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Abstract

A t-out-of-n threshold secret sharing scheme allows a dealer to share a secret among a set of
n parties such that any subset of the parties of size at least t can recover the secret, while any
subset of smaller size learns no information about the secret. A leakage resilient secret sharing
scheme (introduced in independent works by (Goyal and Kumar, STOC 18) and (Benhamouda,
Degwekar, Ishai and Rabin, Crypto 18)) additionally requires the secrecy to hold against every
unauthorized set of parties even if they obtain some bounded leakage from the other shares.
The leakage is said to be local if it is computed independently for each share. So far, the only
known constructions of local leakage resilient threshold secret sharing schemes are for very low
(O(1)) or very high (n− o(log n)) thresholds.

In this work, we present local leakage resilient threshold secret sharing schemes with constant
rate for any threshold. Furthermore, our scheme has optimal leakage-resilience rate, i.e., the
ratio between the leakage tolerated and the size of each share can be made arbitrarily close to
1. We implement a variant of our scheme (that has worse rate and leakage-resilience rate, but
better computational efficiency), and present comparisons of its performance to that of Shamir’s
secret sharing scheme (Shamir, Commun. ACM 1979).

Our construction generalizes to a rate-preserving compiler that adds local leakage-resilience
to any secret sharing scheme for any monotone access structure.

1 Introduction

Secret sharing [Sha79, Bla79] is a fundamental cryptographic primitive that allows a secret to be
shared among a set of parties in such a way that only certain authorized subsets of parties can
recover the secret by pooling their shares together; and any subset of parties that is not autho-
rized learn nothing about the secret from their shares. Secret sharing has had widespread ap-
plications across cryptography, ranging from secure multiparty computation [GMW87, BGW88,
CCD88], threshold cryptographic systems [DF90,Fra90,DDFY94] and leakage resilient circuit com-
pilers [ISW03,FRR+10,Rot12].

While sufficient in idealized settings, in several practically relevant scenarios (as illustrated by
the recent Meltdown and Spectre attacks [LSG+18,KGG+18], for instance), it is not satisfactory to
assume that the set of unauthorized parties have no information at all about the remaining shares.
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They could, for instance, have access to some side-channel on the devices storing the other shares
that leaks some information about them, and we would like for the secret to still remain hidden
in this case. Such leakage resilience has been widely studied in the past as a desirable property in
various settings and cryptographic primitives [MR04,DP08,AGV09,NS09]. In this paper, we study
secret sharing that is resilient to leakage – we ask the secret remain hidden from unauthorized
subsets of parties even if they have access to some small amount of information about the shares
of the remaining parties.

More specifically, we are interested in local leakage resilience, which means that secrets are
hidden from an adversary that works as follows. First, it specifies an unauthorized subset of
parties, and for each of the remaining parties, it specifies a leakage function that takes its share
as input and outputs a small pre-determined number of bits. Once the shares are generated, the
adversary is given all the shares of the unauthorized subset, and the output of the corresponding
leakage function applied to the each of the remaining shares.

This form of leakage resilience for secret sharing was formalized in recent work by Goyal and
Kumar [GK18], and Benhamouda, Degwekar, Ishai and Rabin [BDIR18]. These papers showed
examples of leakage-resilient threshold secret sharing schemes (where subsets above a certain size
are authorized) for certain thresholds. They then showed applications of such schemes to con-
structions of leakage-resilient multi-party computation protocols and non-malleable secret sharing
schemes. Given the prevalence of secret-sharing in cryptographic constructions and the importance
of resilience to leakage, one may reasonably expect many more applications to be discovered in the
future.

In this work, we are interested in constructing local leakage resilient secret sharing schemes for
a larger class of access structures1 (in particular, for all thresholds). Beyond showing feasibility,
our focus is on optimizing the following parameters of our schemes:

• the rate, which is the ratio of the size of the secret to the size of a share, and,

• the leakage-resilience rate, which is the ratio of the number of bits of leakage tolerated per
share to the size of a share.

