A BBB Secure Accordion Mode from HCTR

Byeonghak Lee

SAMSUNG SDS

2024.06.19

Accordion Mode

- A length preserving tweakable encryption \simeq tweakable wide block cipher
 - Security Goal: Variable Input Length Strong Tweakable Pseudorandom Permutation (VILSTPRP)
- There are only few accordion modes with beyond-birthday bound security
 - CTET+
 - BC based, 2n/3-bit security
 - 2 BC calls + 2 Field Mults per blocks
 - Do not support arbitrary length msg/tweak

- ZCZ
 - TBC based, *n*-bit security
 - 1.5 TBC Calls per blocks

- TBC based, *n*/2 ~ *n*-bit security (depends on tweak repetition)
- 1 TBC call + 2 Field Mults per blocks

Goal

- Block Cipher based Accordion Mode
- Provide beyond-birthday bound security
 - Currently, only CTET+ is the option for BBB-security
- Support arbitrary length message and tweak
 - required to apply generic AE conversion
- Minimize the number of block cipher calls

Starting Point - HCTR

- HCTR
 - Hash-Counter-Hash style
 - BC based, n/2-bit security
 - 1 BC call + 2 Field Mults per block

- Modification: use 2*n*-bit state size
 - 2*n*-bit universal hash \leftarrow use $GF(2^{2n})$ or $GF(2^n)^2$
 - − 2n-bit E_K ← use BBB-secure accordion mode (e.g. CTET+)
 - BBB-secure variant of CTR_K from block cipher?

mCTR: BBB-secure PRF from PRP

- masked CTR
 - CTR mode with additional input/output masking
 - adapted from PRNG in synthetic-counter with masking (SCM) AE mode
 - mCTR_K(IV_1, IV_2)[i] = $E_K(IV_1 \oplus IV_2) \oplus E_K(2^i \cdot IV_1 \oplus IV_2)$
 - provide 2n/3-bit security

Our Proposal

- Double-block HCTR (DbHCTR)
 - BBB-secure variant of HCTR using 2*n*-bit state size
 - Message length should be at least 2n-bit
 - H is concatenation of two n-bit polynomial hashes
 - 1 BC call + 4 Field Mults per block
 - Support arbitrary length tweak

Lemma (Security of DbHCTR)

Let *H* is ϵ -almost xor universal hash with 2n-bit output. Then,

 $\begin{aligned} &\operatorname{Adv}_{\operatorname{DbHCTR}}^{\operatorname{STPRP}}(q,\sigma,l) \\ &\leq \operatorname{Adv}_{\operatorname{CTET}+}^{\operatorname{PRP}}(q) + \operatorname{Adv}_{\operatorname{mCTR}}^{\operatorname{i\!vPRF}}(q,\sigma,l) + O\left(q^2\epsilon + \frac{q^2}{2^{2n}}\right) \end{aligned}$

Comparison

Scheme	Prim.	Security	#Ops per block		Arbitrary length		Dof
			(T)BC	FMult	Msg	Tweak	Rei
EME*	BC	n/2	2	-	0	0	[Hal04]
HCTR	BC	n/2	1	2	0	0	[WFW05]
HEH*	BC	n/2	1	2	0	0	[Sar09]
Tweakable HCTR	TBC	$n/2 \sim n^{2}$	1	2	0	0	[DN18]
ZCZ	TBC	n	1.5	-	0	Х	[BLN18]
(Decked-)Double-decker	Deck ¹⁾	$n/2 \sim n^{2}$	-	-	0	0	[GDM20]
CTET+	BC	2n/3	2	2	Х	Х	[CELL+21]
DbHCTR	BC	2n/3	1	4	0	0	Ours

1) Doubly-extendable cryptographic keyed functions (arbitrary-length input and output).

2) Depends on tweak repetition.

Conclusion and Discussion

- DbHCTR is the first block cipher based accordion mode that enjoys
 - 2n/3-bit security
 - arbitrary length tweak inputs
 - 1 BC call per message block
- Limitations and further topics
 - DbHCTR needs large amount of subkeys
 - 2*n*-bit for universal hash, 6*n*-bit for CTET+, *n*-bit for mCTR
 - Key-committing security is unknown when converting to AE
 - Its multi-user security is unknown

FAQ?

Ref

- [Hal04] Halevi, S. (2004). EME*: Extending EME to Handle Arbitrary-Length Messages with Associated Data.
- [WFW05] Wang, P., Feng, D., Wu, W. (2005). HCTR: A Variable-Input-Length Enciphering Mode.
- [Sar09] Sarkar, P. (2009). Efficient Tweakable Enciphering Schemes From (Block-Wise) Universal Hash Functions.
- [BLN18] Bhaumik, R., List, E., Nandi, M. (2018). ZCZ Achieving *n*-bit SPRP Security with a Minimal Number of Tweakable-Block-Cipher Calls.
- [DN18] Dutta, A., Nandi, M. (2018). Tweakable HCTR: A BBB Secure Tweakable Enciphering Scheme.
- [GDM20] Gunsing, A., Daemen, J., & Mennink, B. (2020). Deck-Based Wide Block Cipher Modes and an Exposition of the Blinded Keyed Hashing Model.
- [CELL+21] Cogliati, B., Ethan, J., Lallemand, V., Lee, B., Lee, J., & Minier, M. (2021). CTET+: A Beyond-Birthday-Bound Secure Tweakable Enciphering Scheme Using a Single Pseudorandom Permutation.