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1 Introduction

PROV is a multivariate cryptography-based signature scheme, and its name stands for PRovable
unbalanced Oil-and-Vinegar. As many attacks on Multivariate Cryptography have been pub-
lished, the confidence in this alternative has been undermined. Consequently, we think it is highly
important to support such schemes with a security proof. Since the introduction of UOV, some se-
curity proofs appeared at PQCrypto 2011 by Sakumoto et al. [SSH11], and more recently by Kosuge
and Xagawa [KX22], who also provide a proof in the QROM. Here, we use another proof, which
is reminiscent of the security proof of the MAYO signature scheme due to Beullens [Beu22]. The
idea is to have a larger oil space than the output of the scheme. This variant is sometimes called
UOV-: it corresponds to the UOV scheme where some public equations have been removed. This
classical transformation is known as the ”Minus” method [Pat96] in the literature on Multivariate
Cryptography.

1.1 The UOV signature scheme

The Unbalanced Oil-and-Vinegar has been proposed by Kipnis, Patarin and Goubin in [KPG99]
about 25 years ago. It is a hash-and-sign signature scheme that follows the GPV framework [GPV08]
and its adaptation to multivariate cryptography in [KX22]. From a high level, the UOV algorithm
works with two sets of variables: o oil and v vinegar variables. The secret key consists in a tuple of
o random quadratic forms Q that does not involve any product between oil variables. This struc-
ture is hidden using a secret linear map T that mixes oil and vinegar variables. The public key P
is then the composition Q ◦ T. The signing procedure of a message msg is very simple: once the
vinegar variables are randomly fixed to some vector v, the system Q(v, o) = hash(msg) becomes
linear, and thus easy to solve. In the case where the linear system has no solution, the algorithm
simply restarts from the beginning.

1.2 Multivariate Cryptography (MQ)

The main advantage of MQ is to propose very short signature, despite the public key size is quite
large, compared to lattice-based schemes or MPC-in-the-head signatures. In this family, the most
secure signature scheme is the UOV scheme, which resists to attacks. However, as many attacks
have undermined the confidence in MQ, we propose a security proof for PROV.

1.3 Design rationale

Our goal in this document is to propose a provably secure variant of UOV. In [SSH11], the authors
present an UOV variant, dubbed SaltedUOV, whose EUF-CMA-security can be directly linked to the
probability of inverting an UOV public key. The main difference with the standard UOV construc-
tion is the use of a salt that is hashed alongside the message. In the case where, during the signing
procedure, the linear system of equations does not admit any solution, the salt will be resampled
instead of the vinegar variables. Even though this simple change makes the UOV scheme provably
secure, it can have significant drawbacks. Indeed, the running time of the signature algorithm is
now directly linked to the rank of the linear system of equations implied by the choice of v.

With PROV, our goal is to alleviate this problem. In order to do so, we increase the number
of oil variables beyond the number of public quadratic forms in such a way that the rank of the
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linear system of equations will be full with overwhelming probability1. This fact and our choice
of parameters ensure that the signature algorithm is unlikely to ever need more than one iteration
in order to output a signature.

We can summarize our design rationale as follows:

• simplicity: one of the main advantages of the UOV family of signature schemes is its sim-
plicity; the algorithms are easy to describe, understand and implement;

• provable security: PROV can be proven secure both in the classical and quantum Random
Oracle Model, and our choice of parameters is guided by the bound;

• signature size: multivariate cryptography is a good candidate for short signature schemes,
and PROV is no exception; it is important to note that we make some concession on the
signature size in order to attain provable security;

• reasonable public key size: we implement well-known optimizations to reduce the public
key size, which is arguably one of the weak points of multivariate cryptography;

• security beyond unforgeability: we incorporate a simple design tweak based on the BUFF
construction [CDF+21] in order to provide several advanced security guarantees (we refer
the reader to Section 3.2 for more information).

1.4 Organization of this document

Section 2 is a complete specification of PROV. Section 3 discusses the security of PROV, and
describes our parameter set. Section 2.8 deals with implementation issues and possible optimiza-
tions. Finally, Section 4 concludes by presenting advantages and limitations of PROV.

1.5 Known Answer Test values

Known answer test values (KAT) for PROV are provided in the submission package.

2 Specification of PROV (2.B.1)

2.1 Preliminaries and notations

Let F be the Galois field GF(28) with the irreducible polynomial x8 + x4 + x3 + x + 1. We denote
with bold lower-case letters vectors of elements of F. Unless otherwise stated, these will be column
vectors. Matrices will be denoted with bold upper-case letters. For any vector v or matrix M, we
denote with vT and MT their respective transpose.

Let X and Y be two sets, and let F be a function from X to Y . We denote by Img(F) the image
of F, i.e. the set of y ∈ Y such that there exists x ∈ X satisfying F(x) = y. When X is finite, we
denote with x ←$ X the sampling of x uniformly at random in X .

1 We can thus see PROV as a specific instance of SaltedUOV-.
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2.2 Parameter space

The main parameters involved in PROV are:

• λ the security parameter of PROV,

• m the number of equations in the public key,

• n the total number of variables,

• δ the difference between the number of oil variables and the number m of equations in the
public key,

• lenspk the length of the public key seed in bits,

• lenssk the length of the private key seed in bits,

• lensalt the length of salts in bits,

• H : {0, 1}∗ → Fm a hash function,

• H′ : {0, 1}∗ → {0, 1}lenhpk a hash function,

• an Extendable-Output Function XOF that takes as input a bitstring M ∈ {0, 1}∗ and a
non-negative integer d, and outputs a bitstring of length d.