Our primary result is a transformation that converts a secret sharing scheme for any monotone
access structure A into a local leakage resilient secret sharing scheme for A whose rate is a small
constant factor less than that of the original scheme, and which has an optimal asymptotic leakage-
resilience rate (that tends to 1 as the length of the secret increases).

Informal Theorem 1.1 There is a compiler that, given a secret sharing scheme for a monotone
access structure A with rate R, produces a secret sharing scheme for A that has rate R/3.01 and
is local leakage resilient with leakage-resilience rate tending to 1.

In particular, for any t ≤ n, starting from t-out-of-n Shamir secret sharing [Sha79] gives us a
t-out-of-n threshold secret sharing scheme with rate 1/3.01 and leakage rate 1. The only results
known even for threshold access structures before our work were for either very small or very large
thresholds. Goyal and Kumar [GK18] presented a construction for t = 2, which had both rate
and leakage-resilience rate Θ(1/n). This was extended to any constant t by Badrinarayanan and
Srinivasan [BS18], with rate Θ(1/ log(n)) and leakage-resilience rate Θ(1/n log(n)). Benhamouda et
al. [BDIR18] showed that t-out-of-n Shamir secret sharing over certain fields is local leakage-resilient
if t = n− o(n), and this has rate 1 and leakage-resilience rate roughly 1/4.

1The access structure of a secret sharing scheme is what we call the set of authorized subsets of parties.
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Outline of Construction. We will now briefly describe the functioning of our compiler for the
case of a t-out-of-n threshold secret sharing scheme, for simplicity. It makes use of a strong seeded
randomness extractor Ext, which is an algorithm that takes two inputs – a seed s and a source w –
and whose output Ext(s, w) is close to being uniformly random if s is chosen at random and w has
sufficient entropy. The extractor being “strong” means that the output remains close to uniform
even if the seed is given.

We take any threshold secret sharing scheme (such as Shamir’s [Sha79]), and share our secret
m with it to obtain the set of shares (Sh1, . . . ,Shn). We first choose a uniform seed s, and for each
i ∈ [n], we choose a uniformly random source wi (all of appropriate lengths), and mask Shi using
Ext(s, wi). That is, we compute Sh′i = Shi ⊕ Ext(s, wi). We then secret share s using a 2-out-of-n
secret sharing scheme to get the set of shares S1, . . . , Sn. The share corresponding to party i in our
scheme is now set to (wi,Sh

′
i, Si).

Given t such shares, to recover the secret, we first reconstruct the seed from any two Si’s
and then unmask Sh′i by XORing with Ext(s, wi) to obtain Shi. We then use the reconstruction
procedure of the underlying secret sharing to recover the message.

The correctness and privacy of the constructed scheme are straightforward to check. To argue
the local leakage resilience of this construction, we go over a set of n− t+ 1 hybrids where in each
hybrid, we will replace one Shi with the all 0’s string. Once we have replaced n− t+ 1 such shares
with the 0’s string, we can then rely on the secrecy of the underlying secret sharing scheme to
show that the message is perfectly hidden. Thus, it is now sufficient to show that any two adjacent
hybrids in the above argument are statistically close. To argue that the adjacent hybrids, say Hybi
and Hybi+1, are statistically close, we rely on the randomness property of the extractor. Note that
even given bounded leakage from the source wi, we can show that wi has sufficient entropy so that
the output of the extractor on the weak source wi is statistically close to random. This allows us
to argue that Ext(s, wi) acts as a one-time pad and thus, we can replace Shi with the all 0’s string.

However, in order to make the argument work, we must ensure that the leakage from the source
is independent of the seed. This is where we will be using the fact that the seed is secret shared
using a 2-out-of-n secret sharing scheme. In our reduction, we fix the share Si to be independent
of the seed and then leak from the source wi. Once the seed is known2, we can sample the other
shares (S1, . . . , Si−1, Si+1, . . . , Sn) as a valid 2-out-of-n secret sharing of s that is consistent with
the fixed share Si. This allows us to argue that the leakage on wi is independent of the source.
There is a small caveat here that the masked value Sh′i is dependent on the seed and hence we
cannot argue independence of the leakage on the source and the seed. However, we use a simple
trick of masking Sh′i by another one-time pad and then secret share the one-time pad key along
with the seed s and use this argue that this masked value is independent of the seed.

