RAC

Submission to NIST:
Random Access Counter (RAC)

AES Mode of Operation

Submitter/Author:

Jeff Anderson

5285 Shawnee Rd.
Alexandria, VA 22312

Phone: (301) 379-4069

Email: Jeff.Anderson@jhu.edu

mailto:Jeff.Anderson@jhu.edu

RAC

1. Introduction

RAC is a confidentiality mode of operation for block ciphers; it was designed as a
variation of Counter mode (CTR) [1], arising from alternative methods for prescribing
the generation of counters. More specifically, the generation and operation of counters
was designed such that RAC mode can be used to efficiently encrypt and decrypt
transactions between a microprocessor and Random Access Memory (RAM) without any
degradation in security. As it is a variation of Counter mode, it is based on mechanisms
which are supported by a well-understood theoretical foundation and its security
follows from reasonable assumptions of the underlying block cipher and Counter mode,
in general.

As security of data has moved to the forefront of the public’s attention, there exists a
compelling need for encryption of data as it leaves a microprocessor’s boundary and
interfaces with RAM. This requirement has proven troublesome for system designers,
as the performance requirements for modern RAM interfaces does not lend itself well
to inline encryption. Authenticated encryption modes such as CCM [1] and CBC-MAC [2]
do not allow parallelization and add an intolerable amount of latency due to the serial
nature of encryption and authentication. GCM [3], while designed to allow
parallelization and pipelining, requires some amount of memory for the authentication
tag. If the authentication tag is unused, then GCM simplifies to CTR with regard to
security and performance; however, the simplicity of the counter is not optimized for
the patterns of writes typically seen when a microprocessor interfaces with RAM. The
simplicity of the incrementing counter scheme used in both GCM and CTR does not pair
well with the natural behavior of a microprocessor interfacing with memory. The
behavior of a microprocessor writing to RAM during the course of program execution
would require a complex scheme to store and manage counters for various sections of
memory; this scheme would use memory that would be better served being made
available to the microprocessor for use during execution.

Any AES mode of operation that operates at the boundary of a microprocessor and RAM
must be highly parallelizable and add low latency to the system. Additionally, it should
be simplistic to implement in hardware and use counters that have been optimized for
the behaviors expected at a microprocessor/RAM interface. Using the RAM address is a
logical starting point for a counter, as it provides a unique value for each section of
RAM. However, the normal execution flow of a microprocessor allows several writes to
the same memory location, realizing the need for a traditional counter variable.
Additionally, a cache line is equal in length to several 128-bit blocks, making another
counter necessary. While the aforementioned counters and address bits allow for
unique values during a microprocessor’s program execution, they will repeat each time
the microprocessor is reset; affirming the need for a nonce generated at startup.

The RAC mode of operation fills the need for encryption of memory. It is a variant of
CTR, designed to provide only confidentiality, with counters designed with cache writes
and resets in mind. Authentication was not designed into the system, as it adds

RAC

unnecessary latency to writes. It is expected that error correcting codes built into RAM
modules will allow the microprocessor’'s memory management unit to identify and
possibly correct any bit errors that may occur.

This document is organized as follows. Section 2 contains the complete specification of
RAC. Section 3 provides implementation strategies and a discussion of performance.
Properties of RAC and rationale is discussed in Section 4. Section 5 covers any
restrictions on implementation required to keep data secure with RAC, and a brief
discussion of nonce suggestions (as RAM interface behaviors change, the counter may
need to evolve as well). Section 6 and section 7 very briefly discuss the security and
performance of the RAC mode of operation, respectively, by comparing it to CTR.
Section 8 contains intellectual property statements.

. Definition

RAC is a block cipher mode of operation that provides confidentiality to transactions
between a microprocessor and RAM. It was designed for 128-bit block ciphers and 64-
byte cache lines, but can be easily extended to other block sizes and cache line lengths.
Block lengths shorter than 128 bits are not recommended.

a. Inputs and Outputs
When encrypting a line of data intended for RAM, the sender must provide the
following:

e An encryption key K suitable for the underlying block cipher.

e A 32-bit nonce R. Within the scope of any key K, the nonce value
R shall be unique. Like CTR and CCM, reusing nonces for different
messages encrypted with the same key destroys the security
properties of this mode. The Birthday Problem then dictates that
each nonce/key combination can be used for 2*° blocks.

e RAM address A, which is defined as 6 bytes long, supporting 28
memory addresses; a 46-bit write counter X supporting 2*®writes
per address and a 2-bit cache

e The message P, whose length is 64 bytes (the most common
length of a cache line).

