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Abstract. RMAC is a randomized message authentication code based
on the well known CBC-MAC construction. It is provably secure against
birthday paradox attacks. The size of the MAC tags in this construction
is optimal, i.e. exactly twice the size of the block cipher. Moreover, this
construction adds a negligible computational overhead compared to the
cost of a plain, non-randomized CBC-MACs.
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1 Mode specification

1.1 Description of RMAC

The mode of operation RMAC computes a message authentication code using a
block cipher algorithm. It is a randomized message authentication code, meaning
that the computation of the MAC requires the generation of a random value.
The construction is based on the CBC-MAC construction. We differentiate in
RMAC two sligthly different modes, based on different padding of the messages.
The notations used in this paper are the following:

n is the size of blocks,

— k is the size of the key of the block cipher algorithm,

— M represents the message to authenticate,

AESk (B) represents the AES enciphering of the block B with the key K.

The size of the blocks is n = 128 bits, the size of the key of the block cipher
may be k = 128, 192 or 256 bits.

The figure 1 presents the diagram of the RMAC. The diagram is the same
for both modes of operation.

The message M to be authenticated does not always has a size multiple of
the block length. However in order to apply the CBC construction, we need to
work on complete blocks. Thus an uncomplete message M must be padded. The
two modes of RMAC differ on the padding method.

Mode 1. The first mode of RMAC deals with full padded messages. It means
that, before processing, every message is padded, even messages whose length
is a multiple of the block size. A simple and frequently encountered padding
method is to append a ‘1’ at the end of the message followed by enough ‘0’s to
fill the last block. Note that in cases where the size of the message is already
a multiple of the block size, the padding implies appending a full block to the
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Fig. 1. Diagram of RMAC

message. The table 1 presents this first mode of operation. To obtain the MAC
of a padded message, let us first compute the AES-CBC-MAC of the padded
message M with a key K7, then encipher the result with the AES algorithm
using key K & R where R is a n-bit random value. Note that the size of R
depends on the size of blocks and not on the size of the key. If the key is longer
than a block, R is padded with ‘0’s before computing the xor with K. The MAC
of the message is formed by the couple (m, R) where R is the chosen random
value and m is the output of the last AES.

Input Message M = (M1, Ma,---, My,)
Key K = (Kl,Kz)
Computation
Co =07,

C; = .AESK1 (Ml @Ci—l) fortiinl---m
B = AESk,0r(Cn)

Output RMAC(M) = (B,R)

Table 1. RMAC1 computation

To verify the MAC (B, R) of a given message M, let us first compute the
AES-CBC-MAC of the padded message with the key K, then use R to compute
K> ® R and apply AES to the CBC output with this new key. The MAC is valid
if the computed value is the same as the given B.



Mode 2. The second mode of RMAC avoids the padding of messages whose
length is a multiple of the block size. In other cases, it fills the last block of
the message with a ‘1’ and as many ‘0’s as necessary. To obtain the MAC of a
padded message, let first compute the AES-CBC-MAC of the padded message
M with a key K7, then encipher the result with a last AES using key K, & R
where R is a (n + 1)-bit integer. The first n bits of R are randomly chosen and
the last bit is equal to ‘0’ if the message has been padded and to ‘1’ otherwise.
The MAC of the message is formed by the output of the last AES and by the
first n bits of R. Note that in order to use this mode, one needs a key length of
at least n + 1 bits.

1.2 Security proof

In this section, we will briefly state the security of the RMAC construction. The
security is the same for the two modes we have described. A detailed proof of
the security analysis can be found in [2].

Let us consider an attacker asks for MAC computations and MAC verifica-
tions to an oracle. The total length of the queries transmitted to the oracle will
be denoted by L and ¢ is the total number of AES computations done by both
the adversary and the oracle. The the advantage Adv of the attacker, i.e. the
probability to forge a MAC, is bounded as follows:

BITL 41

Adv < 2128

1.3 Important properties

The RMAC construction we propose gives an efficient solution to the problem of
constructing a randomized CBC-MAC provably secure against birthday paradox
attacks. The only previously known example of a birthday paradox resistant
MAC was given in [1] and called MACRX. Compared to MACRX, RMAC has
two main advantages. Firstly, its output has twice the length of the underlying
block-cipher instead of three times for MACRX. Secondly, being a CBC-MAC
variant, RMIAC does not require any special function other than the block
cipher.