1.1 Related Work

In concurrent and independent work, Aggarwal et al. [ADN+18] also construct leakage-resilient
secret sharing schemes for any monotone access structure (from any secret sharing scheme for
that access structure), and use this to construct non-malleable secret sharing for general monotone
access structures and threshold signatures that are resilient to leakage and mauling attacks. Their
transformation loses a factor of n in the rate if a constant leakage-resilience rate is desired.

In another concurrent and independent work, Kumar et al. [KMS18] also consider the problem

2As the extractor is a strong seeded extractor, Ext(s, wi) is statistically close to uniform even given the seed.
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of obtaining leakage-resilient secret sharing scheme in a stronger leakage model. In particular, they
consider a leakage model where every bit of the leakage can depend on the shares of an adaptive
chosen set of O(log n) parties. They give constructions of such secret sharing schemes for general
access structures via a connection to problems that have large communication complexity. The
rate and the leakage-resilience rate of the construction of Kumar et al. are both Θ(1/poly(n)).

Local leakage resilient secret sharing (in the sense in which we use this term) was first studied by
Goyal and Kumar [GK18] and Benhamouda et al [BDIR18] (independently of each other). Goyal
and Kumar constructed a local leakage resilient 2-out-of-n threshold secret sharing scheme with
rate and leakage-resilience rate both Θ(1/n). Benhamouda et al showed that, for large enough
characteristic and large enough number of parties n, the Shamir secret sharing scheme is leakage-
resilient (with leakage-resilience rate close to 1/4) as long as the threshold is large (at least n −
o(log(n))). Badrinarayanan and Srinivasan [BS18] later constructed local leakage resilient t-out-of-
n secret sharing schemes for any constant t that had rate Θ(1/ log(n)) and leakage-resilience rate
Θ(1/n log(n)).

Boyle et al. [BGK14] define and construct leakage-resilient verifiable secret sharing schemes
where the sharing and reconstruction are performed by interactive protocols (as opposed to just
algorithms). They also show that a modification of the Shamir secret sharing scheme satisfies a
weaker notion of leakage-resilience than the one we consider here, where it is only required that a
random secret retain sufficient entropy given the leakage on the shares.

Dziembowski and Pietrzak [DP07] construct secret sharing schemes (that they call intrusion-
resilient) that are resilient to adaptive leakage where the adversary is allowed to iteratively ask for
leakage from different shares. Their reconstruction procedure is also interactive, however, requiring
as many rounds of interaction as the adaptivity of the leakage tolerated.

Leakage-resilience of secure multiparty computation has been studied in the past in various
settings [BGJK12, GIM+16, DHP11]. More broadly, leakage-resilience of various cryptographic
primitives have been quite widely studied – we refer the reader to the survey by Alwen et al [ADW09]
and the references therein.

2 Preliminaries

Notation. We use capital letters to denote distributions and their support, and corresponding
lowercase letters to denote a sample from the same. Let [n] denote the set {1, 2, . . . , n} and Ur

denote the uniform distribution over {0, 1}r. For a finite set S, we denote x
$← S as sampling x

uniformly at random from the set S. For any i ∈ [n], let xi denote the symbol at the i-th co-ordinate
of x, and for any T ⊆ [n], let xT ∈ {0, 1}|T | denote the projection of x to the co-ordinates indexed
by T . We write ◦ to denote concatenation.

For distributions D1 and D2 over the same domain S, we denote their statistical distance by
|D1 − D2|. We will use the notation D1 ≈ε D2 to denote that the statistical distance between
D1 and D2 is at most ε. We now recall the definition of min-entropy, average conditional min-
entropy [DORS08], and extractors.