2.3 Key generation

We adopt the description of the UOV algorithm due to Beullens et al. [Beu21, BCH+23]. It relies
on an alternative key generation algorithm that compresses public keys without degrading the
security of the scheme that was developed in [PBB10, BPB10, PTBW11]. From a high level, the
public key consists in a multivariate quadratic map P : Fn → Fm that is identically zero on a
secret (m+ δ)-dimensional vector subspace O ⊂ Fn:

∀o ∈ O,P(o) = 0. (1)

The key generation algorithm starts with the choice of O under the form of a matrix
(

OT Im+δ

)T
whose columns form a basis of O. The matrix O = ExpandO(ssk) ∈ F(n−m−δ)×(m+δ) is generated
by deterministically expanding a uniformly random secret key seed ssk of length lenssk . The next
step consists in the sampling of the public quadratic map P = (p1, . . . , pm). Each quadratic form
pi can be uniquely represented by an upper triangular matrix Pi such that

∀x ∈ Fn, pi(x) = xTPix.

Each matrix Pi will be decomposed into three blocks P1
i ∈ F(n−m−δ)×(n−m−δ), P2

i ∈ F(n−m−δ)×(m+δ),
and P3

i ∈ F(m+δ)×(m+δ), such that

Pi =

(
P1

i P2
i

0 P3
i

)
,
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where both P1
i and P3

i are upper triangular. Condition (1) amounts to the fact that the following
matrix: (

OT Im+δ

)
Pi

(
O

Im+δ

)
= OTP1

i O + OTP2
i + P3

i

is symmetric, and its diagonal coefficients are 02. Once P1
i and P2

i are fixed, this condition uniquely
determines P3

i as this matrix is upper triangular. Hence, we can simply derive the coefficients of
P1

i and P2
i deterministically from a uniformly random public seed spk of length lenspk , and then fix

P3
i = Sym(−OTP1

i O−OTP2
i ), where Sym(M) is the unique upper triangular matrix such that M+

Sym(M) is symmetric and its diagonal coefficients are 0. The public key will then consist in the
tuple (spk, {P3

i }i=1,...,m). The (compressed) private key simply consists in the tuple (spk, ssk, hpk),
where hpk denotes the hash of the public key. In the following section, we will also describe an
expanded private key that will make the signature computation more efficient. Overall, the size
in bits of a PROV public key is

m(m+ δ)(m+ δ+ 1)
2

(1 + blog2(|F|)c) + lenspk ,

while the size in bits of a secret key is

lenssk + lenspk + lenhpk.

A pseudocode description of key generation can be found in Algorithm 1.

Algorithm 1 Key generation algorithm.
1: procedure KEYGENERATION

2: ssk ←$ {0, 1}lenssk
3: spk ←$ {0, 1}lenspk
4: O← ExpandO(ssk)
5: (P1

i , P2
i )i=1,...,m ← Expandpk(spk)

6: for i = 1 to m do
7: P3

i ← Sym(−OTP1
i O−OTP2

i )

8: pk← (spk, (P3
i )i=1,...,m)

9: hpk← H′(pk)
10: sk← (spk, ssk, hpk)
11: return (pk, sk)

2.4 Signature computation

Let msg ∈ {0, 1}∗ be a message to be signed. The goal of the signature procedure is to find a vector
s ∈ Fn such that P(s) = H(hpk||msg||salt), where salt is a bitstring of length lensalt. It will be
computed as

s =

(
v
0

)
+

(
O

Im+δ

)
o (2)

2Recall that F is a field of characteristic 2. This would otherwise correspond to the matrix being skew-symmetric.
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with v ∈ Fn−m−δ, and o ∈ Fm+δ. The signature will then consist in the pair (salt, s), whose length
in bits is

n (1 + blog2(|F|)c) + lensalt.

Note that, for i = 1, . . . ,m, one has

pi(s) = pi

((
v
0

))
+
(

vT 0
)
(Pi + PT

i )

(
O

Im+δ

)
o + pi

((
O

Im+δ

)
o
)

,

with pi

((
O

Im+δ

)
o
)
= 0 by construction. Hence, one gets

pi(s) = vTP1
i v + vT

((
P1

i + P1T
i

)
O + P2

i

)
o.

Overall, once v and salt have been fixed, computing the signature s of the message m corresponds
to solving the following system of linear equations:

vT
((

P1
1 + P1T

1

)
O + P2

1

)
o = h1 − vTP1

1v
...

vT
((

P1
m + P1T

m

)
O + P2

m

)
o = hm − vTP1

mv,
(3)

with (h1, . . . , hm) = H(hpk||msg||salt) ∈ Fm. This process can be repeated by sampling new salt
values until the system (3) admits solutions. Then, a vector o can be chosen uniformly at random
from the set of all solutions of (3). Note that, in order to speed up the computation, it is possible
to store the secret matrices Si =

(
P1

i + P1T
i
)

O + P2
i alongside the secret seed ssk. We refer to

(sk, (Si)i=1,...,m) as the expanded secret key esk, whose size in bits is

m(n−m− δ)(m+ δ) (1 + blog2(|F|)c) + lenhpk + lenspk + lenssk .