Moreover, since RMAC provides a security in O(2") for an algorithm us-
ing n-bit blocks, the security offered by a 128-bit block algorithm like AES is
sufficient to make the need for 256-bit block cipher a very remote perspective.



2 Summary of properties

2.1 RMAC mode 1

Security function Authentication
Error propagation Infinite
Parallelizability Sequential

Keying Material Requirements |2 keys
Counter/IV /Nonce Requirement|A random value of 1 block

Memory Requirements None
Preprocessing capability None

Message Length Requirements |Padding necessary
MAC tag size 2 blocks

2.2 RMAC mode 2

Security function Authentication
Error propagation Infinite
Parallelizability Sequential

Keying Material Requirements |2 keys
Counter/IV/Nonce Requirement|A random value of 1 block

Memory Requirements None

Preprocessing capability None

Message Length Requirements |Arbitrary length

MAC tag size 2 blocks

Other requirements The size of the key must be strictly greater

than the size of the blocks

3 Test vectors

We have generated three test vectors for the three sizes of keys of the AES block
cipher. Those test vectors are for RMAC used in mode 1. We are using the
following notations: MSG represents the initial unpadded message. PT represents
the plaintext fed to the CBC cipher, that is the padded message. K1 is the key K
used during the CBC computation. CBC represents all the intermediary outputs
C;. K2 is the key K>. R is the random value. K3 is K> @& R, that is the key used
in the last encryption. Finally, MAC represents the output of RMAC.

KEYSIZE=128

MSG 000102030405060708090A0BOCODOEOF 101112131415161718191A1B1C1D

PT 000102030405060708090A0BOCODOEOF 101112131415161718191A1B1C18000
K1 000102030405060708090A0BOCODOEOF

CBC 0A940BB5416EF045F1C39458C653EAS5A 3C7T99ACECB066248FAO6F6502D4EAF5A
K2 OFOEODOCOB0A09080706050403020100



R
K3
MAC

00020406080A0C0E10121416181A1C1E
OF0C090A03000506171411121B181D1E
E4CD62BD8824DDF33AB0OC33DB3217BBB 00020406080A0C0E10121416181A1C1E

KEYSIZE=192

MSG
PT
K1
CBC
K2
R
K3
MAC

000102030405060708090A0BOCODOEOF 101112131415161718191A1B1C1D
000102030405060708090A0BOCODOEOF 101112131415161718191A1B1C1D8000
000102030405060708090A0BOCODOEOF1011121314151617
0060BFFE46834BB8DASCFOA61FF220AE 815CFD8CCOB2BA9FDOA195D742EE1388
OFOEODOCOB0OA09080706050403020100FFFEFDFCFBFAFOF8
00020406080A0C0E10121416181A1C1E
OF0C090A03000506171411121B181D1EFFFEFDFCFBFAFOF8
07B4CB1278AB823DC881ECE3488F3B28 00020406080A0C0E10121416181A1C1E

KEYSIZE=256

MSG
PT
K1
CBC
K2
R
K3
MAC

000102030405060708090A0BOCODOEOF 101112131415161718191A1B1C1D
000102030405060708090A0BOCODOEOF 101112131415161718191A1B1C1D8000
000102030405060708090A0BOCODOEOF101112131415161718191A1B1C1D1E1F
5A6E045708FB7196F02E553D02C3A692 80D19F4D978DCD5DODFB41354BCAA493
OFOEODOCOB0A09080706050403020100FFFEFDFCFBFAFOF8F7TF6F5FAF3F2F1F0
00020406080A0C0E10121416181A1C1E
OF0C090A03000506171411121B181D1EFFFEFDFCFBFAFOF8F7TF6F5FAF3F2F1F0
492AA4DAD27685658FB1539B25C1C71B 00020406080A0C0E10121416181A1C1E
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