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Abstract. We show how to build distributed key generation and distributed decryption procedures for the LIMA
Ring-LWE based post-quantum cryptosystem. Our protocols implement the CCA variants of distributed decryption
and are actively secure (with abort) in the case of three parties and honest majority. Our protocols make use of
a combination of problem specific MPC protocols, generic garbled circuit based MPC and generic Linear Secret
Sharing based MPC. We also, as a by-product, report on the first run-times for the execution of the SHA-3 function
in an MPC system.

1 Introduction

Distributed decryption enables a set of parties to decrypt a ciphertext under a shared (i.e. distributed) secret key.
Distributed decryption protocols for traditional public key encryption and signature schemes have had a long history of
innovation [9–12,14,16,19,20,25,26]. But the research on such protocols for schemes based on Ring-LWE (Learning-
With-Errors) has only been started quite recently.

Despite research on Ring-LWE, and Fully/Somewhat Homormorphic Encryption (FHE/SHE) schemes derived
from Ring-LWE being relatively new, applications of distributed decryption have found numerous applications already.
One of the earliest applications we could find is the two-round passively secure FHE-based multiparty computation
(MPC) protocol of Gentry [13]. In this MPC protocol, n parties encrypt their inputs to the MPC computation via
an FHE scheme, and broadcast the ciphertexts. All parties can then homomorphically compute the desired function,
with the result finally obtained via a distributed decryption. A similar methodology is applied in the multi-key FHE
techniques of Asharov et al [4]. These two works only aim for passive security, whereas a similar technique is applied
in [21] to obtain low-round MPC via the BMR methodology [5], and in [7] to utilize Gentry’s technique via an SHE
scheme (and not an FHE scheme) for non-full-threshold access structures (such as the ones considered in this paper).
Despite the overal protocols obtaining active security, the distributed decryption procedures in [7,21] are only required
to be actively secure up to additive errors. A similar situation occurs in the SPDZ protocol [8] in which an actively
secure (up to additive errors) distributed decryption protocol is required to produce the multiplication triples in the
offline phase. The same technique is used in the High Gear variant of the Overdrive [17] offline phase for SPDZ.

The application of such distributed decryption protocols is however not just restricted to usage in MPC protocols.
It is well established in the side-channel community that such key-splitting techniques can form the basis of various
defences based on ‘masking’; see for example a recent initiative of NIST in this area [6]. However, every masking
technique requires a recombination technique, which is exactly what distributed decryption provides.

More importantly, the interest in standard Ring-LWE schemes due to the need to find suitable Post-Quantum
Crypto (PQC) algorithms, as evidenced by the current NIST “competition”, means that PQC schemes which can
support distributed decryption will become of more interest. However there is a major issue with prior techniques to
this problem. Firstly the methods require “noise-flooding” to ensure that no information leaks about the underlying
secret key during decryption. This requires that the ciphertext modulus q needs to be made much larger than in a
standard system which does not support distributed decryption. Secondly, the methods are only actively secure up



to additive error (i.e. they are not fully actively secure) and they only allow distributed decryption of the IND-CPA
versions of the underlying encryption schemes.

In this paper we present efficient methods to perform actively secure distributed decryption for IND-CCA versions
of Ring-LWE based encryption in the case of three party honest majority protocols. This is done by combining in a
novel manner traditional garbled circuit based MPC, with bespoke protocols for the specific functionality we require.
On the way we also provide, to our knowledge, the first MPC implementation of the evaluation of the SHA-3 function;
previously in [28] an MPC-optimized circuit was given, but no execution times for an actual MPC evaluation of
SHA-3 has been presented. We also show how to utilize secret sharing based protocols such as embodied in the
SCALE-MAMBA system [3] to produce an efficient distributed key generation procedure suitable for our underlying
distributed decryption procedure.

Prior work on CCA secure distributed decryption protocols, even for encryption schemes based on “traditional”
assumptions (such as RSA or Discrete Logarithms), such as those in [11, 19, 26], have looked at designing special
purposes encryption procedures which are both CCA secure, and which enable an efficient distributed decryption
procedure. In this work we instead take an off-the-shelf CCA secure encryption scheme and show how it can be made
into a scheme which supports both distributed decryption and distributed key generation. This brings added challenges
as the method for ciphertext checking is not immediately “MPC-friendly”. Despite this drawback we show that such
schemes can be implented via MPC.

In total we use four different types of secret sharing between the three parties in order to obtain efficient protocols
for the various sub-steps:

1. INS-sharing [15] modulo q of the Ring-LWE secret key.
2. Shamir secret sharing modulo q to generate the INS secret key via SCALE-MAMBA.
3. An additive 3-party binary sharing of the output of the Round function, before we pass it to the KMAC operation.

This additive sharing is non-standard and looks like a cross between INS and replicated sharing.
4. An additive sharing modulo q of the output of the KMAC operation between two of the parties S1 and S2.

To illustrate our methods in terms of a concrete Ring-LWE system we take the LIMA submission [1] to the PQC
contest. We take the latest version of this submission (version 1.1 at the time of writing). However, almost all our
techniques will apply, with minor changes to the specific definitions of usage of SHA-3 etc, to a number of the other
Ring-LWE systems under submission. A major advantage of the LIMA proposal versus a proposal such as say NTRU
is that key generation and encryption are essentially linear operations; thus providing a distributed actively secure
protocol for key generation and re-encryption becomes easy. For NTRU the key generation method, for example, needs
to generate polynomials with distributions which cannot be generated in a linear fashion; in particular distributions
with given coefficients with a given weight of −1 and +1 coefficients.

