoring applications, approximate matching could 86
potentially be used to blacklist known bad artifacts, and (by extension) anything closely 87
resembling them. However, approximate matching is not nearly as useful when it comes to 88

3

whitelisting artifacts as malicious content can often be quite similar to benign content; e.g., a 89
backdoored ssh server would look very similar to a regular one. 90

2.2 Terminology 91

Although the common language definition of ‘similarity’ is sufficient to give an intuitive sense 92
of the term, the multitude of ways in which two artifacts can be said to be similar poses a 93
challenge when attempting to describe the purpose and behavior of approximate matching 94
algorithms. For example, two strings ‘ababa’ and ‘cdcdc’ might be considered similar in that 95
they both have five characters ranging over two alternating values, or they might be treated as 96
dissimilar because they have no common characters. To resolve this ambiguity, approximate 97
matching algorithms define similarity in terms of features that represent the characteristics of 98
the artifacts pertinent to the algorithm’s method of comparison. 99

Features. Features are the basic elements through which artifacts are compared. 100
Comparison of two features always yields a binary {0, 1} outcome indicating a 101
match or non-match; because features are defined as the most basic comparison 102
unit that the algorithm considers, partial matches are not permitted. Generally, a 103
feature can be any value derived from an artifact. Each approximate matching 104
algorithm must define the structure of its features and the method by which they 105
are derived. For example, an algorithm might define a feature as a (byte, offset) 106
pair produced by reading the value of a byte and storing it along with the offset at 107
which it was read. 108

Feature set. The set of all features associated with a single artifact is its feature 109
set. Each algorithm must include a criteria by which candidate features are selected 110
for inclusion in this set. For example, an algorithm might select all the (byte, 111
offset) pairs produced by reading every 16th byte in the artifact. 112

Similarity. The similarity of two artifacts, as measured by a particular approximate 113
matching algorithm, is defined as an increasing monotonic function of the number 114
of matching features contained in their respective feature sets. 115

Based on the level of abstraction of the similarity analysis performed, approximate matching 116
methods can be placed in one of three main categories [4]: 117

Bytewise matching relies only on the sequences of bytes that make up a digital 118
object, without reference to any structures within the data stream, or to any 119
meaning the byte stream may have when appropriately interpreted. Such 120
methods have the widest applicability as they can be applied to any piece of data; 121
however, they also carry the implicit assumption that artifacts that humans 122
perceive as similar have similar byte-level encodings. The validity of this 123
assumption varies widely and the analysts must have the appropriate background 124
to interpret the results correctly. 125

Syntactic matching uses internal structures present in digital objects. For ex- 126
ample, the structure of a TCP network packet is defined by an international 127
standard and matching tools can make use of this structure during network 128
packet analysis to match the source, destination or content of the packet. Syntax-129
sensitive similarity measurements are specific to a particular class of objects that 130
share an encoding but require no interpretation of the content to produce 131
meaningful results. 132

4

Semantic matching uses contextual attributes of the digital object to interpret the 133
artifact in a manner that more closely resembles human cognitive processing. For 134
example, perceptual hashes allow the matching of visually similar images and 135
are unconcerned with the low-level details of how the images are persistently 136
stored. Semantic methods tend to provide the most specific results but also tend 137
to be the most computationally expensive ones. 138

In current literature, researchers use a number of terms to refer to various approximate 139
matching methods: fuzzy hashing and similarity hashing denote bytewise approximate 140
matching; perceptual hashing and robust hashing denote semantic approximate matching. 141
There is no widely-used pre-existing terminology for syntactic approximate matching as it is 142
mostly viewed as pre-processing (to separate the features) before hashing, or applying a 143
bytewise approximate matching algorithms. For example, network flows are usually 144
reconstructed before any processing is done on them. 145

Bytewise approximate matching algorithms work in two phases. In the first, a similarity digest 146
representation (also referred to as a signature or fingerprint) is generated from the original 147
data. In the second phase, digests are compared to produce a similarity score. More precisely: 148

