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Boolean Circuits
A Boolean circuit is a directed acyclic graph, where the inputs and the
gates are the nodes, and the edges are the Boolean-valued wires.

A Boolean circuit with n inputs and m outputs computes a function of
the form f : {0,1}n → {0,1}m.

Basic Boolean operators: AND, NAND, OR, NOT, XOR, XNOR, ...

The canonical form of a circuit is a standard representation based on AND
and XOR gates. The topology of a circuit is an abstraction that shows the
relative positions of the AND gates.

Example. Let f = x1x2x3 +x1x3 +x1x4 +x2x3 +x4.
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Complexity Measures

• Size complexity: The number of gates in the circuit.

• Depth complexity: The length of the longest path from an input gate
to the output gate.

• Multiplicative complexity (MC): Number of non-linear gates used in
a circuit, or (the minimum) required to implement a function.

Target metric depends on the application.

• Circuits with small number of gates use less energy and occupy
smaller area, and are desired for lightweight cryptography applications
running on constrained devices.

• Circuits with small number of AND gates are desired for secure multi-
party computation, zero-knowledge proofs and side channel protection.

• Circuits with small AND-depth are desired for homomorphic encryp-
tion schemes.

Circuit Complexity Challenge

Given a Boolean function and a set of gates, construct
a circuit which computes the function and is optimal
according to a complexity measure.

Contact: circuit_complexity@nist.gov

Webpage: https://csrc.nist.gov/Projects/Circuit-Complexity

Data repository: https://github.com/usnistgov/Circuits

Low-MC Circuits for Sets of Quadratic Forms
Goal: To design smaller circuits for computing sets of quadratic “forms”. Example applications:

• multiplication of binary polynomials,
• Galois field multiplication in characteristic 2, used in elliptic curve cryptography, and
• binary matrix multiplication.

Problem: Consider a set {g1, . . . ,gm} of generators gj , each requiring one AND gate. How many
such generators are needed to calculate a particular set {t0, . . . , tk−1} of k target functions ti ?

Approach: We enhance the search method of Barbulescu et al. by expanding subspaces incremen-
tally, scoring intermediate results, and applying “genetic” mutations.

An intermediate state of the algorithm (example):
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Legend: T1 is a set of 11 targets; G1 is an incremental expansion to T1; G2 is the set of generators in the span of
T1 ∪ G1; T2 is the set of targets spanned by G2; the greyed out elements with dashed border are not in span.

The figure shows 11 targets ti , together with 3 selected generators gj , spanning 12 generators:

• 2 are targets ti , and 1 other is a linear combination gj of targets;
• 3 are the expansion generators; gj

• 6 are new generators gj (1st score), which are in the span of T1 ∪ G1.

The set of 12 generators spans 5 targets ti (2nd score). We terminate when T2 equals T1, i.e., the 2nd

score is k. The solution is derived from the subset G2 of generators.

Results: We have found circuits with small number of AND gates for many instances of binary
polynomial multiplication.

Boolean Circuits for Post-Quantum Cryptography
Quantum Circuits: Quantum computation will trigger a revision of all our cryptosystems. NIST
is currently working to standardize post-quantum public-key cryptography. Because of Grover’s
algorithm, symmetric key cryptography will also be impacted. In quantum circuits, the gates
corresponding to AND, such as the one below (by Mathias Soeken — see ia.cr/2019/1146), are much
more expensive than those corresponding to XOR.
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Example quantum-circuit implementation of an AND gate

Challenges
• Improve quantum circuits for symmetric encryption functions.
• Design cryptographic primitives with low MC for use in the post-quantum world. An example

is the post-quantum signature candidate PICNIC.
• Design a standard format for describing quantum circuits.

MC of Symmetric Boolean Functions
Goal: To find efficient circuits with low number of AND gates for
symmetric Boolean functions, in which the output is determined by
the number of ones of the input.

Method: There are two parts:
1. Encode the weight using full adders and half headers.
2. Build the symmetric function using the weight encoding.

Results:
• Proposed technique constructs circuits for all symmetric functions

with up to 25 variables.
• Upper bounds on maximum MC of class of n-variable Boolean

functions for n ≤ 132.

...

Encode weight
From n to ⌈log2 n⌉ variables

x0 x1 x2 x27 x28 x29

y0 y1 y2 y3 y4

0 0 0 0 0 → v0
0 0 0 0 1 → v1
0 0 0 1 0 → v2

...
1 1 0 1 1 → v27
1 1 1 0 1 → v29
1 1 1 1 0 → ∗
1 1 1 1 1 → ∗

0 or 1?

Boolean Functions with MC 3 and 4
Goal: To identify the Boolean functions having MC 3 and 4.

Method: MC is affine invariant, it is enough to find the exhaustive list of affine equivalence classes
that can be generated with 3, and 4 AND gates. Method has two parts:
• Part I: Identify the topologies having k = 3,4 AND gates.
• Part II: Evaluate topologies to find unique representative from each affine equivalence class.

Results
• There are 24 equivalence classes with MC 3. They can be generated using at least one of the

following topologies.
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• The number of n-variable Boolean functions with MC 3 is

6∑
d=4

2n−d
d−1∏
i=0

2n −2i

2d −2i
βd


where β4 = 32 768,β5 = 775 728 128,β6 = 183 894 007 808.

• There are 1277 equivalence classes with MC 4. They can be generated using one of the 84
topologies with 4 AND gates.
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