
Prehashing Panel Discussion

Panelists:
• Scott Fluhrer, Cisco
• Markku-Juhani O. Saarinen, Tampere University and PQShield
• Joseph Harvey, Verisign

Moderator: John Kelsey, NIST and KU Leuven

What is prehashing?

Normal signature:
• S = Sign(SK,M)
• Signing alg. processes the message

with a hash
• May include randomizers, public

key, etc.

Pre-hashing:
• H = hash(M), S = Sign(SK, H)
• Hashing takes place outside signing

alg.
• Signing algorithm will do more

hashing, randomize, etc.

Use case #1 for prehashing
General CPU

No access to key material
Has long message to sign

Trusted Signer
No access to message

Narrow pipe

Current practice:
- General CPU hashes the long message; sends the hash through the narrow pipe
- Trusted signer pads and RSA/ECDSA signs the message; sends the signature
through the narrow pipe

Issue with ML-DSA – it insists that the hash used is prefixed with data from the
public key; the General CPU doesn’t have access to that.

Proposed solution: have the General CPU do a general hash; have the trusted
signer do a full ML-DSA signature (including the hash) of the hash

Use case #2 for prehashing
We want to sign the same message with multiple algorithms (e.g. RSA, ML-DSA)

Issue – ML-DSA insists that the hash used is prefixed with data from the public
key; RSA does not
 Hence, we cannot use the same hash for both
 If the message is long, the repeated message hashing is expensive.

Proposed solution: hash the message once, and then have each algorithm sign
the hash.

Use case #3 for prehashing
We want to sign the long message with SLH-DSA

Issue – SLH-DSA requires two passes over the message:
• The first to determine an unpredictable ‘optrand’ value
• The second to hash the message (along with the ‘optrand’ value and public

data)

If the message is long, the repeated message hashing is expensive.

Proposed solution: hash the message once (with a hash function we have
confidence in its collision resistance), and then have SLH-DSA sign that hash
(with its two passes)

Use case #4 for prehashing

We want to use a hash that’s not supported by crypto module

Examples:
• New, very efficient hash function + old crypto module
• Parallel hash or tree hash

What can go wrong?

If we just allowed Sign(SK,M) or Sign(SK, H), we’d get ambiguity

Sign(SK,X) might be
• Signature on the message X
• Signature on the message Y where X = hash(Y)
• How do we tell?

• Introduces a kind of dumb forgery attack we want to avoid.

Domain-separation to the rescue

Something like this—this isn’t a full specification

M = message, H = externally computed hash, ctx = context
• Pre-hash:

• H = hash(M) using SHAKE256 with 512-bit output
• S = sign(0 || OID(SHAKE256 with 512-bit output) || ctx || H)

• Normal:
• S = sign(1 || ctx || M)

Panel Questions

• Should FIPS 204 and 205 specify an optional pre-hashing step?
Alternatively, should NIST provide guidance in a Special Publication?

• If not, should NIST encourage development of a general-purpose
specification and/or guidance for pre-hashing in other standards
development organizations?

• Or, would it be preferable to have special-purpose specifications
and/or guidance developed by the protocols and use cases that
employ a pre-hashing option?

NIST is currently planning to have one general pre-hashing scheme
• Apply to all PQ sigs

More panel questions

• Should randomized hashing be included as an option in the guidance
or specification?

• What about other inputs, such as the signer’s public key?

Current plan: Don’t incorporate public key, randomizers, etc. into
external hash.

Still more questions

• What are some examples of the protocols and use cases that might
employ a pre-hashing option? What is their rationale?

• What other kinds of usage guidance for pre-hashing messages would
be helpful to have?

• How will pre-hashing play with existing APIs?

	Prehashing Panel Discussion
	What is prehashing?
	Use case #1 for prehashing
	Use case #2 for prehashing
	Use case #3 for prehashing
	Use case #4 for prehashing
	What can go wrong?
	Domain-separation to the rescue
	Panel Questions
	More panel questions
	Still more questions