Name Description Field Size
K Block cipher key Block cipher dependent
R Nonce 4 bytes
A RAM address 6 bytes
X Write counter 46 bits
Y Cache Block counter | 2 bits
P Line of plaintext 64 bytes

RAC

Table 1: Inputs for RAC mode

There is only one output:

= Ciphertext C whose length is exactly that of the plaintext P.

b. Notation

Notation follows that of the Recommendation for Block Cipher Modes of
Operation [4]. The main functions used in RAC are block cipher encryption,
concatenation and addition modulo-2. The block cipher encryption of the
message P with the key K is denoted as E(K,P). The addition of X and Y is
denoted as X @ Y and is implemented in this field using the bitwise exclusive-or
operation. Concatenation of X and Y is denoted as X || Y and is implemented by
appending the most significant byte of Y to the least significant byte of X.
Successive counter values are generated using the function incr(X,t), which treats
the rightmost bits of its argument X as a nonnegative integer with the least
significant bit on the right, and increments this value modulo 2.

¢. Encryption
The encryption operation for a 128-bit block cipher is defined as follows:
Let the plaintext P be defined as a 64-byte string, or 4 blocks.

Yi=incr(Y.;, 4) fori=0,1,2,3
X; = incr(Xy.1, n) forj=0,...,n-1
Ci=P,® E(K,(R||Yi| X |A)) fori=0,1,2,3 andj = 0,..,n-1

d. Decryption
The decryption operation is identical to the encryption operation, with the
operands reversed:

Y;=incr(Y;;) fori=0,1,2,3
Xj=incr(X;;) forj=0,...,n-1
Pi=C D E(K,(R||Yi||X;||A)) fori=0,1,2,3andj=0,...,n-1

3. Implementation
As RAC is a variant of CTR, with specially generated counters, implementation is as
straightforward as CTR. Figure 1 shows a sample implementation of fully parallelized
RAC for a 64-byte cache line. Note how the cache line is split into 128-bit blocks due to
the underlying block cipher and Y; is automatically incremented for each block;
hardware implementations allow for these lines to be hardwired as they will not change
for a fully parallelized implementation. The size of Y can be changed to accommodate

RAC

cache lines of various sizes by resizing the nonce or other counters. A changes
automatically as different regions of memory are accessed, and can be directly
connected to the address bits of a memory controller in hardware implementations to
lessen the memory burden. R is a random nonce generated at startup, and can be
either stored in its own memory buffer, or wired directly to a random number generator
in hardware implementations. X for an individual cache line gets incremented once per
cache line write. It is recommended that X for each cache line is stored in its own
memory buffer. For lowest latency, it is recommended that the fully parallelized
algorithm from Figure 1 be implemented entirely in hardware.

RIIZTIX]IA RITZT1%]1A RITIIIX] 1A RI1O11%]1A
___________________________ (I g ———r—r——1—
) L i v) i ") v
Key - Block L.:!.pher Key - Block u:!.pher Key - Block u}pher Key - Block _}pher
Encryption Encryption Encryption Encryption
[63:48] .-j.-'i'-_ Cache Line [47:32] == Cache Line [31:16] -;'_i'- Cache Line [15:0] -Z-'i'-.
CLITITL | [T | I | CIITIIIT l
r . . " a - T
Ciphertext Ciphertext Ciphertext Ciphertext

Figure 1: Parallel implementation of RAC encryption

4. Properties and Rationale
The summary of properties for RAC is shown below.

Security Function Encryption

Error propagation None

Synchronization Same nonce used by sender and recipient
Parallelizability Encryption can be parallelized