We end this section by noting that running our distributed decryption protocol using two as opposed to three parties,
and using traditional passively secure Yao protocols, results in a passively secure distributed decryption protocol. For
the two party case of the key generation protocol we could utilize the SPDZ [8] implementation within the SCALE-
MAMBA framework. The two-party key generation would be actively secure and, more importantly, is possible since
the modulus q = 40961 used in the LIMA v1.1 scheme is “FHE-Friendly” and hence can be used as the plaintext
modulus for the SPDZ-offline phase.

2 Preliminaries

To focus our discussion we pick a specific Ring-LWE submission to the NIST PQC “competition”; in particular v1.1
of LIMA [1]. This was selected as it utilizes a relatively standard transform for ciphertext validity checking; namely
randomness recovery followed by re-encryption which could pose a particular problem for a distributed decryption
protocol. In addition the encryption and key generation procedures are also relatively linear, allowing one to utilize
simple MPC protocols to perform re-encryption and distributed key generation.

We will focus on the main parameter sets in the LIMA proposal. In particular N = 1024 and q = 40961. However,
our protocol can be easily adapted to the other parameter sets (in fact the protocol stays the same, all that needs to
change is the specific implementation of the underlying garbled and arithmetic circuits).
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2.1 The LIMA IND-CCA Encryption Scheme

Here we summarize the LIMA v1.1 construction. For more details readers are referred to [1]. As explained above we
use the latest version of the proposal which avoids the rejection sampling in encryption of the first proposal and has,
as a result, smaller parameters.

Cycloctomic Rings: LIMA makes use of two types of cyclotomic rings, in this paper we will concentrate on only
the first type (minor modifications in what follows are needed to support the second type proposed in LIMA). We
select N to be power of two, q to be a prime such that q ≡ 1 (mod 2 · N). The scheme makes use of the following
rings R = Z[X]/(XN + 1), R2 = Z2[X]/(XN + 1), and Rq = Zq[X]/(XN + 1). Note that Φ2·N (X) = XN + 1
in this case. Elements of these rings are degree (N − 1) polynomials with coefficients from Z,Z2,Zq , respectively.
Equivalently, these are represented as vectors of length N , with elements in Z,Z2,Zq , respectively.

LIMA makes a lot of use of the number theoretic FFT algorithm to enable fast multiplication of ring elements. We
will denote this operation in this paper by f ← FFT(f) for the forward FFT, and f ← FFT−1(f) for the inverse FFT
operation. The forward direction maps a polynomial of degree N − 1 into a vector of length N over the same finite
field Fq (by choice of q). For our MPC operations it is important to note that the FFT operation is a linear operation,
i.e. FFT(f + g) = FFT(f) + FFT(g).

a ←
XOF

Fq

1. s← XOF[ 2 · dlog256 qe ].
2. Convert s to an integer (msb is the left most bit).
3. a← s (mod q).
4. Output a.

a ←
XOF

Fnq

1. For i from 1 to n do
(a) ai ←

XOF
Fq .

2. Output a.

GenerateGaussianNoiseXOF(σ)

1. t← XOF[5]; interpretting t as a bit string of length 40.
2. s← 0.
3. For i = 0 to 19 do

(a) s← s− t[2 · i] + t[2 · i+ 1].
4. Return s.

Figure 1. Using of a XOF to generate random values

Use of SHA-3 in KMAC256: LIMA makes use of KMAC256, to create an XOF (Extendable Output Function) and
a KDF (Key Derivation Function). The algorithm KMAC256 is itself derived from the SHA-3 hash function and is
defined in NIST SP 800 185 [24]. Following the LIMA specification we use the following notation for the various uses
of KMAC256. When called in the form XOF← KMAC(key, data, 0) the output is an XOF object, and when called in
the form K ← KMAC(key, data, L) the output is a string of L bits in length. In both cases the input is a key key (of
length at least 256 bits), a (one-byte) data string data, and a length field L in bits. The data string data is a diversifier
and corresponds to the domain separation field in the KMAC standard. Different values of data will specify different
uses of the KMAC construction. In the case when L = 0 we shall let a ← XOF[n] denote the process of obtaining
n bytes from the XOF object returned by the call to KMAC. The KDF in LIMA is given by the notation KDF[n](k),
which outputs the result of computing KMAC(k, 0x00, n).
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In Figure 1 we describe how LIMA uses the XOF to generate random values in different domains and with different
distributions. These are a ←

XOF
Fq to generate uniformly random single finite field element, a ←

XOF
Fn
q to generate a

vector of such elements, and GenerateGaussianNoiseXOF(σ) to generate elements in Fq from a distribution which is
an approximation to a discrete Gaussian with standard deviation σ. It will turn out their method here is particularly
well suited to enabling distributed key generation. In particular the LIMA algorithm uses the method of approximating
a Discrete Gaussian via a centred binomial distribution given in [2], to produce a Gaussian with standard deviation
σ ≈ 3.19.

KeyGen(N)

1. a = (a0, . . . , aN−1) ←
XOF

FNq .

2. For i = 0 to N − 1 do si ← GenerateGaussianNoiseXOF(σ).
3. For i = 0 to N − 1 do e′i ← GenerateGaussianNoiseXOF(σ).
4. a← FFT(a), s← FFT(s), e′ ← FFT(e′).
5. b← (a⊗ s)⊕ e′,
6. sk← (s,a,b).
7. pk← (a,b).
8. Return (pk, sk)

Figure 2. LIMA Key Generation

LIMA Key Generation: The specification of LIMA details that the private component of a public/private key pair is
generated from the KMAC256 XOF. However, in practice this component can come from any source of random bits,
thus the XOF output in lines 2 and 3 of Figure 2 can be replaced by any source of random bits known to the secret key
creator. We will make use of this fact in our distributed key generation procedure later on. Key Generation proceeds
as in Figure 2, where we assume a XOF has already been initiated and the operations ⊗ and ⊕ denote pointwise
multiplication and addition (mod q).