A pseudocode description of this step can be found in Algorithm 2.
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Algorithm 2 Signature algorithm.
1: procedure SIGN(sk,msg)
2: (spk, ssk, hpk)← sk
3: O← ExpandO(ssk)
4: (P1

i , P2
i )i=1,...,m ← Expandpk(spk)

5: v←$ Fn−m−δ

6: repeat
7: salt←$ {0, 1}lensalt
8: (h1, . . . , hm)← H(hpk||msg||salt)
9: for i = 1 to m do

10: ti ← hi − vTP1
i v

11: ai ← vT
((

P1
i + P1T

i
)

O + P2
i
)

12: Av ← (ai)i=1,...,m
13: t← (ti)i=1,...,m
14: S← LinSolve(Av, t)
15: until S 6= ∅
16: o←$ S

17: s←
(

v
0

)
+

(
O

Im+δ

)
o

18: return (salt, s)

2.5 Signature verification

The signature verification simply consists in verifying that the equation P(s) = H(hpk||msg||salt)
holds. A pseudocode description of this step can be found in Algorithm 3.

Algorithm 3 Signature verification.
procedure VERIFY(pk,msg, sig)

(spk, (P3
i )i=1,...,m)← pk

(P1
i , P2

i )i=1,...,m ← Expandpk(spk)
(salt, s)← sig
hpk← H′(pk)
h← H(hpk||msg||salt)
for i = 1 to m do

Pi ←
(

P1
i P2

i
0 P3

i

)
ti ← sTPis

return (ti)i=1,...,m
?
= h

2.6 Determinization

For ease of exposition, the above description presents a variant of PROV where various quantities
are sampled uniformly at random. In reality, all randomnss is ultimately derived from the secret
seed and the message. In particular, PROV signatures are deterministic: the signature of a given
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message is always the same. We now explain in detail how the previous construction is made
deterministic.

2.6.1 Hash computations

All hash computations use SHAKE256, from now on writtenH, with a unique one-byte prefix for
domain separation.

1. The public seed is derived from the secret seed with the prefix 0: spk = H(0‖ssk).

2. The bytes of P1
i and P2

i are derived from the public seed with the prefix 1, as H(1‖spk).
The first bytes are used for P1

i , and the following ones for P2
i . See Section 2.6.2 below for

information about how bytes are inserted in each matrix.

3. The bytes of matrix O are derived from the secret seed with the prefix 2, asH(2‖ssk).

4. The vinegar value v is as v = H(3‖msg). The same SHAKE256 instance is then squeezed
to produce the initial oil value (used in LinSolve, as explained in Section 2.6.3), and finally to
produce successive salt values.

5. The hashed message h is computed as h = H(4‖hpk‖msg‖salt).

6. The hashed public key is computed as hpk = H(5‖spk‖(P3
i )).

2.6.2 Byte order in vectors and matrices

Bytes are inserted into vectors in the same order as they are produced by SHAKE256: the first byte
output becomes the first coordinate of the vector. For matrices, bytes are inserted starting from
coordinates (0, 0), and proceeding along colums. The choice of inserting along columns is justified
by the fact that it is convenient in PROV to represent columns as contiguous memory chunks,
rather than rows. This is because key generation involves products of the form OTPi, where
the scalar products are between columns of the original matrices; while signature computation
involves products of the form

(
P1
m + P1T

m

)
O, where the left multiplicand is symmetric.

2.6.3 Determinization of LinSolve

By design of PROV, the linear system computed during the signing process is expected to have
many solutions. The solution output by the signing algorithm is chosen uniformly among the
solution set. We now explain how this process is made deterministic.

As explained in Section 2.6.1, the message is used to derive deterministically the vinegar value
v, as well as an initial value for the vector o. LinSolve take this initial value as input, and will use it
as its random coins. In more detail, LinSolve solves the system by computing its row echelon form.
Then it uses back substitution to adjust the coefficients of initial oil value so that it is a solution of
the system; but it does so by only modifying the entries at positions corresponding to the leading
coefficients of the row echelon form. Note that those positions are uniquely determined, and so
is the corresponding modification of the coefficients. Also observe that if the initial oil value is
uniformly random, the output solution is uniformly random among the solution set by linearity.
This solution was adopted because it is easy to implement, and does not depend on low-level
details of the linear solver.

8



2.7 Parameter sets

Variant λ n m δ |seed| |salt| |hpk| |sig| |pk| |sk| |esk|
PROV-I 128 136 46 8 16 24 32 160 68326 16 203752
PROV-III 192 200 70 8 24 32 48 232 215694 24 666216
PROV-V 256 264 96 8 32 40 64 304 524192 32 1597568

Table 1: Parameter sets and corresponding key and signature sizes for the PROV signature scheme,
in bytes.

2.8 Implementation and performance (2.B.2)

This section reports on the performance of the current implementation of PROV. Further optimiza-
tions are underway, and are expected to improve performance significantly. See the discussion at
the end of the of the section for more information.

The benchmarks were run on an Intel Core i5-7260U CPU at 2.20 GHz, with 16 GB of memory,
running Fedora Linux 38. Compilation was performed by gcc version 13.1.1. Results are displayed
in Table 2. See Table 1 for key and signature sizes.

