
SP 800-90A: DRBG Mechanisms

• Originally published as SP 800-90 in 2006 and revised in 2007
• Revised as SP 800-90A in 2012 and 2015

• Revised as SP 800-90A Rev. 1 in 2015
(included removing approval of the Dual_EC_DRBG)

Background/History

SP 800-90A Contents

• Security strengths: support 112, 128, 192, or 256 bits

• Boundaries

• Internal state:

Admin. InfoWorking state
Internal State

• Backtracking and prediction resistance

Presenter Notes
Presentation Notes
The current version of 90A supports security strengths of 112, 128, 192, and 256 bits
It includes a discussion of boundaries, which ar used to explain the operations of a DRBG and its interaction with and relation to other processes within a module/device; a DRBG boundary contains all DRBG mechanism functions and internal states required for a DRBG.
The DRBGs have an internal state for an instantiation, which is the memory for the DRBG; it consists of a working state (which are changing values, such keys and counters) and administrative information (such as the instantiated security strength).
The design of the DRBGs provide backtracking resistance, which is assurance that compromising the current internal state does not weaken previously generated outputs.
90A offers a prediction resistance capability; this provides assurance that compromising the current internal state of the DRBG does not allow future DRBG outputs to be predicted; prediction resistance can be provided when sufficient fresh entropy is inserted.

(General) Functions

• Instantiate: Initial seed internal state

• Reseed: (New) seed internal state

• Generate: Request bits produce output

• Uninstantiate: Destroy internal state when DRBG is no longer
to be used

Presenter Notes
Presentation Notes
There are four general functions specified for a DRBG:
An instantiate function obtains an initial seed and enters it into the internal state.
A reseed function obtains a new seed upon request and enters it into the internal state.
The generate function allows some application to request the generation of pseudorandom bits and provide them to the application.
The uninstantiate function can be used to terminate the use of a DRBG instantiation by destroying the information in the internal state.

Instantiate Function

Instantiate
function

entropy input

status

state_handle

Internal state

requested_instantiation_security_strength
(Opt.) prediction_resistance_flag

(Opt.) personalization_string

nonce

Presenter Notes
Presentation Notes
In order to instantiate a DRBG, an application requests a security strength, optionally indicates whether or not prediction resistance will be needed, and optionally provides a personalization string.

The instantiate function obtains the entropy needed for the security strength, as well as a nonce, and combines it with the optional personalization string to produce a seed that is used to initialize the internal state.

If the process is successful, status information and a state handle that points to the internal state are returned.

If the process is not successful, no state handle is returned because the internal state has not been created.

Seed Construction for Instantiation

Nonce
(Optional)

Personalization
String

Opt.
df

Seed

Entropy
Input

entropy input || nonce || (opt.) personalization string

Note: In most cases, the
entropy input need not
have full entropy

Presenter Notes
Presentation Notes
This slide shows that the initial seed is created by concatenating the entropy with the nonce and any personalization string.

Depending on the DRBG design, the seed may be passed through a derivation function before entering it into the internal state.

Note that in most cases, the entropy bitstring obtained doesn’t need full entropy, meaning that each bit of the entropy input may have less than one bit of entropy.

Reseed Function

Reseed
function

state_handle
(Opt.) additional_input

entropy input

status

Internal state

Presenter Notes
Presentation Notes
In order to reseed the DRBG, an application provides the state handle that points to the internal state and (optionally) provides additional input.

The reseed function obtains new entropy and enters it into the internal state.

The returned status indicates whether or not the process was successful.

Seed Construction for Reseeding

Entropy
Input

(Optional)
Additional

Input

Seed

Internal
(Working)

State Value

Opt.
df

internal state value(s) || entropy input || (opt.) additional input

Presenter Notes
Presentation Notes
If the reseed process was successful, the internal state is concatenated with the new entropy and any provided additional input.

The result may be passed through a derivation function before creating the new internal state.

Generate Function

Generate
function

(Opt.) additional_input

statusrequested_number_of_bits
requested_security_strength

pseudorandom_bits

Internal state

(Opt.) prediction_resistance_request

Reseed_function

?

state_handle

Presenter Notes
Presentation Notes
When an application needs random bits, it provides the generate function with:
 The state handle for the DRBG internal state to be used,
Indicates the number of bits to be returned and the required security strength that the DRBG must support,
Indicates whether prediction resistance is to be provided, and
May provide additional input.

If prediction resistance is requested, the reseed function is called to insert new entropy into the internal state.

The generate function then uses the internal state to generate the requested bits, modifying the internal state in the process, and provides a status indicator.

If the process was successful, the requested bits are returned.

If the process was NOT successful, no random bits are returned. This means that it is VERY important to check the status of the process.

Uninstantiate Function

Uninstantiate
functionstate_handle status

Destroy internal state

Presenter Notes
Presentation Notes
If the DRBG is no longer needed, it can be terminated using the uninstantiate function by indicating the state handle pointing to the internal state.

The function destroys the contents of the internal state and returns the status of the process.

Functional Model

Internal State Generate

Error

Instantiate Reseed

Pseudorandom Output
Error
State

Additional Input

Tests

Entropy InputNonce

Personalization String

Uninstantiate

Available at: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

?

Presenter Notes
Presentation Notes
This is the functional model for the DRBG, showing each of the basic functions:
The instantiate function…
The reseed function…
The generate function….
The uninstantiate function…

There are also health tests to check that the DRBG is still operating correctly.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

DRBG Algorithms

• Hash-based: Hash_DRBG and HMAC_DRBG:

o Use SHA-1 or SHA-2

• Block-cipher-based: CTR_DRBG:

o Use 3TDEA or AES

o Variants: with or without a derivation function
(df); no df requires full entropy

• Tables provided for function parameters

Presenter Notes
Presentation Notes

90A includes DRBGs based on the use of approved hash functions and block cipher algorithms.