Encryption and Decryption: Both the CCA encryption and decryption operations make use of a sub-procedure,
called Enc-CPA-Sub(m, pk,XOF) which takes as input a message in m ∈ {0, 1}`, a public key and an initialized
XOF object XOF , and outputs a ciphertext c. The associated inverse operation is denoted Dec-CPA(c, sk). These
algorithms are defined in Figure 3. These operations make use of three sub-routines:

– Trunc denotes a procedure which throws away unnecessary coefficients of c0, retaining only the ` elements corre-
sponding to message component.

– BV-2-RE is a procedure which takes a bit string of length at most N and maps it into R2.
– RE-2-BV is the inverse operation to BV-2-RE.

We can then define the CCA LIMA encryption, decryption, encapsulation and decapsulation operations as in Figure 4

2.2 Three Party Honest Majority MPC Using Garbled Circuits

Our protocols make use of actively secure garbled circuit based MPC for honest majority in the three party setting. In
this situation we use the techniques from [23]. The basic protocol to evaluate a function F on inputs x1, x2 and x3
from parties P1, P2 and P3 is as follows. Parties P1 and P2 agree on a random seed s and then use s to generate a
garbled circuit. Party P3 acts as evaluator. If P1 or P2 cheats then this is detected by P3 as they will obtain different
circuits, where as if P3 cheats in sending output tables values incorrectly back to P1 or P2 (for their output), then the
table values will not decode correctly. The overall protocol is described in Figure 5. Thus we cheaply obtain active
security with abort in this scenario.

4



Enc-CPA-Sub(m, pk,XOF):

1. ` = |m|.
2. If ` > N then return ⊥.
3. µ← BV-2-RE(m),
4. For i = 0 to N − 1 do vi ← GenerateGaussianNoiseXOF(σ).
5. For i = 0 to N − 1 do ei ← GenerateGaussianNoiseXOF(σ).
6. For i = 0 to N − 1 do di ← GenerateGaussianNoiseXOF(σ).
7. v← FFT(v), e← FFT(e).
8. x← d+∆q · µ (mod q).
9. s← FFT−1(b⊗ v).

10. t← s+ x.
11. c0 ← Trunc(t, `).
12. c1 ← (a⊗ v)⊕ e.
13. Output c = (c0, c1).

Dec-CPA(c, sk):

1. Define ` to be the length of c0.
2. If ` 6= 0 (mod 8) then return ⊥.
3. v ← FFT−1(s⊗ c1).
4. t← Trunc(v, `).
5. f ← c0 − t.
6. Convert f into centered-representation modulo q.
7. µ←

∣∣∣⌊ 2
q
f
⌉∣∣∣

8. m← RE-2-BV(µ).
9. Return m.

Figure 3. Base LIMA Encryption and Decryption Operations

2.3 Three Party Honest Majority MPC Using Shamir Secret Sharing

We also require honest majority three party actively secure MPC with abort based on linear secret sharing over the finite
field Fq . For this we use a protocol based on Shamir secret sharing implemented in the SCALE-MAMBA system [3].
This uses an offline phase to produce multiplication triples and shared random bits (using Maurer’s multiplication
protocol [22]) and then an online phase which checks for correctness by using the error detection properties of the
underlying Reed-Solomon codes. See [18, 27] for precise details of how this protocol works. This arithmetic circuit
based MPC protocol is used in our distributed key generation phase, and we make crucial use of the ability of the
SCALE-MAMBA system to generate shared random bits in the offline phase; as then our online phase becomes
essentially a local operation.

We denote secret shared values over Fq by the notation [a]. In this notation linear operations, such as [z] ←
α · [x] + β · [y] + γ are local operations, and hence essentially for free. Where as non-linear operations, such as
[z]← [x] · [y] require interaction. In the SCALE-MAMBA system these are done using a pre-processed set of Beaver
triples ([a], [b], [c]) with c = a · b.

Output/opening values to all players will be denoted by Output([a]) by which we mean all players learn the value
of a, and abort if the value is not output correctly. Outputing to a specific player we will denote by Output-To(i, [a]),
in which case player i will learn the value of a, and abort if the value is not correct.

One can also use these pre-processed Beaver triples to generate random shared elements (by taking a triple and
using [a] and [b] as the random elements. Of course when using Shamir sharing one could also generate such sharings
using a PRSS, however the SCALE-MAMBA system does not currently support this functionality. So when generating
random elements in the online phase we simply consume the first two components of a Beaver triple, and we will write
([a], [b], [c])← Triples, this is secure as long as [c] is never used later. The offline phase also produced shared random
bits, namely sharings of the form [b] with b ∈ {0, 1}. We will denote this operation in what follows as [b]← Bits.
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Enc-CCA(m, pk, r):

1. If |r| 6= 256 or |m| ≥ N − 256 then return ⊥.
2. µ←m‖r.
3. XOF← KMAC(µ, 0x03, 0).
4. c← Enc-CPA-Sub(µ, pk,XOF).
5. Return c.

Dec-CCA(c, sk):

1. µ← Dec-CPA(c, sk).
2. If |µ| < 256 then return ⊥.
3. XOF← KMAC(µ, 0x03, 0).
4. c′ ← Enc-CPA-Sub(µ, pk,XOF).
5. If c 6= c′ then return ⊥.
6. m‖r← µ, where r is 256 bits long.
7. Return m.