The implementation assumes the user stores the expanded secret key. That is, key generation
outputs the expanded secret key, and public key. Signing takes as input the expanded secret key.
This is also the case with known answer tests (Section 1.5). Memory usage includes the cost of
storing inputs and outputs, except the message.

KEYGENERATION SIGN VERIFY

Variant Time Memory Time Memory Time Memory
PROV-I 532517 719126 17710 639468 23999 497116
PROV-III 2526541 2328934 59041 2088588 79081 1623068
PROV-V 7657140 5549568 136655 4982800 182480 3882768

Table 2: Current performance results. Time is in microseconds. Memory is in bytes.

Further improvements. The performance bottleneck comes from large matrix multiplications,
especially in key generation. Matrix and field multiplication are currently implemented naively,
which deteriorates performance. This can be optimized by taking advantage of the numerous
fast implementations of linear algebra available for various platforms, as well as optimized field
operations.

Our algorithms are very close to standard UOV, for which highly optimized implementations
have been proposed [BCH+23]. Indeed, standard UOV amounts to setting δ = 0 in our system,
and a different sampling of the salt and vinegar during signatures, which has little performance
impact. The cost of provable security is modest: compared to what the analysis from Section 3.4
deems secure when setting δ = 0 (amounting to standard UOV), the number of variables n is es-
sentially unchanged, while the number of equations m is increased by roughly 20% for the lowest
security level, and 10% for levels 3 and 5. This means practical performance is expected to be
close to a standard UOV cryptosystem. In particular, our current implementation of key genera-
tion performs poorly, while standard UOV has performance competitive with NIST finalists using
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optimized implementations [BCH+23, Table 3]. On the other hand, like other cryptosystems based
on UOV, PROV offers shorter signatures than lattice, code, or hash-based approaches.

3 Security analysis of PROV

3.1 Security reduction (part of 2.B.4)

Security models. In this document, we consider the standard Existential UnForgeability under
Chosen-Message Attack (EUF-CMA) notion for signature schemes. In this scenario, the adversary
gets a PROV public key, and has access to the corresponding signing oracle that can be queried at
most 264 times. Its goal is to generate a valid signature for a new message. Formally, one has the
following definition.

Definition 1 (EUF-CMA security). LetH be a random oracle, and letA be an adversary. The advantage of
A against the EUF-CMA security of a signature scheme S = (S.KEYGENERATION, S.SIGNH, S.VERIFYH)
is defined as

AdvEUF-CMA
S (A) = Pr

[
S.VERIFY(pk,msg, sig) = > and S.SIGNH(sk, ·) was never queried on msg

]
,

where (pk, sk)← S.KEYGENERATION() and (msg, sig)← AH,S.SIGNH(sk,·)(pk).

In this section, we provide proofs that PROV is EUF-CMA-secure both in the Random Oracle
Model (ROM) and the Quantum ROM (QROM) as long as the UOV problem is hard to solve for
our choice of parameters. In the quantum setting, we will rely on a generic result from [KX22]. To
this end, it is necessary to introduce the notion of Weak Preimage-Sampleable Function (WPSF),
as tailored to the Multivariate Cryptography setting in [KX22].

Definition 2 (Weak Preimage-Sampleable Function (WPSF) [KX22]). A WPSF T consists of four
algorithms:

• GEN: this algorithm takes as input a security parameter and outputs a function F : X → Y with a
trapdoor I;

• F: this algorithm takes as input a value x ∈ X and deterministically outputs F(x);

• I = (I1, I2): the first algorithm takes no input and samples a value z ∈ Z ; the second one algorithm
takes as input z ∈ Z , y ∈ Y , and outputs x ∈ X such that F(x) = y, or outputs⊥ in case of failure;

• SAMPDOM: this algorithm takes as input a function F : X → Y and outputs x ∈ X .

The security of a WPSF is defined as follows.

Definition 3 (PS security [KX22]). Let T be a WPSF. The advantage of an adversary A against the PS
security of T is defined as follows:

AdvPST (A) =
∣∣∣Pr
[
PSA0 = 1

]
− Pr

[
PSA1 = 1

]∣∣∣ ,

where PS0 and PS1 are the games defined in Figure 1.
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PSb

(F, I)← GEN(1λ)

b∗ ← ASampleb(F)
return b∗

Sample0

zi ← I1()

repeat
yi ←$ Y
xi ← I2(zi, yi)

until xi 6= ⊥return xi

Sample1

xi ← SAMPDOM(F)
return xi

Figure 1: Preimage sampling game.

Finally, we define the INV game against a WPSF T as follows.

Definition 4 (INV security). Let A be an INV adversary against T, trying to inverse the public function
F. We define its advantage as

AdvINVT (A) = Pr [F(x) = y] ,

with (F, ·)← GEN(1λ) and y←$ Y , x ← A(F, y).

Hardness assumptions. The UOV problem has been well-studied since its introduction in 1999.
Over the years, multiple slight variants have been introduced. The mathematical problem that
underlies PROV is the well-known UOV- problem, and can be defined as follows.

Definition 5 (UOV- problem). Let P the quadratic map associated with a PROV public key pk. The UOV-

problem asks to find s ∈ Fn such that P(s) = t. More formally, the advantage of an adversary A against
the INV security of the UOV- is defined as

AdvINVUOV-(A) = Pr [P(s) = y] ,

where (pk, sk)← KEYGENERATION(), y←$ Fm, and P is the quadratic map corresponding to pk.