Definition 2.1 (Min-Entropy) The min-entropy of a random variable X is defined to be

H∞(X) = min
s∈support(X)

{log(1/Pr[X = s])}
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Definition 2.2 (Average Conditional Min-Entropy [DORS08]) For random variables (X,W ),
the average conditional min-entropy of X given W is defined as

H̃∞(X|W ) = log
(
Ew←W

[
max
x

Pr[X = x|W = w]
])

= − logE
[
2−H∞(X|W=w)

]
Definition 2.3 (Strong seeded extractor) A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is
called a strong seeded extractor for min-entropy k and error ε if for any (n, k)-source X and an
independent uniformly random string Ud, we have

|Ext(X,Ud) ◦ Ud − Um ◦ Ud| < ε,

where Um is independent of Ud. Further if the function Ext(·, u) is a linear function over F2 for
every u ∈ {0, 1}d, then Ext is called a linear seeded extractor.

An average case seeded extractor requires that if a source X has average case conditional min-
entropy H̃∞(X|Z) ≥ k then the output of the extractor is uniform even when Z is given. We
recall the following lemma from [DORS08] which states that every strong seeded extractor is also
an average-case strong extractor.

Lemma 2.4 ( [DORS08]) For any δ > 0, if Ext is a (k, ε)-strong seeded extractor then it is also
a (k + log

(
1
δ

)
, ε+ δ) average case strong extractor.

2.1 Secret Sharing Scheme

We first give the definition of a k-monotone access structure, then define a sharing function and
finally define a secret sharing scheme.

Definition 2.5 (k-Monotone Access Structure) An access structure A is said to be monotone
if for any set S ∈ A, any superset of S is also in A. We will call a monotone access structure A
as k-monotone if for any S ∈ A, |S| ≥ k.

Definition 2.6 (Sharing Function [Bei11]) Let [n] = {1, 2, . . . , n} be a set of identities of n
parties. Let M be the domain of secrets. A sharing function Share is a randomized mapping from
M to S1×S2× . . .×Sn, where Si is called the domain of shares of party with identity i. For a set
T ⊆ [n], we denote Share(m)T to be a restriction of Share(m) to its T entries.

Definition 2.7 ((A, n, εc, εs)-Secret Sharing Scheme [Bei11]) LetM be a finite set of secrets,
where |M| ≥ 2. Let [n] = {1, 2, . . . , n} be a set of identities (indices) of n parties. A sharing
function Share with domain of secrets M is a (A, n, εc, εs)-secret sharing scheme with respect to
monotone access structure A if the following two properties hold :

• Correctness: The secret can be reconstructed by any set of parties that are part of the access
structure A. That is, for any set T ∈ A, there exists a deterministic reconstruction function
Rec : ⊗i∈TSi →M such that for every m ∈M,

Pr[Rec(Share(m)T ) = m] = 1− εc

where the probability is over the randomness of the Share function.
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• Statistical Privacy: Any collusion of parties not part of the access structure should have
almost no information about the underlying secret. More formally, for any unauthorized set
U ⊆ [n] such that U /∈ A, and for every pair of secrets m0,m1 ∈M , for any computationally
unbounded distinguisher D with output in {0, 1}, the following holds :

|Pr[D(Share(m0)U ) = 1]− Pr[D(Share(m1)U ) = 1]| ≤ εs

We define the rate of the secret sharing scheme as lim|m|→∞
|m|

maxi∈[n] |Share(m)i|

Remark 2.8 (Threshold Secret Sharing Scheme) For ease of notation, we will denote a t-
out-of-n threshold secret sharing scheme as (t, n, εc, εs)-secret sharing scheme.

3 Leakage Resilient Secret Sharing Scheme

In this section, we will define and construct a leakage resilient secret sharing scheme against a class
of local leakage functions. We first recall the definition of a leakage resilient secret sharing scheme
from [GK18].

Definition 3.1 (Leakage Resilient Secret Sharing Scheme [GK18]) An (A, n, εc, εs) secret
sharing scheme (Share,Rec) for message space M is said to be ε-leakage resilient against a leakage
family F if for all functions f ∈ F and for any two messages m0,m1 ∈M:

|f(Share(m0))− f(Share(m1))| ≤ ε

We will transform any secret sharing scheme to a leakage resilient secret sharing scheme against
the local leakage function family. We first recall the definition of this function family.