Encap-CCA(`, pk, s):

1. If |r| < 384 or |r| > N then return ⊥.
2. XOF← KMAC(r, 0x05, 0).
3. c← Enc-CPA-Sub(r, pk,XOF).
4. k← KDF[`](r).
5. Return (c = (c0, c1),k).

Decap-CCA(`, c, sk):

1. r← Dec-CPA(c, sk).
2. If |r| < 384 then return ⊥.
3. XOF← KMAC(r, 0x05, 0).
4. c′ ← Enc-CPA-Sub(r, pk,XOF).
5. If c 6= c′ then return ⊥.
6. k← KDF[`](r).

Figure 4. CCA Secure Encryption, Decryption, Encapsulation and Decapsulation Algorithms for LIMA
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1. Denote the inputs of S1, S2 and S3 by x1, x2 and x3, respectively.
2. Let f(x1, x2, x3) be the function to be computed and let C(x1, x2, x3) be a circuit that computes f .
3. Party S1 chooses a random seed s and generates a garbled circuit GC computing C and the output translation tables
O1, O2 and O3 for the three parties outputs), using seed s.

4. Party S3 chooses a random xa3 ← {0, 1}`, where ` = |x3|, and sets xb3 ← xa3 ⊕ x3 and it sends xa3 to S1, and sends xb3
to S2.

5. Party S1 sends (GC,O3) to S3. For every wire w associated with the input x3 in the circuit, the garbled circuit definition
is assumed to include (H(k0w), H(k1w)) in this order (where the keys on that wire are k0w, k1w).

6. Party S1 sends s to S2.
7. Party S2 computes GC from s and sends h = H(GC) to S3.
8. S3 checks that h = H(GC) where h is the value it received from S2, and GC is as received from S1. If not, it aborts.
9. Party S1 sends S3 the keys associated with its own input x1 and with xa3 .

10. Party S2 sends S3 the keys associated with its own input x2 and with xb3.
11. Parties S1 and S2 run a secure coind tossing protocol to generate random strings R1, . . . , R|x3|.
12. Denote the bits of xa3 by xa3 [1], . . . , xa3 [`], denote the bits of xb3 by xb3[1], . . . , xb3[`], and denote the wires associated with

x3 by w1, . . . , w`.
13. For every i = 1, . . . , `, party S1 sends k′i ← k0wi

⊕ xa3 [i] · ∆ ⊕ Ri to S3. We use the “free-XOR” trick so we have
k1wi

= k0wi
⊕∆.

14. For every i = 1, . . . , `, party S2 sends k′′i ← xb3[i] ·∆⊕Ri to S3.
15. For every i = 1, . . . , `, party S3 computes kx3[i]wi ← k′i ⊕ k′′i and checks that this is consistent with the appropriate hash.

That is, if x3[i] = 0 then the hash of the key equals the first value in the appropriate pair; otherwise the second value. If
not then S3 aborts.

16. S3 computes the garbled circuit GC and obtains their output using the table O3.
17. S3 sends the garbled outputs corresponding to S1 and S2’s output wires to S1 and S2 respectively.
18. S1 and S2 decode their output using the translation tables O1 and O2.

Figure 5. Garbled Circuit Based Three Party Computation

3 SHA3 in MPC

The TinyGarble compiler [28] has been reported to produce a circuit for the SHA-3 core internal Keccak-f function
of 38,400 AND gates (160,054 total gates). Using similar techniques to the TinyGarble paper we compiled our own
circuit for Keccak-f, finding a circuit with the same number of gates and 193,686 wires. This function takes as input, a
sequence of 1600 bit values, and returns a 1600 bit value. The output is either then passed into the next round, during
the absorption phase where it is combined with additional input, or part of the output is used as the output of SHA-3,
in the squeezing phase.

Using our garbled circuit based protocol for honest majority computation amongst three parties, we were able to
execute the Keccak-f function with a latency of 16ms per operation. With the testing being conducted on a set of three
Linux RHEL servers running on AWS of type t2.small, which correspond to one “virtual CPU” and 2GB of RAM.

4 Distributed Decryption for CCA-Secure Ring-LWE Encryption

Recall that a public key is a pair (a,b) and a secret key is a value s, where a,b, s ∈ ZN
q . Given our three servers,

of which we assume at least two are honest, we share the secret key using Ito–Nishizeki–Saito sharing [15]. In par-
ticular S1 is assumed to hold (s1,21 , s1,31 ) ∈ ZN

q , S2 is assumed to hold (s1,22 , s2,31 ) ∈ ZN
q , and S2 is assumed to hold

(s1,32 , s2,32 ) ∈ ZN
q such that

s1,21 + s1,22 = s1,31 + s1,32 = s2,31 + s2,32 = s.

How one generates a valid secret key satisfying this secret sharing we discuss in the next section. We call such a sharing
an INS-sharing of s. Our overall distributed decryption and decapsulation protocols are then build out of a number of
special protocols which either utilize our generic 3-party garbled circuit based protocol from earlier, or utilize special
purpose MPC protocols built on top the ISN-sharing of inputs or other sharings of inputs. Thus in this protocol we
combine a variety of MPC techniques together in a novel manner.
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4.1 Sub-Protocol: Round Function

We first require a protocol which takes an ISN-sharing of a vector f and produces the output of the function

µ←
∣∣∣∣⌊2q f⌉

∣∣∣∣
from the procedure Dec-CPA(c, sk). In particular it needs to evaluate the functionality given in Figure 6, which we do
via the protocol given in Figure 7

Input:

1. S1 has f1,2
1 , f1,3

1 ∈ Z`q , S2 has f1,2
2 , f2,3

1 ∈ Z`q , S3 has f1,3
2 , f2,3

2 ∈ Z`q .