Note that the UOV- problem can also be recast as a an inversion (INV) problem for the following
WPSF, dubbed TPROV:

• the GEN algorithm corresponds to the key generation function;

• F is the evaluation of the public quadratic map;

• SAMPDOM samples a value in Fn uniformly at random;

• I corresponds to the pair (I1, I2) described in Algorithm 4.

One clearly has AdvINVUOV- = AdvINVTPROV
.
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Algorithm 4 Algorithms I1 and I2 of the TPROV WPSF.

1: procedure I1

2: v←$ Fn−m−δ

3: return v
1: procedure I2(sk, v, y)
2: (spk, ssk)← sk
3: O← ExpandO(ssk)
4: (P1

i , P2
i )i=1,...,m ← Expandpk(spk)

5: for i = 1 to m do
6: ti ← yi − vTP1

i v
7: ai ← vT

((
P1

i + P1T
i
)

O + P2
i
)

8: Av ← (ai)i=1,...,m
9: t← (ti)i=1,...,m

10: S← LinSolve(A, t)
11: if S = ∅ then
12: return ⊥
13: o←$ S

14: s←
(

v
0

)
+

(
O

Im+δ

)
o

15: return s

Classical security. In this paragraph, we model the hash function H as a random oracle. One
has the following result.

Theorem 1. Let qs, qh and t be three positive integers. Let A (resp. A′) be an adversary against the
EUF-CMA security of PROV (resp. INV security of TPROV) that runs in time at most t, makes at most qs
signing queries and qh random oracle queries. Moreover, let N be the random variable corresponding to the
overall number of salts that are sampled during all the queries to the signing oracle. Then, for any constant
C > 0, one has

AdvPSTPROV
(A′) = 0.

Moreover, there exists an INV adversary B against TPROV derived from A such that

AdvEUF-CMA
PROV (A) ≤ (qh + qs + 1)

1− qs(qh+qs)

2lensalt

AdvINVTPROV
(B) + Pr [N > C] +

C(qh + qs)

2lensalt
.

In particular, one has

AdvEUF-CMA
PROV (A) ≤ (qh + qs + 1)

1− qs(qh+qs)

2lensalt

AdvINVTPROV
(B) + Pr [N > qs] +

qs(qh + qs)

2lensalt
.

Proof. Our proof is based on [SSH11] and [Beu22]. We state it for the sake of completeness. Let
us fix three positive integers qs, qh and t. Let A be an adversary against the EUF-CMA-security of
PROV that runs in time at most t, makes at most qs signing queries and qh random oracle queries.
Let alsoA′ be an adversary against the INV security of TPROV that runs in time at most t and makes
at most qs sampling queries.
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Let us start by describing the adversary B against the INV security of TPROV. It takes an input
a PROV public key pk, that can be expanded to a quadratic map P , and maintains a list L that is
initially empty, and a counter i that is initially 0. First, B will sample α ∈ {1, . . . , α}, and then run
A, answering its queries as follows:

• on a random oracle query x, B will answer h if (x, h) ∈ L, and otherwise it increments i, and
depending on the value of i two cases can occur:

– if i = α, B outputs t and adds (x, t) to L;

– otherwise it samples and outputs a vector h uniformly at random in Fm and adds (x, h)
to L;

• on a signature query msg, it increments i and samples a new salt value salt ←$ {0, 1}lensalt ;
then two cases can occur:

– if there exists an entry (hpk||msg||salt, ·) in L, B aborts;

– otherwise, it samples s ←$ Fn, computes h = P(s), adds the tuple (hpk||msg||salt, h)
to L and answers (salt, s) to A.

Eventually, A outputs some forgery (salt, s) for some message msg. If (hpk||msg||salt, t) ∈ L, then
we get s such that P(s) = t, and B can simply forward the preimage s. Otherwise, B fails.

We denote G0 (resp. G1)A’s EUF-CMA game against PROV (resp. B’s INV game against TPROV).
Let us introduce the following events:

• Coll is the event where, in G0, the SIGN algorithm samples a salt value (even a value that will
be discarded due to an absence of solutions) that collides with a salt value from a previous
signature, or one that appears in the list of random oracle queries;

• Abort is the event where B aborts in G1;

• Forgery is the event where A successfully outputs a forgery in G1.

The probability of B succeeding is greater than the probability that it does not abort, that the
Forgery event occurred, and that the forgery actually corresponds to the random oracle output t.
Hence, one has

AdvINVTPROV
(B) = Pr [G1() = 1] ≥ 1

qh + qs + 1
Pr [¬Abort]Pr [Forgery|¬Abort] ,

i.e.

Pr [Forgery|¬Abort] ≤ (qh + qs + 1)

1− qs(qh+qs)

2lensalt

AdvINVTPROV
(B). (4)

Let also N be the random variable that corresponds to the number of salt samplings in all signature
queries. Then, for any constant C, one also has

AdvEUF-CMA
PROV (A) = Pr [G0() = 1] ≤Pr [G0() = 1|¬Coll] + Pr [Coll]

≤Pr [G0() = 1|¬Coll] + Pr [N > C] + Pr [Coll|N ≤ C]

≤Pr [G0() = 1|¬Coll] + Pr [N > C] +
C(qh + qs)

2lensalt
. (5)
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We now argue that Pr [G0() = 1|¬Coll] = Pr [Forgery|¬Abort]. In order to do so, let us compare
the probability distributions of the tuple (salt, s, h) that stems from a signature query msg in both
games. In particular, this means thatH(hpk||msg||salt) = h = P(s).

