Adding Distributed Decryption and Key
Generation to a Ring-LWE Based CCA
Encryption Scheme

N.P. Smart

COSIC,

KU Leuven, ESAT,
Kasteelpark Arenberg 10, bus 2452,
B-3001 Leuven-Heverlee,
Belgium.

Joint work with Michael Kraitsberg, Yehuda Lindell, Valery Osheter, and Younes Talibi Alaoui

February 18, 2019

N.P. Smart KU LEUVEN
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 1

Distributed Decryption

Adding threshold capability to any IND-CCA encryption scheme is
problematic

» Cannot release the plaintext in clear until the CCA check is
complete

For post-quantum schemes this becomes more complex

» PQC schemes not particularly well suited to distributed
decryption

N.P. Smart | KU LEUVEN
Adding Distributed Decryption and Key Generation to a Ring-LWE

Distributed Decryption

We propose to do this for a LWE based PQC scheme.
» Using a combination of various MPC technologies
» GC and LSSS
» ISN and Shamir secret sharing

Tailor the MPC to the specific situation

N.P. Smart KU LEUVEN
Adding Distributed Decryption and Key Generation to a Ring-LWE

The LIMA Scheme: KeyGen

1. a=(ag,...,an_1) X%FFQ’.

2. Fori=0to N — 1 do s; +— GenerateGaussianNoisexor(o).
3. Fori=0to N — 1 do &] « GenerateGaussianNoisexor (o).
4. a<+ FFT(a), s < FFT(s), & < FFT(€).

5. b+ (a®s)pe,

6. st < (s,a,b).

7. pt <+ (a,b).

8. Return (p¢, st)

N.P. Smart KU LEUVEN
Adding Distributed Decryption and Key Generation to a Ring-LWE

KeyGen

The random values produced in lines 2 and 3 use the following
operation:

GenerateGaussianNoiseyop (o)
1. t < XOF[5]; interpretting t as a bit string of length 40.
2. s+ 0.
3. Fori=0to19do
31 s« s—t2-+t2-i+1].
4. Return s.

If we replace the XOF by producing a source of random bits, this
means the KeyGen operation is totally linear

» As FFT is linear
This means creating a distributed KeyGen will be easy (see later).

N.P. Smart | KU LEUVEN
Adding Distributed Decryption and Key Generation to a Ring-LWE

The LIMA Scheme: Enc-CPA-Sub(m, pt, XOF)

1. £=|m|.
2. It ¢ > Nthenreturn L.
3. p «+ BV-2-RE(m),
4. Fori=0to N — 1 do v; + GenerateGaussianNoiseyor (o).
5. Fori=0to N — 1 do e; «+ GenerateGaussianNoisexor (o).
6. Fori=0to N — 1 do d; «+ GenerateGaussianNoisexor (o).
7. v+ FFT(v), e < FFT(e).
8. X« d+ Ag-p (mod Q).
9. s« FFT ' (bav).

10. t+ s+ x.

11. ¢ < Trunc(t, ?).

12. i+ (a®v)de.

13. Output ¢ = (¢p, €1).

N.P. Smart KU LEUVEN
Adding Distributed Decryption and Key Generation to a Ring-LWE

The LIMA Scheme: Dec-CPA(c, st)

Define ¢ to be the length of cy.

If ¢ #0 (mod 8) then return L.

v+ FFT ' (s®cy).

t < Trunc(v, ?).

f+cy—t

Convert f into centered-representation modulo q.
ne 5]

m < RE-2-BV(u).

Return m.

© ® N ook~ ~

N.P. Smart KU LEUVEN
Adding Distributed Decryption and Key Generation to a Ring-LWE

The LIMA Scheme: CCA version

The problem comes in the CCA version of the scheme:

Enc-CCA(m, pt,r):
1. If |r| # 256 or |m| > N — 256 then return L.
2. p<«mjr.

XOF < KMAC(y, 0x03,0).

¢ < Enc-CPA-Sub(y, pt, XOF).

Return c.

ok~ w®

N.P. Smart KU LEUVEN
Adding Distributed Decryption and Key Generation to a Ring-LWE

The LIMA Scheme: CCA version

The problem comes in the CCA version of the scheme:

Dec-CCA(c, st):
1. u < Dec-CPA(c, st).
If || < 256 then return L.
XOF « KMAC(u, 0x03,0).
¢’ + Enc-CPA-Sub(y, pt, XOF).
If ¢ # ¢’ then return L.
m||r < u, where r is 256 bits long.
7. Return m.

We need to evaluate the KMAC (SHA-3) algorithm on 1 before we
release the m component of .