Keying Material Requirements One key

Counter/Nonce/IV Requirements | Counter and Nonce are part of the counter block
Memory Requirements Same requirements as CTR mode for underlying

block cipher. Counter requires memory equal to
Sizeof(X;) * n, where n is equal to the number of

cache lines.
Pre-processing Capability Encryption key stream can be precomputed
Message Length Requirements 64 bytes (one cache line)
Ciphertext Expansion None

Table 2: A summary of the properties of RAC

CTR, with its ability to be fully parallelized and outputs preprocessed, was deemed the
most appropriate mode to meet the high performance requirements of memory
encryption. Due to limitations associated with the simplicity of the CTR counter scheme,
it was deemed unable to fulfill the requirements of a memory encryptor. RAC was

RAC

developed as a CTR variant using alternative methods for prescribing the generation of
counters.

The nonce and counters were chosen based on the expected behavior of a
microprocessor accessing RAM during program execution. The expected behaviors
during program execution are cache writes, reads and rewrites and system resets.
Assigning address A as a portion of the counter is natural for RAM encryption as it
ensures that each physical address of RAM will have a unique counter value. However,
this ensures security for only the first memory write for each physical address, as
rewrites would reuse the counter value if the address was the only component. To
address this, the write counter X was added for each cache line. For each write, this
counter is incremented, ensuring that each physical address of memory has a unique
counter value. A counter comprised of a memory address and write counter was still
deemed insufficient, however, because an attacker with the ability to reset the system
could compromise security of the mode by resetting the system; the write counters
reset to 0, which effectively reuses counters as writes are made to RAM. A 32-bit nonce
R was added to address this concern. 32 bits was chosen as the nonce size because it is
a common output of random number generators; this size is not necessary for collision-
free operation due to the relative infrequency of resets. A counter comprised of the
aforementioned elements would be sufficient based on the behavior of a memory
controller. However, the common cache line size is 64 bytes. This is equal to four
blocks of a 128-bit block cipher. Since an entire cache line will be written per physical
memory address, a block counter Y was added to ensure uniqueness among blocks in a
cache line.

As technology changes, cache line size and block cipher size is expected to evolve; and
RAC can be easily modified when such changes occur. Due to the use of common cache
line size of 64 bytes and a 128-bit underlying block cipher, only 2 bits are needed for the
block counter. Increases in cache line size would necessitate an increase in the size of
the block counter. This would need to be offset by decreasing the size of the nonce,
write counter or address. The address word needs to be large enough to encompass the
entirety of RAM, which is system dependent, and therefore may not be available to be
changed. The write counter is 48 bits, which allows up to 2*® writes to take place. As
mentioned before, the nonce is 32 bits for convenience, but does not need to be that
size for security purposes. The author recommends decreasing the size of the nonce or
address (if extra bits are available) to offset an increase in the block counter, prior to
decreasing the size of the write counter, as many assumptions need to be made on
system properties (system availability and number of writes per second to name a few)
that are out of user control.

Restrictions
As with other block cipher modes of operation, security degrades as more data is
processed with a single key. Determination of the number of encryption operations

RAC

available without degradation of security is dependent on the number of bits in the
write counter X. While there are several other elements that comprise the counter, the
nonce and block counter can be treated as static. Additionally, the address should also
be treated as static, as the memory controller dictates what physical address will be
written to; the scenario where only one address is written to continuously, while
uncommon, cannot be ignored.

While a 32-bit nonce R was chosen for convenience, it is not required to maintain
security of the mode. However, the sender shall ensure that the nonce shall never be
less than 26 bits in length, as this will degrade the security of RAC.

The author does not recommend that this mode be defined for block sizes less than 128
bits. A 56-bit block cipher does not allow for sufficient degrees of freedom for counters.
For instance, a 26-bit nonce leaves only 30 bits for address and counters. 3 bits will be
needed for block counters, leaving only 27 bits to share between address and write
counters. For large memories, in the GB range, this leaves less than 10 bits for a write
counter, forcing the microprocessor to rekey every thousand memory writes. This level
of performance is unacceptable for a high speed component such as a memory
encryptor.

. Security

As RAC is a variant of CTR mode with a specialized counter, its security proof follows the
security proof for CTR. CTR mode, developed by Diffie and Hellman [5], was proven
secure in the concrete model by Bellare et al [6]. As RAC does not deviate from CTR
with regard to rules of interfacing counters to the underlying block cipher, it follows that
the CTR security proof would be valid for RAC as well.