Let us denote by S the set of all salt′ values in the outputs of previous signature queries, and
all salt′ values such that there exists a message msg′ satisfying (hpk||msg′||salt′, ∗) ∈ L. Since we
conditioned on Abort and Coll not occurring, in both games, salt values are sampled uniformly at
random in {0, 1}lensalt \ S. In game G1, the probability p1 of getting this tuple is exactly

p1 =
1

2lensalt − |S| ·
1
|F|n .

Let us now consider the probability p0 of sampling the same tuple in game G0. Recall that s can
be uniquely written as

s =

(
v
0

)
+

(
O

Im+δ

)
o,

with v ∈ Fn−m−δ and o ∈ Fm+δ. In Game G0, the SIGN algorithm first has to pick a vinegar
value that matches v. This fixes the linear map Av that has to be inverted in order to compute the
signature. Let d ≤ m be the rank of Av. Since we conditioned on the Coll event not occurring, salts
will be sampled uniformly at random outside of S. In particular, this means thatH is never queried
on the same input twice. If we denote with saltj the salt value sampled at the j-th iteration of the
loop, the event “the signature algorithm outputs (salt, s) at the i-th iteration”, whose probability
will be denoted p0,i, corresponds to the following events:

• for iterations i = 1, . . . , i − 1, one has H(msg||saltj) − (vTP1
i v)i=1,...,m 6∈ Img(Av), which

happens with probability
(

1− 1
|F|m−d

)i−1
;

• salti = salt, which happens with probability 1
2lensalt−|S| ;

• the value v is sampled for the vinegar variables, which happens with probability 1
|F|n−m−δ ;

• H(hpk||msg||saltj) = h, which happens with probability 1
|F|m ;

• the vector o is sampled among the |F|m+δ−d solutions of the system Avo = h− (vTP1
kv)k=1,...,m,

which happens with probability 1
|F|m+δ−d .

Thus, the probability that the signature algorithm outputs (salt, s) at the i-th iteration of the loop
is exactly

p0,i =
1

2lensalt − |S| ×
(

1− 1
|F|m−d

)i−1

× 1
|F|n+m−d .

Summing over all possible values of i yields

p0 =
1

2lensalt − |S| ×
1
|F|n = p1.
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Moreover, since no salts collide, random oracle queries always have different outputs and B sim-
ulates the random oracle perfectly. Hence, the view of A in both games is identically distributed
and

Pr [G1() = 0|¬Coll] = Pr [Forgery|¬Abort] .

Combining this equality with Eqs (4) and (5) yields the second part of the result. Moreover, we
have also proven that both views in the PS game for TPROV are identically distributed, which
proves the first part of the result.

Remark 1. PROV is set up so that the linear system of equations Avo = t that has to be solved in the
signature computations (Algorithm 2, line 14) has m+ δ variables and m equations. This choice has been
made in order to significantly reduce the probability that the rank of the system is smaller than m. Indeed,
as long as the system has full rank, SIGN will always need exactly one iteration of the loop. This implies
that

Pr [N > qs] ≤ qs prank,

where prank is an upper bound on the probability that the rank of the matrix Av is at most m− 1. Follow-
ing [SSH11], we will assume that, as long as v 6= 0, the rank of the system follows the same distribution as
the rank of a uniformly random (m+ δ)×m matrix. Intuitively, the i-th row ai of Av is computed as

vT
((

P1
i + P1T

i

)
O + P2

i

)
.

Hence, since v is non-zero and P2
i is a uniformly random matrix, then so is A. This argument has also been

used by Beullens in [Beu22]. According to [Lev05], the probability that a random µ× ν matrix on a field
with cardinality q has the rank i > 0 is equal to

∏
µ
j=µ−i+1(1− q−j)∏ν

j=ν−i+1(1− q−j)

∏i
j=1(1− q−j)

,

where µ ≤ ν. In particular, taking µ = m, ν = m+ δ, q = |F| and i = m, one has

prank ≤
1

|F|n−m−δ + 1−
m

∏
j=1

(
1− 1
|F|δ+j

)
≤ 1
|F|n−m−δ +

1
|F|δ(|F| − 1)

.

Corollary 1. Let qs, qh and t be three positive integers. Let A (resp. A′) be an adversary against the
EUF-CMA security of PROV (resp. the INV security of TPROV) that runs in time at most t, makes at most
qs signing queries and qh random oracle queries. Under the approximation discussed in Remark 1, one has

AdvEUF-CMA
PROV (A) ≤ (qh + qs + 1)

1− qs(qh+qs)

2lensalt

AdvINVTPROV
(B) + qs

|F|n−m−δ +
qs

|F|δ(|F| − 1)
+

qs(qh + qs)

2lensalt
,

where B is an INV adversary derived from A against TPROV.

Post-quantum security. In this paragraph, we consider that the adversary has quantum access
to the underlying hash function, and classical access to its signing oracle. In this context, we will
rely on a generic result from [KX22]. To this end, we first recast PROV as an instantiation of the
Hash-and-Sign paradigm tailored to the UOV algorithm, as presented in Algorithm 1, composed
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with a variant of the BUFF generic transformation where messages are always prefixed by a hash
of the public key.

Algorithm 5 The probabilistic HaS paradigm with retry.