Similarity digest. A similarity digest is a (compressed) representation of the original data 149
object’s feature set that is suitable for comparison with other similarity digests created by the 150
same algorithm. In most cases, the digest is much smaller than the original artifact and the 151
original object is not recoverable from the digest. 152

Every bytewise approximate matching technique requires at least two core functions: 153

Feature extraction function: identifies and extracts features/attributes from each 154
objectk, allowing a compressed representation of the original object. The 155
mechanism by which features are picked and interpreted depends on the 156
approximate matching algorithm. The representation of this collection is the 157
similarity digest of the object. 158

Similarity function: compares two similarity digests and outputs a score. The 159
recommended approach is to assign a score s in the 0 ≤ s ≤ 1 range, where 0 160
indicates no similarity and 1 indicates high similarity. This score represents a 161
normalized estimate of the number of matching features in the feature sets 162
corresponding to the artifacts from which the similarity digests were created. 163

Normalization strategy: The similarity function can follow one of two 164
normalization strategies, depending on whether the algorithm describes 165
resemblance or containment. For resemblance queries, the number of matching 166
features will be weighed against the total number of features in both objects. In 167
the case of containment queries, the algorithm may disregard unmatched features 168
in the larger of the objects’ two-feature set. 169

Because features and feature sets can be arbitrarily complex and, furthermore, deal with byte-170
level structures to which meaning is not clearly assigned, the interpretation of the similarity 171
score can prove challenging. To address this problem, some approximate matching algorithms 172
make use of an empirically determined threshold value to attempt to correlate bytewise 173
similarity scores with higher-level properties of interest. In such cases, the similarity score can 174
be treated as a confidence score, where results above the threshold value are considered likely 175
to exhibit common human-recognizable traits. 176

5

2.3 Essential requirements 177

Like traditional hash functions, there are several defining characteristics that approximate 178
matching functions should exhibit. Each algorithm should define how it incorporates each of 179
these properties and how it satisfies the reporting requirements for those properties, where 180
appropriate. 181

Similarity preservation: Similarity digests must be constructed such that the 182
outcome of a comparison between any two digests is uniquely determined by the 183
similarity of the artifacts from which they were produced. That is, if A′ is a 184
similarity digest created from artifact A and B′ is a similarity digest created from 185
artifact B, the results of comparing A′ and B′ should be uniquely determined by 186
the similarity of A and B. 187

Self-evaluation: The similarity measure should be accompanied by a measure of 188
the accuracy of the matching technique under the circumstances in which it is 189
used, e.g., a margin of error or confidence level. The description of the output 190
score should also state whether a score of 1 indicates an exact match. 191

Compression: A compact similarity digest is desired as it normally allows a 192
faster comparison and requires less storage space. In the best case, it will have a 193
fixed length like the output of traditional hash functions. If the efficiency and 194
reliability of the results remains unchanged, then a shorter similarity digest is 195
preferable. 196

Ease of computation: First, the algorithm description should include the results 197
of testing the runtime efficiency of the feature extraction function and of the 198
similarity function. The former might be expressed relative to a standard hashing 199
algorithm, such as SHA-1. 200

Second, the algorithm description should state the theoretical complexity for a 201
similarity digest comparison which is known as O-notation. For instance, 202
common lookup complexities for comparing a single digest against a database 203
with n entries, are: 204

O(1) search of cryptographic hash values stored in hash tables (e.g. 205
dictionaries) 206

O(log2 n) cryptographic hash values stored in binary trees or a sorted list 207
O(n) cryptographic hash values stored in an unsorted list, or another 208

kind of search in which no indexing or sorting is possible 209

2.4 Reliability of results 210

The reliability of the results for a given approximate matching technique depends on three 211
factors. Each algorithm should define how it incorporates these factors and how it satisfies 212
their reporting requirements. 213

Sensitivity & robustness: The algorithms should provide some measure of their 214
robustness. A technique’s robustness will define the operating conditions in which 215
it can function effectively, also called its performance envelope. For example, 216
robustness addresses the minimum and maximum object sizes that an algorithm 217
can reliably distinguish between. 218