Local Leakage Function Family. Let Share : M → S1 × S2 . . . × Sn. We are interested in
constructing leakage resilient secret sharing schemes against the specific function family FA,µ =
{fK,−→τ : K ⊆ [n],K 6∈ A, τi : Si → {0, 1}µ} where fK,−→τ on input (share1, . . . , sharen) outputs sharei
for each i ∈ K in the clear and outputs τi(sharei) for every i ∈ [n] \ K. Following [BDIR18], we
will call secret sharing schemes resilient to FA,−→τ as local leakage resilient secret sharing. We will
define the leakage-resilience rate of such secret sharing schemes to be limµ→∞

µ
maxi∈[n] |Share(m)i| .

Remark 3.2 We remark that definition 3.1 is satisfiable against the leakage function class FA,µ
(for any µ > 0) only if the access structure is 2-monotone (see Definition 2.5). Hence, in the rest
of the paper, we will concentrate on 2-monotone access structures.

3.1 The Compiler

We will give a compiler that takes any (A, n, εc, εs) secret sharing scheme for any 2-monotone A
and outputs a local leakage resilient secret sharing scheme for A. We give the description of the
compiler in Figure 1.

Theorem 3.3 Consider any 2-monotone access structure A and µ ∈ N and a secret domain M
with secrets of length m. Suppose for some η, d, ρ ∈ N and εc, εs, ε ∈ [0, 1), the following exist:
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Let (Share,Rec) be a (A, n, εc, εs) secret sharing scheme for sharing secrets fromM with share
size equal to ρ bits. Let (Share(2,n),Rec(2,n)) be a 2-out-of-n Shamir Secret sharing. Let Ext :

{0, 1}η × {0, 1}d → {0, 1}ρ be a (η − µ, ε)-average-case, strong seeded extractor.

LRShare : To share a secret m ∈M:

1. Run Share(m) to obtain the shares (Sh1, . . . ,Shn).

2. Choose an uniform seed s
$← {0, 1}d and a masking string r

$← {0, 1}ρ.
3. For each i ∈ [n] do:

(a) Choose wi
$← {0, 1}η.

(b) Set Sh′i = Shi ⊕ Ext(wi, s).

4. Run Share(2,n)(s, r) to obtain S1, . . . , Sn.

5. Output sharei as (wi,Sh
′
i ⊕ r, Si).

LRRec : Given the shares sharej1 , sharej2 , . . . , sharej` where K = {j1, . . . , jk} ∈ A do:

1. For each i ∈ K, parse sharei as (wi, S
′
i, Si).

2. Run Rec(2,n)(Sj1 , Sj2) to recover (s, r)

3. For each i ∈ K do:

(a) Compute Sh′i = S′i ⊕ r.
(b) Recover Shi by computing Sh′i ⊕ Ext(wi, s).

4. Run Rec(Shj1 , . . . ,Shjk) to recover the secret m.

Figure 1: Local Leakage-Resilient Secret Sharing

• A (A, n, εc, εs) secret sharing scheme for the secret domain M with share length ρ.

• A (η − µ, ε)-average-case strong seeded extractor Ext : {0, 1}η × {0, 1}d → {0, 1}ρ.

Then, the construction in Figure 1, when instantiated with these, is a (A, n, εc, εs) secret sharing
scheme for M that is 2(εs + n · ε)-leakage resilient against FA,µ. It has share size (η + 2ρ+ d).

We leave the proof of Theorem 3.3 to the full version of this paper [SV18].

3.2 Instantiation

Using state-of-the-art explicit constructions of strong seeded extractors from the work of Gu-
ruswami, Umans, and Vadhan [GUV09] (along with Lemma 2.4), we get the following corollary
that represents the best asymptotics our construction achieves.

Corollary 3.4 If there exists a secret sharing scheme for a 2-monotone access structure A with
rate R, then there exists an ε-local leakage resilient secret sharing for A for some negligible ε with
rate R/3.01 and leakage-resilience rate 1.
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Note that here, negligible means negligible in the length of the secret m and the amount of
leakage µ. For the special case of threshold secret sharing scheme for which we know constructions
with rate 1 [Sha79], we obtain the following corollary.