Computation:

1. Compute f1,2 ← f1,2
1 + f1,2

2 mod q, f1,3 ← f1,3
1 + f1,3

2 mod q, f2,3 ← f2,3
1 + f2,3

2 mod q.
2. Set b← 1 if f1,2 = f1,3 = f2,3 and b← 0 otherwise.
3. Convert f into centered representation.
4. Compute µ←

∣∣∣⌊ 2
q
f
⌉∣∣∣.

5. Choose random µ1, ν1 ← {0, 1}` and set µ2 ← µ1 ⊕ µ and ν2 ← ν1 ⊕ µ (where here we mean bitwise XOR).

Output:

1. All parties S1, S2, S3 receive b.
2. If b = 1 then S1 receives µ1, ν1, S2 receives µ2, ν2, and S3 receives µ2, ν1.

Figure 6. The Functionality : FRound

We note that this protocol is secure by definition since the only thing defined here is the circuit, and a protocol
that is secure for malicious adversaries is used to compute it. Let |q| denote the number of bits needed to represent
q and recall that addition and each less-than-comparison can be computed using a single AND gate per bit. Thus,
a+ b mod q can be computed using exactly 4 · |q| AND gates, and all the initial additions require 12 · |q| AND gates.
Next, the bitwise NOR of v, w requires 2 · |q| − 1 AND gates, each of the 2 less-than-comparisons (and greater-than
etc.) of x are computed using |q| AND gates, and there is 1 more AND gate. Overall, we therefore have a cost of
12 · |q| + 2 · |q| − 1 + 2 · |q| + 1 = 16 · |q| AND gates. In our experiments we used the parameter set of LIMA with
q = 40961 and thus |q| = 16. Hence, each execution of this protocol for an individual coefficient requires 256 AND
gates. When iterated over the 1024 coefficients we end up with a total of 262, 144 AND gates.

4.2 Sub-Protocol: Secure Evaluation of the Enc-CPA-Sub Function

Our next sub-protocol is to evaluate the Enc-CPA-Sub function on inputs which have been INS-shared. The protocol
is given in Figure 9 but from a high level works as follows: Firstly the three parties execute the KMAC function
on their suitably padded inputs (which have been shared via a different secret sharing scheme), from this S1 and S2

obtain an additive Fq-sharing of the output bits. This operation utilizes the SHA-3 implementation given earlier as a
sub-procedure, and to aid readability we separate this operation into a sub-protocol in Figure 8. In this protocol the
parties have as input a sharing of a bit string µ defined as follows: S1 holds (µ1, ν1), S2 holds (µ1, ν2), and S3 holds
(µ2, ν1) such that µ = µ1 ⊕ µ2 = ν1 ⊕ ν2. The output of the function will be an Fq-sharing between S1 and S2 of the
XOF applied to this input with diversifier D. The diversifier will be 0x03 for decryption and 0x05 for decapsulation).
Note, that the first thing the circuit does is to ensure the input values are consistent, i.e. µ1 ⊕ µ2 = ν1 ⊕ ν2. Also
note that only party S2 obtains output from this step. Since the number of AND gates in the permutation function is
38,400 and we have 114 rounds, then the total number of AND gates needed to execute this step is approximately
114 · 38, 400 = 4, 377, 600, plus the number of AND gates needed to create S2’s output (which is approximately
3 · 40 ·N · log2 q ≈ 1, 966, 080).
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We first, define a boolean circuit C that receives for input bit α, β and six elements a, b, c, d, e, f ∈ Zq , and works as follows:

1. Compute x = a + b mod q, y = c + d mod q and z = e + f mod q. Observe that addition modulo q inside a circuit
works by first adding two numbers (into a value that is larger by one bit) and then subtracting q if the comparison of the
result with q is returns a value one. In a circuit this looks like:

a+ b− (LT (a+ b, q) ∧ q)

where LT (r, s) = 0 if and only if r < s (as integers). Note that we compute the AND of a single bit LT (a+ b, q) and a
value q; our meaning is to compute the AND of each bit of q.

2. Compute v = x ⊕ y and w = x ⊕ z. Denote by γ the bitwise NOR of all the bits of v and w (i.e., γ = 1 if and only if
all the bits of v and w equal 0, meaning that x = y and x = z and so x = y = z).

3. Let δ be the bit that satisfies the following Boolean formula:

δ =

[(
x ≥ q − 1

4

)
∧
(
x <

3(q − 1)

4

)]
4. Output β on the first output wire.
5. Output γ on the second output wire.
6. Output γ ∧ (α⊕ δ) on the third output wire.
7. Output γ ∧ (β ⊕ δ) on the fourth output wire.

Now, the function Round can be computed securely, as follows:

1. S1 chooses random µ1, ν1 ← {0, 1}`; denote the ith bit of µ1 by µi1 and the ith bit of ν1 by νi1.
2. For every i = 1, . . . , `:

(a) Denote by f [i] the ith element of f ∈ Z`q .
(b) S1, S2 and S3 securely compute C

(
µi1, ν

i
1, f

1,2
1 , f1,2

2 , f1,3
1 , f1,3

2 , f2,3
1 , f2,3

2

)
using the previous 3-party garbled

circuit protocol. Note that S1 provides input (µi1, ν
i
1, f

1,2
1 , f1,3

1 ), S2 provides input (f1,2
2 , f2,3

1 ), and S3 provides
input (f1,3

2 , f2,3
2 ). The secure protocol provides outputs as follows:

i. S3 only receives the output bit β on the first output wire. S3 denotes this output by νi1.
ii. All parties receive the output bit γ on the second output wire. They denote the output bit by γ.

iii. S2 and S3 only receive the output bit on the third output wire. S2 and S3 denote this output by µi2.
iv. S2 only receives the output bit on the fourth output wire. S2 denotes this output by νi2.