6

Precision & recall: The algorithms should include a description of the methods 219
used to determine its reliability and to select the test data. Specifically, it should 220
indicate whether test data is culled from existing collections or developed solely to 221
specifically support testing. Test results may include precision & recall rates as 222
well as false positive and false negative rates. 223

Security of results: The algorithms should indicate whether they include security 224
properties designed to prevent attacks. Such attacks include manipulation of the 225
matching technique or input data such that a data object appears dissimilar to 226
another object to which it is similar or similar to another object with which it has 227
little in common. 228

7

3. Standardized testing for bytewise approximate matching 229

Currently, algorithm developers use different methods and test data to evaluate approximate 230
matching algorithm performance[3]. The remainder of this discussion focuses on putting forth 231
a set of tests that can be used to characterize approximate matching methods. These are not a 232
definitive set, but demonstrate various attributes that can be tested and some approaches for 233
doing so. 234

3.1 Efficiency 235

There are at least three basic types of efficiency for which algorithms should be evaluated: 236

Generation efficiency. Generation efficiency measures the throughput rate of an 237
algorithm while it processes the raw input to produce the similarity digest. To 238
enable useful comparisons across different architectures, it is recommended that 239
the throughput rate of a standard algorithm implementation, such as SHA-1 in 240
openssh, be included as a reference point. 241

Comparison efficiency. The comparison efficiency measures the rate at which 242
similarity digest comparisons can be executed. It is useful to have both a formal 243
analysis, which provides the theoretical complexity of the comparison (in O- 244
notation) and an empirical evaluation based on a reference data set. 245

Another evaluation aspect is the ability of the technique to efficiently utilize parallel 246
computational resources; these may include conventional multi-core CPU architectures, as 247
well as massively parallel ones, such as GPUs. To that end, tests should include scalability 248
analysis, which shows speedup as a function of available hardware concurrency. 249

Space efficiency. Traditional hash functions return a fixed length fingerprint; in 250
contrast, the length of similarity digests is sometimes variable and proportional to 251
the input length. If the digest is of variable length, space efficiency measures the 252
ratio between input and the digest and returns a percentage value. More precisely, 253

space efficiency = digest length
input length

 (1)

 254

3.2 Sensitivity and robustness 255

Sensitivity is a measure of the ability of an approximate matching algorithm to find 256
correlations among objects based on fine-grain commonality–the smaller the 257
features being correlated, the more sensitive the algorithm is. Clearly, there is a 258
threshold below which the sensitivity will be too high and all objects will appear 259
similar; it is up to the algorithm designer to identify that threshold and incorporate 260
it into the implementation. 261

Robustness is a measure of the ability of an approximate matching algorithm to 262
find correlation among related objects in the presence of noise and routine 263
transformations. Common transformations include fragmentation (e.g., during 264
network transmission) and misalignment (adding content during artifact editing). 265

8

The following four tests (later called modifications) evaluate sensitivity & robustness for 266
bytewise approximate matching algorithms: fragment detection, single-common-block 267
correlation, alignment robustness, and white noise resistance. The first two are aimed at 268
evaluating sensitivity, whereas the latter two measure robustness. 269

For the purposes of this discussion, we refer to each modification by the combination of a test 270
name and parameter, e.g., ‘fragment at 5%’ or ‘alignment at 4 KiB’. We denote as the 271
examples indicate, the test parameter may be expressed as either an absolute or a relative 272
value. In most cases, relative values tend to produce results that are more useful, but absolute 273
values are particularly useful in alignment tests. In the follow the term option for this 274
combination of a modification and a specific setting/test. 275

Fragment detection. Fragment detection quantifies the length of the shortest 276
sample from a data object, for which the similarity tool reliably correlates the 277
sample and the whole object. Common uses include correlating a disk block, or 278
network packet to file. 279

Therefore, it sequentially cuts X ∈{25%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 280
97%, 98%, 99%} of the original input and compares both inputs. 281

To simulate real-world scenarios by which fragments are created, two different cutting modes 282
are suggested: 283