Corollary 3.5 For any n, t ∈ N such that t ≤ n and some negligible ε, there is an ε-local leakage
resilient t-out-of-n threshold secret sharing scheme with rate Ω(1), and leakage-resilience rate 1.

A Simpler Scheme. We next present an alternative instantiation of our LRSS scheme using the
inner product function over finite fields as the extractor. While this instantiation has asymptotically
worse rate and leakage-resilience rate than the one above, it is also much simpler, computationally
more efficient, and easier to analyze for concrete parameters. Details regarding the performance of
our implementation of this scheme for threshold secret sharing are presented in Section 4.

Let F be a finite field, and IP : Fη × Fη → F be the inner product function given by:

IP ((x1, . . . , xη), (s1 . . . , sη)) =
∑
i

xisi

The leftover hash lemma implies that IP is a (k, ε) strong seeded extractor for any k and ε such that
log |F| < k − 2 log(1/ε) (see, for instance, Theorem 6.18 and its proof in [Vad12]; see also [CG88]).
Note that here, the source of the extractor is in Fη, and its output is ε-close to the uniform
distribution over F.

We now instantiate the construction in Figure 1 as follows (note that below, µ is still the number
of bits leaked, while η is the number of field elements):

• We pick F that is larger than both the message space and the number of shares n.

• We use Shamir secret sharing over the field F as the underlying secret sharing scheme. With-
out loss of generality, we treat the secrets to be shared as elements of F.

• Given µ and ε, we set η so that the above inner product is a (η · log |F|−µ, ε/2n)-average-case
strong seeded extractor. Following Lemma 2.4, this can be done by setting it so that the
inner product is a (η · log |F| − µ− log(4n/ε), ε/4n)-strong seeded extractor. That is, we set

η to be
⌈
1 + µ

log |F| + 3 log(4n/ε)
log |F|

⌉
.

We also make the following modifications in order for the construction to be compatible with
our extractor:

• The seed s and the wi’s are now drawn at random from Fη, and the masking string r is a
random element of F.

• All XOR operations are replaced with addition over F.

The share size above is (2η + 2) log |F|. This gives us the following corollary.

Corollary 3.6 For any n, t ∈ N such that t ≤ n and ε ∈ (0, 1), the construction in Figure 1, when
instantiated with the inner product function (and modified) as above, is an ε-local leakage resilient
t-out-of-n threshold secret sharing scheme that has rate Ω(1), and leakage-resilience rate 1/2.
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4 Performance Evaluation

We implement our leakage resilient secret sharing scheme instantiated with Shamir secret sharing
scheme [Sha79] and the inner product function. In this section, we report on the performance of the
instantiation. We will evaluate the (multiplicative) computational overhead and storage overhead
of our scheme compared to the Shamir secret sharing scheme in different settings.

4.1 Implementation Details

We choose F = Zp for a prime p with bit length 128 as the finite field for Shamir secret sharing
scheme, namely log |F| = 128. Secrets to be shared are elements in the field, of length 128. We fix
the statistical distance ε = 2−80. The big number arithmetic operations are implemented using the
Relic library [AG]. All the experiments are run on a machine with 4-core 2.9 GHz CPU and 16 GB
of RAM.

n η |share| µ f Storage Overhead

2

3 1024 ≤ 7 ≤ 0.6% 8
4 1280 ≤ 135 ≤ 10.5% 10
5 1536 ≤ 263 ≤ 17.1% 12
6 1792 ≤ 391 ≤ 21.8% 14
9 2560 ≤ 775 ≤ 30.2% 20
19 5120 ≤ 2055 ≤ 40.1% 40
39 10240 ≤ 4615 ≤ 45.1% 80
197 50688 ≤ 24839 ≤ 49.0% 396

100

4 1280 ≤ 118 ≤ 9.2% 10
5 1536 ≤ 246 ≤ 16.0% 12
6 1792 ≤ 374 ≤ 20.8% 14
10 2816 ≤ 886 ≤ 31.5% 22
20 5376 ≤ 2166 ≤ 40.3% 42
40 10496 ≤ 4726 ≤ 45.0% 82
204 52480 ≤ 25718 ≤ 49.0% 410

Table 1: Settings of leakage fraction of the secret shares. µ is the number of bits of leakage the
scheme is resilient to, and f is µ as a percentage of the share size.