(c) If any party receives output bit γ = 0, it aborts.
3. S1 outputs µ1 = µ1

1, . . . , µ
`
1 and ν1 = ν11 , . . . , ν

`
1.

4. S2 outputs µ2 = µ1
2, . . . , µ

`
2 and ν2 = ν12 , . . . , ν

`
2.

5. S3 outputs µ2 = µ1
2, . . . , µ

`
2 and ν1 = ν11 , . . . , ν

`
1.

Figure 7. The Protocol : ΠRound
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The parties using the 3-party garbled circuit protocol from earlier securely compute the application of KMAC (with diversifer
D) on the values µ = µ1⊕µ2 = ν1⊕ ν2 as follows. In addition party S1 enters a random value b(1)i ∈ Fq for each output bit.

Padding: The parties first defin: µ̄1 = µ1||1||0r−|µ1|−2||1, µ̄2 = µ2||0r−|µ2|, ν̄1 = ν1||1||0r−|ν1|−2||1 and ν̄2 = ν2||0r−|ν2|
where r = 1088.
The parties then run the following circuit:

1. Compute u← µ̄1 ⊕ µ̄2, v ← ν̄1 ⊕ ν̄2.
2. Check that u = v, if not, abort. i.e. output 1 on a special abort wire and 0 on all others; if no abort, then the abort wire

should hold 0.
3. Compute KMAC(u): We need one absorbtion round, and for the squeezing we repeatedly apply the garbled round function

for SHA-3, so as to obtain 3 · 40 · N bits of shared output. Thus we need to execute 3 · 40 · N/r rounds of squeezing,
when N = 1024 and r = 1088, so we require 113 rounds of squeezing.
Specifically: Let p(x, y) denote the permutation function of SHA-3, with domain size of 1600 bits
(a) Set R0 ← 01088, C0 ← 0512

(b) (R′0, C
′
0)← p(u, 0512)

(c) For i = 1 to 113: (R′i, C
′
i)← p(R′i−1, C

′
i−1).

(d) The values (R′1, . . . , R
′
113) are then used (combined with the respected b(1)i input from S1) to produce the output for

S2. In particular if bit k of R′j corresponds to output bit bi then we set b(2)i to bi − b(1)i (mod q).

Figure 8. Protocol to securely evaluate KMAC on shared inputs

The additive Fq-sharing between S1 and S2 output from Figure 8 is then used in a completely local manner by
S1 and S2 to obtain a modulo q additive sharing of the supposed ciphertext. The fact we can perform mainly local
operations is because the method to generate approximate Gaussian noise is completely linear and the FFT algorithm
is itself linear. This is then revealed to players S1 and S2, via means of a garbled circuit computation between the three
players. See Figure 9 for details.

The privacy of the protocol to evaluate Enc-CPA-Sub is inherent in the fact we use secure actively secure protocols
to evaluate the two required garbled circuits. The only place that an active adversary could therefore deviate is by
entering incorrect values into the evaluation of the Trunc function; e.g. S1 could enter the incorrect value for µ1 or
y(1). Any incorrect adversarial behaviour here will result in an incorrect value of c′0, which will be detected by the
calling algorithm.

4.3 Secure Evaluation of Dec-CCA(c, sk)

We can now give the method for decryption for the CCA public key encryption algorithm, see Figure 10. The secret
key sk is shared as described earlier, with the ciphertext c = (c0, c1) being public.

4.4 Secure Evaluation of Decap-CCA(c, sk)

The distributed decapsulation routine works much like the distributed decryption routine. However, to obtain the
same ideal functionality of a real decapsulation routine we need to evaluate the KDF computation within a secure
computation. This can be done using the same method we use to evaluate the KMAC needed in the XOF computation;
since in LIMA both are based on different modes of the SHA-3 based KMAC operation. The overal protocol is similar
and is given in Figure 11.

4.5 Experimental Results

Using the basic LIMA parameters of q = 40961 and N = 1024 we implemented the above protocol, and run it on
a set of three Linux RHEL servers running on AWS of type t2.small with 2GB of RAM. The total run time for
distributed decyrption was 4280 milliseconds. The main cost was the need to perform the inital decryption, and then
re-encrypt, without recovering the message in plaintext. This is inherent in the methodology adopted by LIMA, and
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1. Using Figure 8 party S1 and S2 obtain an additive sharing over Fq of the output bits from the KMAC operation applied
to µ = µ1 ⊕ µ2 = ν1 ⊕ ν2.

2. Parties S1 and S2 now locally compute additive sharings modulo q of the random Gaussian values vi, ei and di from
the Enc-Sub-CPA algorithm of LIMA. This is done by locally applying the algorithm to produce Gaussian values,
GenerateGaussianNoise since it is a linear function of the input random bits. Thus party S1 obtains three ring elements
(v(1), e(1), d(1)), and party S2 obtains three ring elements (v(2), e(2), d(2)) such that v = v(1) + v(2), e = e(1) + e(2)

and d = d(1) + d(2).
3. Party S1 locally computes the values v(1) ← FFT(v(1)), e(1) ← FFT(e(1)), s(1) ← FFT−1(b ⊗ v(1)), c(1)1 ←

(a⊗ v(1))⊕ e(1).
4. Party S2 locally computes the values v(2) ← FFT(v(2)), e(2) ← FFT(e(2)), s(2) ← FFT−1(b ⊗ v(2)), c(2)1 ←

(a⊗ v(2))⊕ e(2).
5. Parties S1 and S2 locally compute sharing of y = y(1) + y(2) = s + d by computing y(1) ← s(1) + d(1) and y(2) ←
s(2) + d(2).