1. Random cutting: The test randomly decides at each step whether to 284
cut at the beginning or the end of an input. 285

2. End side cutting: The test only cuts blocks at the end of an input. 286

(Cutting from the beginning yields similar to the alignment test.) 287

Single-common-block correlation. The single-common-block correlation test is 288
designed to characterize the behavior of an algorithm in the case where two files 289
share a single common object. That is, given two files f1 and f2 that share a 290
common object O (but are otherwise dissimilar), what is the smallest O for which 291
the similarity tool reliably correlates the two targets? 292

The test can be performed in controlled conditions as follows (parameters can be varied as 293
necessary). First, two (pseudo-)random files f1 and f2 of size S ∈ {512, 2048, 8192} KiB are 294
created followed by the common block O ∈{75%, 50%, 40%, 30%, 20%, 10%, 5%, 4%, 3%, 295
2%, 1%} of S. Next, O overwrites f1 and f2 at different and randomly chosen offsets (the size 296
of f1 and f2 remains equal to S and constant over time). Finally, we perform a comparison of f1 297
and f2. If we obtain a match score greater than zero, we reduce O further and repeat the 298
process. To obtain statistically significant results, the location and content of the fragment is 299
varied over multiple runs. 300

Alignment robustness. Alignment robustness is an attempt to quantify the 301
sensitivity of an algorithm to different alignments of the common data. 302
Specifically, the test analyzes the impact of inserting byte sequences of size X at 303
the beginning of an input, where the size of the sequence may be expressed in 304
absolute, or relative terms. 305

1. Fixed blocks: Suggested parameter values for X : {1, 2, 3, 4, 8, 16, 32, 306
64} KiB. These cover the most common cases; also, the observed 307
behavior tends to be periodic relative to the size of the modification. In 308

9

other words, testing intermediate parameters like {5, 6, 7} KiB do not 309
produce unique scenarios. 310

2. Relative blocks: Suggested parameter values for X : {10%, 25%, 50%, 311
75%, 100%, 200%, 400%}; these numbers simulate changes on a 312
larger scale. 313

White noise resistance. This test measures the amount of (uniformly) random 314
noise that can be added to an object before the approximate matching algorithm 315
becomes unable to correlate the original and the modified version. For example, 316
for ssdeep [5] it was shown that a few changes distributed over the input are 317
sufficient to prevent a match [6]. 318

A random change is simulated by applying typical edit operations (namely insertion, deletion, 319
and substitution) where each edit operation is chosen with the same probability. Additionally, 320
each byte in the input is equally likely to be changed. 321

First, the original f1 is copied to have f2. Next, the test obfuscates f2, i.e., X % of f2 ’s bytes are 322
manipulated where X ∈{0.1%, 0.25%, 0.5%, 0.75%, 1.0%, 1.5%, 2.0%, 2.5%}. (The range 323
could be expanded but in actual testing no existing algorithm is able to correlate the original 324
and the modified version if 2.5%, or more, of the bytes were manipulated. 325

3.3 Testing approximate-matching 326

Conceptually, there are two types of data that can be used to evaluate approximate matching 327
algorithms-controlled (synthetic) data [7] and real data. The main advantage of controlled data 328
experiments is that ground truth is constructed and, therefore, precisely known. This allows 329
randomized tests to be run completely automatically and the results to be interpreted with 330
standard statistical measures. 331

The obvious downside is that much of real data is far from random so the applicability of the 332
result to the general case remains uncertain. Nevertheless, running controlled tests is quite 333
useful in characterizing the baseline capabilities of different algorithms. Indeed, the results 334
provide the necessary context for interpreting algorithm behavior on real data. 335

The obvious advantage of using real data is that the results can be directly be related to 336
observable artifacts. However, the challenges of defining a representative sample, establishing 337
the ground truth, and running experiments at scale (without a human in the loop) are non-338
trivial. 339

After surveying prior work in the field, we suggest that results from the two approaches are 340
complementary and both should be considered in the evaluation process. The next two sections 341
address the use of controlled and real world data. 342

