
NIST Threshold Cryptography Workshop, March 12, 2019 

Multisignatures and Threshold Signatures 
in a Bitcoin Context 

Andrew Poelstra 
Director of Research, Blockstream 

1 / 15 



Bitcoin 

Bitcoin is a cryptocurrency denominated in unspent 
transaction outputs (UTXOs) labelled by a value and (script) 
public key. 

Transactions destroy UTXOs and create new UTXOs with 
equivalent value and different public keys. 

Transactions are serialized onto a blockchain which defines a 
canonical history. 

2 / 15 



Bitcoin 

Bitcoin users generate a lot of keys; must store and recognize 
these. 

Loss or theft of a key is not recoverable. 

Keys are typically not uniform random; are related in 
detectable ways. 

Diverse hardware: PCs, tiny devices, cell phones, virtual 
machines. Allergic to randomness. 

3 / 15 



Schnorr Signatures 

P = xG 

R = kG 

e = H(P, R, m) 

s = k + ex 

Notice P in the hash function. 

4 / 15 



Schnorr Signatures 

Consider “BIP32” keys P and P 0, where P 0 = P + γG for 
some non-secret γ. 

Used to make key generation and backup more tractable. 

R = kG 

e = H(R, m) 

s = k + ex 

→ k + ex + eγ 

5 / 15 



Sign-to-Contract 

Consider the “sign-to-contract” construction which overloads 
a signature as a signature on another, auxiliary message. 

Used for timestamping, wallet audit logging, and 
anti-covert-sidechannel resistance. 

P = xG 

R0 = kG 

R = R0 + H(R0kc)G 

e = H(P, R, m) 

s = (k + H(R0kc)) + ex 

6 / 15 



Sign-to-Contract Replay Attack 

Now suppose k = H(xkm), as in RFC6979. 

s = (k + H(R0kc)) + ex 
0− s = (k + H(R0kc 0)) + e x 

0 = H(R0kc) − H(R0kc 0) + (e − e 0)x 

So we’d better have k = H(xkmkc)! 

7 / 15 



Interlude: Randomness 

If k deviates from uniform by any amount, given enough 
signatures lattice techniques can be used to extract secret 
keys. (In practice at least a couple bits of bias are needed.) 

A malicious manufacturer could insert such bias in a way that 
only the attacker could detect the deviation. 

No way to prove that deterministic randomness was used 
(general zkps? Hard on typical signing hardware.) 

8 / 15 



Sign-to-Contract as an Anti-Nonce-Sidechannel Measure 

If the hardware device knows c before producing R0 it can 
grind k so that (k + H(R0kc)) has detectable bias. 

If it doesn’t know c how can it prevent replay attacks? 

Send hardware device H(c) and receive R0 before giving it c . 

Then k = H(xkmkH(c)). 

9 / 15 



Multisignatures 

Bitcoin people use “multisignature” in a funny way. 

Includes thresholds (or arbitrary monotone functions of 
individuals’ keys). 

Do not expect or want verifiers to see the original keys, for 
efficiency and privacy. 

10 / 15 



Multisignatures 

Plain public-key model. 

May be chosen (from the set of available keys) adversarially 
and adaptively. 

Keys controlled by inflexible offline signing hardware. 

No good place to store KOSK proofs. No keygen authorities. 

Keys may encode semantics (e.g. Taproot, pay-to-contract) 
where KOSK is insufficient for security! 

11 / 15 



Multisignatures 

Consider Schnorr multisignatures with combined keys of the P 
form P = P i . 

Vulnerable to rogue-key attacks where one participant cancels 
others’ keys. 

Bitcoin’s Taproot uses keys of the form P = P 0 + H(P 0kc)G 
which admits a new form of rogue-key attack. 

KOSK cannot protect against the latter! 

12 / 15 



Multisignatures 

Derandomization of the form k = H(xkc) no longer works. 

In a multi-round protocol need to consider replay attacks, 
parallel attacks, VM forking, etc. 

General ZKPs can save us here. More R&D needed. 

13 / 15 



Threshold Signatures and Accountability 

Accountability: ability to prove which specific set of signers 
contributed to a threshold signature. 

Constant-size non-accountable signatures. Log-sized 
accountable signatures. 

Can we close this gap? 

14 / 15 



Thank you. 

Andrew Poelstra 
apoelstra@blockstream.com 

15 / 15 

mailto:apoelstra@blockstream.com