1: procedure HaS[T,H].KEYGENERATION(1λ)
2: (F, I)← GEN(1λ)
3: return (F, I)

1: procedure HaS[T,H].VERIFY(F,msg, (salt, s))
2: return F(s) ?

= H(msg||salt)

1: procedure HaS[T,H].SIGN(I,msg)
2: v← I1()
3: repeat
4: salt←$ {0, 1}lensalt
5: s← I2(H(msg||salt))
6: until s 6= ⊥
7: return (salt, s)

One has the following generic theorem.

Theorem 2 ([KX22], Proposition 4.1). For any quantum EUF-CMA adversary A of HaS[T,H] issuing
at most qs classical queries to the signing oracle and qh quantum random oracle queries toH, there exist an
INV adversary B and a PS adversary C against T issuing qs sampling queries such that

AdvEUF-CMA
HaS[T,H] (A) ≤(2qh + 1)2AdvINVT (B) + AdvPST (C)

+
3
2

q′s

√
q′s + qh + 1
|R| + 2(qs + qh + 2)

√
q′s − qs

|R| ,

where q′s is a bound on the total number of queries to H in all the signing queries, and the running time of
B and C are about that of A.

As per [CDF+21], the BUFF transformation has no impact on the EUF-CMA security of the
transformed scheme (both in the classical and quantum setting). Hence, we can simply apply
Theorem 2 to PROV, as discussed in the proof of [KX22, Proposition 5.3]. Moreover, as stated in
Remark 1, q′s > qs with probability at most

qs

|F|n−m−δ +
qs

|F|δ(|F| − 1)
.

Thus, one gets the following corollary.

Corollary 2. For any quantum EUF-CMA adversaryA of PROV issuing at most qs classical queries to the
signing oracle and qh quantum random oracle queries toH, there exist an INV adversary B such that

AdvEUF-CMA
HaS[T,H] (A) ≤(2qh + 1)2AdvINVTPROV

(B)

+
3
2

qs

√
qs + qh + 1

2lensalt
+

qs

|F|n−m−δ +
qs

|F|δ(|F| − 1)
,

where the running time of B is about that of A.
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3.2 Resistance to known cryptanalysis (2.B.5)

Direct attacks. In a forgery attack, the adversary tries to directly invert the public quadratic map.
We estimate the complexity of this approach as solving a uniformly random quadratic map from
Fn to m. In this case, the most efficient known algorithm is the so-called hybrid attack that tries to
guess k variables, and then attempts to inverse the resulting quadratic map, whose complexity is
given by the formula [BFP10]:

min
k

(
3|F|k

(
n− k + dreg

dreg

)2 (
n− k

2

))
,

where dreg is the smallest integer d so that the coefficient of zd in

(1− z2)n

(1− z)n−k

is non-positive. This estimate is based on the XL-Wiedemann solver. In order to get an accurate
evaluation of the hardness of solving this system, we rely on the automatic tool by Bellini et al.
in [BMSV22] that also includes other solvers.

Quantum direct attacks. We take into account the quantum version of the direct attack from [SW16,
FHK+17]. Its complexity for solving quadratic systems of e equations in e variables over F2 is
O(20.462e) quantum gates.

Moreover, we also consider the hybrid attack from the previous paragraph, where the search
part is accelerated using Grover’s algorithm. Its complexity is

min
k

(
3|F|k/2

(
n− k + dreg

dreg

)2 (
n− k

2

))
,

where dreg is defined as above.

Kipnis-Shamir attack. In this attack [KS98], the adversary tries to directly recover the oil space
by combining on two quadratic forms. This attack targeted the original UOV scheme, where n =
2m, and δ = 0. Since then, it has been extended to an attack with a complexity in Õ(|F|v−o), where
v and o respectively denote the number of oil and vinegar variables [KPG99]. In the case of PROV
and ignoring polynomial factors, this attack has a complexity of |F|n−2m−2δ.

Intersection attack. In this attack [Beu21], the adversary tries to recover k vectors in vector

spaces of the form Mi

(
O

Im+δ

)
∩Mj

(
O

Im+δ

)
, where Mi and Mj are the matrices of the polar

forms associated to the i-th and j-th components of the public quadratic map, and both matrices
are invertible. This attack essentially corresponds to solving a random system of(

k + 1
2

)2

o− 2
(

k
2

)

17



equations in k(v + o)− (2k + 1)o variables. In the case of PROV, this corresponds to a system of(
k + 1

2

)2

(m+ δ)− 2
(

k
2

)
equations in m variables. We follow the strategy of [BCH+23] to find an optimal parameter k.

Security of the symmetric primitives. Our construction relies of symmetric primitives such as
keyed and unkeyed hash functions. No attack more efficient than brute force is known against the
chosen algorithms.

Side-channel attacks. While PROV was not specifically designed for resistance against side-
channel attacks, we expect it to provide a good level of security in such scenarios. Indeed, contrary
to the SaltedUOV construction, our choice of parameters implies that it is unlikely for the signature
algorithm to need more than a single salt sampling (it happens with probability ≈ |F|−δ−1). This,
along with the fact that signature generation and verification involve the evaluation of symmet-
ric primitives and linear algebra over F, will allow efficient masked implementations of PROV.
Moreover, as we reuse the field of AES, we can benefit from various masked implementation for
the multiplication.