Testing with controlled data. The main purpose of controlled data experiments is to know 343
exactly the ground truth by carefully constructing the test cases. In this case, the goal is to build 344
artifacts – files – that have known levels of commonality in the form of common substrings. 345
The most practical way to accomplish this is to use (pseudo-)random data. 346

10

The first step is to determine the appropriate sizes for the constructed files. Based on a survey 347
of the distribution of almost 1 000 000 file sizes in the govdoc-corpus1, it is suggested that 348
evaluating algorithms at six reference file sizes–1, 4, 16, 64, 256 and 1024 KiB–would provide 349
a representative sample. As shown in Table 1, nearly 91% of all files are smaller than 1 MiB. 350

Table 1. Cumulative empirical file size distribution in the govdoc-corpus. 351

File size range (KiB) ≤ 4 ≤ 16 ≤ 64 ≤ 256 ≤ 1024
Cumulative probability (%) 5.4 20.71 52.54 75.82 90.60

Test methodology. The proposed approach is conceptually simple and consists of four basic 352
steps: build a set of unique files, create mutations of them using one of the four modification 353
methods presented in Sec. 2.2, run the approximate matching comparisons between original 354
and modified version (for all algorithms), and summarize the results with appropriate statistics. 355

For every choice of file size and modification method, each test has two additional 356
parameters: file count and number of runs. The former specifies the number of 357
files in the test set; the latter specifies the number of independent test runs to be 358
executed (where each run creates its own new test set). 359

In terms of execution time, having a set of file-count files results in file-count2 360
comparisons. Hence, the total number of comparisons per algorithm is calculated 361
by file-count2 × runs × o where o is the number of all options. 362

Test set manipulations: The mutated set is created by applying the four generic modification 363
techniques from Sec. 2.2. Specifically, the following parameter set- tings are recommended: 364

Fragment detection: f2 is a fragment of f1 where the size of f2 is X % of the size of f1 , where X 365
= {1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 30%, 50%}. (The fragment is chosen randomly 366
across runs.) 367

Single-common-block correlation: f1 and f2 have equal size and share a common byte string 368
(block) of size X = {1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 30%, 50%}. 369

(The position of the common block, and its content are chosen randomly for each 370
file/run combination.) 371

Alignment robustness: f2 is a copy of f1, prefixed with a random byte string of length X = 372
{1%, 2%, 3%, 4%, 5%, 10%, 20%}. (Content of the prefix is randomized across runs.) 373

Random-noise resistance: f2 is an obfuscated version of f1, i.e., X % of f2 ’s bytes are edited, 374
where X = {0.5%, 1.0%, 1.5%, 2.0%, 2.5%} of the file size. 375

To sum up, there are 29 different options for the controlled data test. 376

Testing with real data. As already mentioned, two of the main challenges in testing with real 377
data are the choice of representative samples, and the establishment of ground truth. The 378

1“These documents were obtained by performing searches for words randomly chosen from the Unix
dictionary, numbers randomly chosen between 1 and 1 million, and randomized combinations of the two,
for documents of specified file types that resided on web servers in the .gov domain using the Yahoo and
Google search engines" (http://digitalcorpora.org/corpora/files).

http://digitalcorpora.org/corpora/files

11

former is outside the scope of this discussion, as the choice would depend, to some degree, on 379
the expected characteristics of the target data. For example, for general evaluation of artifacts 380
found on the Internet, the govdocs-corpus is a good starting point. 381

The focus of this section is to provide an approach for establishing ground truth using 382
automated means. The proposed approach is to use the longest common substring (LCS) as the 383
reference metric and to characterize the behavior of bytewise approximate matching 384
algorithms with respect to this metric. 385

Using a string comparison algorithm as a reference is a natural choice given that the algorithms 386
treat the data objects as plain strings with no attempt to parse or interpret them. LCS should be 387
considered a first-order approximation as two objects may have a lot more in common than 388
what the LCS result suggests, so further refinements are to be expected at a later stage. 389