6. The parties S1 and S2 open c
(1)
1 and c

(2)
1 to each other, so they can obtain c′1.

7. With private input (y(1), µ1) and (y2), µ2) from S1 and S2 the three parties compute (using a secure Garbled Circuit
based secure computation protocol) the value

c′0 = Trunc
(
y(1) + y(2) +∆q · BV-2-RE(µ1 ⊕ µ2), `

)
.

with S1 and S2 obtaining the output.

Figure 9. Protocol to securely evaluate Enc-CPA-Sub((µ1, ν1), (µ1, ν2), (µ2, ν1), pk, D)

1. Let ` denote the length of c0, abort if ` 6= 0 (mod 8).
2. Party S1 locally computes

f1,2
1 ← c0 − Trunc(FFT−1(s1,21 ⊗ c1), `) and f1,3

1 ← c0 − Trunc(FFT−1(s1,31 ⊗ c1), `).

3. Party S2 locally computes

f1,2
2 ← Trunc(FFT−1(s1,22 ⊗ c1), `) and f2,3

1 ← c0 − Trunc(FFT−1(s2,31 ⊗ c1), `).

4. Party S3 locally computes

f1,3
2 ← Trunc(FFT−1(s1,32 ⊗ c1), `) and f2,3

2 ← Trunc(FFT−1(s2,32 ⊗ c1), `).

5. Note that after these operations we have f1,2
1 + f1,2

2 = f1,3
1 + f1,3

2 = f2,3
1 + f2,3

2 = c0 − Trunc(FFT−1(s⊗ c1), `).
6. S1, S2 and S3 securely compute Round

(
(f1,2

1 , f1,3
1 ), (f1,2

2 , f2,3
1 ), (f1,3

2 , f2,3
2 ), `

)
, as given above in Figure 7. Denote

the output of S1 from this computation by µ1, ν1, the output of S2 by µ2, ν2, and the output of S3 by µ2, ν1, with
µ1, ν1, µ2, ν2 ∈ {0, 1}`. If any party received an abort in the Round function computation, then it does not proceed.

7. The parties now run Enc-CPA-Sub(µ1, µ2, ν1, ν2, pk, 0x03) using the protocol in Figure 9, so that parties S1 and S2

obtain c′0 and c′1.
8. If S1 or S2 detect that c0 6= c′0 or c1 6= c′1 then the parties abort.
9. All three parties reveal the first ` − 256 bits of µ1, µ2, ν1 and ν2 to each other using a broadcast channel (ensuring a

sending party cannot send different values to different players). Call these values µ′1, µ′2, ν′1 and ν′2. A party now aborts if
any value it receives, which it owns, does not equal what they expected, i.e. S1 aborts if ν′1 that they hold does not equal
the ν′1 that was sent from party S3.

10. The parties compute m = µ′1 ⊕ µ′2 and m′ = ν′1 ⊕ ν′2 and abort if m 6= m′.
11. The parties output m.

Figure 10. Secure Evaluation of Dec-CCA(c, sk)
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1. Let ` denote the length of c0, abort if ` 6= 0 (mod 8).
2. Party S1 computes

f1,2
1 ← c0 − Trunc(FFT−1(s1,21 ⊗ c1), `) and f1,3

1 ← c0 − Trunc(FFT−1(s1,31 ⊗ c1), `).

3. Party S2 computes

f1,2
2 ← Trunc(FFT−1(s1,22 ⊗ c1), `) and f2,3

1 ← c0 − Trunc(FFT−1(s2,31 ⊗ c1), `).

4. Party S3 computes

f1,3
2 ← Trunc(FFT−1(s1,32 ⊗ c1), `) and f2,3

2 ← Trunc(FFT−1(s2,32 ⊗ c1), `).

5. Note that after these operations we have f1,2
1 + f1,2

2 = f1,3
1 + f1,3

2 = f2,3
1 + f2,3

2 = c0 − Trunc(FFT−1(s⊗ c1), `).
6. S1, S2 and S3 securely compute Round

(
(f1,2

1 , f1,3
1 ), (f1,2

2 , f2,3
1 ), (f1,3

2 , f2,3
2 ), `

)
, as given above in Section 4.1. Denote

the output of S1 from this computation by µ1, ν1, the output of S2 by µ2, ν2, and the output of S3 by µ2, ν1 (recall that
S3 receives the same µ2 as S2 and the same ν1 as S1). Note that µ1, ν1, µ2, ν2 ∈ {0, 1}`. If any party received an abort
in the Round function computation, then it does not proceed.

7. The parties now run Enc-Sub-CPA(µ1, µ2, ν1, ν2, pk, 0x03) so that parties S1 and S2 obtain c′0 and c′1.
8. If S1 or S2 detect that c0 6= c′0 or c1 6= c′1 then the parties abort.
9. Using a method similar to that above for producing the KMAC value in Enc-Sub-CPA the parties now compute the value

k← KDF[`](µ1 ⊕ µ2) = KDF[`](ν1 ⊕ ν2)

using their private inputs µ1, µ2, ν1, ν2. Note, we again need to check for consistency of inputs within the garbled circuit.
10. The value k is returned.