We evaluated the runtime for our leakage resilient secret sharing scheme for various settings
of (n, t) and leakage fraction of the secret shares. Table 1 listed different settings of the secret
share leakage, where η is the number of field elements in the inner product function (the minimum
number of which is 3), |share| is the size of a single secret share in bits, µ is the maximal allowed
number of leaked bits of every secret share, and f is the maximal allowed leakage fraction of the
secret shares (that is, µ

|share|). For the purpose of illustration we only listed the settings for n = 2
and n = 100 in the table. The threshold t does not affect the values, so we omit that in the table.

Concretely, we can compute the size of a secret share |share| = 256η+ 256, which grows linearly
in η. The maximal number of leaked bits is µ = 128η − 3 · log(282 · n) − 128, which also grows
linearly in η for a fixed n. The maximal allowed leakage fraction is

f =
128η − 3 · log(282 · n)− 128

256η + 256
=

µ

|share|
=

1

2
− 3 · log(282 · n) + 256

256η + 256
,

which grows hyperbolically in η for a fixed n and approaches 1
2 when η goes to infinity.
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In our experiments, we will set the maximal allowed leakage fraction f to be the following
values: 0.1%, 1%, 10%, 20%, 30%, 40%, 45%, 49%, and set η correspondingly in different settings
of (n, t). We will actually control the parameter η in the experiments.

Storage Overhead As mentioned above, the size of a secret share of our scheme is |share| =
256η+256 bits. A secret share of Shamir secret sharing scheme is a field element of 128 bits. Hence
the storage overhead of secret shares of our scheme compared with Shamir is

Storage Overhead =
256η + 256

128
= 2η + 2.

The concrete storage overhead in different settings are also listed in Table 1.

4.2 Computational Overhead

In this section we evaluate the performance of our leakage resilient secret sharing scheme by an-
alyzing the multiplicative computational overhead compared to the Shamir secret sharing scheme
in different settings of (n, t, f). We will show how the computational overhead changes with each
parameter.

4.2.1 Overhead Growth with f , η, and µ

(n, t) Shamir f = 0.1% f = 1% f = 10% f = 20% f = 30% f = 40% f = 45% f = 49%

(2, 2) 4.16 µs 7.08 9.78 9.78 13.8 19.6 38.7 83.5 406

(5, 2) 4.74 µs 10.9 14.2 14.2 18.9 28.9 63.1 128 644

(5, 3) 8.04 µs 6.52 9.27 9.27 13.4 19.7 41.7 81.0 414

(10, 2) 6.70 µs 18.8 18.8 18.8 26.8 40.7 82.7 172 822

(10, 5) 19.5 µs 7.51 7.51 7.51 9.55 17.1 33.3 61.6 300

(10, 10) 39.2 µs 3.81 3.81 3.81 4.89 8.08 16.8 29.7 134

(100, 2) 41.4 µs 23.6 23.6 26.1 38.2 74.1 138 292 1319

(100, 50) 1.13 ms 1.72 1.72 1.75 2.29 2.83 4.58 9.78 46.1

(100, 100) 2.27 ms 1.36 1.36 1.44 1.68 2.13 3.16 5.01 21.2

Table 2: Runtime of Shamir secret sharing scheme and computational overhead of our scheme
when (n, t) are fixed and f is increasing.

Table 2 shows the runtime of Shamir secret sharing for generating shares of a single secret in
different settings of (n, t). For each setting of (n, t), we evaluate the computational overhead of our
scheme in generating secret shares compared with Shamir, and show overhead growth with f . The
reported time is an average of 10,000 secret share generation.