Given an unordered pair of files (f1, f2), define the absolute (La) and relative (Lr) results as 390
follows: 391

La = LCS(f1, f2), where 0 ≤ La ≤ min(|f1 |, |f2 |). (2)

Lr = La /min(|f1 |, |f2 |) , where 0 ≤ Lr ≤ 1. (3)

where |f | denotes the file size in bytes. 392

Broadly, any two strings sharing a substring are related; however, we suggest a more practical 393
lower bound on the minimum amount of commonality to declare two files related. 394
Specifically, we require that the absolute size La is at least 100 (bytes) and that the relative 395
result Lr exceeds 0.5% of the size of the smaller file. More formally, the true positive function 396
T Plcs (f1 , f2) is defined as 397

T Plcs (f1, f2) ≡ La ≥ 100 ∧ Lr ≥ 1 (4)

(Note: result of Lr is rounded and thus 0.5 is equal to 1.) 398

Clearly, the true negative function T Nlcs (f1, f2) = ¬T Plcs (f1, f2). 399

Approximate ground truth LCS is a well-studied problem and has known solutions of 400
quadratic time complexity–O(mn), where m and n are the string lengths. Given that files could 401
be quite large, the exact solution quickly becomes too burdensome to be practical. Therefore, 402
we suggest an approximation of the longest common substring which, by design, provides a 403
lower bound on LCS; details are given in Appendix A. 404

 405

12

References

1. A. Z. Broder. “On the resemblance and containment of documents,” in In Compression and
Complexity of Sequences (SEQUENCES’97). IEEE Computer Society, 1997, pp. 21–29.

2. V. Roussev. “An evaluation of forensic similarity hashes,” Digital Forensic Research
Workshop, vol. 8, pp. 34–41, 2011.

3. F. Breitinger, G. Stivaktakis, and H. Baier. “FRASH: A framework to test algorithms of
similarity hashing,” in 13th Digital Forensics Research Conference (DFRWS’13), Monterey,
August 2013.

4. F. Breitinger, H. Liu, C. Winter, H. Baier, A. Rybalchenko, and M. Steinebach. “Towards a
process model for hash functions in digital forensics,” 5th International Conference on
Digital Forensics & Cyber Crime, September 2013.

5. J. Kornblum. “Identifying almost identical files using context triggered piecewise hashing,”
Digital Forensic Research Workshop (DFRWS), vol. 3S, pp. 91–97, 2006.

6. H. Baier and F. Breitinger. “Security aspects of piecewise hashing in computer forensics,” IT
Security Incident Management & IT Forensics (IMF), pp. 21–36, May 2011.

7. F. Breitinger, G. Stivaktakis, and V. Roussev. “Evaluating Detection Error Trade-offs for
Bitwise Approximate Matching Algorithms,” 5th ICST Conference on Digital Forensics &
Cyber Crime (ICDF2C), September 2013.

8. L. C. Noll. (2001) Fowler / Noll / Vo (FNV) Hash. [Online].
Available: http://www.isthe.com/chongo/tech/comp/fnv/index.html

http://www.isthe.com/chongo/tech/comp/fnv/index.html

13

Appendix 1

Approximate longest common substring 2

The basic idea of the approximate longest common substring metric (aLCS) is not to compare files 3
byte by byte but rather block by block. To identify the blocks, we apply the rolling hash from 4
ssdeep. Our settings aim at having blocks of ≈ 80 bytes. Instead of comparing blocks bytewise, 5
each one is hashed and compared using the 64-bit FNV-1a hash [8]. Besides the hash value, we 6
also store the entropy and length for each block in a final linear list called alcs-digest; a reference 7
implementation is publicly available.2 8

Let La denote the absolute longest common substring of two alcs-digests. Comparing two alcs-9
digests is equal to comparing two linear lists. If the hash of an item on list A has the same value as 10
the hash of an item on list B, we are convinced that La is greater than or equal to the length of the 11
blocks corresponding to the hashes. If two consecutive items on list A have the same hash values as 12
two consecutive items on list B, we sum up the length of both blocks to receive La. Of course, the 13
usage of hash functions implies the possibility of false positives. Nevertheless, this is an easy and 14
fast method to get a good estimation of the longest common substring. 15