Other attacks. In [CDF+21], Cremers et al. introduce the BUFF generic construction that, given
an EUF-CMA-secure signature schemes, builds a new signature algorithm that also satisfies the
following security notions:

• exclusive ownership [PS05]: a signature should verify only under a single public key;

• message-bound signature: a signature should only be valid for a single message;

• non re-signability [JCCS19]: one should not be able to produce a signature under another
key given a signature for an unknown message.

This transformation simply hashes the public key along with the message to be signed in the
signature generation and verification algorithm. Given the size of our public keys, this would
entail a significant performance overhead. Hence, we chose to instead rely on a hash of the public
key. Under the assumption that the underlying hash function is collision-resistant, this is sufficient
to guarantee the same additional security guarantees as the BUFF transformation.

3.3 Expected security of parameter sets (part of 2.B.4)

As seen in Section 3, PROV can be proven secure under the assumption that the UOV- problem is
hard to solve. This bounds the possible information leakage about the secret key by the signing or-
acle. Our parameter selection was in part guided by the bound from Corollary 1. More concretely,
we have the following criterion:

qs

|F|n−m−δ +
qs

|F|δ(|F| − 1)
+

qs(qh + qs)

2lensalt
. 1, (6)
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when qs ≤ 264 and qh ≤ 2λ. However, due to the (qs + qh + 1) factor in the reduction to the
UOV- inversion problem, we would need to ensure 2λ bits of security for the underlying INV
problem in order to provably guarantee λ bits of security for PROV. Since this would come with
a prohibitive performance cost, we chose to ensure at least λ bits of security for the underlying
INV problem. This seems reasonable as multivariate cryptography schemes have thus far never
been attacked through the information leakage of their signature algorithm. As far as quantum
security is concerned, Corollary 2 only provides asymptotic security for PROV. Hence, we rely
on the criterion from Equation (6) and on the analysis from Section 3.2. Concrete parameters for
NIST levels I, III and V can be found in Table 1.

3.4 Practical estimates (part of 2.B.4)

The analysis derived from the security proof in Section 3.3 mainly serves to choose the size of
δ, and the salt length, in relation to the proof. It remains to assess the practical performance of
the various attacks presented earlier in this section against our parameter choices. The results are
depicted on Figure 3.

The first two attacks are direct attacks. The system is solved either using the XL Wiedemann
algorithm, estimated using the same formula as the NIST Rainbow submission. The second line
shows the hybrid F5 solver, computed using an automatic tool by Bellini et al. in [BMSV22].
In both cases, the value k in parenthesis shows the optimal number of guessed variables for the
algorithm.

The last two attacks are attacks against the UOV problem. We have been especially conser-
vative in our choice of parameters with regard to those attacks, since the hardness of the UOV
problem is not as well-established as the hardness of the MQ problem. For the intersection attack,
the value of k indicates the optimal number of intersected spaces.

In other words, any distinguishing attack against PROV implies a distinguishing attack against
an UOV system with m equations in n+ δ variables.

On the practical side, all attacks estimate the number of field operations, not the number of
gates. The number of gates for each field operations can be estimated as 2 log(|F|)2 + log(|F|),
which would add around 8 bits of security. We have chosen not to take this fact into account as an
extra caution, but also because we believe the number of field operations is more representative
of the complexity of classical attacks, especially on F28 .

PROV-I PROV-III PROV-V
λ 128 192 256

XL-Wiedemann 137 (k = 1) 203 (k = 5) 263 (k = 5)
Hybrid F5 131 (k = 1) 197 (k = 3) 257 (k = 5)

Kipnis-Shamir 238 335 464
Intersection 172 (k = 2) 234 (k = 2) 315 (k = 2)

Table 3: Complexity of the main attacks against PROV.
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4 Advantages and limitations (2.B.6)

4.1 Advantages

Simplicity. Like most UOV-based signature schemes, PROV has a very simple design that is both
easy to understand and to implement. Indeed, the only operations that are required in order to
generate and verify a signature are matrix multiplications and solving linear systems of equations
over the finite field F.

Provable security. PROV can be proven secure both in the ROM and the QROM, under the as-
sumption that the UOV- problem is hard to solve. Moreover, this hardness assumption has been
well-studied since the publication of UOV in [KPG99].

It is worth noting that distinguishing a PROV system with from a uniformly random system
of equations is strictly harder than distinguishing a corresponding UOV cryptosystem with with
m equations in n+ δ variables. Indeed, the attacks has access to strictly less information (due to δ

missing equations). This point is valid in practice: our parameter sets are expected to resist attacks
even if the number of equations was increased to m+ δ.

Short signatures. As is often the case in multivariate cryptography (see e.g.[Beu22, BCH+23,
FIKT21]), one of the main selling points of PROV is its small signature size. This is especially
true when compared to MPC-in-the-head schemes that are directly based on the Multivariate
Quadratic problem whose signatures are larger than 10KB for a security level of 128 bits (see
e.g. [CHR+16, Beu20]).

4.2 Limitations

Key sizes. Like most other multivariate schemes, the main limitation of PROV is its relatively
large public key and expanded secret key size. Moreover, in order to provide a meaningful secu-
rity proof, we had to increase the dimension of the oil space. Hence, this also lead to a correspond-
ing increase in the number of vinegar variables, which increased both the signature size and the
public key sizes when compared with other constructions based on UOV such as [BCH+23].
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