I

N.P. Smart | KU LEUVEN
Adding Distributed Decryption and Key Generation to a Ring-LWE

Distributed Decryption

We choose a three party, one active adversary, scenario
We share the secret key using Ito—Nishizeki—Saito sharing

In particular S; is assumed to hold (s]’z, 31’3) S ZQ’, S, is assumed

to hold (s}?,s%°) e ZY, and S; is assumed to hold (sp°,85°) € Zy
such that

12 12 13, 18 23 , 23
S, +8, =87 +8," =877 +87° =s.

N.P. Smart KU LEUVEN
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 10

Round Function

We require a protocol which takes an ISN-sharing of a vector f and
produces the output of the function

2
v |3
This is done using a special actively secure GC protocol for the
(1, 3)-threshold setting (see paper).

Requires one garbled circuit to be produced, of 262, 144 AND gates.

This effectively gives us Dec-CPA.

N.P. Smart | KU LEUVEN
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 11

SHA-3 Evaluation

Given the output of Dec-CPA we need to pass it into the XOF to get
the output needed for the Enc-CPA-Sub routine.

This requires evaluating the SHA-3 round function a number of
times.

» 38,400 AND gates per round

The rest of Enc-CPA-Sub becomes essentially locally computations
as FFT is linear

Only need to produce the truncation of d + Aq - 11 + Xx in a secure
fashion for testing equality

» Also done with a garbled circuit

N.P. Smart | KU LEUVEN
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 12

Distributed Decryption: Run Time

Despite one execute of a garbled SHA-3 round function taking only
16ms, the overall decryption time takes over 4 seconds!

Why?

The real problem is the round function having to be computed on
each coefficient

In LWE schemes there are a lot of coefficients, the ring dimension.

N.P. Smart | KU LEUVEN
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 13

Distributed KeyGen

Distributed Key Generation is much easier.

Here we use SCALE-MAMBA in Shamir (1,3) mode.
» An offline/online based MPC system

» Offline produces shared random Beaver triples (first two
components are random)

» Offline phases allows production of shared random bits! (v.
important for us)

N.P. Smart | KU LEUVEN
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 14

Distributed KeyGen

As we can produce shared random bits, production of approximate
discrete Gaussians is trivial...
SecGauss()
1. [a] < 0.
2. Forie|[0,...,19] do
2.1 [b] « Bits, [b/] « Bits.
2.2 [a] « [a] + [b] — [P].
3. Return [a].
In fact this is (after the offline phase) a completely local computation.

N.P. Smart | KU LEUVEN
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 15

Distributed KeyGen

From this distrbuted KeyGen is simply linear operations (FFTs) and
then converting data to the ISN shared format.

The per-coefficient operation is given by

KG-Coeff(i)
1. [8]i SecGauss(), le]i < SecGauss().
([s1 ,,[s1 i»[c]) « Triples, ([s1 i, [b], [c]) < Triples.
[§2 i« [sli— [31 i [3;’3 i [sli— [31 is [3273 i« [sli— [31 it
Output-To(1, [§1] i), Output-To(1, [§1 i)
Output-To(2, [s7°];), Output-To(2, [s5?])).
Output-To(3, [§;’3] i), Output-To(3, [§§’3 i)

SIS B

N.P. Smart | KU LEUVEN
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 16

Distributed KeyGen

KeyGen()
1. All players agree on a key for a XOF XOF.
2. a « FJ.
XOF
3. Forie|0,...,N— 1] execute KG-Coeff(i).
4. [b] < a-[s] + [e] (mod ®2.n(X)).

S © ® N O

This is a completely local operation as a is public
Fori € [0,...,N — 1] execute Output([b];).

a < FFT(a), b «+ FFT(b) [Again local operations]
pt < (a,b).

Player S executes s]? « FFT(s]?) and s]® « FFT(s]?).
Player S, executes sy° « FFT(s 1’2) and sf’s « FFT(s>).
Player Sz executes s; S FFT(3) and s - FFT(§§’3).

N.P. Smart

Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 17

| KU LEUVEN

KeyGen Runtime

We timed this with SCALE-MAMBA v1.2 and obtained a run time of
1.22 seconds

Of this one second was actually producing the output

» Due to SCALE-MAMBA doing IO in serial as opposed to
parallel protocol.

» Requiring 6144 rounds as opposed to one.

N.P. Smart | KU LEUVEN
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 18

Conclusions
We have shown that MPC can be used to produce
distributed/threshold implementations of a PQC encryption scheme.

Runtimes are a little disappointing.
» Main issue is the large ring degree (1024) used in LIMA.

The problem is not in the CCA transform (i.e. the SHA-3 evaluation)

The use of FFT like operations is also not a problem as these are
linear

» Assuming you split up the MPC operation in a sensible manner
to exploit this.

Suggest looking at distributed/threshold capabilities as a potential
secondary criteria in the NIST competition.

N.P. Smart | KU LEUVEN
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 19

Any Questions?

N.P. Smart KU LEUVEN
Adding Distributed Decryption and Key Generation to a Ring-LWE Slide 20