. Performance Estimates

As with other modes of encryption, performance depends on the speed of the
implementation of the underlying block cipher.

Encrypting a 32-bit message requires one block cipher encryption operation. Encrypting
a 64-byte cache line or a 128-byte cache line requires four block cipher encryption
operations, or eight clock cipher encryptions, respectively. As with CTR mode, RAC
mode is fully parallelizable, so an implementation that takes advantage of this can
encrypt a full cache line, regardless of size, in the time it takes to execute one block
cipher encryption operation.

Additionally, as this mode is a variation of Counter mode, it requires the same hardware
as CTR mode and executes at exactly the same speed as CTR mode with an arbitrary
counter.

RAC

8. Intellectual Property Statements
The Author hereby explicitly releases any intellectual property rights to RAC to the
public domain. Further, the author is not aware of any patent or patent application that
covers RAC mode. It is my belief that RAC is a simple combination of well-established
techniques, and that RAC is obvious to any person with ordinary skill in the art.

RAC

References

[1] H. Lipmaa, P. Rogaway, and D. Wagner. Comments to NIST Concerning AES Modes of
Operations: CTR-Mode Encryption. Block Cipher Modes Workshop 1, October, 2000.
Available online at http://csrc.nist.gov/groups/ST/toolkit/BCM/workshops.html.

[2] D. Whiting, N. Ferguson, and R. Housley. Counter with CBCMAC(CCM). Submission to
NIST, 2002. Available online at
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/.

[3] DES Modes of Operation. Federal Information Processing Standards Publication 81,
December, 1980.

[4] D. McGrew, and J. Viega. The Galois/Counter Mode of Operation(GCM). Submission
to NIST, 2005. Available online at
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/.

[5] M. Dworkin, Recommendation for Block Cipher Modes of Operation: Methods and
Techniques, NIST Special Publication 800-38A.

[6] W. Diffie, and M. Hellman. Privacy and Authentication: An Introduction to
Cryptography. Proceedings of the IEEE, Volume 67, Number 3, March, 1979.

[7] M. Bellare, A. Desai, E. Jokipii and P. Rogaway. A concrete Security Treatment of
Symmetric Encryption: Analysis of the DES Modes of Operation. Proceedings of the 38"
Annual Symposium on Foundations of Computer Science, IEEE, 1997.

AES Test Vectors

The following are test vectors for AES-RAC. The test vectors were produced in a software
simulation of hardware designed to perform AES-RAC with 128 or 256-bit keys on 64-byte cache
lines. For more test vectors, see AES CTR test vectors in [4]. The test vectors are presented in
the following format:

Plaintext 64-byte hexadecimal string (MSB.....LSB)
Ciphertext 64-byte hexadecimal string (MSB...LSB)
Key length integer

Key hexadecimal string (128 or 256 bits)
Nonce 32-bit hexadecimal string

Address 6-byte hexadecimal string

Write Counter 46-byte hexadecimal string

Output Block 3 (MSB) 16-byte hexadecimal string

Output Block 2 16-byte hexadecimal string

Output Block 16-byte hexadecimal string

Output Block 0 (LSB) 16-byte hexadecimal string

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes
http://csrc.nist.gov/groups/ST/toolkit/BCM/workshops.html

RAC

RAC

Plaintext 76777475F1F2F3F4F8FOEGE77770717276777475F1F2F3F4
F8FOEGE77770717276777475F1F2F3F4F8FOEGE777707172
76777475F1F2F3F4F8FOEGE777707172

Ciphertext 4¢2061fc8b6f13cd25957¢79757efffa31e232f9e85af6bb16bd509
S5efb5fd219 7b7cc9ba67b527590c7ba83723fbc493
d526e534612a2a5358a3355377b56dc0

Key length 128

Key ESESEAEBEDEEEFFOF2F3F4F5F7F8FOFA

Nonce 014BAF22

Address 80103643E99A

Write Counter 000000000000

Output Block 3 (MSB)