Figure 11. Secure Evaluation of Decap-CCA(c, sk)

many other of the PQC candidate algorithms, for producing a chosen ciphertext secure encryption algorithm. More
MPC friendly methods to obtain CCA security could reduce this run time considerably, but that does not seem to
have been a design goal for any of the candidate submissions. For distributed decapsulation in the KEM algorithm we
achieved an execution time of 4342 milliseconds.

5 Distributed Key Generation for Ring-LWE Encryption

Distributed key generation can be performed relatively straightforwardly using a generic MPC system based on linear
secret sharing which supports two-out-of-three threshold access structures and gives active security with abort. As
explained earlier we selected SCALE-MAMBA to do this, as we could use an off-the-shelf system.

SecGauss()

1. [a]← 0.
2. For i ∈ [0, . . . , 19] do

(a) [b]← Bits, [b′]← Bits.
(b) [a]← [a] + [b]− [b′].

3. Return [a].

Figure 12. Securely Generating Approximate Gaussians

The main difficulty in key generation would appear to be the need to generate the approximate Gaussian distri-
butions needed for LIMA. However, the specific distribution method chosen in LIMA dovetails nicely with the offline
pre-processing found in SCALE-MAMBA. This results in the method to securely generate approximate Gaussian dis-
tributions given in Figure 12, which we note becomes a completely local operation in the online phase of the MPC
protocol.
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From this it is easy to produce the key generation procedure which we give in terms of an inner MPC-core of the
algorithm (which mainly consists of local operations and opening values to different players which is implemented in
SCALE-MAMBA) (lines 3 to 5 of Figure 13). plus non-interactive local operations which are purely about placing
data into the correct formats. We make extensive use of the fact that the FFT operation is linear. In our algorithms we
utilize vectors/polynomials of secret shared values which we will write as [f ] which we use to represent the element
in R given by [f ]0 + [f ]1 ·X + . . .+ [f ]N−1 ·XN−1.

KeyGen()

1. All players agree on a key for a XOF XOF.
2. a ←

XOF
FNq .

3. For i ∈ [0, . . . , N − 1] do
(a) [s]i ← SecGauss(), [e]i ← SecGauss().
(b) ([s1,21 ]i, [s

1,3
1 ]i, [c])← Triples, ([s2,31 ]i, [b], [c])← Triples.

(c) [s1,22 ]i ← [s]i − [s1,21 ]i, [s1,32 ]i ← [s]i − [s1,31 ]i, [s2,32 ]i ← [s]i − [s2,31 ]i.
(d) Output-To(1, [s1,21 ]i), Output-To(1, [s1,31 ]i).
(e) Output-To(2, [s2,31 ]i), Output-To(2, [s1,22 ]i).
(f) Output-To(3, [s1,32 ]i), Output-To(3, [s2,32 ]i).

4. [b]← a · [s] + [e] (mod Φ2·N (X)).
This is a completely local operation as a is public which we do as follows for k = 0, . . . , N − 1

(a) [b]k ←
(∑

i+j=k ai · [s]j
)
−
(∑

i+j=k+N ai · [s]j
)

+ [e]k.

5. For i ∈ [0, . . . , N − 1] do
(a) Output([b]i).

6. a← FFT(a), b← FFT(b).
7. pk← (a,b).
8. Player S1 executes s1,21 ← FFT(s1,21 ) and s1,31 ← FFT(s1,31 ).
9. Player S2 executes s1,22 ← FFT(s1,22 ) and s2,31 ← FFT(s2,31 ).

10. Player S3 executes s1,32 ← FFT(s1,32 ) and s2,32 ← FFT(s2,32 ).

Figure 13. Main Key Generation Routine

5.1 Experimental Results

We implemented the above key generation phase within the SCALE-MAMBA framework for the parameters N =
1024 and q = 40961 of LIMA. We used the settings of Shamir secret sharing and the Maurer [22] based offline settings
of SCALE-MAMBA. Our experiments for this component were executed on three Linux Ubuntu machines with Intel
i7-7700K processors running at 4.20 GHz, and with 8192KB cache and 32GB RAM.

The SCALE-MAMBA system runs in an integrated offline–online manner, however one can program it so as to
obtain estimates for the execution times of both the offline and the online phases. Within the system there is a statistical
security parameter secp which defines the probability that an adversary can get the pre-processing to invalid data. The
variable s =sacrifice_stat_sec in the system defines the value of secp via the equation

secp = dlog2 qe ·
⌈ s

dlog2 qe

⌉
.

When q is large (i.e. q > 2128), as it is in most envisioned executions of SCALE-MAMBA the default value of s = 40
results in a suitable security parameter. However, for our small value of q we needed to modify s so as to obtain a
suitable value of secp. We note, that this setting only affects the runtime for the offline phase; and as can be seen the
effect on the run times in Table 1 is marginal.

The online run time takes 1.22 seconds, although roughly one second of this is used in performing the 6144
output operations. On further investigation we found this was because SCALE-MAMBA performs all the reveals in
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a sequential as opposed to batch manner (requiring 6144 rounds of communication as opposed to one). We suspect a
more careful tuned implementation could reduce the online time down to less than a quarter of a second. However,
our implementation of the Key Generation method in SCALE-MAMBA took about a day of programmers time; thus
using a general system (even if inefficient) can be more efficient on the development time.

s secp Time (Seconds)
40 48 20.2
80 80 20.7
128 128 23.1

Table 1. Times to produce the offline data for the Key Generation operation. This is essentially producing 81920 shared random
bits, 2048 multiplication triples and enough shared randomness to enable the output of the shared keys.
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