Figure 2 plotted the computational overhead growth with f in different settings of (n, t). As
shown in the figure, the overhead grows rapidly with f especially when f ≥ 40% in all settings.
We plotted another graph showing the overhead growth with η and it is roughly linear. From
Section 4.1 we know that µ grows linear in η, hence the overhead also grows linear in µ. Since f
grows hyperbolically in η, the overhead also grows hyperbolically in f .
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Figure 2: Computational overhead growth with f and η in different settings of (n, t). The figure
on the left has logarithmic scale on y-axis.

(n, f) t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

(10, 0.1%) 16.8 10.1 8.61 7.51 5.76 4.62 4.47 4.31 3.81

(10, 20%) 26.8 15.5 12.2 9.55 8.16 7.39 6.93 6.20 5.30

(10, 49%) 822 553 395 300 241 209 188 160 134

(n, f) t = 2 t = 3 t = 5 t = 7 t = 10 t = 20 t = 30 t = 50 t = 70 t = 100

(100, 0.1%) 23.6 15.3 8.55 6.31 4.55 3.07 2.10 1.72 1.66 1.36

(100, 20%) 38.2 26.1 16.5 10.2 7.36 5.10 3.01 2.29 1.79 1.68

(100, 49%) 1319 828 524 341 205 117 77.9 46.1 34.0 21.2

Table 3: Computational overhead of our scheme when (n, f) are fixed and t is increasing.

4.2.2 Overhead Growth with t

Table 3 shows the computational overhead of our scheme in generating secret shares compared with
Shamir secret sharing scheme. For different settings of (n, f), we show the overhead growth with
the threshold t.

As plotted in Figure 3, the overhead decreases rapidly when t increases in all settings. In fact,
we can compute the asymptotic computational overhead of our scheme compared with Shamir
by counting the total number of multiplications in both schemes. Let T (n, t) be the runtime of
t-out-of-n Shamir secret sharing scheme. Then we have

Computational Overhead =
T (n, t) + (η + 1) · T (n, 2) + η · n

T (n, t)
= 1 +

(η + 1) · T (n, 2) + η · n
T (n, t)

=1 +
(η + 1) · 2n+ η · n

n · t
= 1 +

3η + 2

t
.

Therefore the overhead approaches 1 when t goes to infinity in any setting of (n, f).

4.2.3 Overhead Growth with n

Table 4 shows the computational overhead of our scheme when f and the fraction of threshold
t/n are fixed and the number of parties n is increasing. As plotted in Figure 4, the overhead

11
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Figure 3: Computational overhead growth with t in different settings of (n, f). The figure on the
right has logarithmic scale on x-axis.

(t/n, f) n = 20 n = 30 n = 40 n = 60 n = 100 n = 200 n = 500 n = 1000

(1/10, 0.1%) 18.8 13.8 9.52 7.85 5.12 3.42 2.02 1.46

(1/10, 20%) 37.0 21.5 16.8 12.4 6.71 4.56 2.14 1.72

(1/10, 49%) 997 662 548 394 202 87.4 24.3 10.1

(t/n, f) n = 4 n = 6 n = 8 n = 12 n = 20 n = 40 n = 100 n = 200

(1/2, 0.1%) 10.1 7.90 6.06 4.34 3.46 2.91 1.72 1.38

(1/2, 20%) 18.3 13.1 11.6 9.01 6.49 4.45 2.29 1.71

(1/2, 49%) 577 444 373 297 183 117 46.1 23.7

(t/n, f) n = 2 n = 3 n = 4 n = 6 n = 10 n = 20 n = 50 n = 100

(1, 0.1%) 7.08 6.31 5.52 4.31 3.81 2.45 1.77 1.36

(1, 20%) 13.8 10.7 8.91 7.28 4.89 3.86 2.44 1.68

(1, 49%) 406 327 275 214 134 92.9 51.8 21.2

Table 4: Computational overhead of our scheme when (t/n, f) are fixed and n is increasing.

decreases rapidly as n increases in all settings. Recall that the computational overhead of our
scheme approaches 1 when t goes to infinity and the overhead is asymptotically independent of n.
When t/n is fixed and n increases, t also increases, hence the overhead approaches 1 as n goes to
infinity.
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