The Hash_DRBG and HMAC_DRBG may use SHA-1 or the SHA-2 family of hash functions.

The CTR_DRBG may use three-key TDEA or AES. It has two variants: with and without a derivation function. If no derivation function is used, the entropy input must provide full entropy.

Tables in each specification provide information for implementation, such as the maximum security strength, the maximum number of requests that a DRBG can handle before reseeding, and the amount of entropy for seeding and reseeding.

• Implementation assurances via lab testing:
o Documentation requirements
o Conformance testing
o Health testing

• Appendices:
o Conversion routines, examples, DRBG mechanism selection,

revision history

Other Stuff

Presenter Notes
Presentation Notes
90A includes a section on obtaining assurance that an implementation actually produces (pseudo) random, unpredictable bits and continues to operate correctly. This section includes
Documentation requirements for the validation process
Discusses validation testing for conformance to the 90A specifications, and
Discusses health testing to verify continued correct operation as designed, implemented, and validated using known-answer tests at startup and periodically

Appendices include…..

• New template

• Terminology changes

• Use “Must“ and “must not” for non-testable requirements

• TDEA, SHA-1, and 112-bit security strength removed

• Add SHA-3 (parameters under discussion)

Proposed Changes for Rev. 2

Presenter Notes
Presentation Notes
Now that 90C is nearing completion, we will be making changes to 90A so that the 800-90 series is coordinated. The changes include:
A new template because… (i.e., section numbers will change)
Terminology changes to be consistent with 90C (e.g., “entropy input”  “randomness-source_input”)
“Must“ and “must not” will be used to indicate non-testable requirements…. (e.g., If the additional input contains secret/private information, that information must not require protection at a higher security strength than the security strength supported by the DRBG.)
TDEA, SHA-1, and the 112-bit security strength will be removed
The SHA-3 algorithms will be added for use in the hash-based DRBGs; some of the parameters are under discussion, in particular, the seedlen value for Hash_DRBG.

• Recommendation added to employ an “atomic” generate
operation

• Instantiate, reseed, and generate functions have been
simplified

• The Get_entropy_input function (renamed as a
Get_randomness-source_input function) is a placeholder

Proposed Changes (cont’d.)

Presenter Notes
Presentation Notes
A requirement has been added to employ an “atomic” generate operation whereby a request is to be completed before outputting any of the requested bits.
It is also recommended that an application should request only the number of bits required for a specific immediate purpose rather than generating bits to be stored for future use.
The instantiate, reseed, and generate functions are being simplified and modified to “fit better” with their use in SP 800-90C (e.g., to access entropy source(s) or RBGs).
 The intention is that the functionally is basically the same as in Rev. 1 except for the use of a nonce; please check.
The Get_entropy_input function will be renamed as the Get_randomness-source_input function). This function is to be considered as a placeholder for the specific function specified in SP 800-90C that obtains input from an entropy source or an RBG.

• “Nonce” no longer used
during instantiation

• Replaced by additional bits
from the randomness
source
o Entropy source: 3/2

(security strength) bits of
entropy

o RBG: bit string 3/2 (security
strength() bits long

Proposed Changes (cont’d.)

(Optional)
Personalization

String

Opt.
df

Seed

Randomness
Input

randomness input || (opt.) personalization string

Nonce

Presenter Notes
Presentation Notes
A nonce will no longer be used for instantiation.
In the current version of 90A, a nonce could be:
A random value
A timestamp
An increasing sequence number, or
A combination of these.
90A will be modified to replace the nonce with additional bits from the randomness source.
If the randomness source is an entropy source, a bitstring with entropy equal to 1 ½ times the security strength will be required. For example, for a security strength of 128 bits, 192 bits of ettropy will be needed.
If the randomness source is an RBG, a bitstring that has a length of 1 ½ times the strength is required. In this case, for a security strength of 256 bits, a bitstring that is 384 bits long is needed.

• Hash_DRBG and HMAC_DRBG
o Table modified: remove SHA-1; add SHA-3

• CTR_DRBG
o Table modified: remove 3TDEA
o Two new derivation functions added

• Figures added

• Examples will be updated

Proposed Changes (contd.)

Presenter Notes
Presentation Notes
For the Hash_RBG and HMAC_DRBG, SHA-1 will be removed from the table and the SHA-3 family will be added.
For the CTR_DRBG
The table is being modified to remove TDEA and define the parameters for the RBG constructions specified in SP 800-90C.
Also, two derivation functions are being added in addition to the block-cipher derivation function that is currently specified; these new functions were introduced in an appendix to the 90C draft.
Figures have been added for the specified functions in 90A and additional comments have been included to explain the steps in the pseudocode.
 Examples in the appendices will be updated to reflect the changes to 90A.

Questions?

Thanks!

	SP 800-90A: DRBG Mechanisms
	Background/History
	SP 800-90A Contents
	(General) Functions
	Instantiate Function
	Seed Construction for Instantiation
	Reseed Function
	Seed Construction for Reseeding
	Generate Function
	Uninstantiate Function
	Functional Model
	DRBG Algorithms
	Other Stuff
	Proposed Changes for Rev. 2�
	Proposed Changes (cont’d.)
	Proposed Changes (cont’d.)
	Proposed Changes (contd.)
	Questions?
	Thanks!