3a5715897a9de039dd6c9a9e020e8e88

Output Block 2

368545beb745d9845932cefb98c2fa36b

Output Block

dObbdcf9647d4adf4824ed0548bb5el

Output Block 0 (LSB)

a351914190d8d9a7a05ad3b400c51cb2

Plaintext 76777475F1F2F3FAF8FOEGE77770717276777475F1F2F3F4
FBFOEGE77770717276777475F1F2F3F4F8FOEGE777707172
76777475F1F2F3FAF8FOEGE777707172

Ciphertext c70f0fabe68621a60e21042a265eeea37c¢3195b4938162b88e456
e4c2dddf0fac062f79a0689f36b9376f138fbbd94c3
99802395c49be7b49ec7a097d90c6e15

Key length 128

Key ESESEAEBEDEEEFFOF2F3FA4F5F7F8FOFA

Nonce 014BAF22

Address 7596840598AB

Write Counter 000000000000

Output Block 3 (MSB)

b1787bd31774d252f6d8e2cd512e9fd1

Output Block 2

0a46e1c16273914c76bc88ab5aad8188

Output Block

b61583eff77b009f6b8f17df8ccde5bl

Output Block 0 (LSB)

eff757e035691440663e4670ae7c1f67

Plaintext 76777475F1F2F3F4F8FOEGE77770717276777475F1F2F3F4
F8FOEGE77770717276777475F1F2F3F4F8FOEGE777707172
76777475F1F2F3FA4F8FOEGE7 77707172

Ciphertext 6511c6bal1816d3b921967d52e8409b917e21cd3017fba749f872b
cfc5dfc503137bc7cd024ed15dc7b87612dbacaadf3l
8c354¢14c1c309d921edabdf73c7ece5

Key length 128

Key ESESEAEBEDEEEFFOF2F3FA4F5F7F8FOFA

Nonce 014BAF22

Address 7596840598AB

Write Counter 000000000001

Output Block 3 (MSB)

1366b2cfe9e4204dd96f9bb59f30eae3

Output Block 2

856b945e60954bd008b5alb2a8c2143

Output Block

30db0b977bf23ae33408ff43cdbda3e43

RAC

Output Block 0 (LSB)

‘ fa4238613031fa2dd9144d3804b79d97

Plaintext 76777475F1F2F3FAF8FOEGE77770717276777475F1F2F3F4
FBFOEGE77770717276777475F1F2F3F4F8FOEGE777707172
76777475F1F2F3FAF8FOEGE777707172

Ciphertext 9db6ab30e78e7d6728828864c4b71eb6a57abe5ecdchaaf2345e94
fc6fba3181871a3f299fb61d8bcffal8c3bd260d8737466fc7e5127
34592ab719f735b16519

Key length 128

Key ESESEAEBEDEEEFFOF2F3FAF5F7F8FOFA

Nonce 014BAF22

Address 7596840598AB

Write Counter 000000000002

Output Block 3 (MSB)

ebc1df45167c8e93d07b6e83b3c76f18

Output Block 2

21dc9199bd485cd7bd10a9218cd3696a

Output Block

07d486ec0a932b4807586adca510a901

Output Block 0 (LSB)

0211880ba0d5c7add24eff1042¢c1146b

Plaintext 76777475F1F2F3FAF8BFOEGE77770717276777475F1F2F3F4
F8FOEGE77770717276777475F1F2F3F4F8FOEGE777707172
76777475F1F2F3FAF8FOEGE777707172

Ciphertext 2de8b02d390389dcle5c3e6c17f45eabb37bc98ea2f6fcefOceact3
9e7312190550ffde863262a071fe660fa3bdc08ffcd689bdff30add
03e485e5fb18970693

Key length 128

Key ESES9EAEBEDEEEFFOF2F3F4F5F7F8FOFA

Nonce 014BAF22

Address 7596840598AB

Write Counter 000000000003

Output Block 3 (MSB)

5b9fc458c8f17a28e6a5d88b60842fd4

Output Block 2

c50cbdfb53040f1bf41329de904150e2

Output Block

2378899d92d4d9f3e71f861d4cac798d

Output Block 0 (LSB)

bblfefaa02f82ef71c7c031cbfe777el