Implementation details. The tool is implemented in C and separated into three steps: reading, 16
hashing and comparing, which are declared in the main function. As it is a command line tool, it 17
can be executed by ./aLCS <dir> . 18

First, all files in dir are read. Out of the file names, we create “hash-tasks” which are added to a 19
thread pool. A hash-task contains the path to a file and denotes “hash file”. Depending on the 20
number of threads, these tasks are processed. Once all alcs-digests are created, we perform an all-21
against-all comparison. Therefore, we create compare-tasks (compare file1 against file2) which are 22
again added to the thread pool. The output is printed to the standard output. 23

The reference implementation has three main settings configurable in header/config.h. 24
MIN_LCS is the minimum La length which is printed to stdio and is by default 0 (all comparisons 25
are printed). The THREAD_POOL_QUEUE_SIZE is the length of the queue and should 26
be fileamount × (fileamount − 1)/2. NUMTHREADS is the number of threads which should be equal to the 27
number of cores. 28

Verification of ground truth. To verify the correctness of our approximate longest common 29
substring, we compared the results against LCS for a subset of t5. In order to do this, we 30
implemented a parallelized LCS tool written in C++.3 The output is a summary file structured 31
similarly to our aLCS output: file1 | file2 | LCS. A small, ruby script is used to compare the 32
LCS- summary and aLCS-summary. 33

Our subset consists of 201 randomly selected files. We compare these files using aLCS as well as 34

LCS and finally compare both summaries. All (200)x(201)
2

= 20, 100 comparisons yield alcs scores 35

in the correct range, i.e., 0 ≤ alcs ≤ lcs. 36

2 https://www.dasec.h-da.de/staff/breitinger-frank/#downloads (last accessed 2013-05-09).

3 https://www.dasec.h-da.de/staff/breitinger-frank/#downloads (last accessed 2013-05-09).

https://www.dasec.h-da.de/staff/breitinger-frank/%23downloads
https://www.dasec.h-da.de/staff/breitinger-frank/%23downloads

14

We also consider the distribution of the differences between the LCS and aLCS scores. 37
Specifically, we define dr for files f1 and f2 as follows: 38

𝑑𝑟 = �𝑙𝑐𝑠(𝑓1,𝑓2)−𝑎𝑙𝑐𝑠 (𝑓1,𝑓2)
min (|𝑓1|,|𝑓2|)

� , 𝑑𝑟 ∈ 0, 1…,100.

In other words, we consider the score difference relative to the size of the smaller of the two files, 39
and build the empirical distribution in Table 2. As we can see, upwards of 95% of the observed 40
differences do not exceed 3% of the size of the smaller files – we consider this a reasonable starting 41
point for our purposes (further research may refine this). If anything, this should give tools a slight 42
boost as the available commonality would be underestimated. 43

Table 2. Empirical probability distribution function (pdf) and cumulative distribution function (cdf) 44
for dr. 45

X 0 1 2 3 4 5 10 15 20
 Pr{dr = X} 0.8869 0.0449 0.0155 0.0040 0.0047 0.0116 0.0062 0.0001 0.0000

Pr{dr ≤ X} 0.8869 0.9318 0.9473 0.9513 0.9561 0.9677 0.9834 0.9992 0.9999
 46

	Table of Contents
	Introduction
	1.1 Authority
	1.2 Purpose and Scope
	1.3 Audience

	2. Definition and terminology
	2.1 Use cases
	2.2 Terminology
	2.3 Essential requirements
	2.4 Reliability of results

	3. Standardized testing for bytewise approximate matching
	3.1 Efficiency
	3.2 Sensitivity and robustness
	3.3 Testing approximate-matching
	Table 1. Cumulative empirical file size distribution in the govdoc-corpus.

	References
	Appendix
	Table 2. Empirical probability distribution function (pdf) and cumulative distribution function (cdf) for dRrR.

